
Technische Universität Wien

Bachelorarbeit

im Studiengang Medieninformatik und Visual Computing

Definition of a Workflow to Import
FBX Models in Unity3D at Run-Time
While Retaining Material Properties

for Various Shader Types

Author

Nicolas Themmer

0929245

Advisor

Michael Wimmer

Assistance

Johannes

Unterguggenberger

December 1, 2018

Acknowledgements

I take this opportunity to express gratitude to my supervisor for his
help and support. I also thank my parents for their encouragement and
support. I am also grateful to my partner who supported me throughout
this venture.

1

Abstrakt

Die vorliegende Bachelorarbeit lässt sich in zwei aufbauende Teile
unterteilen. Zum einen werden physikalisch basierende Shader un-
tersucht und ihre Funktionsweise analysiert. Im Zuge dessen wer-
den Shader im Allgemeinen studiert, wobei wichtige Elemente wie die
Rendering-Gleichung sowie die Grafikpipeline besprochen werden. Ein
genaueres Augenmerk wird anschließend auf physikalisch basierende
Shader gelegt. In diesem Schritt beschäftigt sich die Arbeit mit un-
terschiedlichen Phänomenen, die in der Realität auftreten und in der
Computergraphik umgesetzt werden konnten. Dabei wird die BRDF
(Bidrectional Reflection Distribution Function) theoretisch erklärt und
mathematisch analysiert. Zum anderen behandelt die Arbeit den Import
von dem FBX Dateien in die Game-Engine Unity3D. Das Ziel in diesem
Teil des Projektes ist es einen Import zu ermöglichen durch welchen
keine Materialinformationen verloren gehen. Im Normalfall müssen
nach dem Import von FBX Dateien, Texturen dieser Modelle manuell
auf Unity Materialien zugeornet werden. Im Rahmen dessen wird die
Autodesk API verwendet um FBX Dateien zu untersuchen und Informa-
tionen zu Texturen und Materialien zu erhalten. Einerseits behandelt
die Arbeit den Use-Case, der den Upload der FBX Dateien auf einen
Server beschreibt, welcher die Dateien analysiert, ein Unity eigenes
Format (AssetBundle) mit richtigen Materialinformationen generiert
und anschließend in einer Datenbank persistiert. Andererseits wird
ein Client implementiert, welcher sich zur Laufzeit mit der Datenbank
synchronisiert und Modelle mit korrekten Materialinformationen in die
Szene lädt. Dafür wird außerdem die Modellierung von 3D Objekten
behandelt und wie Materialien mit zugehörigen Texturen erstellt wer-
den können. Das Projekt ist als Netzwerkapplikation implementiert um
den Konvertierungsprozess auszulagern, wodurch die Rechenleistung
erheblich reduziert werden kann.
Die Arbeit definiert notwendige Schritte um eine automatische Zuord-
nung von Texturen auf Unity Materialien zu ermöglichen. Hiermit wird
eine Lösung für den Use-Case vorgestellt, wodurch FBX Dateien zur
Laufzeit in Unity Applikationen eingebunden werden können.

2

Abstract

This bachelor thesis can be divided into two sequential parts. The
first part examines physically-based shader analyses their functional-
ity. In this context, shader were studied in general, while discussing
core elements like the rendering equation and the graphics pipeline.
Physically-based shader were subsequently brought to close attention.
In this step, the study deals with various real life phenomenons, that
occur in reality and were successfully implemented in computer graph-
ics. For this purpose, the BRDF (Bidirectional Reflection Distribution
Function) was explained theoretically and analysed mathematically. The
second part of this thesis covers the import of FBX files into the game
engine Unity3D. The goal of this chapter is to modify the import process
to the extend that material information won’t get lost. When importing
FBX files into Unity3D, textures have to be assigned to Unity materials
by default. Therefore, the Autodesk API is used to examine FBX files
and gain necessary information regarding textures and materials. The
thesis covers the use-case of uploading FBX files to a server, analysing
these files, generating Unity files in a native format (AssetBundles) with
correct material information and storing them into a database. A client,
that synchronises itself with the database during run-time and loading
these models into a visual scene was also implemented. In this context,
the process of modeling 3D objects, including materials and textures
is covered as well. The workflow was implemented as a network ap-
plication in order to outsource the conversion process and therefore
substantially decrease the consumption of computational power.
The workflow defines necessary steps, to automate the assignment of
textures to Unity materials. A solution for the use-case of including FBX
files into unity applications during run-time is hereby presented.

3

Contents

1 Introduction 5

2 What is a shader? 7
2.1 The physical world . 7
2.2 Shader Types and Coordinate Systems 9
2.3 Lighting . 9
2.4 The Graphics Pipeline . 11

3 Physically-Based Shading 13
3.1 Light-material interactions 13
3.2 Fresnel Reflectance . 15
3.3 BRDF . 16
3.4 Microgeometry . 17
3.5 Microfacet Theory . 18

4 Workflow Definition 21
4.1 Introduction . 21
4.2 Asset Creation . 22

4.2.1 UV Mapping . 22
4.2.2 Materials and Textures 23

4.3 Upload . 26
4.4 FBX to AssetBundle . 27

4.4.1 REST Web Service . 27
4.4.2 Parsing FBX files with Autodesk API 28
4.4.3 Converting FBX file to Assetbundle 30

4.5 Unity Client and run-time import 33

5 Conclusion & Future Work 36

6 Appendix 39

4

1 Introduction

Shader programs are essential for any visual presentation in rendering
applications and have been developed a lot over the past years. While
the industry strives to make virtual scenes as realistic as possible, differ-
ent methods emerged to reach that goal. As the name already suggests,
physically-based shaders are trying to take various physical variables
from the real world into account. Since physically-based shaders became
extremely popular, many 3D computer graphics programs implemented
support for these shaders.
In game development, 3D objects are created with modeling software
and are then imported into game engines. The Autodesk FBX format is
commonly used for the import and export process. This format can be
loaded into the 3D game engine Unity3D (or briefly Unity), but textures
have to be assigned to the object’s materials manually. Automating this
process makes it easier for developers to work with Unity and FBX files.
Furthermore, it opens up the possibility to include FBX files into running
applications without a pre-processing step. The theoretical part of this
thesis will explore the inner workings of shaders in general and examine
physically-based shaders in particular. The goal of the practical part is
to automate the process of converting FBX files into Unity AssetBundles
in order to import them into running Unity Clients, while upholding
correct visual representations. AssetBundles are archive files containing
Unity specific components and were specifically created for the run-
time import. The main contribution of this thesis is a description of a
workflow, that enables the import of FBX models into Unity at run-time
while retaining material properties of the original models during the
import and making them available in Unity to be directly usable with,
e.g., Unity’s Standard Shader. This is not possible with Unity’s own
importer, which loses material information during the import process.
Another contribution is the description of that workflow in a distributed
system, which offers following advantages to a local-only workflow: If
FBX models are loaded into multiple Unity clients, computational power
can be saved by converting the model only once and storing the Asset-
Bundle in a database. Without local conversion, Unity clients can be
synchronised quickly and with little computational costs. Chapter 2 and

5

3 of this thesis describe necessary components and the theory behind
the implementation physically-based shader. Chapter 4 presents the
workflow and how physically-based shader can be implemented in Unity.

6

2 What is a shader?

To understand physically-based shaders (PBS), it is necessary to de-
scribe shaders in general and how they are being used. Shaders can be
explained as code that runs on GPUs, creating a visual representation
of an object’s surface. In order to achieve this goal, the shader has
to simulate the interaction of light on a surface at a microscopic level.
While there are also shaders that deliberately create an unrealistic vi-
sual appearance of objects, most shaders take a realistic approach as a
priority [6].

2.1 The physical world

When shader programs take a realistic approach, our perception of the
physical world must be analysed to get a better understanding of which
variables have to be taken into account. Therefore, we need to recognize
why visual systems record objects and reflections the way they do. Three
different materials are presented in figure 1. The human brain has no
problem identifying those materials because light behaves differently on
fiber compared to wood, rust or any other material [6].

Figure 1: Fiber, rust and wood material

In the physical world, light is seen as a wave or as particles. Surfaces
of objects fundamentally consist out of atoms, which the human eye is not
able to perceive. Surfaces that appear to be smooth can be quite rough
at a microscopic level, which makes the light scatter in many directions.
The way light rays behave after hitting an object’s surface determines the

7

appearance of a material. It can either be absorbed, reflected, refracted
or scattered. More on the behaviour of light can be read in chapter
2.3. Calculating surfaces and the resulting reflections at a microscopic
level would be too costly and would require unrealistic computational
power. 3D models, created by 3D artists, consist of vertices, which are
connected to form triangles or quadrilateral ("quads"), see figure 2 [6].

Figure 2: Sphere vertices

A basic 3D object can have a lot of vertices. The sphere in figure 2
has 12480 triangles, which shows how quickly computational resources
can be occupied. Rendering at a microscopic level to map the real
world is unrealistic. Shaders use a mathematical approach instead to
approximate different lighting behaviours on various surfaces [6].

8

2.2 Shader Types

There are a few types of shaders used by modern graphic cards for the
rendering process:

• Vertex Shader: This shader is executed on every vertex and is a
well established and common kind of shader.

• Tesselation Shader: Takes data from the vertex shader and is able
to create new vertices in the geometry by interpolating original
ones [5].

• Geometry Shader: Can change or expand the given geometry by
creating new vertex groups and vertices [5].

• Fragment Shader: Is also known as Pixel Shader and is executed
for each possible final pixel (also known as fragment). Fragment
Shaders are commonly executed on fragments to determine the
color of the corresponding pixel [5].

• Compute Shader: Are useful for calculations that can be broken
down into a large amount of independent tasks because they are
able control how threads are being handled in a given shader
invocation. Threads have read/write permissions to a common
memory pool, which allows them to access and share calculations
[8][6].

2.3 Lighting

Light sources, such as light bulbs, have to be created with light-emitting
surfaces. Other surfaces will reflect the incoming light and will therefore
be illuminated. Light rays will be scattered from one surface to another,
which can be traced back in a recursive manner [7].

Referring to figure 3, the initial light source, represented by the
sun, and the light rays, hitting the surfaces A and B, can be seen. Both
surfaces reflect parts of the incoming light back to the other surface. The
light will be reflected again, creating a recursion. This recursive process
can mathematically be described by using the rendering equation.

9

Figure 3: Reflecting surfaces (reprinted from [7]).

This integral equation summarizes all parameters to calculate lighting
and cannot be solved analytically but various approaches, such as ray
tracing, can be used to approximate the equation [7].

L0(x,w0) = Lε(x,w0) +
∫

Ω
f(x,wi → w0) · Li(x,wi) · (wi · n)dw

• The term L0(x,w0) is retrieved from the equation and describes the
outgoing light in direction w0 at position x [6].

• Lε(x,w0) is added once and describes the emitted light in direction
w0 from the surface point x [6].

• The following integral
∫

Ω
f [...]dw is a repeated summation for all

solid angles in the corresponding hemisphere Ω above point x [6].

• The term f(x,wi → w0) within the hemisphere represents the BRDF
and defines the proportion of light reflected from wi (negative
direction of the incoming light) to w0 at position x (see chapter 3.3)
[6].

• Li(x,wi) describes the incoming light onto the surface point x [6].

10

• The term (wi ·n) specifies the normal attenuation, which attenuates
the incoming light at x based on the angle between the normal
vector n and the incoming light direction wi [7].

Reflected light rays end up hitting other surfaces, that will reflect
parts of the light rays back again. Light rays will keep bouncing around
until their energy is spent. We therefore differentiate between:

• Direct light: Light hitting a surface directly.

• Indirect light: Light hitting a surface after being reflected from
another surface.

2.4 The Graphics Pipeline

When dealing with shaders it is necessary to understand the basic
concepts of the rendering pipeline. This chapter gives a general overview
of how 3D scenes are being rendered. There are a few widely used
graphics APIs, that give developers the option to render a 3D scene.
APIs like OpenGL take advantage of hardware acceleration and are
mainly optimized to run on GPUs [7]. The graphics pipeline can be
broken down and simplified in following steps (see 4) [6]:

1. In the first stage, all the information has to be gathered and orga-
nized, in order to be used in the following steps. The information
contains data from the scene, which contains meshes, textures and
materials [6].

2. With the data information at hand, the vertex processing stage
runs the Vertex Shader on each vertex in the scene [6].

3. The Vertex Post-Processing stage removes 3D data, which are not
in the view frustum and will therefore not be seen on the screen.
This process is referred to as clipping and is an essential step for
saving computational power [6].

4. The primitive assembly stage prepares the input received from the
previous stage and sends it to the next one [6].

11

Figure 4: Graphics Pipeline (reprinted from [6])

5. The rasterizer is part of the GPU. It takes a triangle and calculates
the corresponding pixels (fragments) on the final image. Since all
three vertices from the triangle contain attributes, the rasterizer
produces an interpolated output for the fragments based on the
vertex data [6].

6. The fragment shader stage takes all the fragments from the previ-
ous step and runs the fragment shader on each of them [6].

The geometry and the tesselation shader, mentioned in chapter 2.2,
would be located between the vertex and fragment shader in the graph
above. Physically-based shader can generally be created by implement-
ing vertex and fragment shader.

12

3 Physically-Based Shading

Physically-based shading is a common shading technique. The main
difference to other shading calculations is that the detailed behaviour of
light is taken into account, when reflections and other light phenomena
are calculated. The physics of light and how light interacts with different
kinds of materials is essential for the understanding of PBS [6].

3.1 Light-material interactions

When a ray of light strikes the surface of an object, some parts of
it will be reflected, some absorbed and some will be refracted. The
understanding of how much a ray behaves in either of these three ways,
is essential for making shaders as realistic as possible.

Figure 5: Rays of light hitting a blue and a red object (reprinted from
[11]).

• The process of absorption determines the true color of an object.
Light is essentially composed of different wave lengths, which we
perceive as different colors. Absorption eliminates all the colors in
that range, except the one that can be seen on the object’s surface
(see figure 5).

• Reflection focuses on the part of the light ray, that is being reflected
(not absorbed) from the object. For PBS, not only the direction of
the reflection is important but also the amount of the light ray’s
energy used by reflectance.
Every object has a different surface at a microscopic level but

13

3D models are not created to an extent that is able to represent
such a level of detail. Therefore, these surface details have to be
simulated. Furthermore, PBS will not only calculate one direction
of reflectance for every pixel but will reflect the light in multiple
directions. Directions are calculated statistically and result in a
cone-like form (see figure 6) [6]. The reflected light is dependent on

Figure 6: Reflection of rays into a cone (or lobe) (reprinted from [6]).

the incoming light which is typically calculated over a hemisphere,
which is placed on top of the pixel. Since light can be conceived
from multiple directions at once, all rays within the hemisphere
need to be added up to create a realistic representation of light
conditions [6].

• If light hits a semitransparent object, such as glass or water, it digs
through and hits the layer below. This process is called transmis-
sion or refraction. Materials are created with a refraction index,
that represents the level of transparency [6].

Light rays are either direct or indirect (see chapter 2.3). Calculating
indirect light is extremely expensive and needs to be approximated
through different techniques like global illumination, light mapping and
reflection probes for reflective materials [6].

14

3.2 Fresnel Reflectance

A simple specular approximation does not limit the specular intensity
in regard to the incoming light. To make shader physically-based, the
energy of outgoing light has to be limited by the energy of incoming
light. The amount of reflected and refracted light is dependent on the
incoming light angle, the normal vector and the viewing angle [6].

Figure 7: Fresnel Reflectance (y-axis) for differenct materials in regard
to the angle of incidence (reprinted from [6]).

Fresnel Reflectance describes a realistic physical phenomenon: On
the one hand being able to see underneath, when standing above the
water and looking straight down. On the other hand not being able to
see underneath when gazing into the horizon due to reflection. From the
angle of incidence between 0 and 45 degrees most materials react the
same way. From 45 to 90 degrees, reflectance gradually increases (see
figure 7). The Fresnel equation is used to calculate the ratio between
reflection and refraction and is usually implemented in code through the
Schlick approximation, which has a similar behaviour to physical world
phenomenons. F0 describes the specular color, that can be seen at a 0°
angle of incidence [6].

15

Fschlick(F0, l, h) = F0 + (1− F0)(1− (l · h))5

l represents the incoming light direction and h stands for the sur-
face’s normal vector. When using the normal vector in the microfacet
BRDFs, the h vector is used instead (see chapter 3.5) [10]. Fresnel re-
flection can be proven by performing a simple experiment: While sitting
in front of a monitor, hold a smartphone close to the stomach. Tilt it until
it reflects the monitor. The reflection will be weak due to the low angle
of incidence. The same experiment can be repeated, while holding the
smartphone in front of the eyes. The reflection intensity will be a much
greater than before, as the angle of incidence increased substantially
[1].

3.3 BRDF

The BRDF (bidirectional reflection distribution function) is a function
used to calculate the intensity of reflectance on an object. The intensity
of reflected light depends on the incoming light direction l, that reflects
a specific amount of light towards the outgoing direction v (see figure 8)
[1].

Figure 8: The BRDF. φo and φi as azimuth angles with respect to tangent
vector t. θo and θi as elevation angles with respect to the normal n
(reprinted from [1]).

The BRDF is bidirectional because the functions depends on two
directions. These directions are given with respect to the surface. Each

16

vector is therefore described by two numbers: the altitude angle (el-
evation) and the azimuth (horizontal rotation). The altitude angle θo
stands for the angle between the normal and v, θi for the angle between
the normal and l. The azimuth angles describe the angle between the
incoming or outgoing light direction and the tangent vector t [1].

Figure 9: BRDF reflections distribution examples. Left: diffuse, right:
specular (adapted from [1])

The term reflectance distribution stands for the spreading of light.
A widely used distribution is the diffuse reflection (see figure 9). The
viewing direction is irrelevant to some incoming light directions. This
is what defines diffuse reflection. Consequently, the reflection is rep-
resented by the surface of a hemisphere. Specular highlights can be
visualized by specular lobes (see figure 9). This distribution produces
a glossy surface, where light is reflected in a general direction. The
light’s direction determines where most of the light’s energy is reflected.
When the lobe expands, the specular reflection spreads out. The BRDF
is an essential part for calculating the outgoing light and is used in the
rendering equation (see chapter 2.3) [1].

3.4 Microgeometry

Surface irregularities that are smaller than a pixel and are unvisible to
the naked eye, are impossible to be modeled explicitly and will therefore
be modeled statistically by the BRDF. Surface points contain a lot of
microsurface normals that scatter and reflect the light in multiple di-
rections. Since the orientation of these normals are somewhat random,

17

they can be interpreted as a statistical distribution. The distribution
is continuous for most surfaces and peaks at the macroscopic surface
normal. The tighter the distribution is, the smoother the surface will
appear [1].

3.5 Microfacet Theory

Most BRDF models are based on the observation how microgeometry
affects reflectance. This mathematical analysis is referred to as the Mi-
crofacet Theory. It is based on the modeling of microgeometry through
microfacets, which are small flat facets with a normal vector m. These
facets reflect light in regard to the micro-BRDF fµ(l, v,m). The combined
reflectance of all microfacets will add up to the overall surface BRDF.
When ignoring nanoscale irregularities, each microfacet is viewed as a
perfect Fresnel mirror and will therefore reflect each incoming ray of
light into one outgoing direction. That direction depends on the light
direction and the microfacet normal [1].

Figure 10: Half vectors defined by the incoming light and view direction.
Highlighted red microfacets are visible (reprinted from [10]).

Only the microfacets with their normals m oriented in exactly the
same direction as the half vector h reflect any visible light. Any micro-
facet aiming in a slightly different direction will be bouncing l into some
direction other than v and will therefore not influence the BRDF [1].
Not all microfacets where m = h will contribute because some will be
blocked by other microfacets. In this case we differentiate between
two phenomenons that occur in the Microfacet Theory. Some facets

18

can either be blocked from the light direction, Shadowing, or the view
direction, Masking. In reality, blocked light will continue to bounce and
some of it will eventually contribute to the BRDF. Microfacet BRDFs
commonly ignore this fact and assume that all blocked light is lost (see
figure 11) [1].

Figure 11: Non visible microfacets due to shadowing (left) and masking
(center). Realistic representation of bounced light (right) (reprinted
from [10]).

From these assumptions it is possible to derive an equation that de-
scribes a basic Microfacet Specular BRDF :

f(l, v) =
F (l, h)G(l, v, h)D(h)

4(n · l)(n · v)

F (l, h) describes the Fresnel reflectance, covered in chapter 3.2. It
represents the fraction of incoming light, that is reflected and not re-
fracted. It varies based on the lighting angle and the surface normal [10].

G(l, v, h) refers to the Geometry Function, that explains how many of the
visible microfacets will not be rendered due to shadowing or masking.
Smith’s function is often used as the geometry function, which is both
mathematically valid and physically realistic [10].

D(h) refers to the distribution of microfacets pointing to the direction
where h = m (see chapter 3.4) [10].

19

Understanding how light bounces on a microscopic level is an essen-
tial part for implementing PBS. The microfacet theory helps to simulate
this behaviour and must be included for lighting calculations.

20

4 Workflow Definition

This chapter will demonstrate a possible workflow to automate the im-
port process for FBX models in Unity3D at run-time while retaining
material properties. This project gives an example of how specific tex-
ture mappings can be initiated in form of a network application. This
workflow will not only cover the run-time import of Unity’s AssetBundles,
but will also cover the modeling process and how the Autodesk FBX
format can be parsed with the Autodesk API to extract material informa-
tion that can later be used to automatically map corresponding textures
onto Unity materials. When instantiating Unity materials, the Unity
"Standard Shader" is applied by default. This shader is physically-based
and will be discussed in chapter 4.2.2.

4.1 Introduction

When creating applications involving game engines, models are usually
included in the correct format and only have to be included in the
application. This workflow not only requires communication between
artists and game engine specialists, but also presumes a pre-processing
step, where textures have to be dragged onto the model’s material.
This chapter will present a possible workflow to integrate FBX models
into running Unity applications, without requiring any human-computer
interaction for assigning textures to materials. The process is divided in
the following steps:

1. Asset Creation: The generation of three dimensional models, which
includes the creation of geometry and material properties.

2. FBX to Assetbundle: Reading necessary information from FBX
files through the Autodesk API and converting the model into
AssetBundles.

3. Upload architecture: Explains which services have to be running
and how they communicate.

4. Unity import: How the model should be imported into Unity3D.

21

4.2 Asset Creation

There are many 3D computer graphics programs that can be used for
asset creation. For the creation of the assets used in the context of this
thesis Autodesk’s 3D computer graphics application Maya [4] but other
common software packages like Cinema4D, 3ds Max, Blender, MODO,
etc. contain the same features relevant for asset creation. Even though
the FBX format is standardized, structural elements can vary. This
thesis will use parameters and values listed in the FBX format structure,
created by Maya. For the purpose of this project a model of an office
space environment was created. This model can be seen in figure 12.

Figure 12: Office space environment without textures, modeled in Maya
[4]

4.2.1 UV Mapping

The model in figure 12 is grey because there are no materials and
textures added to the elements. In order to assign textures, UV coor-
dinates of each object have to be created. It’s necessary to create the
geometry of the model before applying UV layouts. When the geometry
has changed, UV layouts have to be recreated. UVs are coordinates
that describe how 2D textures can be wrapped around 3D objects. UV
mapping describes the process of unfolding a three-dimensional object
into a two-dimensional representation. The UV coordinates specify the
locations on these two-dimensional representations and can be used to

22

describe which point on a texture is assigned to which location on the
model [12].

Figure 13: Knob, UV layout with checker board

Figure 13 shows a knob, located on the windows of the office space
model (figure 12). Stretched surfaces, caused by UV mapping, should be
prevented when unfolding a mesh. The black and white texture (checker
board) in figure 13 is used as a reference to understand how the texture
is mapped on the surface of the mesh [12]. Ideally all squares should
be the same size. Maya [4] offers a large toolset in the UV editor, which
makes it easier to achieve the desired result.

4.2.2 Materials and Textures

In the next step, materials can be created. This can either be done with
Maya or with other 3D painting software like Substance Painter[2], that
is able to apply materials and add textures to your mesh.

Substance Painter[2] provides users with a set of default materials,
that can be altered in any way. The software has the advantage of preset
materials, which makes it easy to paint details like screws (see figure
14) onto meshes. When texturing a mesh, the material of the object
will determine which textures can be applied. Surfaces of objects in
the real world contain various properties, that have to be simulated
to achieve a realistic visual representation. Unity’s standard shader is
physically-based and provides the following properties:

• Albedo: Describes the color of diffused light. In other words the
raw color of the material itself. This property is the base of the

23

Figure 14: Knob, textured in Substance Painter

material. Either a single color, or a texture map can be chosen.
The alpha channel can represent additional information, like the
level of transparency.

• Metallic: Defines the metallicness of the material. When the level
of metallicness increases, the albedo becomes more and more
obscured by the reflections of the envirnonment.

• Smoothness: The smoothness property lets you adjust how smooth
or rough the microsurface is. When the microsurface is rough, it
will scatter light more easily. Smooth surfaces tend to look glossy,
rough surfaces appear matt. A metallic texture map controls the
metallicness through the red channel and smoothness through the
alpha channel.

• Normal Map: This property adds surface detail to the model with-
out adding geometry. This is used to simulate details like bumps
and scratches by changing the way light reflects off the surface.

• Height Map: These maps are similar to normal maps but the
rendering technique is more complex and therefore more intensive.
Height maps are generally used together with normal maps to
show larger changes in surface level.

24

• Occlusion: This property is a way to add ambient occlusion using a
black and white texture. It’s a cheap way of adding detail shadows
in places where light might have a hard time escaping.

• Emission: This property can be used to make the object emit light.
An emission map specifies, which parts of the object are emissive.

When creating materials through Substance Painter [2], channels
are specified to describe the properties. These channels will be exported
in the form of textures.

Figure 15: Exported textures from the metallic plate shown in figure 14.

Figure 15 shows the part of the UV coordinate space, that represents
the plate behind the knob from figure 14. It shows three different kinds
of textures (from left to right):

1. Albedo: The RGBa channel of the mesh. Since the object does not
contain any transparent parts, the alpha channel throughout the
texture is 0.

2. Metallic: This gray scale texture map shows which parts of the
object are metallic and which aren’t.

3. Normal Map: Maps that help create more tactile-looking surfaces
[12]. In this case, both screws will seem to be elevated.

The process of UV mapping and texturing has to be done for every
mesh in figure 12. The final result is displayed in figure 16.

25

Figure 16: Textured office space environment

4.3 Upload

The main goal of this workflow is to automate the process of converting
FBX files into Unity AssetBundles and importing them into a running
Unity application. Although this application can be used locally, the
project was implemented as a network application, where FBX files will
be uploaded from one computer and loaded into another, running the
Unity application. The AssetBundle format was specifically created by
Unity for run-time import. While it’s possible to execute the conversion
locally, it’s recommended to outsource the process to save computational
power. This involves four main steps:

1. Uploading the desired asset in FBX format

2. Convert the FBX file into an AssetBundle and send it to the Backend
System

3. Store AssetBundle in the Backend System

26

4. Synchronise Unity client with the Backend System

The following chapter will focus on the first two points of the uploading
service.

4.4 FBX to AssetBundle

To convert FBX files to AssetBundles, incoming FBX files will be received
over the network. The following steps will be executed to successfully
make the conversion:

1. Building a REST Web Service.

2. Reading material information from FBX files and storing the data
in JSON format.

3. Loading FBX files into a Unity scene and applying all texture maps
to the Unity Standard Shader, with the help of the previously
retained JSON file.

4. Converting the Unity object into an AssetBundle and sending it to
the Backend Service

4.4.1 REST Web Service

Since the Autodesk API is written in C++ (see chapter 4.4.2), the REST
Service was implemented in C++ as well. This makes the validation of
incoming files easier. For the purpose of this project, the C++ REST SDK
Casablanca [9] was used, which is a Microsoft project for cloud-based
client-server communication. Since FBX files will only be uploaded,
the process is only able to handle POST requests. To send data to the
Backend, a client for outgoing connections was created. The program
was then deployed on a server to create web service. Creating the REST
interface was the first step and the next section will explain how FBX
files can be parsed with the Autodesk API.

27

4.4.2 Parsing FBX files with Autodesk API

The Autodesk API can be used to read information from FBX files. When
downloading the Autodesk FBX SDK, a variety of examples for different
use-cases can be examined and the corresponding documentation can be
found at [3]. The focus of this project resides on extracting material and
texture information and packing this data into a JSON string for easy
access. FBX files are read as a scene graph, which is a tree of FbxNode
objects. NURBS, lights, cameras and other elements are associated with
these nodes but only the mesh element is relevant for this project. To
analyse all meshes in a FBX file, the root element has to be read from
the scene. This way, all siblings can be parsed.

1 void DisplayContent(FbxScene* pScene)
2 {
3 int i;
4 FbxNode* lNode = pScene->GetRootNode();
5

6 if(lNode)
7 {
8 mesh_info.append("[");
9 for(i = 0; i < lNode->GetChildCount(); i++)

10 {
11 DisplayContent(lNode->GetChild(i));
12 }
13 }
14 }
15

16 void DisplayContent(FbxNode* pNode)
17 {
18 FbxNodeAttribute::EType lAttributeType;
19 int i;
20

21 if (pNode->GetNodeAttribute() == NULL) {
22 FBXSDK_printf("NULL Node Attribute\n\n");
23 }
24 else {
25 lAttributeType =

28

(pNode->GetNodeAttribute()->GetAttributeType());
26

27 if (lAttributeType == FbxNodeAttribute::eMesh) {
28 DisplayMesh(pNode);
29 }
30 }
31

32 for (i = 0; i < pNode->GetChildCount(); i++) {
33 DisplayContent(pNode->GetChild(i));
34 }
35 }

The code above iterates through all FbxNode elements (line num-
ber 9) and calls the DisplayMesh(FbxNode* pNode) method for each
node (line number 28). This function contains two other methods, in-
voked one after another. The Autodesk API provides the DisplayMa-
terial(FbxGeometry* pGeometry) function, that reads information of
the material, which is attached to the mesh. The DisplayTexture(Fbx-
Geometry* pGeometry) function outputs the texture type and the cor-
responding material (see line 12 and 15 below). The information is
stored in a JSON string for later usage.

1 [{
2 "mesh": "MySphere",
3 "materials": [{
4 "Name": "MyLambertMaterial",
5 "Ambient": "0.500000 (red), 0.500000 (green), 0.500000

(blue)",
6 "Diffuse": "1.000000 (red), 1.000000 (green), 1.000000

(blue)",
7 "Emissive": "0.000000 (red), 0.000000 (green), 0.000000

(blue)",
8 "Opacity": "0.000000",
9 "ShadingModel": "Lambert"

10 }],
11 "textures": [{
12 "Materialname": "MyLambertMaterial",
13 "DiffuseColor": "rock_vstreaks_Base_Color.png"

29

14 },{
15 "Materialname": "MyLambertMaterial",
16 "Bump": "rock_vstreaks_Normal-unity.png"
17 }]
18 }]

The code above extracts information from FBX files and is built as a
Dynamic Linked Library, or briefly DLL, with external methods. This
way it can be used by Unity as a plugin. The following code describes
external C++ methods, that will eventually be called by Unity scripts.

1 EXTERNMETHOD SharedAPI* CreateSharedAPI(int ID) {
2 return new SharedAPI(ID);
3 }
4

5 EXTERNMETHOD const char* GetFileInfo(SharedAPI* sharedAPI, const
char *file) {

6 return sharedAPI->GetFileInfo(file);
7 }
8

9 EXTERNMETHOD void DeleteSharedAPI(SharedAPI* sharedAPI) {
10 delete sharedAPI;
11 }

4.4.3 Converting FBX file to Assetbundle

Using the script from the previous section, FBX files can now be parsed
directly in Unity, while texture to material mappings are stored in a JSON
string. Therefore the DLL was imported into the Unity Project’s "Plugin"
folder. The external methods can be used in Unity by establishing
handles to the functions inside the DLL using DLLImport statements to
make them available in C#.

1 [DllImport("ImportScene")]
2 private static extern IntPtr CreateSharedAPI(int ID);
3

4 [DllImport("ImportScene", CallingConvention =
CallingConvention.Cdecl)]

30

5 private static extern IntPtr GetFileInfo(IntPtr api, string
file);

6

7 [DllImport("ImportScene")]
8 private static extern void DeleteSharedAPI(IntPtr api);

After creating a pointer to the shared API, which is defined through
the DLL plugin, the JSON-info string can be received with the GetFile-
Info method. To initialize meshes with a JSON string, a serializable
class was added to the project:

1 [Serializable]
2 public class Mesh
3 {
4 [JsonProperty("mesh")] public string mesh { get; set; }
5 [JsonProperty("materials")] public List<MaterialData>

materials { get; set; }
6 }
7

8 [Serializable]
9 public class MaterialData

10 {
11 public string Name;
12 public string Ambient;
13 public string Diffuse;
14 public string Specular;
15 public string Emissive;
16 public string Opacity;
17 ...
18

19 private TextureData Textures;
20 }
21

22 [Serializable]
23 public class TextureData
24 {
25 public string Materialname;
26 public string DiffuseColor;

31

27 public string SpecularColor;
28 public string Bump;
29 ...
30 }

After initializing the mesh class, all necessary information for binding
textures to specific material slots is available. The following code snippet
shows how textures can be applied to corresponding materials, which
were obtained by importing the file with Unity’s AssetImporter.

1 var materials = AssetDatabase
2 .LoadAllAssetsAtPath(assetImporter.assetPath)
3 .Where(x => x.GetType() == typeof(Material));
4

5 foreach (var material in materials)
6 {
7 var newAssetPath = string.Join(PATH,
8 new[] {materialsPath, material.name}) + ".mat";
9

10 AssetDatabase.ExtractAsset(material, newAssetPath);
11 }
12

13 TextureData textures = materialData.getTexture();
14

15 Texture2D bump = FileHandler.GetTextureByName(textures.Bump);
16 Texture2D diffuse =

FileHandler.GetTextureByName(textures.DiffuseColor);
17 Texture2D specular =

FileHandler.GetTextureByName(textures.SpecularColor);
18 Color ambientColor =

FileHandler.GetColorFromString(material.color);
19

20 if (diffuse != null)
21 material.SetTexture("_MainTex", diffuse);
22

23 if (specular != null)
24 material.SetTexture("_MainTex", specular);
25

32

26 if (bump != null)
27 material.SetTexture("_BumpMap", bump);
28

29 if (ambientColor != null)
30 material.SetColor("_Color", ambientColor);

With the first line in the code above, all materials connected to the
FBX file can be found. These materials are then extracted and stored
under a specific path in the project’s "Assets" folder. When instantiating
materials, the Standard Shader is applied by default. This shader is
physically-based and contains properties mentioned in 4.2.2. Even
though the AssetImporter is capable of reading the amount of materials
connected to the mesh, it can’t read any additional information. The
MaterialData object was created with the second code snippet listed
in this chapter. This can now be used to instantiate texture objects and
other properties (line 15 to 19), that can now be applied to the Unity
material (line 23 to 32). This material can then be applied to the object.
The last step of the program creates an AssetBundle from the object and
sends it to the Backend system.

4.5 Unity Client and run-time import

Now that the upload process and the FBX-to-AssetBundle conversion is
complete, the Unity client can be created. After successfully storing the
AssetBundle into the Database, the Unity client is notified and starts a
Coroutine to receive AssetBundles.

1 IEnumerator GetUnityWebRequest(int objectId)
2 {
3 UnityWebRequest www = UnityWebRequest.Get("IP" + objectId);
4 yield return www.SendWebRequest();
5

6 if (www.isNetworkError || www.isHttpError){...}
7 else
8 {
9 response = www.downloadHandler.text;

10

33

11 // Decoding bytes and write to Assetbundle
12 byte[] decodedBytes;
13 AssetBundle bundle = null;
14 try
15 {
16 decodedBytes = Convert.FromBase64String(response);
17 Stream stream = new MemoryStream(response);
18 bundle = AssetBundle.LoadFromStream(stream);
19 }
20 catch (FormatException e) {...}
21

22 if (bundle != null)
23 {
24 GameObject[] assets =

bundle.LoadAllAssets<GameObject>();
25 foreach (var asset in assets)
26 {
27 // Instantiate object
28 GameObject obj = Instantiate(asset);
29 }
30 }
31 }
32 }

The client receives the data as a Base64 encoded string. It has to
be decoded (line number 16) before an AssetBundle can be instantiated
from a MemoryStream (line number 17).

Two pictures can be seen in figure 17. A grey sphere without any
textures is displayed on the left. This appearance occurs when loading a
FBX file directly into Unity without conversion. The right picture shows
how the sphere is visualized after the conversion. Both the Albedo and
Normal Map property were applied to the material by executing the
workflow presented in this thesis.

34

Figure 17: Sphere imported into Unity before (left) and after (right) the
conversion.

35

5 Conclusion & Future Work

Modern shading techniques are very sophisticated and are able to in-
clude detailed, real-life physical phenomena. In the process of creating
three-dimensional models, artists are usually bound to a specific model-
ing software, that allows them to create their models any way they like.
Models are therefore created with platform-dependent materials and
shaders. Importing them into running Unity applications, without pre-
processing steps, can be a difficult task. This thesis presented a method
to automate the process of setting textures and other properties in Unity
materials. The thesis proposes a method for importing FBX files into
Unity applications during run-time while retaining material properties.
This specific workflow for importing models is only relevant for Unity
applications, which want to include FBX models during run-time. The
part of reading FBX information with the Autodesk API could potentially
be used for other use-cases as well.
With the help of the contributions of this thesis, that are mentioned in
the introduction, and depending on the user needs, the scope of this
workflow can be extended for future work. A user interface can be
created to give the user the opportunity, to select specific parameters
for the conversion. Parameters could include the type of shader used by
Unity’s material. Furthermore, it would be useful to specify, which pa-
rameters from the FBX file should be taken over by which parameters on
the Unity material. FBX files not only contain material information but
also include properties like animations, that have to be applied manually.
Even though Autodesk and Unity have a ongoing technical collaboration,
import and export processes can still be improved. In order to produce
a fully functional interface, that imports models automatically, all FBX
components have to be taken into account.

36

List of Figures

1 Fiber, rust and wood material 7
2 Sphere vertices . 8
3 Reflecting surfaces (reprinted from [7]). 10
4 Graphics Pipeline (reprinted from [6]) 12
5 Rays of light hitting a blue and a red object (reprinted from

[11]). 13
6 Reflection of rays into a cone (or lobe) (reprinted from [6]). 14
7 Fresnel Reflectance (y-axis) for differenct materials in re-

gard to the angle of incidence (reprinted from [6]). 15
8 The BRDF. φo and φi as azimuth angles with respect to

tangent vector t. θo and θi as elevation angles with respect
to the normal n (reprinted from [1]). 16

9 BRDF reflections distribution examples. Left: diffuse, right:
specular (adapted from [1]) 17

10 Half vectors defined by the incoming light and view direc-
tion. Highlighted red microfacets are visible (reprinted
from [10]). 18

11 Non visible microfacets due to shadowing (left) and masking
(center). Realistic representation of bounced light (right)
(reprinted from [10]). 19

12 Office space environment without textures, modeled in
Maya [4] . 22

13 Knob, UV layout with checker board 23
14 Knob, textured in Substance Painter 24
15 Exported textures from the metallic plate shown in figure 14. 25
16 Textured office space environment 26
17 Sphere imported into Unity before (left) and after (right)

the conversion. 35

37

Literaturverzeichnis

[1] Tomas Akenine-Moeller et al. Real-Time Rendering. CRC Press,
2018.

[2] Allegorithmic. Substance Painter (version 2018.1.0). 2006. url:
https://www.allegorithmic.com/products/substance-painter.

[3] Autodesk. FBX SDK Programmer’s Guide. Online; accessed 28
April 2018. 2014. url: http://docs.autodesk.com/FBX/2014/
ENU/FBX-SDK-Documentation/.

[4] Autodesk. Maya (version 2017). 2006. url: https://www.autodesk.
com/products/maya/.

[5] Mike Bailey and Steve Cunningham. Graphics Shaders - Theory
and Practice. 2nd ed. CRC Press, 2012.

[6] Claudia Doppioslash. Physically Based Shader Development for
Unity 2017. Liverpool: Aspress, 2018.

[7] Dave Shreiner Edward Angel. Interactive Computer Graphics.
Boston: Addison-Wesley, 2012.

[8] Adam Lake. Game Programming Gems 8. Course Technology PTR,
2010.

[9] Microsoft. C++ REST SDK (Codename "Casablanca"). Online;
accessed 15 Mai 2018. url: https://msdn.microsoft.com/en-
us/library/jj969455.aspx.

[10] Naty Hoffman. Physics and Math of Shading. Online; accessed
13 September 2018. 2015. url: https://blog.selfshadow.com/
publications/s2015-shading-course/hoffman/s2015_pbs_

physics_math_slides.pdf.

[11] OpenStax. College Physics. https://legacy.cnx.org/content/
col11406/1.9. Online; accessed 20 April 2018. 2015.

[12] Adam Watkins. Creating Games with Unity and Maya: How to
Develop Fun and Marketable 3D Games. Focal Press, 2011.

38

https://www.allegorithmic.com/products/substance-painter
http://docs.autodesk.com/FBX/2014/ENU/FBX-SDK-Documentation/
http://docs.autodesk.com/FBX/2014/ENU/FBX-SDK-Documentation/
https://www.autodesk.com/products/maya/
https://www.autodesk.com/products/maya/
https://msdn.microsoft.com/en-us/library/jj969455.aspx
https://msdn.microsoft.com/en-us/library/jj969455.aspx
https://blog.selfshadow.com/publications/s2015-shading-course/hoffman/s2015_pbs_physics_math_slides.pdf
https://blog.selfshadow.com/publications/s2015-shading-course/hoffman/s2015_pbs_physics_math_slides.pdf
https://blog.selfshadow.com/publications/s2015-shading-course/hoffman/s2015_pbs_physics_math_slides.pdf
https://legacy.cnx.org/content/col11406/1.9
https://legacy.cnx.org/content/col11406/1.9

6 Appendix

Server and Client class created with Microsoft’s C++ Rest SDK Casablanca.

Server:

1 int main(int argc, char* argv[])
2 {
3 InterruptHandler::hookSIGINT();
4

5 Server server;
6 server.setEndpoint(L"http", 41004, L"/api/v1");
7

8 try {
9 // wait for server initialization...

10 server.accept().wait();
11 std::wcout << L"Modern C++ Server now listening for requests

at: " << server.endpoint() << ’\n’;
12

13 InterruptHandler::waitForUserInterrupt();
14

15 server.shutdown().wait();
16 }
17 catch (std::exception & e) {
18 std::cerr << e.what() << ’\n’;
19 }
20

21 system("pause");
22 }

Client:

1 class Client
2 {
3 public:
4 Client();
5 ~Client();
6 pplx::task<json::value> getRequest();
7 pplx::task<void> postRequest(std::vector<BYTE> file,

39

std::wstring description, std::wstring name, std::wstring
thumbnail, bool stationary);

8 };

40

	Introduction
	What is a shader?
	The physical world
	Shader Types and Coordinate Systems
	Lighting
	The Graphics Pipeline

	Physically-Based Shading
	Light-material interactions
	Fresnel Reflectance
	BRDF
	Microgeometry
	Microfacet Theory

	Workflow Definition
	Introduction
	Asset Creation
	UV Mapping
	Materials and Textures

	Upload
	FBX to AssetBundle
	REST Web Service
	Parsing FBX files with Autodesk API
	Converting FBX file to Assetbundle

	Unity Client and run-time import

	Conclusion & Future Work
	Appendix

