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Kurzfassung

Mit der wachsenden Nachfrage nach immer umfangreicheren Computer Vision Systemen
steigt in den letzten Jahren auch der Bedarf an gelabelten Ground-Truth Datensätzen für
solche Systeme. Diese Datensätze werden zur Evaluierung und zum Training von Computer
Vision Algorithmen genutzt und werden normalerweise durch manuelles Annotieren
von semantischen Labels in Bildern oder Bildsequenzen erzeugt. Das Generieren von
synthetischen Videos bietet einen alternativen Ansatz für das Annotieren von Bilddaten.
Hier können Labels und Bildsequenzen mittels einer 3D-Renderengine gleichzeitig erzeugt
werden. Viele bestehende Frameworks zur Erzeugung von synthetischen Datensätzen
konzentrieren sich auf den Bereich des autonomen Fahrens, wo große Mengen an gelabelten
Daten benötigt werden.

In dieser Arbeit wird eine Implementierung eines Frameworks zur Erzeugung synthetischer
Daten für die Evaluierung von Trackingalgorithmen aus dem Bereich der Videoüberwa-
chung präsentiert. Dieses Framework nutzt eine kommerziell erhältliche Game Engine als
Renderer zur Erzeugung von synthetischen Videoclips, welche verschiedene Szenarien aus
dem Bereich der Videoüberwachung darstellen. Diese Szenarien beinhalten eine Vielzahl
an Interaktionen verschiedener Charaktere in einer virtuell nachgebauten Umgebung. Eine
Sammlung solcher Clips wird dann mit echten Videos vergleichen, indem sie als Inputs
für zwei Trackingalgorithmen genutzt werden. Während die Erzeugung von synthetische
Daten in Echtzeit mit einer Game Engine weniger arbeitsintensiv als manuelles Annotie-
ren ist, sind die Trackingergebnisse der echten Daten bei beiden getesteten Algorithmen
besser. Das deutet darauf hin, dass die synthetischen Daten aus dem Framework nur
bedingt zur Evaluierung von Trackingalgorithmen geeignet sind.
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Abstract

As the demand for ever-more capable computer vision systems has been increasing in
recent years, there is a growing need for labeled ground-truth data for such systems.
These ground-truth datasets are used for the training and evaluation of computer vision
algorithms and are usually created by manually annotating images or image sequences
with semantic labels. Synthetic video generation provides an alternative approach to
the problem of generating labels. Here, the label data and the image sequences can be
created simultaneously by utilizing a 3D render engine. Many of the existing frameworks
for generating such synthetic datasets focus the context of autonomous driving, where
vast amounts of labeled input data are needed.

In this thesis an implementation of a synthetic data generation framework for evaluating
tracking algorithms in the context of video surveillance is presented. This framework uses
a commercially available game engine as a renderer to generate synthetic video clips that
depict different scenarios that can occur in a video surveillance setting. These scenarios
include a multitude of interactions of different characters in a reconstructed environment.
A collection of such synthetic clips is then compared to real videos by using it as an input
for two different tracking algorithms. While producing synthetic ground-truth data in
real time using a game engine is less work intensive than manual annotation, the results
of the evaluation show that both tracking algorithms perform better on real data. This
suggests that the synthetic data coming from the framework is limited in its suitability
for evaluating tracking algorithms.
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CHAPTER 1
Introduction

With the ever-increasing use of computer vision systems in fields ranging from document
analysis to autonomous vehicles, there is a growing demand for ways to test and train such
systems. Usually, a computer vision system is evaluated by comparing its performance to
some sort of ground-truth dataset. In the case of an image-segmentation algorithm, such
a ground-truth dataset could for example be a set of images where all pixels belonging to
one object are marked in the same color. This data can then be compared to the results
the algorithm delivers, to see how well the segmentation was performed by the algorithm.

Creating new ground-truth datasets is a labor-intensive task since there has to be a
human in the loop to generate the data. For example, the creation of the Microsoft
COCO dataset, which contains 2.5 million labeled instances in 328,000 images, took
over 70,000 worker hours [LMB+14]. This problem only escalates when it comes to
labeled video data, where continuity between frames also has to be taken into account.
As the cost of creating new datasets is very high, many developers of computer vision
systems rely on ready-to-use publicly available ground-truth datasets for training and
evaluation. Utilizing such datasets comes with the advantage that the performance of
different algorithms can easily be benchmarked by comparing the results they deliver on
the same dataset. However, in many cases there are simply no datasets available that
fit the needs of a certain computer vision system. In such cases there is no other choice
than to create a custom dataset.

Generating synthetic ground-truth data is a possible solution to the hardship of creating
new datasets. Here, instead of real images, computer-generated renderings are used to
train and test a computer vision system. In the end these systems are meant to work on
real images, so it is of importance that the synthetic dataset does not deviate too far
from the real-world representations.

With the advent of nearly photo-realistic rendering, generating synthetic datasets became
possible for a wide range of applications. Although creating computer-generated images
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1. Introduction

comes with the upfront cost of recreating a real-world scenario beforehand, it comes with
the big advantage that creating labels is basically free. All objects in a scene are already
known to the computer that renders the image, so ground-truth labels can be created on
the fly.

Apart from being a possibly more cost-effective way of creating ground-truth datasets,
synthetic data generation also allows more flexible use cases. If, for example, it is deemed
necessary to see the same scene from a different angle or at different time of day, such
changes can quickly be implemented in a computer-generated scene. Another advantage
is that synthetic data can be created for use cases where real data is difficult to obtain,
for example for security or data protection reasons.

1.1 Aim of this thesis

The aim of this thesis is to take a look at how the game engine Unity 1 can be utilized to
generate a synthetic ground-truth dataset for a video surveillance system. This dataset
consists of video clips of simulated real-word scenarios and corresponding labels which
can be used for the training and evaluation of tracking algorithms in the context of video
surveillance. For the scope of this thesis, however, the focus lies solely on the evaluation
aspect, as the generated dataset is used to evaluate two tracking algorithms. Part of this
evaluation is a comparison of tracking results from real and synthetic video inputs to
see whether the synthtetic data is suitable for evaluation tracker performance. A sample
frame with corresponding labels is depicted in Figure 1.1.

(a) Generated video frame. (b) Labels for the frame.

Figure 1.1: A sample from the generated dataset.

Apart from creating the dataset itself, we also create a reusable framework that allows
for more general synthetic data generation within the Unity editor. This framework
focuses on generating videos of human interactions with an environment and providing
label data by utilizing the built-in real-time render engine of Unity. For this purpose, a
collection of assets for constructing new scenarios and a Unity plug-in for managing the
data generation is provided. The framework itself consists of a custom Unity editor and

1https://unity.com/ Accessed: 10.09.2019
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1.1. Aim of this thesis

an interface that allows direct user interaction. Via this editor, character paths can be
defined using waypoints. Trigger objects and cameras can also be set up by the user to
simulate scenarios from the context of video surveillance.

Another contribution of this thesis is the evaluation of the feasibility of using Unity as an
out-of-the-box solution for synthetic data generation. Here, we evaluate to what extent
the tool-set of Unity provides a convenient basis for generating synthetic datasets. Part
of this evaluation of convenience is to try to use as many built-in features of the engine
as possible to reduce the need of creating and maintaining custom-made solutions. This
is not only true for scripts related to post-processing but also for assets, where we try to
source as many as possible from existing packages via the Unity Asset Store.
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CHAPTER 2
Related Work

With the high cost associated with sourcing high quality ground-truth data for computer
vision systems there have been numerous different approaches to creating computer-
generated ground-truth datasets. In this chapter we take a look at different approaches
and their use cases, as well as research on possible downsides of using synthetic data in
place of real, annotated videos.

Most research on synthetic ground-truth data is done in the context of autonomous
driving, where large amounts of annotated data are required for training and evaluation
purposes. The datasets in this area of research are mainly for semantic segmentation
algorithms that are used for object detection.

Richter et al. [RVRK16] demonstrate that the highly realistic graphical output from
off-the-shelf closed-source video games can be used to create labeled training data. For
this approach they intercept the communication between the game Grand Theft Auto V
and the graphics hardware to extract pixel labels for areas that share the same mesh,
texture and shader. Each of these areas gets a unique signature that is persistent
over all recordings. The semantic information for these labels is however not obtained
automatically, as there is no direct access to the game itself. Manual work is required to
combine multiple object signatures to one object and to classify them. Once an object has
been set up, the labels are automatically propagated through the following frames, greatly
reducing the manual labeling effort. While this approach greatly reduces the workload
for generating semantic segmentation ground-truth data, it is also rather inflexible as the
possible scenarios are limited by the capabilities of the game. It also does not provide a
fully automatic way of synthetic data generation as the labels have to be classified by
hand.

The URSA dataset by Angus et al. [AEK+18] improves on the approach of [RVRK16] by
uniquely identifying all objects of interest beforehand and then injecting textures when
the object is requested by the engine. All unique objects are then manually classified,
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2. Related Work

with the advantage that once the annotation is determined for a unique object, it can be
recycled throughout the game. This gives the system better flexibility than the per-frame
annotation in [RVRK16], but it does still require a significant amount of manual work.

A third approach to generating synthetic semantic segmentation data is presented by Ros
et al. [RSM+16] in the SYNTHIA dataset. Here, the images are not sourced from an
existing consumer-grade game but from a custom virtual city environment in the Unity
engine. In contrast to the above-mentioned approaches, the SYNTHIA dataset provides
annotation data automatically as there is a higher-level access to the rendering process.
Although the data generation is more flexible than using an existing game, it is still very
focused on the autonomous driving context. A downside of this approach is also that the
generation of the environment itself comes with a larger workload that is not present
when using pre-existing game environments.

Another important point, discussed by Ros et al. [RSM+16] and also examined in greater
detail by Tremblay et al. [TPA+18], Sun and Saenko [SS14] and Vazquez et al. [VLM+14]
is the problem of domain shift. Domain shift describes the problem of training a computer
vision algorithm on synthetic data and then deploying it in the domain of real data.
When an algorithm is trained exclusively on synthetic data, it performs worse than an
algorithm that was trained on real annotated data. A common solution to reduce the
effects of domain shift is to use large amounts of synthetic data in combination with a
small set of real annotated data. This approach led to results comparable to all-real
training data in [RSM+16] and [VLM+14]. Another way of coping with domain shift
used in object detection is training on a more abstract dataset altogether, eliminating
false learning effects. This was demonstrated to be effective by Tremblay et al. [TPA+18]
as well as Sun and Saenko [SS14].

All synthetic data generation approaches presented so far focus on the context of au-
tonomous driving, which makes them lack the flexibility needed to provide sufficient data
in the video surveillance and object tracking context of this thesis. Here, we need the
ability to construct scenarios outside of the road-based autonomous driving context.

A different context where frameworks for generating synthetic ground-truth data are
used is the understanding of indoor environments. SceneNet [HPB+16] is a repository
of annotated synthetic indoor scenes that uses existing CAD models as a basis. These
models from existing model repositories are arranged into indoor scenes, which are then
rendered through virtual cameras at random viewpoints. For all rendered outputs, per-
pixel labels are generated for all objects in the scene. A disadvantage of the automated
scene generation from existing CAD models is that the generated outputs are static.
McCormac et al. [MHLD17] improved on this by generating camera trajectories moving
through SceneNet scenes. Here, the focus is more on creating photorealistic images using
ray tracing, which leads to non-real-time outputs. Furthermore, the scenes themselves
are still static with no object movement or deformations.

The most similar approach to our framework that can be found in previous work is the
ObjectVideo Virtual Video (OVVV) video surveillance simulation. The video surveillance
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testbed by Taylor et al. [TCB07] uses a modified version of the Half-Life 2 game by Valve
Software to generate labeled video surveillance ground-truth data. Here, multiple virtual
cameras are placed into the game environment, where character movements are recorded
with their respective ground-truths as pixel labels and bounding boxes. Rendered outputs
from the game engine are post-processed to include noise and ghosting artifacts. The
resulting video is streamed to a recorder. In contrast to other game-based ground-truth
generation frameworks, OVVV allows for more customization, as user-created maps can
be loaded into the game via the Source Engine SDK. While it was one of the biggest
inspirations for our framework, this project has since been abandoned by the developer
and the sources are no longer available.

In contrast to previous work, such as the SYNTHIA dataset, which also relies on the Unity
engine for rendering, our framework is not geared towards the context of autonomous
driving but towards property-scale video surveillance. For this purpose, the framework
focuses on tools that other synthetic data generation frameworks do not provide. One of
them is the ability to remodel real walk patterns for the virtual characters using a waypoint
system. Another new contribution of our framework is the ability to define critical areas
that trigger an alarm in the case of certain character-environment interactions. This way
the framework not only records visual data, but also data about events happening within
the scene.

7





CHAPTER 3
Workflow and Implementation

The synthetic data generation workflow presented in this thesis consists of three main
components. The first part consists of creating a model of scene as a basis for simulating
scenarios in the framework. After that, the parameters of the framework in Unity get
adjusted via the Scenario Editor plug-in. The final component is the rendering and data
output which provides the end results of the data generation.

In this chapter we discuss the general workflow for generating synthetic video data with
the framework. Furthermore, the most important implementation details of the Unity
plug-in that comes with the framework are also presented here.

3.1 Overview of the Workflow

To get a better idea of the synthetic data generation process, we first take a look at the
whole workflow from start to finish for one specific scene. The starting point in this case
is a real-world scene, the side entrance to an office building, which is to be recreated in
the framework. Since there is no preexisting 3D model of this particular scene, the first
task is to create such a model. Based on photographs as well as measurements at the real
scene, a to-scale model is built in Blender 3D 1. This model contains all the structural
elements that will be seen in the scene. Additional elements such as foliage, characters
and surface textures are left out at this stage since they get added to the scene in the
Unity editor.

Once the basic model is complete, it is imported into the Unity editor, where elements
such as trees and brushes are added through external asset packs until the scene resembles
its real-world counterpart. The finished scene can now be prepared for the simulation by
creating a Unity NavMesh. The NavMesh defines all walkable areas in the scene via an

1https://blender.org/ Accessed: 10.09.2019
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3. Workflow and Implementation

auto-generated navigation mesh that is baked onto the environment. All characters that
get added to the scene later on will use this mesh for their path-planning. A detailed
description of the character navigation and path-planning can be found in Section 3.2.
In the scene created for the evaluation, an Off-Mesh Link is also added to the NavMesh
to bridge two areas that would otherwise not be traversable by the characters. The
placement of this link is shown in Figure 3.1. Since the framework supports different
time of day settings for the scene, additional artificial light sources are placed in the
scene to provide illumination during nighttime settings.

Figure 3.1: The Off-Mesh Link (indicated by the blue arrow) enables characters to jump
over the fence between the two levels. The red volume marks a critical zone that will
trigger an alarm when entered by a character climbing over the fence.

With the scene setup completed, the scenario for the recording is set up. In order for
the characters to traverse the scene, a spawn point and one or more waypoints must
be provided. These points are Unity Game Objects providing positional inputs for the
character navigation. Additionally, critical zones can be defined in the scene. These zones
will trigger an alarm when entered by a character. Figure 3.1 depicts such a zone where it
is illegal for a character to climb over the fence. As the recorder utilizes Unity’s cameras,
camera Game Objects are placed in the desired locations from which the scenario should
be recorded. In the case of the evaluation scene, the position and orientation of the
virtual camera are matched to the camera in the real scene.

Before starting the final recording, the scene settings can be adjusted in a custom Unity
editor provided by the framework. Alternatively, a random seed is used to generate a
scenario. When the recording process is started, each frame generated by Unity is saved
as an image two times. The first version contains the scene as rendered by the game
engine, and the second version contains the label masks for each character in the scene.

10



3.2. The Recording Framework

Apart from the image sequence, the recorder also generates a JSON file that contains all
the scene parameters as well as a list of characters, cameras and alarm events.

3.2 The Recording Framework

Figure 3.2: Schematic overview of the framework and its classes.

The central element of the framework for recording the synthetic videos is the Scenario
Editor. This custom Unity editor is responsible for setting up the scene with the desired
parameters as well as starting and stopping the recording process itself. Figure 3.2 depicts
an overview of the recording framework. User input or a file with the desired parameters
is given to the Scenario Editor. From there the settings are distributed to the according
Game Objects such as lights and characters to setup the scene. When the recording
is started, the Scenario Editor starts an instance of the Custom Recorder class, which
is responsible for all graphical outputs, namely rendering and persisting the synthetic
frames as well as the corresponding labels. In addition to its own outputs, the Custom
Recorder also initializes an Output Record object that manages the textual output. Here,
the scene parameters provided to the Scenario Editor as well as a list of critical events
recorded by the Trigger Controller are saved in a JSON file.

Parameters for a scenario are provided in two ways: Environment settings such as the
time of day, the wind speed and the number of characters as well as post-processing
settings such as noise, blur and bloom are manually entered in the editor window or
loaded via a JSON file. Other settings such as the waypoints for the character navigation

11



3. Workflow and Implementation

and the character spawn points are defined in the Unity editor. Adding new cameras is
possible through the Scenario Editor as well. Since matching real camera views in Unity
is one of the priorities of the framework, the camera view can be adjusted in the Unity
viewport and the Scenario Editor is then used to instantiate a camera object with the
parameters of the current viewport.

A camera object, which is called Camera Controller in the framework, consists of three
Game Objects. The first one is the parent object of the cameras, which handles all
transformations for the camera. Under this parent object there are two Unity camera
objects, which are responsible for the scene recording. The Main Camera object renders
the scene with the render settings from the game engine. All the post-processing scripts
are attached to this object. The second child of the Camera Controller is the Label
Camera, which is responsible for rendering the label information for all characters in the
scene. For this, all the shaders in the scene are replaced by a black unlit shader and
all objects with a label color property are rendered in this one solid label color. The
rendering of the frames to image files is done by rendering the scene to a render texture
and then saving the texture buffer to a PNG image. This process is done for every camera
in all camera controllers of the scene.

The most important dynamic objects in the scene are the character models. To provide
variation in the appearance of the characters, eight different human character assets
from the Unity Asset Store are used in the framework. A character is controlled via
the Unity Third Person Character script, which handles body movement of the rigged
models. When a new character is spawned in the scene, a unique label color is assigned
to the character and noted in the output log file. The chosen colors in any given scene are
selected to have the greatest possible distance in hue, enabling the labels to be processed
even in compressed video streams.

Character navigation is influenced by two factors: The NavMesh, which was generated
when setting up the environment, provides data on the walkable areas and the user-defined
waypoints, which provide destinations for the characters. All character navigation is
controlled by the Random Walking class, which determines a destination and speed for the
character. Navigation can happen in two ways: for completely automatic scene generation,
the next waypoint is chosen at random, providing greater variation in character behavior.
Alternatively, waypoints can also be traversed in a fixed order, as provided by the user.
This second option is used for reconstructing real videos for the evaluation in Section
4.4. To enable more randomized paths for the characters, the destination determined in
the navigation class is not set directly to the waypoint location but to a random point
within a two-unit radius of the waypoint. Figure 3.3 depicts a possible path a character
could take in the example scene. In the shown case the spawn point is at the entrance
in the bottom of the frame, and the three waypoints are traversed in a clockwise circle
starting from the leftmost point. Note that the actual destination deviates from the
exact location of each waypoint. This way a second character traversing the same three
waypoints would take a slightly different path.

Even more randomness in the character navigation is achieved by varying the cost of

12



3.2. The Recording Framework

Figure 3.3: Possible path of a character, walking from the spawn point (red) to three
different waypoints (green) in the sample environment.

Off-Mesh Links. This cost value associates a link element with a cost value that equates
to a virtual walk distance. Since characters always choose the path of least distance, this
cost variation influences whether an Off-Mesh Link shortcut is taken by a character.

The output data for a scenario consists of visual and textual outputs. The visual outputs
are the rendered image frames from the camera objects. To build a consistent dataset,
the video frame rate is fixed at 25 frames per second with a resolution of 1280 by 720
pixels. Each frame and its labels are recorded as a PNG file with lossless compression.
In the label images, each character or object of interest is represented as a blob of solid
color, where the color is the game object’s label color. Figure 3.4 shows an example
output from the framework, where multiple characters and a car are represented in the
label data.

The JSON output file contains the recording name, which is the timestamp of the
recording, as well as all the settings from the scenario editor. These settings are:

• The random seed

• The number of characters in the scene

• A flag that shows if there is a passing vehicle in the scene

• The time of day of the recording

13



3. Workflow and Implementation

(a) Generated video frame. (b) Labels for the frame.

Figure 3.4: Two characters and a passing car in an example from the dataset.

• The wind speed

• A flag that shows if the sun intensity changes due to simulated cloud shadows

• The noise intensity

• Three flags that indicate if noise, blur and bloom are activated

• The cost override value for Off-Mesh Links

• The position of the spawn point

• The number of frames in the recording

From these values, the basic parameters of a scenario can be recreated from a previous
output. In addition to the scene parameters, three arrays are also part of the text output.
The first one contains all alarm events that are caused by a character entering a trigger
object. In the second one all characters in the scene with their respective spawn time
and label colors are listed. The third array contains all camera controller objects and
their position and orientation in the scene.

14



CHAPTER 4
Evaluation

Since it is the goal of this synthetic data generation framework to substitute real labeled
video data with computer generated data, it is important to look at metrics which can
be used to evaluate the feasibility of this substitution. This evaluation process is done by
selecting fitting metrics for comparing tracking datasets to then look at how different
tracking algorithms fare in processing the synthetic data in comparison to real video
inputs. With the selected metrics, the synthetic data are compared to the according
synthetic ground-truth, and the real video data with the corresponding manually acquired
labels. For this comparison, scenarios from real videos are recreated in the synthetic data
generation framework. After the initial evaluation, multiple post-processing effects as
well as a variation in scene parameters of the synthetic videos are evaluated to see how
such changes influence the performance of the tracking algorithms. In this second part of
the evaluation, only the synthetic data are analyzed and compared to their respective
ground-truth.

4.1 Evaluation Metrics for Tracking Algorithms

Finding an objective and comparable metric to evaluate the performance of a computer
vision algorithm is a non-trivial problem. This section gives an overview of several
established performance evaluation metrics for object tracking algorithms and their
feasibility for evaluating tracking algorithms using our synthetic dataset.

Different approaches to performance evaluation of tracking algorithms have been discussed
in previous work [NB03] [YMV07]. Since the focus of the tracking algorithms in this
paper lies on generating trajectory data for the tracked objects, metrics for trajectory
comparisons are the most obvious way to evaluate the data. The tracking algorithms
used in this evaluation generally provide data output in the form of bounding boxes.
Here the position of the bounding box centroid over time provides the trajectory data.
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4. Evaluation

Apart from this trajectory data, the bounding boxes themselves can also be used for
comparison.

Needham and Boyle [NB03] discuss metrics for comparing trajectories. A trajectory is
defined as a sequence of positions over time. The trajectory T with the positions (xi, yi)
at the times ti is defined the following way:

T = {(x1, y1, t1), (x2, y2, t2), ..., (xn, yn, tn)}. (4.1)

Since applications using video footage as input data already have frames as equal time
steps, the frame number (i.e. the index of the position) can be used as time step. In this
case no additional timing information needs to be saved.

The simplest way of comparing two trajectories such as the tracker results and the
ground-truth data is to calculate the Euclidean distance between the two trajectories at
a given time step i. By doing this at every time step and then calculating the mean of
the resulting values, the mean distance of the two trajectories can be obtained. This,
of course, comes with the problem that outliers can easily skew the results and other
metrics such as median distance may be better suited for some comparisons.

Another distance metric that is commonly used in the comparison of trajectories is the
Fréchet distance [EM94]. This metric is defined as the minimum bottleneck-cost over
all 1:1 mappings of the trajectories A and B. With the mapping µ : A → B and the
maximum distance in this mapping given as maxa∈A d(a, µ(a)), the Fréchet distance is:

F (A,B) = min
µ

max
a∈A

d(a, µ(a)) (4.2)

Intuitively it can be explained as a person walking a dog on a leash, where both are
moving on their independent trajectories. They are both only allowed to move forward,
but they can vary their speeds. The Fréchet distance is the minimum length of the leash
so that they both can traverse their trajectories. This metric is often more accurate than
other distance metrics as it takes into account the order of points on a trajectory.

Yin et al. [YMV07] give a broader overview of tracking algorithm evaluation metrics,
which do not solely focus on distance metrics. One of the simplest metrics that does not
utilize the same data stream as the above-mentioned distance metrics is the bounding
box overlap. This metric provides a value which represents the relative overlap of the
output bounding box and the ground-truth bounding box. With Ag being the area of
the ground-truth bounding box and Ao the area of the output bounding box the relative
bounding box overlap Abb is calculated as follows:

Abb = Ag ∩Ao
Ag ∪Ao

(4.3)
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In contrast to the distance measure between trajectories, the bounding box overlap metric
also takes shape of the tracked object into account. Therefore, the accuracy of the object
recognition can be analyzed to some extent.

Yin et al. [YMV07] also present several other metrics to describe the quality of a
trajectory. The following two of them are of importance for our evaluation:

• Track fragmentation: A track fragmentation error occurs when the output track is
not continuous where the ground-truth track is. The track fragmentation error rate
is defined as the number of times a track is fragmented. Under optimal conditions,
this error rate should be zero, which means that the track is one continuous segment.

• System latency: The time delay between the first occurrence of an an object in
the scene and the time it starts to be tracked by the system. This latency has to
be taken into account when comparing to ground-truth data, as the missing track
segments might be interpreted as inaccurate tracking, when the actual cause is
the system latency. The system latency LT is defined as the difference in frames
between the first tracked frame of the output and the first frame of the ground-truth.

4.2 Tracking Algorithms used for the Evaluation

While the main motivation for creating the synthetic ground-truth dataset is the evaluation
and improvement of a proprietary tracking algorithm, for the evaluation of the dataset
itself another algorithm is employed as well. This is done to ensure that the dataset is
not biased towards specific characteristics of the proprietary tracking algorithm. This
section gives a brief overview on the design of the algorithms used for the evaluation.

The proprietary tracking algorithm of our industry partner is based on the algorithm
discussed in [SFH+18]. It is not only a tracking algorithm but it is also able to separate
background and foreground objects. Thereby it is able to detect objects moving against
the background and track their movements as continuous trajectories. The detection
and tracking are done in three steps: background subtraction, clustering and tracking.
In the first step a background separation algorithm segments the image into blocks to
determine areas of interest. The blocks are represented by local binary pattern feature
vectors. A background learning model then determines the background-foreground status
using the feature vectors. In the next step the foreground blocks are merged to clusters,
which can then be tracked over time. In the final step the optimal cluster for each object
is obtained using spatial, temporal and shape distances. This optimal cluster for each
object is calculated at each timestamp, enabling a continuous tracking of a known object.

The second algorithm used for the evaluation is the MIL tracker implemented in OpenCV
1. This algorithm uses online Multiple Instance Learning (MIL) to do object tracking in
a video given an initial object location in the first frame of the video. This means that

1https://opencv.org/ Accessed: 10.09.2019
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the algorithm itself does not detect the object. The initial detection step must be done
manually at the first occurrence of the object in the scene. The MIL tracker is a classifier
that is trained at runtime. The initial bounding box supplied by the user is used as a
positive example, while image patches outside of the bounding box are used as negative
examples. Additionally, several image patches in the neighborhood of the initial position
are also used to generate positive examples. All positive image patches are collected in
a positive bag, which is then used by the MIL classifier for classifying the subsequent
frames [BMB11].

Both algorithms provide the same type of output where a list of all tracked objects
is generated for each frame. One data point of the output dataset contains the frame
number, the object id of the tracked object and its bounding box. While our proprietary
algorithm automatically manages multiple objects in the scene, the OpenCV MIL tracker
has to be provided with an initial bounding box for each new object.

4.3 Evaluation Method
To evaluate the feasibility of substituting real video data with synthetic data, we use two
different tracking algorithms to create trajectory data. We then compare the outputs
from these algorithms to look for differences and possible shortcomings of the synthetic
video data. The basis for this comparison consists of four video clips (referred to as
clip_1 to clip_4). These clips were recorded by a real surveillance camera on the
premises of our industry partner, and for each of them, a ground-truth dataset was
created manually. For each clip there is a corresponding reconstruction within the Unity
framework, which allows for multiple simulations with the same basic parameters as the
real video clip.

In the first step of the evaluation process, the real video clips are compared to their ground-
truth data. This comparison provides a benchmark for the algorithm’s performance on
real data. In the next step, the synthetic reconstructions of the clips are compared to
their respective ground-truth data. Finally, both results are compared to see whether
the algorithms behave differently when analyzing synthetic data from our framework.

The comparison of the tracker output and the ground-truth trajectory is done using the
metrics described in Section 4.1. In the first part, there is a quantitative analysis where
the measures of mean and median distance, the Fréchet distance and the bounding box
overlap are compared between each two trajectories. Secondly, we also take a look at
track fragmentation and system latency as well as the overall performance of each of the
two trackers. The results of this evaluation are discussed in Section 4.4.

Evaluation of trajectory similarity is done in R 2 using the package trajectories [PKM18],
which provides methods for calculating the mean, median and Fréchet distances. For
the bounding box overlap, the metric discussed in Section 4.1 is used to provide data for
the comparison. Since the proprietary tracking algorithm does not provide output for

2https://www.r-project.org/ Accessed: 10.09.2019
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Clip Length Characters Description

clip_1 302 Frames 1 Character walks through the lower section
of the scene from right to left.

clip_2 354 Frames 2 2 characters walk from the lower exit to the
left-hand border of the screen.

clip_3 310 Frames 2 2 characters walk from the left-hand border to
the lower exit, car drives by afterwards.

clip_4 119 Frames 2
2 characters run from the left-hand border to
the right-hand border while changing their
heading multiple times.

Table 4.1: Overview of the clips used for the evaluation.

every frame in a given video, the ground-truth trajectory is resampled to contain the
same number of frames as the tracking output for the bounding box overlap calculations.
If this was not taken into account, the results for the overlap would be skewed by the
fact that all dropped frames indicate a mismatch of 100 percent.

The four real video clips used for the evaluation are of a rather simple nature, with one
or two people walking through the frame in a diffuse daylight setting. This reduced
complexity helps to eliminate other disruptive factors such as weather changes. An
overview of the parameters of the four clips can be seen in Table 4.1.

All four clips are set in daytime with diffuse lighting and good contrast. The clips start
with the characters being out of frame and end the same way. There are no complex
inter-character interactions such as occlusions or large deformations. The characters
do, however, change their heading and speeds throughout the clips. Figure 4.1 gives an
overview of the scene used for the evaluation. There are two types of trajectories in the
evaluation, marked red and blue in the figure. Each of the trajectories is represented
by two clips, where the two clips have the characters walk in opposite directions and at
varying speeds.

The reconstructed synthetic clips have the same basic parameters as the real videos.
These parameters are the length of the clip, the number of characters in the clip, the
trajectory the characters traverse and the diffuse daylight setting. The timing of the
reconstruction is matched to the original clip as closely as possible by tweaking the
placement of waypoints and the spawn point in the framework. The virtual camera that
is used to record the reconstructed scenes is modeled after the real camera by matching
its optical parameters as well as its position in the scene. This matching is done by first
setting up the measured parameters from the real camera and then also fine-tuning the
exact transformation of the camera manually in Unity. For this fine-tuning, a canvas
object with a frame from the real video is overlaid in the Unity camera view, allowing for
visual matching.
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Figure 4.1: Overview of the real scene used for the evaluation. The red path corresponds
to the trajectories in clips 1 and 4, while the blue path represents the trajectories in clips
2 and 3.

Clip Tracker BB Overlap Mean Dist. Median Dist. Fréchet Dist.

Original Prop. 0.7276 21.4784 21.0582 40.0575
Reconstructed Prop. 0.5695 22.3377 21.7123 238.7950
Original MIL 0.1159 97.6820 78.2086 174.6877
Reconstructed MIL 0.0333 497.2692 524.8550 800.3849

Table 4.2: Tracking metrics for the proprietary and OpenCV MIL algorithms on both
versions of clip_1.

Apart from the direct performance comparison of real and synthetic data, we also evaluate
the influence of different parameters, such as time of day, the number of characters, noise
and lighting changes on tracking performance. For this purpose, the same basic scenes
from the video reconstructions are also rendered with completely different parameters
and the tracking performance on these synthetic videos is then analyzed. The results of
this secondary evaluation are discussed in Section 4.5.

4.4 Tracker Performance on Real and Synthetic Video

In the performance evaluation, we take a look at the results of the two tracking algorithms
for each video clip. Overall, it is of notice that the proprietary tracking algorithm performs
better than the OpenCV MIL tracker. However, since the goal of the evaluation is not
to benchmark the tracking algorithms but to see if different trackers treat the synthetic
data the same way as real inputs, this performance difference is not a problem. Note
that all figures in this section do show the trajectories in their relative position to the
whole camera frame.
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Output Track
Ground-Truth

(a) Original video.

Output Track
Ground-Truth

(b) Synthetic video.

Figure 4.2: Trajectory outputs of the proprietary tracker for clip_1.

The simplest video clip (clip_1) contains one person walking through the frame from
right to left. The most challenging element of this clip is the area of high contrast by the
railing of the stairs. The proprietary tracker performs very well on the original video
clip, with a bounding box overlap of 72 percent and a Fréchet distance of 40 pixels. In
the synthetic reconstruction of this clip, the metrics for the proprietary algorithm are
significantly worse. Looking at the plots of the two trajectories and their ground-truth in
Figure 4.2b, we can see that the main reason for this is tracker latency. The proprietary
algorithm picks up the track of the character after about 60 frames. This latency affects
the bounding box overlap and Fréchet distance, while both the mean and median distance
as well as the graphs in Figure 4.2 show that the two output trajectories are similar.

Output Track
Ground-Truth

(a) Original video.

Output Track
Ground-Truth

(b) Synthetic video.

Figure 4.3: Trajectory outputs of the OpenCV MIL tracker for clip_1.

With the OpenCV MIL tracker, the results diverge much more significantly. Here, the
tracker loses the target character in the synthetic video at the high-contrast area around
the stairs (see Figure 4.3b). In the real video clip, no such error occurs with the OpenCV
MIL tracker. However, here there is a wider gap between the two trajectories (see Figure
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Clip Char Tracker BB Overlap Mean Dist. Median Dist. Fréchet Dist.

Orig. 1 Prop. 0.6792 26.5907 25.0092 52.9008
Synth. 1 Prop. 0.3674 63.8594 56.1408 67.0422
Orig. 2 Prop. 0.7291 11.6062 11.3360 32.2437
Synth. 2 Prop. 0.6573 21.8230 17.0464 90.2694
Orig. 1 MIL 0.1560 42.2221 35.6078 51.2794
Synth. 1 MIL 0.1157 69.4341 69.0311 78.7873
Orig. 2 MIL 0.1259 45.8849 42.9530 57.1987
Synth. 2 MIL 0.1156 75.7855 79.2750 104.6802

Table 4.3: Tracking metrics for the proprietary and OpenCV MIL algorithms on both
the original videos and the synthetic reconstruction of clip_2. Char 1 and 2 indicate the
two different characters in this clip.

4.3a), which is most likely attributed to the fact that for the MIL tracker, larger bounding
boxes were used. This larger bounding box then leads to a shift in centroid position,
which in turn leads to the gap between the output tracks.

The second clip contains two characters walking from the bottom of the frame to the
left. Since the two characters in clip_2 do not interact or overlap, the clip does not
provide a specific challenge to the tracking algorithms. Both characters walk in front of
low contrast backgrounds, providing good visible separation from the background. The
tracking metrics in Table 4.3 show that the overall performance in this clip is better than
for clip_1. With the proprietary tracker, the results are once again slightly better for
the original clips. The biggest difference between real and synthetic input data appears
in the results for character 1, where the proprietary tracker output trajectory for the
synthetic video is shifted to the left (see Figure 4.4). A similar shift can be observed
in the tracking results for character 2 from the OpenCV MIL tracker. In general, the
distance measures for the synthetic clips with the MIL tracker are significantly worse
than for the real clips. There are no fragmentation or system latency-related problems for
any of the versions of clip_2. All tracking attempts provide good trajectory outputs.

In the third clip, two characters traverse a similar path as in clip_2 in the opposite
direction. This clip has the best match in results for its real and synthetic versions
over both tracking algorithms. The OpenCV MIL tracker once again has problems
with tracking the characters to the end, but these problems are not exclusive to either
the original or the reconstructed, synthetic video. Table 4.4 gives an overview of the
trajectory metrics for this clip. Note that the Fréchet distance for the synthetic clip
of character 1 from the proprietary tracker is an outlier. Here, a track fragmentation
occurred, which led to the main trajectory being shorter than the ground-truth.

The fourth clip that is part of the evaluation has a trajectory similar to the one on
clip_1. The main difference to the first clip is that there are two characters and they
are both moving at a running speed in the opposite direction of the trajectory in clip_1.
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Output Track
Ground-Truth

Figure 4.4: Trajectory output of the proprietary tracker for character 2 of the synthetic
reconstruction of clip_2.

Clip Char Tracker BB Overlap Mean Dist. Median Dist. Fréchet Dist.

Orig. 1 Prop. 0.6602 21.2112 12.1562 79.8135
Synth. 1 Prop. 0.6180 34.2341 33.6684 152.0201
Orig. 2 Prop. 0.6903 16.0646 13.3678 69.6353
Synth. 2 Prop. 0.7201 19.5719 16.5491 53.4766
Orig. 1 MIL 0.1476 59.8323 54.6002 62.8073
Synth. 1 MIL 0.1401 85.0669 57.6581 147.6576
Orig. 2 MIL 0.1124 65.5799 65.1632 61.4593
Synth. 2 MIL 0.1251 72.0307 58.7154 149.3285

Table 4.4: Tracking metrics for the proprietary and OpenCV MIL algorithms on both
the original videos and the synthetic reconstruction of clip_3. Char 1 and 2 indicate the
two different characters in this clip.

In the real video, both trackers have no problems tracking both characters throughout
the whole clip. The centroid position returned by the MIL tracker is shifted once again,
resulting in sub-optimal performance metrics. For character 1, this shift is especially
strong in the latter two thirds of its trajectory. This indicates that the bounding box
shifted from the center of the character to following the boundary between the character
and the background. The proprietary algorithm, on the other hand, performed excellently
on the real video input. In the synthetic reconstruction, there were similar problems in
the results for both algorithms. Character 2 causes track fragmentation errors in both
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trackers, where only the first third of the trajectory can be conclusively reconstructed.
Character 1 has similar problems in both trackers, albeit the fragmentation only happens
in the last third of the trajectory.

Figure 4.5: Overview of the proprietary algorithm tracking performance metrics for all
four synthetic clips compared to the performance for the real clips.

We can see that both tracking algorithms perform better on the real video clips than on
the synthetic input data. This may be attributed to the fact that these algorithms are
optimized towards tracking objects in real videos. However, the difference in performance
is not significant enough to conclude that synthetic data cannot be used to substitute
real videos to test tracking scenarios.

Figure 4.5 provides an overview of the tracking metrics for all synthetic and real video clips
in the evaluation. Here the differences in the Fréchet distance are especially visible, where
the trajectories obtained from the synthetic clips have a significantly higher variance, as
well as higher distance values overall. One reason for this is that many of the trajectories
from synthetic clips were shifted due to shadows of the characters being misidentified as
part of the character. The real video clips were recorded in a more diffuse light setting,
resulting in less prominent shadows. The other two distance metrics also show a behavior
similar to the Fréchet distance, which is also mainly due to shifted trajectories. Except
for one outlier in clip_2, the bounding box overlap for all clips stays above 55 percent.

This evaluation also only utilizes a very small sample size with four short clips for a total
of nine different trajectories to be tracked. An evaluation with additional datapoints can
be found in Section 4.5, where we take a look at how different post-processing effects
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affect the tracking performance. Since the main goal of this thesis is to create a synthetic
dataset, this evaluation should be seen as more of a proof-of-concept than a definitive
statement that synthetic data should or should not be used in place of real training and
test data.

4.5 Influence of Post-Processing and Parameter Variation
While the scenario parameters for the clips were kept the same for the initial evaluation,
the framework is also capable of producing different settings. In this section, we evaluate
whether built-in Unity effects are effective in producing a more versatile dataset. For this
evaluation, the reconstructed synthetic video clips from Section 4.4 are rendered with
variations in the time of day, the character model and different post-processing effects.
An overview of the visual impacts of the time of day variations can be seen in Figure 4.6.

(a) Morning (b) Noon

(c) Evening (d) Night with noise

Figure 4.6: Visual impact of the different time of day settings in the synthetic video clips.

For the time of day, four options are available, where each one comes with specific
challenges:

• Morning: There is a high contrast between illuminated and not illuminated areas,
as well as long shadows producing additional visual clutter in the background.

• Noon: This is the standard setting, which is also used for the main evaluation.
Here, the scene is evenly lit, and shadows are short.
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• Evening: At this time of day setting, there is no direct sunlight on the scene,
resulting in a diffuse illumination.

• Night: Here, no parallel light source is available, and the scene is only lit by the
artificial light sources placed in the scene. This setting is especially challenging,
since there are areas with very low contrast.

The three post-processing effects in the framework each correspond to effects appearing
in real-life video surveillance scenarios:

• Noise: Noise and grain appear in low-light scenarios and can lower the contrast or
impede clear image segmentation.

• Blur: Blurred images can be the result of dirt or moisture on a camera lens.

• Bloom: Bloom happens when extremely bright areas of an image start to bleed into
neighboring areas, which can lead to potential problems in image segmentation.

Apart from the above-mentioned parameters and effects, the wind speed is also variable.
A higher wind speed results in fuzzy movements of the vegetation model, which in turn
creates moving shadows on the scene’s surface. These shadows can also potentially lead
to false positives in tracking.
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Figure 4.7: Distance metrics for all clips tracked with parameter variation using the
proprietary tracking algorithm from our industry partner. Each line represents one clip,
color coded by the clip’s time of day.

As shown in Figure 4.7, the different parameters do have significant influence on the
quality of the tracking results. The main observation is that the night setting is most
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likely too dark and lacks contrast, leading to an overall higher tracking error for all
metrics. Another issue seems to be high noise values, as all the outliers from other time
settings with larger errors are clips with high noise values. To facilitate more usable
results, the noise value in the framework should therefore be kept low.

Figure 4.8: Overview of the proprietary algorithm’s tracking performance metrics for
the four different time of day settings. Note that additional post-processing effects are
applied to some of the clips, leading to a greater variance in each time of day setting.

The graphs in Figure 4.8 illustrate another problem, which is the extremely low contrast
in the evening setting. Here, even without additional noise, the tracking performance
in some cases is even worse than in the night setting. The low contrast in the evening
setting can also clearly be seen when comparing the sample frames in Figure 4.6c and
4.6d. Another observation that can be made by comparing the results for the noon
setting in Figure 4.8 with the results from the synthetic data in Figure 4.5 is that the
tracking performance with post-processing effects is mostly comparable with the unaltered
output. The only difference here is once again in the clips with excessive noise, which
are responsible for the outliers in the plots.

Overall, this quick evaluation shows that the built-in Unity post-processing options
provide a good basis for introducing variety to the synthetic dataset. However, more fine
tuning is still needed to find a balance between variation and acceptable tracking results.
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CHAPTER 5
Conclusion

We have shown that generating synthetic ground-truth datasets is possible within the
Unity game engine. Except for the manual task of content creation, the presented data
generation framework can be used for fully automated generation of video surveillance
data. As an example for the output generated by our framework, the settings of a real
video surveillance scenario were recreated within the game engine. From this scene, 64
synthetic video clips with varying parameters were created, where each clip was recorded
from two different camera perspectives. This data generation resulted in 86,768 synthetic
frames and their respective labels. The label data as well as the synthetic video frames
themselves were generated with a real time render engine within our framework and
recorded as single images by rendering to a texture and saving the buffer contents as an
image. On the majority of the clips, additional post-processing effects from the Unity
post-processing stack were also applied to introduce variation into the video clips. The
semantic labeling was done automatically by assigning a unique label color to each object
of interest and then re-rendering each frame with all shaders being replaced by the solid
label colors.

About half of the synthetic clips were recreations of real video clips recorded from a
virtual camera that matched the settings of a real camera from the scene. These clips
were then used as input for two tracking algorithms to extract trajectory data from
the characters traversing the scene. By comparing the resulting trajectories to the
ground-truth data and doing the same for real, manually labeled clips, it was shown that
the tracking algorithms perform worse on the synthetic data than on the real video data.
This indicates that the synthetic video data in its current form is limited in its suitability
for evaluating tracker performance. As none of the tested algorithms has been trained
with the synthetic dataset, there were no definitive observations made as to how well
the dataset is suited for the purpose of training. The effect of algorithms performing
worse on synthetic videos may be similar to the known problem of domain shift. Here,
the problem is that algorithms trained on synthetic data struggle when they then have
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to analyze real inputs. One conclusion to be drawn from this is that the evaluation
of tracking algorithm performance should not solely rely on synthetic data but at best
utilize a combination of real and synthetic videos. Since the main aim of this thesis was
to create the data generation framework itself, the evaluation was also only done on a
rather small dataset. More conclusive results could possibly be obtained by comparing a
larger dataset of both real and synthetic videos.

Overall, it was shown that Unity can be used as a tool to create synthetic video data in
real time without requiring major modifications. Having full access to the source code
and all resources provides an advantage over relying on off-the-shelf games when it comes
to labeling, as no manual work is required.

5.1 Future Work

An important follow-up to the work presented here would most definitely be to train
a tracking algorithm with the dataset generated by the framework. In this regard, the
dataset will be used in the scope of the ALOHA project 1 to train deep learning models
for behavior analysis. This could also provide further insight into the feasibility of using
our synthetic training data and show how severe the differences between the real and our
synthetic data are when it comes to a deep learning approach.

Even without the step of training a tracking algorithm with the generated data, the
evaluation presented in this thesis could be improved by evaluating a larger, more
comprehensive dataset and comparing it with more real annotated videos from different
scenarios and environments.

Regarding the framework itself, multiple future extensions and improvements are possible.
One of them could be making the scenarios more versatile by adding additional actors
such as animals and different vehicles, more weather patterns such as snow, rain or dead
leaves moving in the wind. More realistic character interactions with the environment or
characters carrying objects could also be worth adding to the framework. The value of
the generated synthetic data will likely increase with the ability to simulate more diverse
scenarios.

With the need to create more diverse scenarios comes the problem of content creation.
This problem already exists in the current state of the framework, where the 3D scene of
the environment has to be created manually, but it will only become a bigger problem
with the need of adding more complexity to the scenario. Possible future improvements
in this area could be twofold. On the one hand, a more modular approach could be taken
by creating more abstract scenes from simple, pre-made building blocks. On the other
hand, techniques like photogrammetry could be investigated as tools for re-creating real
environments for the framework. In general, a more automated and procedural workflow
would definitely be a welcome improvement.

1https://www.aloha-h2020.eu/ Accessed: 09.10.2019
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5.1. Future Work

When it comes to the visual output of the framework, a possible area for expansion could
be to introduce more sophisticated post-processing to create more diverse image sets.
Here it might be worth to look into style transfer methods such as CycleGAN where, in
one example, a neural network was used to turn scenes from GTA V into more realistic
video frames [LLJX18]. A similar approach could also be taken to generated different
camera modes or seasons out of a single video recording.
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