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Abstract—Bipartite graphs are typically visualized using linked
lists or matrices. However, these classic visualization techniques
do not scale well with the number of nodes. Biclustering has
been used to aggregate edges, but not to create linked lists
with thousands of nodes. In this paper, we present a new
casual exploration interface for large, weighted bipartite graphs,
which allows for multi-scale exploration through hierarchical
aggregation of nodes and edges using biclustering in linked
lists. We demonstrate the usefulness of the technique using two
data sets: a database of media advertising expenses of public
authorities and author-keyword co-occurrences from the IEEE
Visualization Publication collection. Through an insight-based
study with lay users, we show that the biclustering interface leads
to longer exploration times, more insights, and more unexpected
findings than a baseline interface using only filtering. However,
users also perceive the biclustering interface as more complex.

Index Terms—information visualization, bipartite graphs, bi-
clustering, insight-based evaluation

I. INTRODUCTION

A bipartite graph is a special class of graphs, where the

vertex (or node) set V of the graph G = (V,E) can be

partitioned into two disjoint nonempty sets V1 and V2, both of

which are independent [1]. In a weighted bipartite graph, every

edge connecting a node of V1 with a node of V2 has a weight of

ω ≥ 0. Data sets representing bipartite graphs can be found in

many disciplines, ranging from biology, where nodes represent

genes and conditions [2]–[4], over document analysis, where

nodes can represent different categories of named entities [5],

[6], to social network analysis, where nodes can be institutions

and projects [7].

Typically, visualizations of bipartite graphs can only show

a few hundred nodes and edges. However, many data sets,

such as the IEEE Visualization Publication collection [8],

rather have thousands or ten thousands of elements. Often,

these data sets are of interest to a general lay audience, such

as the Media Transparency Database, containing all media
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advertising expenses of public authorities in Austria [9]. The

goal of this work is therefore to find an easily understandable

interactive visualization, which allows lay users to casually

explore large bipartite graphs.

Common strategies to visualize large graphs – and large

data sets in general – are filtering (i.e., removing items)

and aggregation (i.e., grouping items) [10], [11]. In this

paper, we propose a new interactive visualization technique

(BiCFlows) combining aggregation and filtering particularly

for large bipartite graphs. We use hierarchical aggregation,

where elements are iteratively aggregated into groups, and

the user can gradually drill down from an overview to the

finest detail level [11]. Since we work with bipartite graphs

without inherent hierarchical groupings, we use biclustering

to partition the graph into topologically meaningful groups.

Depending on the exploration level and group size, we filter

the groups to show only the most relevant items. We explore

the usefulness of BiCFlows by showcasing two application

cases and let lay users explore a publicly available data set in

an insight-based evaluation.

In summary, our paper has two main contributions:

1) a new visualization and interaction design for casual

exploration of large, weighted bipartite graphs and

2) the results of an insight-based user study, where lay users

explored a large bipartite graph containing advertising

expenses of public organizations.

II. RELATED WORK

The most common visual encodings of graphs are node-

link diagrams and matrix-based representations [10], [12]. For

bipartite or k-partite graphs, nodes of the k different sets

can be differentiated by color in node-link diagrams (see, for

instance, the graph view in Jigsaw [5]), or nodes of one set

can be attracted to nodes of the other set, anchored at fixed

locations [13], [14]. Bipartite graphs shown as biadjacency

matrices have rows and column keys corresponding to the

nodes of the two independent sets, while cells represent their

connections (e.g., the scatterplot view in Jigsaw [5] or the

network matrix by Dormann et al. [15]). Another common way



to visualize k-partite graphs are adjacent lists, where the nodes

of the independent sets represent the list entries and edges

between these lists show their connections [5], [7], [15]–[17].

While this visual encoding is easily understandable and allows

for efficient scanning of the node labels, it does not scale well

with the number of nodes. To deal with a larger number of

nodes than fit to the screen, these examples use scrolling [5],

filtering according to node attributes [17], or focus+context

representations [16]. However, if there are thousands of nodes

in one set, these approaches lead to extensive interaction effort,

information loss, or visual clutter.

To overcome these limitations, hierarchical aggregation

techniques for large graphs have been proposed. For instance,

GrouseFlocks iteratively constructs a graph hierarchy through

attributes of the underlying graph data [18]. The user can

then interactively create cuts through the graph hierarchy and

visualize the cut graph in a node-link diagram with aggregated

meta-nodes. Alternatively, aggregated meta-nodes can be visu-

alized as matrices embedded within a node-link diagram [19],

[20] or as zoomable adjacency matrices [21]. These examples

aggregate nodes either based on node attributes or based on

topological properties, such as graph cliques.

For our system, we assume that we do not have any addi-

tional node attributes that can be used for constructing a graph

hierarchy. We therefore use biclustering [22] (or co-clustering

[23]), which finds groups of coherent items in bipartite graphs.

Biclustering is mostly used in bioinformatics for studying

gene expression data [2]–[4] and in document classification

[23], [24]. Essentially, biclustering simultaneously rearranges

rows and columns of the biadjacency matrix to form clusters

of certain similarity. Visualization of biclustered graphs often

use color-coded matrices [25]–[27], node-link diagrams with

cluster enclosings [28], or matrices embedded into node-link

diagrams [29]–[31]. Biclustering has also been used to bundle

edges of bipartite graphs shown in adjacent lists [6], [32]. Edge

bundling of adjacent lists can improve the perception of the

visualization and the quality of the analysis [33]. Since only

edges are bundled, these lists still do not scale well with the

number of nodes.

For better scalability in terms of nodes, Zhao et al. [34]

recently introduced BiDots, which also uses adjacent lists, but

groups nodes row-wise based on their associated biclusters.

Nodes are represented as circles with unique line patterns,

which can also co-occur in multiple clusters. Using this

compact representation, they successfully visualized named

entities extracted from a text corpus with a few hundred

entities per set and around 1,000 connections between these

sets. However, it is unclear how well the visualization scales

to a data set with thousands of nodes per set and ten thousands

of connections as in our use cases.

VIBR [35] is able to visualize bipartite graphs with such

a size using an adjacency list of node clusters, which can be

explored hierarchically. In contrast to BiCFlows, this visual-

ization requires a legend for mapping colors to node labels.

We chose to adopt the more common list-based representation,

which supports direct labeling of the cluster blocks and

therefore reveals more information on the first glance.

Another recent approach to visualize very large unweighted

bipartite graphs by Pezzotti et al. [36] also uses hierarchical

aggregation. They introduce a novel adaptation of the hier-

archical stochastic neighbor embedding (HSNE) algorithm,

and place landmark vertices of HSNE clusters in two parallel

axes connected by edges. These landmarks can be brushed to

reveal lower hierarchy levels. With their C++ implementation,

Pezzotti et al. visualize bipartite graphs with millions of nodes.

Since our focus lies on casual exploration, we do not extract

landmarks to represent clusters, but use a filtering approach

within each cluster to show the most relevant elements in terms

of weights per cluster. This way, we can also show node labels

so that the user can see some relevant information on a single

glance, without having to interact.

III. VISUALIZATION AND INTERACTION DESIGN

The main requirements for the visualization and interaction

design of BiCFlows were:

1) the visualization should scale up to thousands of nodes

and edges,

2) it should support in-depth exploration of the data, such

as identifying clusters of similar elements of varying size

and retrieving connections of a selected element,

3) it should provide some initial information on the first

glance, and

4) the visualization and interaction design should be easily

understandable for a lay audience.

To achieve Requirements 1 and 2, we use a combination of

hierarchical aggregation and filtering. Aggregation is achieved

using hierarchical biclustering, while filtering is performed

based on ranking of accumulated edge weights (Section III-A).

To fulfill Requirements 3 and 4, we opted for a visualization

using adjacent lists (Section III-B). Lists are ubiquitous and

therefore presumably easy to understand for visualization

novices. In addition, they can feature sufficiently large text

labels so that users can gain some initial understanding on

the first glance. In contrast, the similarly popular matrix view

of bipartite graphs requires very short or 90◦ rotated column

labels. We describe the interaction design to interactively drill

down into the biclustering hierarchy and obtain details-on-

demand in Section III-C.

A. Hierarchical Biclustering

A bipartite graph can be viewed as a weighted biadjacency

matrix, where rows represent nodes of set V1, and columns

represent nodes of the other set V2. Each matrix cell contains

the corresponding edge weight between two nodes from V1

and V2. Biclustering rearranges the rows and columns of the

matrix to create coherent blocks (see Figure 1). Biclustering is

an NP-hard problem [37], but many algorithms that optimize

search heuristics have been developed. In our system, we

use an algorithm, which tries to maximize the modularity of

the bipartite graph for a predefined number of clusters [38].

Modularity describes how densely nodes are connected in a

partition compared to the rest of the graph. In contrast to



other biclustering algorithms, this approach can also handle

weighted biadjacency matrices.

Biclustering algorithms assume a specific structure of the

underlying data matrix. Commonly used structures are the

block diagonal structure, where each row and column is

assigned to exactly one cluster, and the checkerboard structure,

where each row and column is assigned to multiple clusters,

so that each cell is assigned to exactly one cluster. For our

system, we use a block diagonal structure so that each node

is associated with only a single cluster (see diagonal blocks

in Figure 1).

As we are dealing with large bipartite graphs, we filter

the number of visualized nodes and their associated edges

within a cluster based on their cumulated edge weights. If

a user wants to reveal filtered nodes and edges, she can select

the desired cluster to further drill down into the data. The

system then biclusters the sub-matrix of the selected cluster

and subsequently visualizes those items, as well as nodes

from other clusters connected to at least one node from the

selected cluster (Figure 1). The higher the modularity of the

clusters, the fewer nodes have edges across cluster boundaries.

If a cluster has no edge to another cluster, it represents a

disconnected subgraph of the original graph.

Fig. 1. A biadjacency matrix with three clusters shown in dark brown (left)
and one cluster selected (red). The selected sub-matrix is further biclustered
(right). The four lime-green sub-matrices (left) contain edges between nodes
of the selected cluster and nodes of other clusters.

By subsequently selecting sub-clusters, the users can inter-

actively drill down from the initial overview to a subset of the

data, which cannot be further subdivided into smaller clusters.

This is the case if the biadjacency matrix to be clustered has

only a single row or column, or if the bipartite graph is too

dense to be clustered further.

B. Visual Encoding

To visualize bipartite graphs, we use two parallel, vertical

lists of nodes, where – similarly as for Sankey diagrams [39]

and parallel sets [40] – the thickness of an edge connecting

two nodes is defined by its edge weight, and the rank of

each node is defined by its accumulated edge weights
∑

ωi

(Figure 2). Nodes are grouped according to biclusters and

ordered according to their accumulated edge weights within

each cluster and list, respectively. Since we initially display a

large number of nodes per cluster, we filter nodes with small

edge weights. Given the sum of all edge weights in the entire

graph
∑

ω, the smallest displayable unit for a node h, and

Fig. 2. BiCFlows showing individual nodes (gray), aggregated filtered nodes
(dark gray), clusters of nodes (purple and green), as well as their connections.

the total height H of the visualization, we only display nodes,

which fulfill the following criterion:

∑
ωi ≥

h
∑

ω

H
. (1)

In other words, we filter all nodes that would be encoded

smaller than the smallest acceptable height in the list h. For

our use cases, we set h to two pixels and adapted the height

of the visualization H dynamically to the display size.

Since text labels are important to get a quick initial overview

of the data, we try to maintain as many node labels as

possible. For each group of clustered nodes, we therefore

vertically stack as many node labels as possible next to the

cluster group (indicated by purple and green bars in Figure 2).

Since we use labels with a fixed font size but variable node

heights, the number of labels may differ from the number

of visualized nodes, and labels may be shifted from their

associated nodes. To obtain more details about a labeled node,

users can hover the label or the node itself to reveal all its

connections (Figure 3).

C. Interactive Exploration

Our system supports two basic exploration mechanisms:

highlighting and drill-down. Users can request details-on-

demand by either hovering nodes and node labels, respectively,

or cluster bars. In the first case, all connections of one

individual node are highlighted (see Figure 3). In the second

case, only connections of nodes in the hovered cluster are

visualized. In the example of Figure 4, we can see that the



Fig. 3. When hovering a node label (left), all edges of the node are visualized,
and visible labels of the connected nodes (right) are highlighted in red.

hovered cluster has strong connections to multiple clusters, and

therefore a rather low modularity and many edge crossings,

respectively.

Drill-down is necessary to reveal filtered nodes from se-

lected clusters through iterative biclustering as described in

Section III-A. When selecting a cluster, all nodes that do

not have connections to the nodes in the selected cluster are

discarded (light brown sub-matrices in Figure 1). Nodes of

other clusters connected to nodes in the selected cluster (lime-

green sub-matrices in Figure 1) are aggregated into one group

(lime-green group on the bottom in Figure 5). To help users

maintain orientation and keep an overview, we provide context

bars on the side (Figure 5), where each bar shows the selected

cluster among the grayed out unselected clusters. These bars

are also used to navigate back to a higher hierarchy level.

In Figure 5, the user selected the small bottom cluster in the

initial overview (indicated by the small purple and green bars

on the outermost context bars).

If the graph to be visualized is dense, it may not be possible

to further sub-cluster the data without filtering nodes, as the

biadjacency sub-matrix is already complete. This means that

some nodes with small accumulated edge weights will never

be visualized. For this case, we additionally provide a ranked

text list of node labels, which can also be searched, to browse

all nodes, including filtered ones. Selecting an invisible node

highlights its connections in the visualization as shown in

Figure 3.

Fig. 4. Hovering a cluster reveals only those nodes in the adjacent list, which
have connections to the hovered cluster.

Fig. 5. Selected cluster divided into nine subclusters, with connections to other
clusters (lime-green) and the context bars on the side providing an overview
of the entire data set.

D. Implementation

BiCFlows is implemented using a client-server infrastruc-

ture to separate the computationally expensive biclustering

from the user interface on the client side. The server is

implemented with Python and Numpy for efficient processing

of large data structures. We use the Python implementation

of CoClust [38] to cluster the biadjacency matrices. As our

system is intended for visual exploration by lay users, we host

individual data sets as separate web services. For each data set,



we use CoClust to determine the optimal number of clusters

in a precomputation step. In this step, CoClust computes

multiple clusters and finds the resulting biadjacency matrix

with the maximum modularity. For small browser windows,

we decrease the number of clusters to avoid visual clutter. The

actual biclustering is performed online, and sub-clustering is

invoked whenever a user selects a cluster. Depending on the

number of nodes in the graph, biclustering can take up to

several seconds. On a consumer hardware (Intel i7 CPU with

4 GHz and 8 GB RAM), biclustering of a biadjacency matrix

of 4,976 rows and 2,120 columns (data set described in Section

IV-B) takes around two seconds. The initial biclustering of the

entire data set is only performed once when loading the page.

Whenever the user selects a cluster, the biclustering results of

the higher hierarchy levels are locally stored, so that the user

can quickly navigate back to previous views.

The client was implemented using D3.js [41] based on an

existing bipartite layout [42]. The visualization is embedded

within multiple coordinated views, which also contain a text

list of nodes to select highlighted nodes and bar charts showing

additional data attributes. The bar charts can be used to filter

the data, e.g., according to time. Crossfilter [43] was employed

to quickly filter the data set on the client side.

IV. USE CASES

We will showcase the usefulness and discuss potential

limitations of BiCFlows using two data sets:

1) the so-called Media Transparency Database [9], where

all public authorities of Austria have to report their

advertisement expenses to media companies above 5,000

Euros beginning from 2012 (Section IV-A), and

2) the IEEE Visualization Publication collection [8], where

meta-data of all major IEEE visualization papers since

1990 are collected. Using BiCFlows, we visualize the

author-keyword relations (Section IV-B).

Both data sets have thousands of nodes and fulfill the proper-

ties of a weighted, bipartite graph. The visualizations can be

accessed online [44].

A. Media Transparency Database

The Austria Media Transparency Database [9] is of great

interest to journalists to reveal relations between public and

media organizations, by media organizations themselves to

investigate their competitors, and to the general public to find

out how their tax money is spent. The database is updated

quarterly, and journalists regularly parse the database for new

interesting money flows. In particular, they are interested

to find out if certain ministries advertise in similar media

and which ministries spend a high amount of money for

advertisement. However, finding this information is tedious,

since names of ministries change over legislation periods,

and some big media organizations comprise dozens of sub-

companies, which all show up as separate entities in the

database.

By 2017, the Media Transparency Database contained 1,200

legal entities, reporting advertising expenses to over 4,200 me-

dia organizations. In total, the database has more than 34,000

entries. The reported expenses are not evenly distributed, with

very few very high values (e.g., almost 20 million Euros ag-

gregated advertisement expenses issued from the government

of the city of Vienna to the daily newspaper Kronen Zeitung),

and most of the expenses around 5,000 Euros. The highest

modularity (0.5) was found for nine clusters (see Figure 2).

Due to the large public interest, there are already a few

online visualizations of the Media Transparency Database

available, such as a dashboard visualization by Rind et al. [45]

and a web service by Salhofer et al. [46]. However, these

existing visualizations rely solely on filtering of the data and

therefore only visualize a very small fraction of the existing

entities. With these visualizations, users can get information

about the most relevant legal entities and media organizations.

However, smaller transactions, for instance because advertising

expenses are spread across multiple smaller media organiza-

tions, are not visualized.

Like these previous approaches, BiCFlows reveals important

legal entities and media organizations on the first glance. The

two top-most labels in Figure 2 show the legal entity (Stadt

Wien) and media organization (Kronen Zeitung) spending and

receiving the highest accumulated sums, respectively. These

two nodes are grouped into the same cluster with other popular

Austrian newspapers, such as Heute or Kurier, and other

legal entities spending high amounts for advertising in these

daily newspapers. The second-ranked legal entity (Rundfunk

und Telekom Regulierungs-GmbH) is contained in a different

cluster, which is ranked third in Figure 2. Selecting the cluster

reveals that this legal entity mainly sponsors small radio

and TV stations, where most of them do not receive any

advertisement money from other legal entities. If only the

10 top-ranked media organizations were shown, not a single

media organization receiving money from this legal entity

would be visualized.

When drilling into the data, a frequently occurring grouping

reveals geographic proximity. Often, the groupings contain

smaller legal entities and media organizations located in the

same regions by just moving one hierarchy level down. This

is not surprising, since smaller entities tend to advertise in

smaller and more local media. Other clusters are related topic-

wise. For instance, drilling down three hierarchy levels reveals

a cluster of many media organizations related to air travel, such

as Airline Business or Air Transport World associated with

a single legal entity – the Vienna International Airport. We

used the Media Transparency Database for our user study, and

also report some of the resulting insights of the participants

in Section V.

B. IEEE Visualization Publications

Co-authorship networks are a common use case for graph

visualization, such as by Henry et al. [19]. Using the IEEE

visualization publication collection by Isenberg et al. [8],

we pursue a different approach to investigate commonalities



Fig. 6. Seven biclusters of authors and IEEE key terms of IEEE visualization
publications (data from Isenberg et al. [8]).

between authors. We retrieved 4,976 authors from the data

set, as well as 2,120 IEEE key terms these authors used to

classify their papers. Biclustering is employed to reveal groups

of authors that tend to use similar key terms – or, conversely,

groups of key terms that tend to be used by the same authors.

We group the data set into seven clusters, but the modularity

of this data set is rather low (0.31 for seven clusters). In other

words, the topical groups defined by the key terms are not

coherent across authors.

Figure 6 shows the visualization of the seven clusters,

revealing topics around rendering, modeling, visualization and

layout, visual analytics, displays and navigation, mathematics

and bioinformatics, and data models, as well as their associated

main authors. Selecting these clusters can yield interesting sub-

topics. For instance, selecting the bottom cluster in Figure 6

reveals the top sub-cluster with application-specific key terms

(Figure 7 top). Sub-clustering this cluster again reveals a

cluster of key terms from the automotive industry with its

associated main authors (Figure 7 bottom).

This example also explains why the clusters have a rather

low modularity: While K. Matkovic is the most common co-

author of H. Hauser according to DBLP [47], his publication

keywords are much broader than suggested by this clustering.

Highlighting all key terms used by H. Hauser by hovering

his name, we discover that, in fact, his most commonly used

key term in the IEEE Visualization Publication data set is

data visualization (used 19 times), followed by computational

modeling (used 12 times). The most commonly used key

term in the bottom cluster of Figure 7 (“engines”) was used

only four times by H. Hauser. This means that BiCFlows

Fig. 7. Two steps of sub-clustering on the bottom cluster in Figure 6.

is able to reveal meaningful clusters of key terms in this

example. However, the clusters themselves are not necessarily

representative for individual nodes.

An alternative biclustering approach, such as biclustering

based on a checkerboard structure (see Section III-A), could

solve this limitation by assigning graph nodes to multiple

biclusters. In this case, the number of nodes to display would

linearly increase with the number of clusters.

V. USER STUDY

We conducted an insight-based evaluation [48] to formally

compare the benefits and limitations of BiCFlows for visualiz-

ing large bipartite graphs with a simple filtering approach. We

used the Media Transparency Database introduced in Section

IV-A for our evaluation. We recruited 12 users (four females,

eight males, aged 25 to 56) with different backgrounds,

including one computer scientist, and all experienced computer

and internet users. One user had prior knowledge of the Media

Transparency Database, two had heard of it before, and nine

did not know it at all. However, all users were roughly familiar

with the political and media landscape in Austria.

As a baseline condition, we used a simplified version of

BiCFlows, which reduces the number of displayed items

solely by filtering, but does not perform any aggregation (see

Figure 8). Here, we refer to this baseline as Cut-Off. All

nodes that are too small to be labeled are aggregated into

a single “others” node (the bottom nodes in Figure 8). The

Cut-Off visualization allows for highlighting of selected nodes

like BiCFlows. Legal entities and media organizations that are

filtered can be selected from the linked text list to visualize

all associated advertisement expenses.

A. Hypotheses

Our main goal has been to investigate the benefits and

limitations of the combined aggregation and filtering approach

of BiCFlows compared to a simple filtering approach, which

is the common method to visualize the Media Transparency



Fig. 8. The baseline condition of the study (Cut-Off) using only filtering, but
no aggregation.

Database [45], [46]. Our assumption has been that iteratively

drilling down into the aggregated data would encourage lay

users to casually explore the visualized data in more detail

and, as a consequence, gain more knowledge. On the other

hand, we also assumed that BiCFlows would be perceived as

more complex and harder to use than the Cut-Off baseline

visualization. We therefore formulated two main hypotheses:

H1: With BiCFlows, users will gain more insights than with

Cut-Off.

In particular, we expected that users would discover more

legal entities and media organizations, as well as transactions

between them (H1.1), that they would mention more entities

with small accumulated advertisement sums (H1.2), establish

more connections between entities or reason about common-

alities (H1.3), discover more unknown entities or unexpected

information (H1.4), and spend more time exploring the data

(H1.5).

H2: BiCFlows will be perceived as more complex than Cut-

Off.

B. Design

We employed a within-subjects design with visualization as

independent variable, with the two levels BiCFlows (BiC) and

Cut-Off (CO). The presentation order of the two visualizations

was counter-balanced.

We used two subsets of the Media Transparency Database

for the evaluation. The first data set, comprising only advertis-

ing objectives, contained 1,226 legal entities and 3,544 media

organizations. We used nine clusters with a modularity of 0.39.

The second data set, containing only press subsidies, had 68

legal entities and 885 media organizations. We also used nine

clusters, yielding a modularity of 0.62. This means that the

second data set was smaller with more coherent groups. The

TABLE I
CODING CATEGORIES OF THINK-ALOUD PROTOCOLS.

Code Description

Entities A mentioned legal entity or media organization.

Sums Mentioned transaction sums between one legal entity and
one media organization, or a total sum spent by a legal
entity or received by a media organization.

Duplicates Discovered entities with same or similar name,
e.g., google.at and google.de,
where users explicitly mentioned that these are the same.

Time Quarters, years, or periods mentioned.

Geography Geographical connections made for certain entities,
e.g., “DORF TV is probably from Upper Austria too,
because it’s in the same group as other media organizations
from Upper Austria.”

Comparisons Comparisons between entities or time periods,

e.g., “ÖBB spent 19 million Euros, but compared to Stadt Wien

that’s nothing.”

Reasoning Generating hypotheses to explain an observation,

e.g., “Heute, Krone, and Österreich receive most money,
that’s probably because they have most readers.”

Unknown Entities Entities that were unknown to the user,
e.g., “a3ECO? - Never heard of it before.”

Unexpected Findings Unexpected findings or astonishments,
e.g., “I can’t believe Stadt Wien spends that much money.”

assignment of the two data sets to the two visualizations was

also counter-balanced.

The study was conducted using the Mozilla Firefox web

browser on a 27” monitor. Users had to fill out a consent

form, a demographic questionnaire, and then read a printed

task description. Every condition was preceded by a training

period using a test data set. At the end of the evaluation, users

had to fill out a post-experiment questionnaire.

C. Analysis

Insight has been defined as “individual observation about

the data by the participant” [49]. To reveal whether users

made observations, insight-based evaluations use an open-

ended think-aloud protocol, which afterwards is coded and

quantified for formal evaluation [48]. Users are encouraged to

explore the data as long as they think they can find something

new.

We recorded all user sessions using screen capturing and au-

dio recording, and encouraged the participants to comment on

everything they see or experience during the data exploration.

After the experiment, we transcribed the audio recordings and

performed open coding, yielding nine insight categories listed

in Table I. For each user, we aggregated the number of codes

per condition and used these numbers for comparing insights

to verify hypotheses H1.1-H1.4.

In addition, we also recorded the exploration time (H1.5)

and the users’ subjective usability ratings through the System

Usability Scale (SUS) questionnaire [50] (H2). All obtained

measures were statistically analyzed using Wilcoxon Signed-

Rank tests.

D. Results

To test hypothesis H1.1, we compared the number of unique

entities mentioned by the users. Using BiC, users mentioned

significantly more different entities compared to CO (Z =
10.5, p = .045, Figure 9(a)). They also mentioned significantly

more transaction sums (Z = 1.5, p = .005, Figure 9(b)). We



(a) Unique entities (b) Sums (c) Sums per quartile (d) Duplicates

(e) Time (f) Geography (g) Comparisons (h) Reasonings

(i) Unkown entities (j) Unexpected Findings (k) Exploration time (l) Entities per minute

Fig. 9. Box plots of the number of coded insights per category (Table I), as well as exploration times in minutes (k) and mentioned unique entities per minute
(l). The left orange box plot shows the results of BicFlows, the right blue one of the Cut-Off visualization.

can thereby confirm our hypothesis H1.1: Users mention more

entities and transaction sums using BiCFlows.

For hypothesis H1.2, we calculated the quartiles of all

cumulated entity sums and compared the number of mentioned

entities separately for the lower three quartiles. However, the

number of mentions is almost equivalent for Q1-Q3 (see

Figure 9(c)). This disproves our hypothesis H1.2: Users do

not mention more entities with smaller transaction sums using

BiCFlows.

To verify H1.3, we looked at utterances coded as duplicates,

time, geography, comparisons, and reasonings. Detection of

duplicates was generally low, and the difference between

the two conditions is not significant (Z = 2, p = .257,

Figure 9(d)). Mentions of temporal relations were a little bit

more common, but also comparable between the conditions

(Z = 14, p = .310, Figure 9(e)). While no user made any

remark on geographic connections using CO, there were a few

mentions of geographic relations using BiC (see Figure 9(f)).

Finally, users did not make significantly more comparisons

in either interface (Z = 16, p = .774, Figure 9(g)) and

did not significantly reason more about the data using BiC

(Z = 20, p = .234, Figure 9(h)). We can therefore partially

confirm H1.3: users discovered some geographic connections

between entities using BiC and none with CO, but they did

not find significantly more duplicates, temporal relations, or

other commonalities or differences between entities.

For hypothesis H1.4, we compared the number of unknown

entities and unexpected findings. There is no significant dif-

ference between the number of unknown entities discovered

in the data set (Z = 18.5, p = .633, Figure 9(i)). However,

users discovered more unexpected information, which was

indicated by astonished or disbelieving reactions, using BiC

than using CO (Z = 8, p = .045, Figure 9(j)). Thus, we can

partially confirm our hypothesis H1.4: Users discovered more

unexpected information using BiCFlows, but did not find more

unknown entities.

To test H1.5, we compared the time each user spent ex-

ploring the two different interfaces. Users spent more time ex-

ploring data using BiC (23 minutes on average) than CO (17.5

minutes), which is a significant difference (Z = 6.5, p = .032,

Figure 9(k)). The average number of unique entities mentioned

per minute, however, is very similar (Z = 35, p = .754, Figure

9(l)). This confirms hypothesis H1.5: Users did not discover

entities at a faster rate using BiC, but rather spent a longer

time exploring the data.

Finally, we compared the users’ ratings of the SUS ques-

tionnaire to test hypothesis H2. With an average SUS score

of 82, CO was rated significantly higher than BiC with

72 (Z = 4, p = .028). This confirms our hypothesis H2:

Users perceived BiCFlows as more complex than the Cut-Off

approach.

E. Discussion

In summary, our study showed that users explored the

visualization for a longer time using BiCFlows than the

Cut-Off visualization, which does not use any hierarchical

aggregation. The rate of insights per minute was comparable.

This means that users discovered more entities (i.e., nodes)

and more transaction sums (i.e., edges) when exploring the

Media Transparency Database using BiCFlows because they

were encouraged to perform longer explorations. In particular,

they made more unexpected findings.



This higher number of insights, however, comes with a

lower perceived usability. While both interfaces were rated

as excellent according to SUS [50], the issued average scores

are on the upper and lower bounds of the excellent rating,

respectively. Informal feedback indicates that users found the

clustering irritating at the beginning, but gained sufficient

understanding after exploring for a while.

Surprisingly, users did not find more entities with smaller

expenses using BiCFlows than the baseline. We initially as-

sumed a major strength of hierarchical aggregation would be

that the user can reveal those lower ranked nodes and edges

by drilling down. In contrast, in the Cut-Off visualization,

these nodes never show up. From the video recordings, one

observation was that participants usually only drilled down

one or two hierarchy levels. Entities with low accumulated

edge weights are potentially not yet revealed. Using BiCFlows,

most users did not interact with the text lists and the linked

bar charts at all. In contrast, the major exploration interface

of the Cut-Off approach was not the visualization itself, but

the text list of ranked legal entities and media organizations.

When using the Cut-Off approach, most users scrolled these

lists far down and mentioned entities from these lists while

scrolling.

The most common unexpected findings across both condi-

tions were the advertising expenditures of the daily newspapers

Kronen Zeitung, Heute, and Österreich, as well as irritation

about the fact that the more popular TV station ORF1 re-

ceives less money than the smaller ORF2. However, users of

BiCFlows mentioned more often that Stadt Wien advertises in a

large number of media. We assume it is due to the aggregation

into the large “others” group in the Cut-Off visualization that

users cannot easily grasp the true number of edges of a selected

node.

F. Limitations

One limitation of our study is the potentially confounding

factor introduced by the different text label strategies of

BicFlows and Cut-Off. While we try to maximize the number

of node labels per group in BiCFlows, we assign a single node

label to each node in the Cut-Off visualization (see Figure 8).

This resulted in up to three times as many node labels in

BiCFlows compared to the Cut-Off visualization. This can be

an alternative explanation for the higher number of mentioned

entities using BiCFlows.

Since we did not systematically vary the data characteristics,

our study also does not reveal how the size of the data set

and the modularity of the clusters influence the effectiveness

and understandability of the visualization. With more data,

the system response will be slower and users will have to

perform more interaction steps to reveal lower ranked nodes.

With lower modularity, the meaningfulness of the visualized

clusters will decrease and may lead to misinterpretations of

the data.

Generally, we did not thoroughly evaluate the quality of the

coded comparisons, reasonings, and temporal or geographical

insights. In the future, it will be interesting to encourage users

to characterize the commonalities of cluster elements to assess

whether they correctly interpret the grouping. An example

would be whether users believe that clusters were derived

based on geographical locations of entities and incorrectly

conclude that all legal entities and media organizations of a

certain region are present in a selected cluster.

VI. CONCLUSIONS

We presented a novel approach for visualizing large bi-

partite graphs by combining hierarchical aggregation through

biclustering and filtering in adjacent lists. With two use case

examples, we demonstrated how BiCFlows supports interac-

tive exploration of bipartite graphs with thousands of nodes

and edges. From our evaluation, we conclude that the major

strength of BiCFlows is the encouragement of users to perform

a deeper exploration of the data. As a consequence, they have

more insights and discover more unexpected information. The

limitation of BiCFlows is a higher cognitive demand – at least

initially – and a lower perceived usability for a lay audience.

We also observed that users generally only drill down one or

two hierarchy levels.

Based on these observations, we conclude that hierarchical

aggregation is beneficial if the goal is to encourage users

to perform a deep exploration of a large bipartite graph

to discover unexpected information. However, if the goal is

to provide a simple interface to primarily look for specific

entities, a visualization based solely on filtering combined with

a search tool seems to be the more promising option.

The usefulness of BiCFlows furthermore depends on two

factors: the size of the data set and the modularity of the

clustering. The bipartite graphs in our use cases had thousands

of nodes and edges. For bipartite graphs with millions of

nodes, the initial biclustering of the entire data set will take

longer than the tolerable waiting time of a few seconds for

a web application. For larger data sets, it will therefore be

necessary to use a faster clustering method (e.g., the adopted

HSNE algorithm by Pezzotti et al. [36]) or to precompute

the clusters. In addition, users will have to drill down more

hierarchy levels to reveal nodes with low cumulated edge

weights. If the modularity is low because there is no clear

topological grouping inherent to the data, the visualization

has a lot of edge crossings and a lot of connections to other

sub-clusters (lime-green bars in Figure 5). In the future, we

therefore plan to evaluate alternative clustering methods for

different graphs and use cases.
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M. M. Sedlmair, J. Chen, T. Möller, and J. Stasko, “vispubdata.org:
A Metadata Collection about IEEE Visualization (VIS) Publications,”
IEEE Transactions on Visualization and Computer Graphics, vol. 23,
no. 9, pp. 2199–2206, 2017.

[9] Bundeskanzleramt, “BGBl. I Nr. 125/2011,”
https://www.ris.bka.gv.at/eli/bgbl/I/2011/125/20111227, 2011, [Online;
accessed Sep-2018].

[10] T. von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J. J. van
Wijk, J.-D. Fekete, and D. W. Fellner, “Visual Analysis of Large Graphs:
State-of-the-Art and Future Research Challenges,” Computer Graphics

Forum, vol. 30, no. 6, pp. 1719–1749, Sep. 2011.
[11] N. Elmqvist and J.-D. Fekete, “Hierarchical Aggregation for Information

Visualization: Overview, Techniques, and Design Guidelines,” IEEE

Transactions on Visualization and Computer Graphics, vol. 16, no. 3,
pp. 439–454, May 2010.
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