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Kurzfassung

In dieser Thesis entwickeln wir ein Modell zur Bildklassifizierung mit einer sich während
der Trainingsphase steigernden Klassifizierungsleistung. Das Modell verwendet für die
Gewinnung der Bildmerkmale ein Convolutional Neuronales Netzwerk (CNN) und für
die Clusterbildung einen k-Means Algorithmus. Die Leistungsoptimierung wird mit-
tels optimierter Gewichtungsfaktoren erreicht, welche auf die Bildmerkmale angewandt
werden. Die Optimierung der Gewichtungsfaktoren wird während einer Trainingsphase
iterativ durchgeführt. Das Maß für die Anpassung der Gewichtungsfaktoren in einem
Trainingsschritt steht in Relation zum Clustering-Beitrag eines im Trainingsschritt neu
hinzugefügten Bildes.

Wir sehen als einen Vorteil unseres Konzeptes, dass keine Eingriffe in die inneren Struk-
turen der verwendeten Algorithmen für die Bildmerkmalgewinnung und deren Clustering
notwendig sind, und daher bereits trainierte Modelle oder closed-source Modelle verwendet
werden können. Einen weiteren Vorteil im Vergleich zur Batch-Struktur des Trainings-
prozesses bei CNNs sehen wir in der Transparenz der schrittweisen Leistungsentwicklung
unseres Modells während der Trainingsphase für jedes neu hinzukommende Bild. Dies
ermöglicht eine flexible Kontrolle der Trainingsphase durch den Benutzer. Einen weiteren
Vorteil sehen wir in der geringen Anzahl der zu optimierenden Parameter, was zu einer
Reduktion der Bearbeitungszeit führt. Ein weiterer Vorteil ist die Klassifizierungsleistung
unseres Modells, welche die Leistung des Referenzmodells ohne Bildmerkmalsoptimierung
übertrifft.

Im Zuge unserer Arbeit haben wir eine Python Applikation entwickelt, in welcher
unser Model implementiert wurde und die eine benutzerfreundliche Oberfläche bietet. Die
Applikation ermöglicht eine einfache Konfiguration von Testfällen und bietet umfangreiche
Auswertungsmöglichkeiten für jeden Trainingsschritt in grafischer und tabellarischer Form.
Wir sehen diese Applikation als Ausgangspunkt für weitere Arbeiten zu diesem Thema.
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Abstract

In this thesis, we developed an image classification model with improving classification
performance over a training phase. The model is using a pre-trained convolutional
neuronal network (CNN) for feature extraction and a k-means algorithm for clustering.
Performance optimization is realized by optimized weight factors for the extracted feature
values. The optimization of the weight factors is calculated iteratively during a training
phase. The measure of the weight factor adoption in a training step is related to the
ground-truth dependent clustering contribution of the newly added image feature.

We see as an advantage of our approach that the optimization requires no internal changes
of the applied feature extraction and clustering algorithms, hence pre-trained models or
closed-source implementations can be used. As a further advantage, we see the step-wise
transparency of the performance development during the training phase for each newly
added image as opposed to batch-based training for CNNs. This enables dynamic control
of the training phase by the user. Another advantage is the small number of parameters
to be optimized, which results in reduced processing time. A further advantage is the
classification performance of our model that outperforms the reference model without
feature weight optimization.

In the course of our work, we developed a Python application that implements our model
and provides a user-friendly interface. It allows easy set-up of test cases and provides
graphics and tables for a comprehensive evaluation on process steps level. We consider
this application as a starting point for future work.
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CHAPTER 1
Introduction

1.1 Motivation
Image classification is one of the most important parts of digital image analysis. It is
a process in computer vision for classifying an image according to its visual content.
The process of image classification can be divided into feature extraction and a feature
clustering phase. The results of the feature extraction are the image features that are used
by the clustering process to classify the image. The image classification approaches can
be broken down into supervised and unsupervised category, depending on the interaction
between the user and the application during classification. Image classification has a
broad application field, as there are for example automated image organization, image
and face recognition on social networks, environment detection in autonomous driving
concepts, medical diagnosis, and security applications.

There are many models for image classification with different approaches. The latest
trend shows models with joint optimization of the feature extraction and the clustering
algorithm. As an example, Yang et al. [YFSH17] propose a joint optimization approach
applied to a model that combines a convolutional neuronal network (CNN) feature
extraction and K-means clustering. Common to most of the models is a single learning
phase, during which the model performance is optimized and integrated closed model
architecture.

In contrast to a single learning phase approach, we wanted to address in our work the need
for a user-controlled transparent training phase. The model should enable user interaction
in any state of the training phase. Hence the model should provide performance and
other relevant information in any process state to enable the user to control and adapt a
currently processed training.

In the comparison with the common model approaches which are mainly highly sophis-
ticated integrated solutions, like for example Yang et al. [XGF16], proposing deeply
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1. Introduction

embedded clustering (DEC), we want to reach modularity with our model architecture.
It means that our model should be capable of using different available ready solutions for
feature extraction and clustering without the necessity of intervention into the internal
structure of the solution. This would make our model flexible for applying and combining
different and arbitrary algorithms. Additionally, the model would be open for future
third-party algorithm improvements and developments.

A further challenging task we want to address in our work is to keep the processing
complexity low. This should prevent an unpractically long processing time. Finally, we
have the goal to develop a model that shows a performance advantage in comparison to
other state-of-the-art models.

1.2 Related Work
As mentioned above, there are different approaches to image classification. The most
common state-of-the-art approaches for supervised image classification use deep convolu-
tional neuronal networks (CNN). There were different approaches to specialized image
classification model designs over the last decades. The latest development shows a trend
to join the optimization of feature extraction and clustering, as follows:

Chang et al. [CWM+17] state that most of the existing methods ignore the conjunction
between feature learning and clustering. They assume that the relationship between
pairwise images is binary, hence their model approach is identifying the image pairs
which should belong to the same cluster. The issue of unknown ground-truth similarities
is solved by an alternating iterative adaptive learning algorithm which uses labeled
samples for the CNN training. Hsu et al. [HL17] propose an iterative learning model
that randomly selects sample images from the ImageNet1 dataset and extracts their
features, using a pre-trained CNN. These feature sets are initially assigned to cluster
centroids. Then a mini-batch k-means clustering algorithm assigns cluster labels to their
input samples. The samples are randomly selected from the set of all images until all
images have been processed. The model simultaneously updates the parameters of the
CNN and the centroids of the image clusters, based on stochastic gradient descent. Yang
et al. [YFSH17] also propose a joint optimization approach applied to a model that
combines CNN feature extraction and k-means clustering. Fard et al. [FTG18] propose
the use of a deep k-means model for joint optimization of learning representations and
clustering through stochastic gradient descent updates, representation, and k-means
clustering losses. Yang et al. [XGF16] propose deeply embedded clustering (DEC), an
algorithm that clusters a set of data points in a jointly optimized feature space, without
ground-truth cluster membership labels.

Guérin et al. [GGTN17] provide a comprehensive evaluation of different combinations of
CNNs for feature extraction and classic clustering algorithms as classification pipelines.

1ImageNet is a large visual database designed for use in visual object recognition software research. It
contains more than 14 million hand-annotated images in more than 20,000 categories. http://www.image-
net.org/
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1.3. Scope of this Thesis

The results of their evaluation show that such combinations can compete with more
sophisticated and tuned clustering methods.

The approach we propose in this thesis is not following the current trend of a joint
optimization, instead, we are optimizing weight factors that we apply to extracted
features for use in the clustering algorithm. This interface permits to plug-in modules
for both feature extraction and clustering without altering their respective internals.

1.3 Scope of this Thesis

Aiming at a modular model architecture for using arbitrary feature extraction and
clustering solutions required us to define the readily available solutions for feature
extraction and clustering that we would use in our model for development and testing.
The selected models had to meet the requirements of reliable and proven functionality,
as well as an easy use in our Python2 development and testing environment.

In our model architecture design, we had to cover the requirement for a step-wise
transparent evaluation of performance improvement during training. For meeting this
requirement, we defined the feature weighting at the interface of the feature extraction
module and the clustering module as a proper architectural model solution.

A challenging task was to develop a stable algorithm for the feature weight optimiza-
tion that would finally lead to a model performance advantage compared to a defined
benchmark. We had to find a metric and an associated calculation algorithm for a
step-wise feature weight optimization. The optimization algorithm had to consider the
already learned weights from previous training steps and optimize them, based on the
classification contribution delivered by the current training step. In that context, we
had to avoid that the optimized feature weights converge to infinite values in case of a
continuous single direction classification contribution in each training step. This would
raise the problems of untraceable optimization and model instability. We solved this
by defining a normalization of the measured values for feature weight adoption and the
feature weight values in conjunction with the overall calculation algorithm.

After we had developed the calculation algorithm of our model, we faced the challenge
to select the properly hidden layer for feature value output from the selected VGG16
CNN that we had selected as feature extraction solution for our testings. We aimed to
use the output values of the layer as feature input values to the clustering process after
weighting with the optimized weight factors.

By the requirement that the feature values contain spatial contextual information that
is necessary to make a classification based on that criterion, we tested our model with
each of the fully connected hidden layers that provide such information from the VGG16
CNN. When using classes defined by ImageNet that the VGG16 CNN was trained on,

2Python is an interpreted, high-level, general-purpose programming language, created by Guido van
Rossum and first released in 1991 (see https://www.python.org/
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1. Introduction

we got very good performance results close to 100% that we supposed to be biased by
the pre-trained status of the VGG16 CNN. Hence we doubted the relevance of the test
results for a layer selection and we decided to carry out the tests with an image set with
a manually defined ground-truth which the VGG16 CNN was not trained on. Based on
the results of these tests, we finally selected a hidden VGG16 CNN layer that we used in
our further tests.

For showing the performance of our model, we had to define a performance benchmark.
Hence we defined a reference model for comparison that allowed us an evaluation of our
model approach focused on weight factor optimization.

In our tests, we aimed to evaluate the performance of our model using image test sets
with different subjective ground-truth. We carried out one test on an image set with
subjectively similar ground-truth and for comparison one test with subjectively diverse
ground-truth.

Lastly, we aimed to evaluate the performance of our model on larger image sets than used
for the VGG16 layer selection, with ground-truth that the VGG16 CNN was not trained
on. These tests should avoid a possible bias of the test results from the pre-trained status
of the VGG16 CNN. We generated two different manually labeled image sets, each with
a ground-truth the VGG16 CNN was not trained on and carried out the related tests.

1.4 Outline
This thesis is structured in such a way that in Section 2 we cover the theory of the
used VGG16 CNN feature extraction model and the used k-means clustering model. In
Section 3, we explain our developed model in detail. This section also includes detailed
descriptions of the implemented application user-interface for testing and evaluating,
together with detailed data specification of the output interfaces (in Subsection 3.5).
In Section 4, we describe the test parameters and show our results. For the correct
model behavior testing, see Subsection 4.1. For the test results for the VGG16 layer
selection, see Subsection 4.2. For the evaluation results of test cases with classes defined
in ImageNet and pre-trained in the VGG16 CNN for subjectively similar and diverse
classes, see Section 4.3. For the evaluation results of test cases with manually defined
class labels that the VGG16 was not trained on. see Section 4.4. Finally, in Chapter 5,
we discuss our results and what tasks are interesting for future work.

4



CHAPTER 2
Theory

2.1 VGG16 Convolutional Neuronal Network

For the image feature extraction, we use the VGG16 CNN model, as described by K.
Simonyan and A. Zisserman from the Visual Geometry Group, from the University
of Oxford in their paper “Very Deep Convolutional Networks for Large-Scale Image
Recognition” [SZ14]. The model was designed to classify images from the ImageNet

Figure 2.1: Architecture of VGG16.
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2. Theory

database that contains over 15 million images belonging to roughly 22, 000 categories.
The network was trained to classify the images for 1, 000 defined classes. The network
uses RGB-images of size 224 x 224 x 3 as input. Rozsa et al. [RGB16] evaluated in their
work a VGG16 top-1 accuracy error rate of 31.642% and a top-5 error rate of 11.556%.

The network model has 16 layers in total. The first 13 layers are convolutional layers and
the following three layers are fully connected layers. A graphical representation of the
architecture of the VGG16 CNN is shown in Figure 2.11 The VGG16 takes a 224 x 224
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_9 (InputLayer) (None, 224, 224, 3) 0
_________________________________________________________________
block1_conv1 (Conv2D) (None, 224, 224, 64) 1792
_________________________________________________________________
block1_conv2 (Conv2D) (None, 224, 224, 64) 36928
_________________________________________________________________
block1_pool (MaxPooling2D) (None, 112, 112, 64) 0
_________________________________________________________________
block2_conv1 (Conv2D) (None, 112, 112, 128) 73856
_________________________________________________________________
block2_conv2 (Conv2D) (None, 112, 112, 128) 147584
_________________________________________________________________
block2_pool (MaxPooling2D) (None, 56, 56, 128) 0
_________________________________________________________________
block3_conv1 (Conv2D) (None, 56, 56, 256) 295168
_________________________________________________________________
block3_conv2 (Conv2D) (None, 56, 56, 256) 590080
_________________________________________________________________
block3_conv3 (Conv2D) (None, 56, 56, 256) 590080
_________________________________________________________________
block3_pool (MaxPooling2D) (None, 28, 28, 256) 0
_________________________________________________________________
block4_conv1 (Conv2D) (None, 28, 28, 512) 1180160
_________________________________________________________________
block4_conv2 (Conv2D) (None, 28, 28, 512) 2359808
_________________________________________________________________
block4_conv3 (Conv2D) (None, 28, 28, 512) 2359808
_________________________________________________________________
block4_pool (MaxPooling2D) (None, 14, 14, 512) 0
_________________________________________________________________
block5_conv1 (Conv2D) (None, 14, 14, 512) 2359808
_________________________________________________________________
block5_conv2 (Conv2D) (None, 14, 14, 512) 2359808
_________________________________________________________________
block5_conv3 (Conv2D) (None, 14, 14, 512) 2359808
_________________________________________________________________
block5_pool (MaxPooling2D) (None, 7, 7, 512) 0
_________________________________________________________________
flatten (Flatten) (None, 25088) 0
_________________________________________________________________
fc1 (Dense) (None, 4096) 102764544
_________________________________________________________________
fc2 (Dense) (None, 4096) 16781312
=================================================================

Table 2.1: VGG16 layers from Keras API as used in our model.

RGB image as input and pre-processes it by subtracting the mean RGB value from each
1source: Indoor Visual Positioning Aided by CNN-Based Image Retrieval: Training-

Free, 3D Modeling-Free - Scientific Figure on ResearchGate. Available from:
https://www.researchgate.net/figure/Architecture-of-VGG16_fig1_327060416 [accessed 11 Aug,
2019]
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2.2. K-Means Clustering

pixel. In the stack of convolutional layers, filters with the smallest possible receptive field
(3x3) are used to capture the notion of left/right, up/done and center. The convolutional
stride is fixed to 1 pixel. The spatial padding of the convolutional layer input is 1 pixel for
3x3 convolutional layers. Max-pooling is performed over a 2x2 pixel window, with stride
2. The stack of convolutional layers is followed by three fully connected layers. The first
two have 4, 096 channels each, the third performs 1000-way ILSVRC2 classification and
thus contains 1, 000 channels (one for each class) (as described by Simonyan et al. [SZ14]).

In our model implementation, we are using the Keras API3 VGG16 implementation.
The VGG16 layers we use in our model to generate the image features for the k-means
segmentation can be found in Table 2.1. The RGB images values are the input values
to the InputLayer layer and the detected feature values we process further on are the
output values of the fc2 layer.

2.2 K-Means Clustering
The k-means method is a commonly used clustering technique that provides the advantages
of speed and simplicity. It seeks to minimize the average squared distance between points
within the same cluster.

An example of the algorithm process steps is shown in Figure 2.2 for two clusters. In the
first step, the center points of the clusters are randomly selected from the data points.
In further steps, the algorithm seeks to minimize the average squared distance between
points within the same cluster.

In our model we are using the Keras API in-built k-means algorithm4, implemented in
the KMeans5 class to generate the cluster centroids.

The Keras API in-built k-means algorithm is described in the paper by Arthur et
al. [AV07] and is called k-means++. In their algorithm approach, they choose the centers
at random from the data points, but weigh the data points according to their squared
distance squared from the closest already chosen center. They analyzed the performance
of their k-means++algorithm and showed that the k-means++ algorithm outperforms
Lloyd’s k-means algorithm [Llo82] that begins with k arbitrary centers, randomly chosen
from the data points.

2The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is a benchmark in object category
classification and detection on hundreds of object categories and millions of images. The challenge has
been run annually from 2010 to present, attracting participation from more than fifty institutions (see
Russakofsy et al. [RDS+15]).

3Keras is a high-level neural networks API, written in Python and capable of running on top of
TensorFlow, CNTK, or Theano. https://keras.io/

4for algorithm code see https://github.com/scikit-learn/scikit-learn/blob/1495f6924/sklearn /clus-
ter/k_means_.py#L772

5The Kmeans class (see https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html),
in sklearn.cluster package, from scikit learn, provides an in-built clustering algorithms.
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2. Theory

Figure 2.2: Example of k-means algorithm steps.
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CHAPTER 3
Method

3.1 Goal and Process
There are various approaches regarding image classification according to objects shown
in the image. This work aims to evaluate a model for image classification based on using
a pre-trained VGG16 CNN for image feature extraction and the k-means algorithm for
classification, such that the feature input in the k-means clustering is weighted with
calculated feature weights to foster a better class separation.

A prerequisite for the further evaluation and optimization of the image classification is
that all images are labeled with their ground-truth, i.e an image specific information that
tells what object is shown in the image.

In comparison to a normal k-means clustering approach, we apply in our model weight
factors on each image feature value before using it in the k-means clustering algorithm.
We are calculating the optimized weight factors using a training phase iteratively in each
training step.

The goal of using feature weights that are initialized with value 1 is to consider those
features more that support a correct classification and those that are preventing a correct
classification less. Consequently, the classification process should deliver better results
by applying optimized weight factors.

In our training phase, we add a new image in each training step. The change to the
feature weighting factors, resulting from the previous training step, is calculated on a
metric how good this image is supporting a correct classification related to the result of
the previous training step.

For this, we calculate an overlapping factor for each centroid of the k-means clustering
of the previous training step per feature. This calculation is based on the distances of
the image feature to the centroids. Thus, distances which support the classification are

9



3. Method

assigned a positive sign, and distances which prevent such classification, are given a
negative sign. The result of the calculation value per feature is normalized to [0..2]. At
the end of each training iteration step, the mean value of the feature result value and the
feature weight factor is calculated and set as the new feature weight factor.

As image base, we use ImageNet data sets. The k-means clustering algorithm for the
images takes the features of the image as input that were detected by a CNN for that
image. In our model, we use the pre-trained VGG16 CNN for feature extraction. We
tested the use of the output values of these hidden layers: flatten, fc1 and fc2. The test
of the different layers showed a significant improvement of classification performance
by using fc1 -layer instead of flatten and fc2 -layer instead of fc1. Especially in the case
of newly defined classes that the VGG16 CNN was not trained on, the classification
performance of k-means was significantly better when using fc2 -layer than the flatten
layer. Based on these test results, we decided to use the fc2 -layer in our model.

3.2 Implementation
The initialization, training, and evaluation phases are implemented in an object-oriented
Python application. For the development, we were using the Python Version 3.7 and for
application development the PyCharm API version Professional 2019.1.

The application process parameters are

• the set of defined classes D that the images should be assigned to,

• the number nI of images per class for the initialization phase before running the
training phase,

• the number nT of images per class for the training phase ,

• the number nE of images per class for the evaluation phase,

• the order of images in the training phase according to their class relation (alternating
or non-alternating),

• the name of the pre-trained VGG16 hidden layer for image feature extraction,

• an optional set Fi of image features for test purpose and

• an optional set Dm of classes that are used as ground-truth for the processed list
of images

The general goals are to increase the correct class assignment percentage over the
training iteration steps and the improved performance of the classification result of the
evaluation phase, using the optimized weight factors. For a quantitative evaluation of
the performance improvement, each training phase step result is compared to a reference

10



3.3. Application Initialization Process

model result. The reference model is the same process but without feature weight
optimization, i.e. the feature weights stay constantly 1. For a user evaluation, the
application gives graphical and tabular result outputs.

The graphical evaluation output is given in the form of plots that show performance
development over the training iteration steps. The plots contain a graph using weight
factor optimization and a graph for the reference model with constant weight factors
for comparison. Additionally, a graph in the same plot shows the standard deviation
development of the weight factor differences between each step as a qualitative measure
of weight factor optimization. When the standard deviation becomes constant, this is a
sign that the feature weight factor optimization process has become stable.

As a final performance measure of our model with k-means clustering using optimized
weight factors, in comparison to the reference model with k-means clustering without
feature weighting, an evaluation phase is applied. The evaluation phase uses a set of
images that were not used in the initialization and training phase before. The result of
the evaluation phase is the number of correctly classified images, relative to the total
number of images. The evaluation is processed for our model and the reference model.
These result values are shown as constant dashed graphs in the plot.

As further graphical result output, the processed images are shown separately for the
training and evaluation phase, labeled with their ground-truth and framed with a color
that indicates the classification result of our model and that of the reference model.

In addition to the graphical result output, the numerical performance values in each
training iteration step, as well as the evaluation phase results, are saved as .csv files.

For special test purposes, the application can be started with a manually defined feature
set Fi for the images and/or with a set of image related defined ground-truth Dm for the
images to be processed. In case the test is executed with manually defined feature lists,
an additional .csv file is generated with detailed information to each training step.

3.3 Application Initialization Process

3.3.1 ImageNet

We are using the ImageNet database as an image source. ImageNet provides the images
not by itself, but via URLs to third-party sources. The application downloads the
necessary images according to the provided application parameters nI , nT , nE and saves
them locally for further processing. This improves the run-time of processes that use
image categories that were already used by a previous process. Before downloading
images, the application checks the number of already available images of selected classes,
and only downloads the number of missing images.

ImageNet is not the owner of the images. Therefore, there are a great number of image-
related URLs that are not valid. This circumstance is handled by the application and the
user does not have to take care of it. In case that the total number of requested images
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is not available, no error occurs and the process is executed only with the number of
available downloaded images.

3.3.2 VGG16

For the image feature extraction, we use the pre-trained VGG16 CNN implementation
from Keras API. Before processing, each image is resized to height = 224 and width = 224.
In our work, we tested the result of taking the output values of three different hidden
layers - the flatten layer with 25088 features, the first fully connected fc1 layer with 4096
features and the second fully connected layer fc2, also with 4096 features. The result
of the tests showed that the performance of the k-means clustering with feature weight
optimization, as well as without, improved by using the fc1 layer instead of using the
flatten layer, and also improved by using the fc2 layer instead of using the fc1 layer (see
Section 4.2).

3.3.3 Initialization

A schematic overview of the model process pipeline is shown in Figure3.1.

Before the training phase starts, a set of images Ip is initialized with nI images per class
in D. The weight factors are set to 1. The images are not taken from the set of training
images so that the initialization phase is not reducing the defined training phase scope
nT . For each image of this initial set, the features are calculated by the VGG16 CNN.

3.4 Application Training Process

3.4.1 k-Means and Class-Cluster Relations

The training phase is an iterative process that optimizes the images feature weights in
each step. The number of process steps is defined by the number of images in the queue
of images to be processed. Initially, this queue contains nT images per class in D for
training in total. The process order of the image queue can be defined as sequential per
class or alternating on the classes in round-robin.

At the beginning of each training phase step, k-means clustering is executed with an
image set Ip. For this, each feature fi of each image i is multiplied with the feature
weight factor wf . fi is the feature f in the feature set F of an image i. wf is the weight
factor for feature f . As a parameter, the k-means clustering gets the number of clusters
that it should separate. This number is equivalent to the number of defined classes nc.
In the first training step, Ip contains the images from the initialization phase and all
wf are set to 1. The result of the k-means clustering is a set C of nc centroids ci that
represent the clusters.
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Figure 3.1: Overview of the model process pipeline.

3.4.2 Cluster-Class Assignment

After the k-means clustering run, the calculated centroids (i.e. clusters) are not yet
assigned to any class. An optimal cluster-class assignment that maximizes the total
number of correctly assigned images, has to be found. Thus, an optimized relation of
defined classes to the k-means clusters is calculated iteratively, based on the result set C
of the k-means clustering.

In this calculation process, the number of correctly assigned images for a cluster ci of
C is calculated, assuming that each cluster is representing a particular class d of D.
Because each cluster can represent each class, the number of correctly assigned images
is calculated for each possible cluster/class combination, which yields a square matrix.
Based on this matrix, the effective cluster/class relation is iteratively computed. This
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process starts with the cluster/class relation represented by the largest matrix element.
After selecting the related cluster/class relation, the row and column of this element are
eliminated from the matrix. This step is repeated for the reduced matrix, until all rows
and columns have been eliminated. Then, all classes d of D are in a mutual exclusive
relation with a cluster ci of C and the optimized class-cluster relations Rci,d are defined.

3.4.3 New Image Class Assignment

Then the first image from the queue of remaining training images Ir is assigned to the
selected image i. The image is processed by the VGG16 CNN, to detect the feature
values fi of the image i. Then the centroid ctrue of the selected image ground-truth is
determined according the cluster-class assignment Rci,d. In addition, the feature standard
deviations σf,ctrue are calculated for the images assigned to ctrue.

3.4.4 Overlapping Factor Calculation

In the next training step phase, the overlapping factors of,ci
are calculated. The calculation

is done separately for each feature f .

of,ci
is a measure of how much the feature value fi of the selected image is is separated

from a centroid ci. The more the feature value fi supports a separation, the more positive
the raw overlapping factor of,ci

becomes. On the other hand, the more it prevents a
separation, the more negative it becomes. There is a neutral separation contribution (i.e.
neither making separation better nor making separation worse) of feature f in relation
to centroid ci in case of of,ci

= 0.

For the calculation of of,ci
the distances of the selected image feature value fi to the

feature value fctrue of centroid ctrue and to the feature value fci of centroid ci are used.
These distances are divided by the centroid’s standard deviations σf,ctrue and σf , ci plus
1, for getting distances relative to the feature standard deviation of the centroid.

There are three cases in the raw overlapping factor calculation:

ci = ctrue : of,ci
is not calculated (3.1)

fctrue < fci : of,ci
= fci − fis

(σf , ci + 1) + fctrue − fis

(σf,ctrue + 1) (3.2)

fctrue ≥ fci : of,ci
= fis − fci

(σf , ci + 1) + fis − fctrue

(σf,ctrue + 1) (3.3)

3.4.5 Overlapping Factor Standardization and Transformation

After calculating all overlapping factors of,ci
for a feature, the normalized overlapping

factors o′
f,ci

results within the interval [−1..1]. This is achieved by dividing each of,ci
of
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a feature f by the maximum of the absolute values of all factors for the feature. The
normalization transforms the value 0 (=neutral separation contribution) of of,ci

to value
0 (=neutral separation contribution) of o′

f,ci
.

o′
f,ci

= of,ci

max
ci

(|of,ci
|) (3.4)

Then the total feature overlapping factor o′
f is calculated by summing all scaled o′

f,ci
per

feature, and dividing the sum by the total number of centroids minus 1. The subtraction
of 1 is required because the overlapping factor for centroid case ci = ctrue is not calculated
and therefore not included.

o′
f =

∑
ci\ctrue

(|o′
f,ci
|)

|C| − 1 (3.5)

At the end of the overlapping factor calculation phase, the feature overlapping factor o′
f

is transformed from the interval [−1..+ 1] to an overlapping factor o′′
f , within the interval

[0..2], by adding 1.

o′′
f = o′

f + 1 (3.6)

This transforms for example the lower bound value −1 of o′
f to 0 in o′′

f , the value for no
overlap 0 of o′

f to 1 in o′′
f , and the upper bound 1 of o′

f to 2 in o′′
f .

3.4.6 Calculation of new Feature Weight Factors

Finally, the new feature weight factors w′
f are calculated by the means of the old feature

weight factors wf and the feature overlapping factor o′′
f . We calculate the mean value

because the new feature weight factor w′
f should reflect the learned weight, represented

by the old feature weight factor wf from previous training steps, and the clustering
contribution of the newly selected image feature f .

w′
f =

wf + o′′
f

2 (3.7)

After all feature weights have been updated, the selected image is removed from the queue
of remaining images for the training phase Ir and appended to the set of images already
processed in the training phase Ip. Then, in case of a non-empty queue of remaining
images, the process continues with the next step.
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3.4.7 Reference Process

In parallel to the training phase, a reference model is executed. The reference model
processes the same data by the same calculation algorithms and in the same sequence
as the training phase. The only difference between training and reference model is that
there is no feature weight optimization executed in the reference model. This means that
the feature weighting factors for the reference k-means clustering for all features remain
constantly 1.

3.5 Application Output

3.5.1 Graphical Output

The application shows the stepwise performance development during the training phases
in graphical form. There are three plots (see example in Figure 3.2) that are updated
continuously after each training phase step. The headline of the figure contains the total
number of images used for initialization, training and evaluation phase. Furthermore,
it contains information about image order and the VGG16 hidden layer output used
for image features. In the first plot, the percentage of total correctly assigned images
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Figure 3.2: Example for the graphical output plots. (first plot: red graph=ADOPT-
class/cluster correct, green graph=REF-class/cluster correct, dark red dashed
graph=ADOPT evaluation result, dark green dashed graph=REF evaluation result,
magenta dotted graph=standard deviation of weight factor differences; second plot: red
graph=first class label, blue graph=second class label)

relative to all processed images at each training phase step are shown, separately for the
process with feature weight optimization (red graph ADOPT-class/cluster correct) and
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the reference model (green graph REF-class/cluster correct). Also, the development of
the standard deviation of the differences of the feature weight factors wf of the actual
and previous step is shown (magenta dotted graph standard deviation of weight factor
differences) with y-axis on the right side. The development of this value is a measure of
the stability of the weight factor optimization process. For a stable process, this value
should be nearly constant or the volatility and level should be as low as possible. The
x-axis represents the number of processed images. For images processed at the beginning
in the initialization phase, no graph values are shown. The graphs start with the first
step of the training phase.

The second plot shows the percentage of correctly assigned images per class relative to
the sum of all images currently assigned to that class. These graphs are only shown for
the process with feature weight optimization. With this plot, the class-specific detection
rates can be analyzed.

After the training phase, an evaluation phase is executed. This evaluation phase uses a
new set Ie of nE images per class defined in D that were not used in the initialization
and training phase. In the evaluation phase, the image features of each image in Ie are
detected by the VGG16 CNN and clustered by the k-means clustering algorithm. The
k-means clustering is processed once with using the optimized feature weights from the
training phase, and once with constant feature weights 1 as reference.

The results of the evaluation phase are shown as constant dashed graphs in the first plot
(see Figure 3.2). They represent the evaluation result as a percentage of total correctly
assigned images relative to all processed images in Ie, separately for the evaluation phase
that uses optimized feature weights (dark red dashed graph ADOPT evaluation result)
and for the reference evaluation phase that uses constant feature weights (dark green
dashed graph REF-evaluation result).

3.5.2 Image-related Output

After the evaluation phase, two additional windows are shown by the application. In the
first window (example see Figure 3.3) all images of the initialization and training phase
are shown. In the second window (example see Figure 3.4) the images of the evaluation
phase are shown. Images that were correctly assigned by both models (i.e. with and
without k-means feature weight optimization) according to their ground-truth are shown
at the top of the window, framed green. Below these, the images which only correctly
assigned by the model with k-means feature weight optimization are shown, framed blue.
Below these, the images, which only correctly assigned by the reference model without
k-means feature weight optimization are listed and framed orange. At the bottom of
the window, the images that are not correctly assigned by both models are shown and
framed red. All images are textually labeled with their ground-truth.
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n02101006 n02101006 n02101006 n02100735 n02100735 n02100735 n02101006 n02100735 n02100735 n02101006 n02100735 n02100735 n02101006 n02100735 n02101006

n02100735 n02101006 n02100735 n02101006 n02100735 n02101006 n02100735 n02101006 n02100735 n02101006 n02100735 n02101006 n02100735 n02101006 n02100735

n02101006 n02100735 n02101006 n02100735 n02101006 n02100735 n02101006 n02100735 n02101006 n02100735 n02101006 n02100735 n02101006 n02100735 n02101006

n02100735 n02101006 n02100735 n02101006 n02100735 n02101006 n02100735 n02101006 n02100735 n02101006 n02100735 n02101006 n02100735 n02101006 n02100735

n02101006 n02100735 n02100735 n02101006 n02100735 n02101006 n02100735 n02101006 n02100735 n02101006 n02100735 n02101006 n02100735 n02101006 n02100735

n02101006 n02100735 n02100735 n02101006 n02100735 n02101006 n02100735

n02101006 n02101006 n02101006 n02101006

Gordon setter - English setter,   VVG16-layer=fc2
Init. + Train Images = 86   classes: n02101006, n02100735
 correct no.both=82  no.ADOPT=0  no.REF=0  no.none=4

Figure 3.3: Example for the graphical output of training phase images, marked with final
classification result.

n02101006 n02101006 n02101006 n02101006 n02101006 n02101006 n02101006 n02101006 n02101006 n02101006 n02101006 n02101006 n02101006 n02101006 n02101006

n02101006 n02101006 n02101006 n02101006 n02101006 n02101006 n02101006 n02101006 n02101006 n02101006 n02101006 n02101006 n02100735 n02100735 n02100735

n02100735 n02100735 n02100735 n02100735 n02100735 n02100735 n02100735 n02100735 n02100735 n02100735 n02100735 n02100735 n02100735 n02100735 n02100735

n02100735 n02100735 n02100735 n02100735 n02100735 n02100735 n02100735 n02100735 n02100735 n02100735 n02100735 n02100735 n02100735 n02100735 n02100735

n02100735 n02100735 n02100735 n02100735 n02100735

n02101006 n02101006 n02101006 n02101006 n02101006 n02101006 n02101006 n02101006 n02101006 n02101006 n02101006 n02101006 n02101006 n02100735

n02100735

Gordon setter - English setter,   VVG16-layer=fc2
Evaluation Images = 80   classes: n02101006, n02100735
 correct no.both=65  no.ADOPT=14  no.REF=1  no.none=0

Figure 3.4: Example for the graphical output of evaluation phase images, marked with
classification result.

3.5.3 Tabular Output

The results of each training phase iteration step, as well as the evaluation results, are
saved as .CSV tables in the application subfolder .\output.
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One file with name starting with iter_table contains the following data for each training
phase step in columns:

• step ... step number (counting also initialization images as separate steps)

• total-adapt ... percentage of total correctly assigned images of process with k-means
weight factor change

• total-ref ... percentage of total correctly assigned images of reference model without
k-means weight factor change

• wf-min ... minimum of weight factors

• wf-max ... maximum of weight factors

• wf-mean ... mean value of weight factors

• wf-std-dev ... standard deviation of weight factors

• std-wf-diff ... standard deviation of weight factor differences from actual step to
previous step

Additionally, the percentage of total correctly assigned images for the process with
k-means weight factor optimization and the reference model are listed per class and per
cluster in the following columns. These class and cluster related outputs can be activated
or deactivated via application start parameters.

The second file, with a name, starts with classes_table, contains the following data in
columns:

• class ... class name

• train ... percentage of class related total correctly assigned images of training phase
with k-means weight factor change

• train-ref ... percentage of class related total correctly assigned images of reference
training phase without k-means weight factor change

• eval ... percentage of class related total correctly assigned images of evaluation
phase with k-means weight factor change

• eval-ref ... percentage of class related total correctly assigned images of reference
evaluation phase without k-means weight factor change

As last row of this file, the total percentage values are added.

In case of given images feature values as application parameter, an additional .CSV file is
generated. The name of the file starts with test and contains the following data columns:
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• step ... the step number

• the feature values if − f of the actual added new image (f = feature index)

• the calculated overlapping factors o′′
f named ol − f (f = feature index)

• the calculated new feature weight factor wf named wf − f after the training step

• tot-corr ... the total number of correctly assigned images by the process with
feature weight optimization

• tot-in-class ... the total number of assigned images by the training phase with
feature weight optimization

• tot-corr-ref ... the total number of correctly assigned images by the reference model

• tot-in-class-ref ... the total number of assigned images by the reference model
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CHAPTER 4
Results

In case of given images feature values as application parameter, an additional .CSV
file is generated. The name of the file starts with test and contains the following data
columns. In our work, we carried out several tests to evaluate the correct functioning and
performance of our model. We carried out three tests to evaluate the correct functioning
of our model (see Section 4.1). We carried out three tests on three hidden VGG16
layers, to determine the hidden VGG16 layer that we used in our model for our further
classification performance tests (see Section 4.2). Two classification performance tests
were carried out with different ground-truth, each containing two classes that were
defined in ImageNet and which the VGG16 was trained on (see Section 4.3). Further two
classification performance tests were carried out with different ground-truth, each with
two classes that were not defined in ImageNet and which the VGG16 was not trained on.
In these two test cases, we labeled the images manually (see Section 4.4).

The development of the initialization and training phase is shown for the test cases in
Figures 4.1, 4.3, 4.5, 4.7, 4.9, 4.11 and 4.15. The first plot of the Figures shows the
percentage of total correctly classified images for each process iteration step (left y-axis).
The red graph represents the performance of the process with feature weight optimization,
the magenta dotted graph the standard deviation of the weight factor differences from
step to step (right y-axis) and the green graph the performance of the reference model.
The dashed horizontal graphs indicate the percentage of correctly classified images in the
evaluation phase. The red dashed graph represents the performance of the process with
feature weight optimization, the green dashed graph the performance of the reference
model.

The second plot in Figures 4.1, 4.3, 4.5, 4.7, 4.9, 4.11 and 4.15 shows the correctly
classified images of the process with feature weight optimization for each defined class in
each iteration step of the initialization and training phase.
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The classification results of the evaluation phase are shown for each test case per image in
Figures 4.2, 4.4, 4.6, 4.8, 4.9, 4.14 and 4.16. Images that were classified by both models
correctly are framed green, images that were only correctly classified by the process with
feature weight optimization are framed blue, images that are only correctly classified by
the reference model are framed orange and images that are classified by neither of the
processes correctly are framed red.

4.1 Model Verification

The evaluation of test data was a very important task in our work. Based on the
evaluation phase results the model behavior could be evaluated and adapted.

For each test, the set for the training phase included 10 images (step no. 5-14). Before
the training phase, an initialization phase with four images was processed (step no. 1-4)
without weight factor change.

4.1.1 Class Separation of Clearly Separable Test Data

This test aims to show a convergence of the weight factors development to the maximum
possible weighting value, given a perfect separable set of labeled images.

To make the behavior of the model transparent, this test is executed on a small set of
images. Also, to make feature weight development traceable, we were not using the
results of the VGG16 image feature extraction for k-means clustering, instead we defined
the image feature sets manually. Each image feature set consists of four manually defined
feature values that are either 0 or 1. We defined the two separable classes A and B for
the manual image labeling. Each image was labeled either with class A, with assigned
feature set [1, 0, 1, 0] or class B, with assigned feature set [0, 1, 0, 1] (see Table 4.1). The
weighting factor value interval of the model is [0..2]. Therefore, the expected weight
factors should development over the training iteration steps should converge to 2

The test results are shown for each process step in Table 4.2. The table shows that the
process result meets the expectations.

4.1.2 Ignore Classification Neutral Features

This test aims to show that the weight of an image feature that behaves neutral in the
classification process remains constant.

The test data was similar to the above test in Section 4.1.1, but we changed the second
feature value in each feature set to 2 (see Table 4.3). This means that the second feature
value is constant and is not contributing to the class separation. The weighting factor
value interval of the model is [0..2]. Therefore, we expected that the weight factor
development over the training iteration steps for the weight factors wf-0, wf-2 and wf-3
converges to 2 and the second weight factor wf-1 constantly remains 1.
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img.no. class feature set
1 A [1, 0, 1, 0]
2 A [1, 0, 1, 0]
3 B [0, 1, 0, 1]
4 B [0, 1, 0, 1]
5 A [1, 0, 1, 0]
6 B [0, 1, 0, 1]
7 A [1, 0, 1, 0]
8 B [0, 1, 0, 1]
9 A [1, 0, 1, 0]
10 B [0, 1, 0, 1]
11 A [1, 0, 1, 0]
12 B [0, 1, 0, 1]
13 A [1, 0, 1, 0]
14 B [0, 1, 0, 1]

Table 4.1: Clearly separable test data.

step if-0 if-1 if-2 if-3 ol-0 ol-1 ol-2 ol-3 wf-0 wf-1 wf-2 wf-3 tot-corr
1 1 0 1 0 1 1 1 1 1 1 1 1
2 1 0 1 0 1 1 1 1 1 1 1 1
3 0 1 0 1 1 1 1 1 1 1 1 1
4 0 1 0 1 1 1 1 1 1 1 1 1 4
5 1 0 1 0 2 2 2 2 1.5 1.5 1.5 1.5 5
6 0 1 0 1 2 2 2 2 1.75 1.75 1.75 1.75 6
7 1 0 1 0 2 2 2 2 1.875 1.875 1.875 1.875 7
8 0 1 0 1 2 2 2 2 1.938 1.938 1.938 1.938 8
9 1 0 1 0 2 2 2 2 1.969 1.969 1.969 1.969 9

10 0 1 0 1 2 2 2 2 1.984 1.984 1.984 1.984 10
11 1 0 1 0 2 2 2 2 1.992 1.992 1.992 1.992 11
12 0 1 0 1 2 2 2 2 1.996 1.996 1.996 1.996 12
13 1 0 1 0 2 2 2 2 1.998 1.998 1.998 1.998 13
14 0 1 0 1 2 2 2 2 1.999 1.999 1.999 1.999 14

Table 4.2: Test iteration steps results of clearly separable images (if=image feature 1 to 4,
ol=overlapping factor 1 to 4, wf=weight factor 1 to 4, tot-corr=total correctly assigned
images).

The test results are shown for each process step in Table 4.4. The table shows that the
process result meets the expectations and that the weight factor wf-1 for the second
feature constantly remains 1.
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img.no. class featur set
1 A [1, 2, 1, 0]
2 A [1, 2, 1, 0]
3 B [0, 2, 0, 1]
4 B [0, 2, 0, 1]
5 A [1, 2, 1, 0]
6 B [0, 2, 0, 1]
7 A [1, 2, 1, 0]
8 B [0, 2, 0, 1]
9 A [1, 2, 1, 0]
10 B [0, 2, 0, 1]
11 A [1, 2, 1, 0]
12 B [0, 2, 0, 1]
13 A [1, 2, 1, 0]
14 B [0, 2, 0, 1]
15 A [1, 2, 1, 0]
16 A [1, 2, 1, 0]
17 B [0, 2, 0, 1]
18 B [0, 2, 0, 1]

Table 4.3: Test data with classification-neutral feature 2.

4.1.3 Filter Classification-Opposing Features from Test Data

This test aims to show the filtering of a particular feature in case it is opposing a
classification by all other perfectly separable features.

The test data was similar to the above test in Section 4.1.1, but we changed the second
feature value so that an image in the process sequence has the opposite value than the
last image with the same ground-truth (see Table 4.5).

The weighting factor value interval of the model is [0..2]. Therefore, we expected that
the weight factor development over the training iteration steps for the weight factors
wf-0, wf-2 and wf-3 converges to 2 and the second weight factor wf-1 decreases.

The test results are shown for each process step in Table 4.6. The table shows that
the process result meets the expectations that the weight factor wf-1 for the second
feature is decreasing in comparison to the other weight factors. In step seven and 11 the
overlapping factor ol-1 is 2, which means perfect separation contribution. This is because
the test data represents not a constantly opposing second feature in each training step
relative to the already processed images.
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step if-0 if-1 if-2 if-3 ol-0 ol-1 ol-2 ol-3 wf-0 wf-1 wf-2 wf-3 tot-corr
1 1 2 1 0 1 1 1 1 1 1 1 1
2 1 2 1 0 1 1 1 1 1 1 1 1
3 0 2 0 1 1 1 1 1 1 1 1 1
4 0 2 0 1 1 1 1 1 1 1 1 1 4
5 1 2 1 0 2 1 2 2 1.5 1 1.5 1.5 5
6 0 2 0 1 2 1 2 2 1.75 1 1.75 1.75 6
7 1 2 1 0 2 1 2 2 1.875 1 1.875 1.875 7
8 0 2 0 1 2 1 2 2 1.938 1 1.938 1.938 8
9 1 2 1 0 2 1 2 2 1.969 1 1.969 1.969 9

10 0 2 0 1 2 1 2 2 1.984 1 1.984 1.984 10
11 1 2 1 0 2 1 2 2 1.992 1 1.992 1.992 11
12 0 2 0 1 2 1 2 2 1.996 1 1.996 1.996 12
13 1 2 1 0 2 1 2 2 1.998 1 1.998 1.998 13
14 0 2 0 1 2 1 2 2 1.999 1 1.999 1.999 14

Table 4.4: Test iteration steps results of separable images with second feature neutral
(if=image feature, ol=overlapping factor, wf=weight factor, tot-corr=total correctly
assigned images).

img.no. class feature set
1 A [1, 0, 1, 0]
2 A [1, 1, 1, 0]
3 B [0, 0, 0, 1]
4 B [0, 1, 0, 1]
5 A [1, 0, 1, 0]
6 B [0, 0, 0, 1]
7 A [1, 1, 1, 0]
8 B [0, 1, 0, 1]
9 A [1, 0, 1, 0]
10 B [0, 0, 0, 1]
11 A [1, 1, 1, 0]
12 B [0, 1, 0, 1]
13 A [1, 0, 1, 0]
14 B [0, 0, 0, 1]

Table 4.5: Test data with opposing feature 2.
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step if-0 if-1 if-2 if-3 ol-0 ol-1 ol-2 ol-3 wf-0 wf-1 wf-2 wf-3 tot-corr
1 1 0 1 0 1 1 1 1 1 1 1 1
2 1 1 1 0 1 1 1 1 1 1 1 1
3 0 0 0 1 1 1 1 1 1 1 1 1
4 0 1 0 1 1 1 1 1 1 1 1 1 4
5 1 0 1 0 2 0 2 2 1.5 0.5 1.5 1.5 5
6 0 0 0 1 2 0 2 2 1.75 0.25 1.75 1.75 6
7 1 1 1 0 2 2 2 2 1.875 1.125 1.875 1.875 7
8 0 1 0 1 2 0 2 2 1.938 0.563 1.938 1.938 8
9 1 0 1 0 2 0 2 2 1.969 0.281 1.969 1.969 9

10 0 0 0 1 2 0 2 2 1.984 0.141 1.984 1.984 10
11 1 1 1 0 2 2 2 2 1.992 1.07 1.992 1.992 11
12 0 1 0 1 2 0 2 2 1.996 0.535 1.996 1.996 12
13 1 0 1 0 2 0 2 2 1.998 0.268 1.998 1.998 13
14 0 0 0 1 2 0 2 2 1.999 0.134 1.999 1.999 14

Table 4.6: Test iteration steps results with second feature opposing (if=image feature,
ol=overlapping factor, wf=weight factor, tot-corr=total correctly assigned images).

4.2 Evaluations of VGG16 Output Layers Usability

In our development process, we had to choose the VGG16 hidden layer that we use as an
output layer for the image features in our further work.

We considered as possible hidden layers the flatten, the fc1 and the fc2 layers (see
Section 2.1). These layers are the fully connected layers of the VGG16 CNN, hence their
features contain context information which is required for spatial context related image
classification. We tested the performance of our model with ImageNet classes, which led
to very good results using fc2 layer. We decided to make additional evaluations, using
image ground-truths that are not defined in the ImageNet database. We considered that
this approach delivers results that are less biased by the VGG16 CNN than those which
were trained on the ImageNet classes.

The following VGG16 layer performance tests were executed with a manually labeled
image set from ImageNet, showing missiles, with labels Starting and Non Starting. For a
detailed description, on how we processed evaluation cases with manually labeled images,
see Section 4.4.

In each test case, we used 1 images for the initialization phase, 80 images for the training
phase and 20 images for the evaluation phase from each class.

Based on the results of the following described test case evaluations, we selected the fc2
layer output for image features in our model.
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4.2. Evaluations of VGG16 Output Layers Usability

4.2.1 VGG16 Output Layer flatten

For this test we used the output values of the hidden VGG16 flatten layer as image feature
values for the following k-means clustering algorithm and feature weight optimization
calculations.
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EIC: New-Class: Missile Start Detection  init=2 / train=160 (altering) / eval=40
VVG16-layer=flatten  classes: Starting, Non Starting

Figure 4.1: Classification training and evaluation performance with feature values from
hidden VGG16 flatten layer outputs (first plot: red graph=ADOPT-class/cluster correct,
green graph=REF-class/cluster correct, dark red dashed graph=ADOPT evaluation
result, dark green dashed graph=REF evaluation result, magenta dotted graph=standard
deviation of weight factor differences; second plot: red graph=Starting, blue graph=Non
Starting).

There is a high percentage of correct classification for images with Non Starting ground-
truth and only for some steps a correct classification of images with Starting ground-truth
(see the second plot in Figure 4.1).

The evaluation result for the process with feature weight optimization was about 65%
and for the reference model, it was about 53% (see the first plot in Figure 4.1). This
means that the performance of the reference model is close to random (50%) classification
and that of the process with feature weight optimization only 15% above, which is an
unsatisfying performance. The image-related evaluation results are shown in Figure 4.2.

Even though the performance of the processed is significantly better than that of the
reference model, the absolute evaluation performance values are only a little above
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Non Starting Non Starting Non Starting Non Starting
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Starting Starting
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New-Class: Missile Start Detection,   VVG16-layer=flatten
Evaluation Images = 40   classes: Starting, Non Starting

 correct no.both=19  no.ADOPT=7  no.REF=2  no.none=12

Figure 4.2: Image related performance of evaluation phase with feature values from
hidden VGG16 flatten layer outputs.

random classification. Consequently, the hidden VGG16 flatten layer output is not a
useful source for the feature values for our model.

4.2.2 VGG16 Output Layer fc1
For this test we used the output values of the hidden VGG16 fc1 layer as image feature
values for the following k-means clustering algorithm and feature weight optimization
calculations.

There is a high percentage of correct classification for images with Non Starting ground-
truth and a significant increase of periods in number and duration with correct classi-
fication of images with Starting ground-truth (see the second plot in Figure 4.3). In
comparison to the usage of the flatten layer, this is a significant performance increase,
but only for limited periods.

The evaluation result for the process with feature weight optimization was about 60%
and for the reference model, it was about 57% (see the first plot in Figure 4.3). In
comparison to the results of the evaluation phase with the flatten layer, this means
a performance decrease of the process with feature optimization and slightly better
performance of the reference model. Considering the performance development volatility,
the evaluation results are owed a bad point, when the training phase stopped. Never the
less, this unpredictable periodicity and its consequences make the result unsatisfactory.
The image-related evaluation results are shown in Figure 4.4.

Even though the performance of the processed is in some periods significantly better
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Figure 4.3: Classification training and evaluation performance with feature values from
hidden VGG16 fc1 layer outputs. (first plot: red graph=ADOPT-class/cluster correct,
green graph=REF-class/cluster correct, dark red dashed graph=ADOPT evaluation
result, dark green dashed graph=REF evaluation result, magenta dotted graph=standard
deviation of weight factor differences; second plot: red graph=Starting, blue graph=Non
Starting)

compared with the use of flatten layer, the unpredictable periodicity of performance
makes the VGG16 fc1 layer output not a useful source for the feature values for our
model.

4.2.3 VGG16 Output Layer fc2

For this test we used the output values of the hidden VGG16 fc2 layer as image feature
values for the following k-means clustering algorithm and feature weight optimization
calculations.

There is a high percentage of correct classification for images with Non Starting ground-
truth and a significant increase of the duration of the periods with correct classification
of images with Starting ground-truth (see the second plot in Figure 4.5).

The evaluation result for the process with feature weight optimization was about 89%
and for the reference model, it was about 83% (see the first plot in Figure 4.5). In
comparison to the results of the evaluation phase with the flatten and fc1 layer, this
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Starting

New-Class: Missile Start Detection,   VVG16-layer=fc1
Evaluation Images = 40   classes: Starting, Non Starting

 correct no.both=23  no.ADOPT=1  no.REF=0  no.none=16

Figure 4.4: Image related performance of evaluation phase with feature values from
hidden VGG16 fc1 layer outputs.

means a significant evaluation performance increase. The image-related evaluation results
are shown in Figure 4.6.

In comparison to the use of the flatten and fc1 layer, the number of correctly classified
images is not only higher but contains also a significantly higher amount of Starting
ground-truth images.

The results of our three VGG16 hidden layer tests correspond to the test results of the
same VGG16 layers in the paper of Guerin et al. [GGTN17]. We expected these results
because the context of a fully connected layer output increases the closer the layer is
to the end of the VGG16 process pipeline. The reason for this, from the architectural
aspect, is that the tested layers are fully connected, the last layer represents the final
class assignment, and the training of the pre-trained VGG16 CNN uses backpropagation.
Consequently, the information context, related to the classes to be extracted, increases
for layers at a later position in processing order. This increase of contextual information
in the layer output fosters a correct classification by the k-means algorithm. That is why
the test results are better for the fc2 layer than those for the fc1 layer, and the fc1 layer
result better then that of the flatten layer.

As a result, we selected the hidden VGG16 fc2 layer output as the source for image
feature values for all of our analysis and evaluation in our work.
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Figure 4.5: Classification training and evaluation performance with feature values from
hidden VGG16 fc2 layer outputs. (first plot: red graph=ADOPT-class/cluster correct,
green graph=REF-class/cluster correct, dark red dashed graph=ADOPT evaluation
result, dark green dashed graph=REF evaluation result, magenta dotted graph=standard
deviation of weight factor differences; second plot: red graph=Starting, blue graph=Non
Starting)

4.3 Evaluations on ImageNet Classes
With the following tests, we aim to evaluate the classification performance of our model
on two subjectively similar classes in comparison to two subjectively diverse classes.

For the test cases, we used images from ImageNet and classes defined in ImageNet. We
processed two different test cases: For the first test case, we used subjectively divergent
images, showing motor scooters and dogs. For the second test case, we used subjectively
similar images, showing dogs of two different races.

We selected a large number of images to also make visible long term performance effects.
In each test case, we used 5 images for the initialization phase, 300 images for the training
phase and 50 images for the evaluation phase from each class.

4.3.1 Test Case: Intuitive Diverse Classes

In this test case, we analyzed the results of our model classifying performance on
subjectively diverse classes. For this, we selected from the ImageNet database the two
categories scooter with class id=n03791053 and Gordon setter with class id=n02101006.
We expected a very good classification performance of our model, given by the subjective
diversity of these two classes.
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New-Class: Missile Start Detection,   VVG16-layer=fc2
Evaluation Images = 40   classes: Starting, Non Starting

 correct no.both=31  no.ADOPT=4  no.REF=2  no.none=3

Figure 4.6: Image related performance of evaluation phase with feature values from
hidden VGG16 fc2 layer outputs.

The model with weight optimization showed volatility from roughly 75% to 100% in the
starting phase of the training phase (see the first plot in Figure 4.7). The reference model
performed in the same phase atroughly 75%. After this phase, both models showed a
performance close to 100%. The model with weight optimization showed performance
volatility from 96% to 100% that diminished significantly after 350 processed images and
stabilized close to 100%.

The evaluation performance result for the process with feature weight optimization was
100% and that of the reference model was also 100%. This means that the evaluation
performance of both models is ideal. The image-related evaluation results are shown in
Figure 4.8.

There is a constant 100% correct classification for images of the scooter ground-truth (see
second plot in Figure 4.7). The performance volatility of the Gordon setter ground-truth
classification is responsible for the variation of the total classification performance.

The min-, max-, mean- and standard deviation values of the feature weight factors that
are limited to the interval of [0..2] are listed in Table 4.7. The mean value of 1.243
indicates a majority of correctly classified features.

The results of the subjectively diverse classes test show perfectly performing models.
The process with feature weight optimization and the reference model reached an ideal
evaluation performance of 100%.
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Figure 4.7: Classification training and evaluation performance for subjectively di-
verse classes scooter and Gordon setter (first plot: red graph=ADOPT-class/cluster
correct, green graph=REF-class/cluster correct, dark red dashed graph=ADOPT
evaluation result, dark green dashed graph=REF evaluation result, magenta dotted
graph=standard deviation of weight factor differences; second plot: red graph=n03791053,
blue graph=n02101006).

var value
min 0.0397
max 2.0000
mean 1.2430

std.dev. 0.4598

Table 4.7: Feature weigh factor min-, max-, mean- and standard deviation values for
subjectively diverse classes scooter and Gordon setter.

4.3.2 Test Case: Intuitive Similar Classes

In this test case, we analyzed the results of our model classifying performance on
subjectively similar classes. For this, we selected from the ImageNet database the
two categories English setter with class id=n02100735 and Gordon setter with class
id=n02101006. We expected a worse result than that, using subjectively diverse classes
(see Section 4.3.1), given by the subjective similarity of these two classes.

The model with weight optimization showed volatility from roughly 75% to 95% in the
starting phase of the training phase (see the first plot in Figure 4.9). The reference model
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Figure 4.8: Image related performance of evaluation phase for subjectively diverse classes
scooter and Gordon setter.

showed in the same phase performance volatility of roughly 70% to 80%. The average
performance from process step 350 until processing end, was about 95.1% for the process
with feature optimization and about 92.7% for the reference model. The related standard
deviations were 3.7% and 2.0%.

The evaluation performance result for the process with feature weight optimization was
99% and that of the reference model was 95%. This result shows a clear performance
advantage of the process with feature weight optimization in comparison to the reference
model. The image-related evaluation results are shown in Figure 4.10.

There is a nearly constant correct classification, close to 100%, for images of the English
setter ground-truth (see the second plot in Figure 4.9). The performance volatility of the
Gordon setter ground-truth classification was high at the beginning and diminished with
continuing training phase.

The min-, max-, mean- and standard deviation values of the feature weight factors that
are limited to the interval of [0..2] are listed in Table 4.8. The mean value of 1.24 indicates
a majority of correctly classified features.

var value
min 0.0105
max 1.9998
mean 1.2402

std.dev. 0.4197

Table 4.8: Feature weigh factor min-, max-, mean- and standard deviation values for
subjectively similar classes English setter and Gordon setter.

The results of the subjectively similar classes test show good performing models. The
process with feature weight optimization shows a correct classification percentage of 99%
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Figure 4.9: Classification training and evaluation performance for subjectively similar
classes English setter and Gordon setter (first plot: red graph=ADOPT-class/cluster
correct, green graph=REF-class/cluster correct, dark red dashed graph=ADOPT
evaluation result, dark green dashed graph=REF evaluation result, magenta dotted
graph=standard deviation of weight factor differences; second plot: red graph=n02100735,
blue graph=n02101006).

and outperforms the reference model by with 4%.

4.4 Evaluations of Manually Labeled Images with New
Classes

With the following tests, we aimed to evaluate the performance of our model with a
ground-truth that the VGG16 CNN was not trained on. We solely aim to discover general
performance level differences to the tests with ground-truth that the VGG16 was trained
on. Analyzing the reasons for the differences is an interesting task for future work.

For the following test cases we used images from ImageNet and manually assigned a
ground-truth that is not defined in ImageNet and the VGG16 CNN is not trained on.
We processed two different test cases: In the first test case, we used images showing
missiles that we labeled with ground-truth Starting in case the missile was starting,
otherwise with ground-truth Non Starting. In the second test case, we used images
showing refrigerators that we labeled with ground-truth Open in case the refrigerator
was open, otherwise with ground-truth Not Open.

For a reasonable test scenario size, we labeled 506 images manually for each test case.
Furthermore, we adapted the training and evaluation application, to process manual
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Figure 4.10: Image related performance of evaluation phase for subjectively similar classes
English setter and Gordon setter.

ground-truth. In each test case, we assigned 3 images per class (in total 6) to the
initialization phase, 200 images per class (in total 400) to the training phase and 50
images per class (in total 100) to the evaluation phase.

4.4.1 Test Case: Manual Ground-Truth on Missile Images

For this test case, we selected images from the ImageNet database with the category
missiles with class id=n03773504. We downloaded 506 images of this category and
labeled each image manually with the ground-truth Starting in case the missile shown
was starting, otherwise with ground-truth Non Starting. Consequently, we got an
ImageNet independent classified image set with two classes.

The model with weight optimization showed in the starting phase of the training phase
high volatility (see the first plot in Figure 4.11). The reference model performed constantly
low in the same phase. The average performance from process step 108 to step 340 of
the model with feature optimization was about 84.0% and that of the reference model
was about 79.0%. The related standard deviations were 4.78% and 4.53%.

After process step 340 of the process with feature weight optimization, unexpected
reductions occurred in process steps 341, 386 to 387 and 404. The performance was
reduced after one to two process steps after these occurrences. The images that were
processed in these steps are shown in Figure 4.12 and are all with ground-truth Starting.
Four images with ground-truth Starting that were correctly classified are shown as
examples in Figure 4.13. A further deeper analysis of the reasons for these performance
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Figure 4.11: Classification training and evaluation performance for missile images labeled
with classes Starting and Non Starting (first plot: red graph=ADOPT-class/cluster cor-
rect, green graph=REF-class/cluster correct, dark red dashed graph=ADOPT evaluation
result, dark green dashed graph=REF evaluation result, magenta dotted graph=standard
deviation of weight factor differences; second plot: red graph=Starting, blue graph=Non
Starting).

reductions would be an important task for future work.

The performance evaluation result for the process with feature weight optimization was
about 72% and that for the reference model was also about 72%. The image-related
evaluation results are shown in Figure 4.14. These results show a clear performance
reduction in comparison to the performance reached with classes that are already defined
in ImageNet and that the VGG16 CNN is trained on (see Section 4.3).

(a) Image at process
step 341

(b) Image at pro-
cess step 386

(c) Image at process
step 387

(d) Image at pro-
cess step 404

Figure 4.12: Images processed at process steps with significant performance break in.

There is a balanced performance of the correct classification between both classes on a
high level, except at points of unexpected performance reduction (see the second plot in
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(a) Image at process
step 1

(b) Image at pro-
cess step 15

(c) Image at process
step 184

(d) Image at pro-
cess step 345

Figure 4.13: Examples for correct classified images with ground-truth Starting.

Figure 4.11). The average performance from process step 108 to 340 for ground-truth
Starting was about 80.8% and for ground-truth Non Starting about 85.3%.

The min-, max-, mean- and standard deviation values of the feature weight factors that
are limited to the interval of [0..2] are listed in Table 4.9. The mean value of 0.9153
indicates a smaller number of correctly classified features than not correctly classified
features.

var value
min 0.0013
max 1.9957
mean 0.9153

std.dev. 0.4719

Table 4.9: Feature weigh factor min-, max-, mean- and standard deviation values for
missile images labeled with classes Starting and Non Starting.

The results of this test show a well-performing model, except at the three points in the
process, when there was a significant short term performance reduction.

4.4.2 Test Case: Manual Ground-Truth on Refrigerator Images

For this test case we selected images from the ImageNet database with the category
refrigerator with class id=n04070727. We downloaded 506 images of this category and
labeled each image manually with the ground-truth Open in case the refrigerator is
shown in an open state, otherwise with ground-truth Not Open. Consequently, we got an
ImageNet independent classified image set with two classes.

There is also a short starting phase as in the other tests but with less volatility (see the
first plot in Figure 4.15). After a starting phase, the performance of the process with
weight optimization and the reference model are staying on a quite constant performance
level, whereas the process with weight optimization shows higher volatility. The average
performance from process step 20 to 402 of the process with feature optimization was
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 correct no.both=72  no.ADOPT=0  no.REF=0  no.none=28

Figure 4.14: Image related performance of evaluation phase for missile images labeled
with classes Starting and Non Starting.

about 77.5.0% and that of the reference model was about 76.0%. The related standard
deviations were 2.53% and 1.66%.

The performance evaluation result for the process with feature weight optimization was
about 91% and that of the reference model was about 89%. The image-related evaluation
results are shown in Figure 4.16. These results lie roughly 8% under those of the test
cases with ImageNet defined classes (see Section 4.3) but can be considered as very good.

There is a nearly constant correct classification close to 100% for images with ground-
truth Not Open (see second plot in Figure 4.15). The average classification performance
of images with ground-truth Open was about 61.1% with a standard deviation of about
4.8%.

The min-, max-, mean- and standard deviation values of the feature weight factors that
are generally within the interval of [0.0..2.0] are listed in Table 4.10. The mean value
of 1.0945 indicates a larger number of correctly classified features than not correctly
classified features.

Even though the test showed lower performance rates than the tests with sclasses defined
in ImageNet that the VGG16 CNN was trained on, the expected performance decrease is
still acceptable. Also, the performance of our model with weight optimization was better
or at least equal to the performance of the reference model.
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Figure 4.15: Classification training and evaluation performance for refrigerator images la-
beled with classesOpen and Not Open (first plot: red graph=ADOPT-class/cluster correct,
green graph=REF-class/cluster correct, dark red dashed graph=ADOPT evaluation result,
dark green dashed graph=REF evaluation result, magenta dotted graph=standard devia-
tion of weight factor differences; second plot: red graph=Not Open, blue graph=Open).

var value
min 0.0014
max 1.9999
mean 1.0945

std.dev. 0.5121

Table 4.10: Feature weigh factor min-, max-, mean- and standard deviation values for
refrigerator images labeled with classes Open and Not Open.

4.5 Result Overview
An overview of the test results is given in Table 4.11.
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Not Open Open Open Not Open Open Not Open Not Open Not Open Open Open Open Open Not Open Not Open Open

Not Open Open Not Open Open Open Open Open Open Not Open Not Open Open Open Not Open Not Open Not Open

Open Open Not Open Not Open Not Open Not Open Not Open Open Not Open Not Open Not Open Not Open Not Open Not Open Open

Open Not Open Not Open Not Open Open Not Open Not Open Not Open Not Open Open Not Open Not Open Open Open

Open Open

Open Open Open Open Open Open Open Open Open

New-Class: Open Refrigerator,   VVG16-layer=fc2
Evaluation Images = 100   classes: Not Open, Open

 correct no.both=89  no.ADOPT=2  no.REF=0  no.none=9

Figure 4.16: Image related performance of evaluation phase for refrigerator images labeled
with classes Open and Not Open.
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4. Results
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clearly sep. fc2 N 4 10 0
neutral feat. fc2 N 4 10 0model

verification oppos. feat. fc2 N 4 10 0
flatten layer flatten N 2 160 40 65 53 0.0 2.0 0.94 0.52
fc1 layer fc1 N 2 160 40 60 57 0.0 2.0 0.95 0.53VGG16 level

selection fc2 layer fc2 N 2 160 40 89 83 0.0 2.0 0.91 0.54
subj. diverse fc2 N 10 600 100 100 100 0.04 2.0 1.24 0.46ImageNet

ground-truth subj. similar fc2 N 10 600 100 99 95 0.00 2.0 1.24 0.42
missile start fc2 N 6 400 100 72 72 0.01 2.0 0.91 0.47Manually

ground-truth refrig. open fc2 N 60 400 100 91 89 0.00 2.0 1.09 0.51

Table 4.11: Overview of test results.
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CHAPTER 5
Conclusion

5.1 Model Performance

We developed an image classification optimization model that is based on the use and
optimization of feature weight factors. These feature weight factors are applied to the
feature values, generated by the feature extraction process before they are processed by
the clustering algorithm. This concept allows us the use of arbitrary feature extraction
processes and clustering algorithms. It should also lead to a shorter process run-time in
comparison to processes that optimize a large number parameters in different sections of
the process because our optimization only applied on a relatively small number of feature
weight factors in comparison.

We built our model architecture to enable step-wise image classification optimization. We
calculate new weight factors in each optimization step, based on the clustering contribution
of a newly added image to the clustering result of the previous step. This step-wise
optimization approach of the current model allows a dynamic optimization during
operation, where the performance optimization effect becomes immediately transparent
after each step.

We developed the optimization algorithms and tested our model classification performance
in comparison to a reference model. We performed our tests on a model configuration
that uses the pre-trained VGG16 CNN for image feature extraction and the Keras
in-built k-means algorithm for clustering. We carried out three tests on three hidden
VGG16 layers, to determine the fc2 hidden VGG16 layer that we use in our model.
The classification performance tests we carried out with different ground-truth, each
containing two classes that were defined in ImageNet and which the VGG16 was trained
on (see Section 4.3). Furthermore, we carried out two classification performance tests
with different manually labeled ground-truth, each with two classes that were not defined
in ImageNet and which the VGG16 was not trained on.
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5. Conclusion

Our tests showed that our model provides a better or at least equivalent classification
performance in all tested scenarios compared to the reference model. The absolute
performance evaluation results (with exception to the test case with manually labeled
missile images) showed high classification rates in the range from about 91% to 100%.
Especially in the test cases with a ground-truth that the VGG16 CNN was not trained
on, we evaluated promising performance for practical use.

In the course of our work, we developed a Python application that implements our model
and provides a user-friendly interface. It allows the easy set-up of test cases and provides
graphics and tables for a comprehensive evaluation on process steps level. We consider
this application as a starting point for future work.

We see as the advantage of our model approach that the optimization requires no internal
changes of the applied feature extraction and clustering algorithms, hence pre-trained
models or closed-source models can be used. As a further advantage we see the step-wise
transparency of the performance development during the training phase for each newly
added image as opposed to batch-based training for CNNs. This enables a dynamical
control of the training phase by the user. We further see as an advantage the small
number of parameters to be optimized, which results in reduced processing time. A last
advantage is the classification performance of our model that outperforms the reference
model without feature weight optimization.

5.2 Future Work

During our work, we discovered several interesting potential tasks for future work, as
well as some more detailed analysis that could be performed on our results.

An interesting task would be the comparison of the classification model parameters
in our model to the corresponding classification parameters in the VGG16 CNN. We
are using in our model the output values of the VGG16 fc2 hidden layer, which is the
last fully connected layer in the VGG16 CNN before the predictions layer that delivers
the classification results of the VGG16 CNN. Comparing the feature weight factors we
calculate in our model to the input weights of the predictions layer of the VGG16 CNN
and analyzing the result could be a task for future work. This can become challenging,
because we use only one weight factor vector with feature dimension and the VGG16 uses
for each class a different weight factor vector with feature dimension. When considering
the comparison of our calculated weight factors for classification based on the VGG16
flatten layer to the weight factors used by the VGG16 CNN to do the classification, an
additional problem occurs, because there are three fully connected layers in the VGG16
CNN in between. Therefore, this could be a hard challenge to set up a comparison model
that evaluates the results and parameters on feature level.

A less work-intensive task of future work could be a plain but detailed comparison of
classification performance of the VGG16 CNN to our model, using different image set
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5.2. Future Work

configurations. This would show the performance differences of our model that uses
k-means clustering in comparison to a classification model that is a pure CNN solution.

A very important task for future work would be the evaluation of our model, applied
on more than two classes. Our evaluations focused on two class classification cases only,
also we designed our training and evaluation tool to process multiple class classification.
Especially the classification performance evaluation with multiple class sets of our model,
in comparison to the reference model, would be interesting, and would finally show the
robustness of our model.

A further task for future work should be the performance analysis of our model, using
different image set sizes on different hardware platforms. Our tests were made with a
maximum image set size of 710 images, from which 600 images were used for training
and 100 images for evaluation. We used the hidden pre-trained VGG16 fc2 output layer
and the application was running on an intel i7 processor without using AVX/AVX2 and
no NVIDIA GPU support. The duration for the training and evaluation phase with 710
images was about one and a half hour. We expect much faster processing when using a
NVIDIA GPU or AVX/AVX2.

Finally, we see an important task for future work in analyzing the rare performance
reductions in the test case described in section 4.4.1.
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