
Configurable Text Exploration
Interface with NLP for Decision

Support

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Medieninformatik und Visual Computing

eingereicht von

Martin Mattäus Śmiech
Matrikelnummer 01426853

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Dr.techn. Manuela Waldner, MSc

Wien, 22. März 2018
Martin Mattäus Śmiech Manuela Waldner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Configurable Text Exploration
Interface with NLP for Decision

Support

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Media Informatics and Visual Computing

by

Martin Mattäus Śmiech
Registration Number 01426853

to the Faculty of Informatics

at the TU Wien

Advisor: Dr.techn. Manuela Waldner, MSc

Vienna, 22nd March, 2018
Martin Mattäus Śmiech Manuela Waldner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Martin Mattäus Śmiech
Hermanngasse 2a/201

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 22. März 2018
Martin Mattäus Śmiech

v

Danksagung

Ich danke meiner Betreuerin Dr. techn. Manuela Waldner MSc für regelmäßige Unterstüt-
zung und Feedback. Dieses Projekt wurde in Zusammenarbeit mit PS Quant bzw. dessen
Vertretern Michael Pühringer und Sebastian Schrey durchgeführt, welche fachspezifische
Expertise und nützliche Informationen beigetragen haben.

Die Umsetzung des UIs/Frameworks wurde gemeinsam mit Dea Čizmić und ihrer Bache-
lorarbeit bewerkstelligt. Die globale Visualisierung für Topic Modeling auf Basis von NMF
war angelehnt an die Implementierung von "BiSet edge bundeling"von Lukas Eibensteiner
und Manuel Franz Josef Kapferer, ebenso wie an den Anpassungen daran von Michael
Mazurek.

vii

Acknowledgements

I want to express my gratitude to my advisor Dr. techn. Manuela Waldner MSc for
continuous support, guidance and feedback. This work has been developed in cooperation
with PS Quant whose representatives Michael Pühringer and Sebastian Schrey provided
domain specific knowledge and useful materials during the development of this project.

The implementation of the UI/framework has been done in collaboration with Dea Čizmić
and her bachelor thesis. The global visualization for topic modeling based on NMF has
been derived from "BiSet edge bundeling" by Lukas Eibensteiner and Manuel Franz Josef
Kapferer as well as adaptations made to it by Michael Mazurek.

ix

Abstract

Having to read and understand lots of text documents and reports on a daily basis can
be quite challenging. The intended audience for these reports has limited resources and
wants to reduce time spent on reading such reports. Therefore a need for a tool emerges
that assists the process of gaining relevant information out of reports/documents more
quickly. These text documents are often unstructured and of varying length. They are
written in the English language and are available from different sources (such as RSS
feeds and text files). The aim of this project is to offer a tool that supports the process of
analysing and understanding given texts. This is made possible by using natural language
processing (NLP) and text visualization (TextVis). TextVis is already a well known and
frequently used solution. The herein described project uses an NLP pipeline which serves
as preprocessing for TextVis. To provide quick insight into the data, topic extraction
mechanisms like Latent Dirichlet Allocation (LDA) or Non-negative Matrix Factorization
(NMF) are available for the user to be chosen within the aforementioned pipeline. A major
challenge for TextVis is the configuration of the NLP pipeline, because there are many
different ways of doing so and a wide range of parameters to chose from. To overcome this
issue, this project provides a solution that enables users to easily configure and customize
their own NLP pipeline. It is designed to encourage these users to experiment with
different sequences of NLP operations and parameter configurations to find a solution
that suites them best. In order to keep it easy to use the software, it is implemented
entirely using web technologies to be accessible in a common web browser. The resulting
visualization will emphasize particular parts of the text based on a set of different factors,
if selected so. These factors can be topics, sentiments and part-of-speech-tagged words.
The focus of this work lies on a visual interface that enables and encourages users to
adjust/optimize the underlying NLP pipeline (by selecting steps and setting parameters)
and comparing their results. Evaluation with help of user feedback showed that certain
pipeline configurations work better for certain types of texts than others. Using the
solution created within this work, users can adapt the tool to their needs and also tweak
it according to requirements. There is no universal configuration that works for all
documents, however.

xi

Contents

Abstract xi

Contents xiii

1 Introduction 1

2 Related Work 3
2.1 Natural Language Processing . 3
2.2 TextVis . 5

3 Natural Language Pipeline Interface 7
3.1 Termlist Rating . 8
3.2 Segmentation . 9
3.3 Tokenization . 9
3.4 Part-of-Speech Selection . 10
3.5 Stopword removal . 10
3.6 Sentiment Analysis . 11
3.7 Topic Modeling . 11
3.8 Text Rendering . 13
3.9 Global Summary . 14

4 Implementation 17
4.1 Client . 17
4.2 Frameworks and Libraries . 23

5 Evaluation and Results 27
5.1 Test Configuration and Input . 27
5.2 User Feedback . 28
5.3 Performance . 30

6 Conclusion 33

List of Figures 35

xiii

List of Tables 37

Bibliography 39

Appendix 43
Document 1 . 43
Document 2 . 46
Document 3 . 49

CHAPTER 1
Introduction

This work focuses on processing and visually representing text reports written in English.
The stakeholders of this project are especially interested in the commodity market.
Companies in this domain have to make decisions whether to buy or not to buy a certain
kind of commodity based on such reports. The employees of these companies have to
read dozens of lengthy reports every day. Their resources to do so are limited, hence the
need for a tool that helps them to minimize the time spent reading such reports emerges.

Answering what a document is about and whether the situation is good or bad is crucial
to the decision making process. Ideally, a solution would do that by automatically issuing
recommendations to perform certain actions (like e.g. "buy nickel today") based on gained
knowledge of given documents. This ideal solution cannot be accomplished trivially and
is analytically impossible. To issue such recommendations sophisticated domain and
context specific knowledge is necessary which cannot be depicted by the system. This is
a classic visual analytics problem. On top of that, there is missing trust on the users
side. To deal with this, the herein described project is designed to include the user into
the process of analysis and evaluation of the reports/documents.

Therefore, the goal of this project is to approximate the aforementioned ideal solution by
visually summarizing the key concepts of text documents. These documents are analysed
using natural language processing (NLP) operations. This sequence of operations is
called NLP pipeline. An NLP pipeline consists of multiple NLP operations. Most of
these steps have parameters. However, there is no gold standard for how to construct an
NLP pipeline. Hence, instead of predetermining a fixed pipeline configuration, the core
of this solution is to let the user easily create a custom NLP pipeline. The end result
is a visual summary of the processed text and applied pipeline. This aids the decision
making process by offering insight specifically configured based on the users input.

This work contributes to the area of natural language processing. It does so by offering:

1

1. Introduction

1. A configurable NLP pipeline with various visual outputs.

2. Integration into a financial dashboard (web based).

3. Tool assisted evaluation of different NLP pipelines.

2

CHAPTER 2
Related Work

On the one hand, this work uses NLP, on the other hand, NLP is preprocessing and its
results need to be visualized. The ideal means for this task is text visualization (TextVis).
There are related works, such as software tools, which are of varying specialization.
They can be divided into different approaches, platforms and languages. Some of the
available tools are only accessible to professionals to use and tweak because of the lack of
a compelling (graphical) user interface. Others only provide a simple output with no
possibility to interact with it.

2.1 Natural Language Processing
NLP is necessary to create visual encodings. It is a broad field, however. There are various
known features and operations to it, the most relevant from this works perspective are
the following: Tokenization, Part-of-Speech (PoS) Tagging, Named Entity Recognition
(NER), Stemming, Lemmatization, Sentiment Analysis and Topic Modeling. A brief
explanation of each of these features follows.

Tokenization takes care of segmenting or splitting an input document into smaller
parts, called tokens [MSB+14].

PoS Tagging estimates what grammatical tag a word or token has [MSB+14]. That
means that a word can be, for example, a noun or a verb. Furthermore, some PoS
taggers can be used to determine whether the word is in plural or singular form.

NER detects whether a token is a named entity, which can be a place, date, organization,
etc [MSB+14].

Stemming takes a word in a certain form and tries to find a base or stem form of it,
e.g. "walking" becomes "walk" [SG16].

3

2. Related Work

Lemmatization serves to find different words with the same meaning [SG16].

Sentiment Analysis tries to determine the attitude or emotion of a text segment or
document [MDP+11].

Topic Modeling creates a topic model that represents statistical distribution or weight
of certain topics across documents [Wal06].

Some of these operations are usually performed at a certain order. This order can be
used to define a sequence that can be referred to as NLP pipeline. Refer to Chapter 3 to
see how such a pipeline works.

There are tools that are able to provide multiple techniques at once or in series like
OpenNLP, CoreNLP, NLTK which offer numerous features and services [awe18]. The
most prominent of these kinds of libraries are written in Python and some in Java. There
are only a few tools that are actually available for use in the browser, which was a
requirement for this thesis.

The Stanford Natural Language Processing Toolkit called CoreNLP features a broad range
of NLP features to be used [MSB+14]. It is developed in Java and offers a common API
for developers to perform NLP operations and the ability to create a pipeline according to
their respective goals and needs. Among the included features are: tokenization, NER and
sentiment analysis. CoreNLP has a server component simply called "CoreNLP Server",
which provides a graphical user interface (GUI) for CoreNLP features via web [cor].
Within that GUI, it is possible to create an annotation pipeline which is comparable to
this work’s NLP pipeline configuration interface, further described in Section 3. Pipelines
made within the CoreNLP Server GUI are still created using the Java backend, in contrast
to this work, which has a pure web client-side implementation.

A similar work to CoreNLP is OpenNLP, which is also a Java based technology that
provides NLP operations via an API [Ope]. OpenNLP supports all of the aforementioned
NLP operations except sentiment analysis. The previously described related work
Document Cards uses OpenNLP for most of its preprocessing steps [SOR+09]. In
contrast to CoreNLP and the herein described project, OpenNLP does not offer a GUI
and is targeted for developers. It also does not provide topic modeling but offers a more
sophisticated approach to sentiment analysis.

A prominent example for NLP software tools is the Natural Language Toolkit (NLTK)
[LRR11]. Functionality wise it offers similar features to CoreNLP and OpenNLP. Like
OpenNLP, NLTK does not have a GUI but only a developer API. It provides a rich
resource set including 60 corpora, grammar collections and trained models. It is written
in Python which has advantages like high readability, an object oriented paradigm, easy
extensibility and a powerful standard library. Python also supports read-eval-print loops
(REPL) which make it possible to quickly evaluate expressions within a shell without
having to set up a software project. NLTK is a widely used and strongly supported tool.
Due to design constraints (entire processing in a web browser), NLTK was no option for

4

2.2. TextVis

this work. It would have required a dedicated server which runs Python and offers a web
accessible NLTK API.

Figure 2.1: UTOPIAN Topic Modeling Visualization Result [CLRP13].

A different example is User-Driven Topic Based on Interactive Nonnegative Matrix
Factorization (UTOPIAN), which is a work that focuses on technical and mathematical
aspects of topic modeling [CLRP13]. UTOPIAN is relevant herein because it tries to
provide helpful visual results, which can be seen in Figure 2.1. These results are based
on text documents to support the user’s decision making process. Natural language
text documents serve as inputs and will be processed in order to create a topic-wise
representation of them. All of this happens underneath a complex UI created in Java.
It uses a semi-supervised NMF method to extract weighted combinations of clusters
to showcase their proximity [CLRP13]. Compared to this work, UTOPIAN does not
offer configuration of the underlying NLP pipeline. Users can influence the classification
process of the topics/keywords, though. The presentation relies on global results (or
visualizations) rather than multiple individual results for different data sources.

2.2 TextVis
Since this work essentially results in a text visualization of given input texts, the most
relevant comparison is to other works in the field of text visualization (TextVis). In
TextVis, there is a great range of different techniques, most of which usually provide user
interaction to adjust the resulting visualization by influencing visual properties like color,
size and distance, for example. There is a shear amount of different approaches, starting
from text highlighting and font properties to complex multi dimensional visualizations.
To deal with the variety of different visualization techniques, there is a project called
Text Visualization Browser [KK15] dedicated to visually survey them.

One example is Guideline for Effective Usage of Text Highlighting Techniques [SOK+16]
which is of particular relevance herein since this project uses many of these techniques or
similar ones . This work focuses on how to effectively and automatically emphasize text
elements and how to create interactive visual interfaces to do so. Particular examples of
proposed techniques are typesetting, background coloring, font weight and underlining.

5

2. Related Work

To estimate what text segments are of interest and what features (statistical, syntactic,
semantic and structural) they have, it is necessary to apply natural language processing.
Three different studies have been conducted which led to the following results: font
size, background color and border are the most effective approaches to emphasize text.
Font spacing, italics and underlines should be avoided since they are perceived as
distracting. This project makes use of recommendations issued in this related work
regarding background color, font color and interference avoidance (conjunction of features).
In contrast to the herein described project, this related work focuses on means of tweaking
and adjusting visual properties based on text features rather than the way the text itself
is being analysed.

A text visualization method for cross-domain research topic mining [JZ16] is a work that
creates a visual representation of the change of different scientific topics across multiple
domains over time. It offers a user interface that enables users to explore and experiment
with the visualization to gain a better understanding of the relationship of the topics. It
uses a combination of different plot types to present the data, including Sankey diagrams,
scatter plots, and word clouds. This related work focuses on presenting the evolution of
individual topics across domains over time, whereas this work focuses on the topics of
multiple documents independent from time.

Another interesting example is Document Cards (DC) which tries to represent documents
in compact sized cards and also uses NLP to do so [SOR+09]. Among the applied NLP
operations are sentence splitting, part-of-speech tagging and noun phrase chunking. DC
arranges multiple cards next to each other. A card is a rectangular shape that is arranged
in a grid. Each of the cards has interactive properties that present further information
when, for example, hovering with the cursor above it. To gather semantic information
out of the documents it uses text and keyword extraction to summarize the documents.
In contrast to this work, DC uses a corpus independent scoring method to rank the
keywords. Furthermore, DC focuses on picture-like output and representation of the
document. The cards are being treated like picture elements and text is not meant to
be readable. It is designed to be used on small screen devices. DC is still of particular
interest in comparison to the herein described project since it uses cards as well, just in
a different manner.

6

CHAPTER 3
Natural Language Pipeline

Interface

The core element of this bachelor thesis is the adjustable NLP pipeline that makes it
possible to use (or not to use) certain NLP operations in a certain order. Using this
technique in combination with an easy to use interface, it enables users to adjust the text
processing to her or his needs. At the end of that processing, the user will have a compact
summarizing representation and visual enhancements of the documents. Exploring and
gaining insight into a large amount of different documents can happen significantly more
quickly this way.

The NLP pipeline processes an array of text documents through individual NLP operations
with selected parameters and passes it from one operation to the next one. Essentially,
the entire pipeline serves as a means of preprocessing data for the resulting visualization.
In addition, some steps of the pipeline depend on other steps. This sets up constraints
for the order of pipeline operations. Operations like PoS tagging (and subsequent
noun/verb/adjective selection) require tokenization, topic modeling within a single
document requires segmentation. Figure 3.1 gives an overview of available NLP operations
to be used in a pipeline as well as possible user input.

All pipeline operations are executed on each (input) text document. This approach
generates "local" results per document. Such a document is usually the text content of a
file or an entry of an RSS feed. Multiple files or an RSS feed containing multiple entries
can be loaded to handle multiple documents, however. Each document can then be
segmented into different parts, e.g. sentences, paragraphs or as-is (i.e. entire document
as a whole). In case of RSS, the text content of each feed entry contains XML markup
which needs to be removed from the content to avoid distortion (details in section 3.2).

There are dozens of possible configurations of the pipeline. Order and parameters of the
individual pipeline operations can be changed or not set at all. The results are stored

7

3. Natural Language Pipeline Interface

Figure 3.1: NLP Pipeline illustration. User input is available through parameters.

in-memory (in the order, which they have been executed) and displayed separately per
input document. Optionally, a global summary takes place, which combines the previous
local results of each document and performs topic modeling on them.

In the following sections, the individual pipeline steps will be described in more detail.

3.1 Termlist Rating

It is possible to manually enter a list of positive and a list of negative n-grams so a score
can be calculated for how many positive and negative hits are in an document. This can
be used to gather a quick overview of the importance of a text document and documents
can be ordered according to that score. This step makes it possible to present the most
important results first. It is independent from segmentation, tokenization and other
following steps. It performs searches on the raw text content of a document so that steps
like stopword removal and stemming cannot interfere with the results. Therefore entries
in the list of terms can be unigrams or n-grams (i.e. multiple words). They can be set as
parameters to termlist rating where two lists are available, one negative and one positive.
List entries are separated by line break. Every entry is trimmed, removing redundant
spaces at the end and beginning of every line.

Input Raw text documents

Parameters List of positive terms, list of negative terms

Output Score per input document

Constraints First pipeline element, if present

8

3.2. Segmentation

3.2 Segmentation

This is usually a very early step of the pipeline which takes place after termlist rating
(if selected; otherwise it is the first step). This step is necessary for operations that
require multiple documents to work with, like topic modeling. At first the given text
will be separated into consecutive pieces based on user defined parameters and markup,
if present, of the input. Segments can be sentences, paragraphs, or documents. The
splitting level "paragraphs" is a step that requires markup (i.e. XML markup "<p>" and
"</p>"), to be able to detect paragraphs. After this step is performed, the text content
of every document is cleaned from that markup information. Sentence level splitting is
performed on certain characters, such as ".", "!" and "?". During this step meta data and
character sequences like line breaks are removed from the data. Empty segments are not
included in the result. If segmentation is omitted as a whole then a default segmentation
is performed at the first pipeline step that requires data in segmented form. It is equal
to the option "document(s)" which leaves the input document(s) as-is. The output is
a vector of documents, where each contains a vector of segments, where each segment
contains text content without meta data. After segmentation, the document vector is
referred to as corpus and denoted by C = {d0, d1, ..., dn} where n ∈ N. Every document
is then denoted by dx = {s0, s1, ..., sm} where m ∈ N.

Input Raw text documents (with markup)

Parameters Sentences, Paragraphs, or Documents

Output Documents vector containing segments vector without meta data

Constraints Paragraphs require markup

3.3 Tokenization

This process splits each of the segments further into tokens. Tokens are usually unigrams,
which are essentially words in this work (but could also be letters, syllables, ...) [Gan14].
This is an implicit step and is performed at the first operation that requires it. After
that step, all subsequent steps operate on term vectors. PoS selection and stopword
removal require tokenization. To preserve information of results, segments are always
organized in sentences, which are split the same way as described in Section 3.2. This
also improves reusability since the same data structures can be used across the pipeline
(see section 4.1.2 for details). Splitting is performed on certain characters, such as " ", ","
and "-". If previous segmentation is set to "paragraphs" or "documents" then the sentence
information is ignored. The extracted tokens are stored in-memory as term vectors to
preserve their order, see Section 4.1.2 for details. This is contrary to the commonly used
bag-of-words approach, in which order does not matter. From this point on, document
segments are considered sets of tokens denoted by sx = {t0, t1, ..., tm} where m ∈ N and
x ∈ N.

9

3. Natural Language Pipeline Interface

Input Segmented document vector

Parameters None

Output Documents vector containing segments vector containing a term vector

Constraints After segmentation

3.4 Part-of-Speech Selection

PoS selection allows the user to select nouns, verbs or adjectives from the text documents
(i.e., filter all tokens that are not nouns, verbs or adjectives). The user can choose to
select nouns, verbs or adjectives by setting parameters. These selections can be combined.
So, if noun selection, verb selection and adjective selection are set as parameters, they
are combined to select nouns, verbs and adjectives from the text. Part-of-Speech (PoS)
tagging is required to determine the type of word so that it can be selected for further
steps if it matches a filter and discarded otherwise. In addition to that, words can be
highlighted based on their tag (see Section 3.8). PoS tagging is therefore implicitly
applied at the first feature that requires it, such as this one. In PoS tagging, each token of
the text segments is being checked against a base lexicon and a set of rules to determine
its tag. The results of noun selection are visualized as described in Subsection 3.8.

Input Tokenized and segmented document vector

Parameters "Select" or "Highlight only" nouns, verbs or adjectives

Output Tokenized and segmented document vector containing tokens that are nouns

Constraints After tokenization

3.5 Stopword removal

Stopword removal filters a list of defined stopwords (for the English language) from the
text stream. In addition, users can add a custom list of stopwords that will be removed
as well.

Input Tokenized and segmented document vector or raw text stream

Parameters Custom list of stopwords

Output Tokenized and segmented document vector without stopwords

Constraints After tokenization

10

3.6. Sentiment Analysis

3.6 Sentiment Analysis

Sentiment analysis is performed per sentence based on the original term vector. The
result, which consists of a sentiment score and label, is then stored (in-memory) per
sentence as well. It is used for a brief summary per document to display a count of
positive, neutral and negative sentiment labels. In addition, it is used for text highlighting
at the resulting TextVis (see Section 3.8).

Input Tokenized and segmented document vector

Parameters None

Output Tokenized and segmented document vector with sentiment label and score per
sentence

Constraints After tokenization

3.7 Topic Modeling

A core element to gain insight into what the text documents are about is topic mod-
eling/extraction. Topic modeling techniques usually consider documents to be a com-
bination of a limited number of topics. Topic extraction performs clustering to group
several documents and tokens with similar properties. The results can be used to find
sets of keywords that approximately represent the contents of a given document. To
perform proper topic modeling, it is necessary to provide at least two documents or
document segments as an input, otherwise there will not be meaningful results. Hence,
for one document to be properly analysed, segmentation needs to take place to split the
document into sentences or paragraphs (depending on user input). Only the contents of
the local result (i.e. all pipeline operation results before topic modeling) of each document
are taken into account for this step, due to implementation constraints as described in
sections 4.2.4 and 4.2.3. Features like termlist rating are not considered for this task.
Topic modeling is the last possible step to be performed in the NLP pipeline. It results
either in a visualization or a text summary, depending on the selected approach due to
implementation constraints. Two different approaches have been chosen for this project
to perform topic modeling and extraction, as described below.

Input Vector of text strings that is based on (processed) segments

Parameters Number of topics, number of terms per topic, approach ("LDA" or "NMF")

Constraints After segmentation and tokenization

11

3. Natural Language Pipeline Interface

3.7.1 LDA

Latent Dirichlet Allocation (LDA) is a statistical topic model [MDH08]. In LDA based
topic extraction mechanisms, every token or set of words can be associated with one of
the specified topics. These topics can be labeled by terms, which will be selected based
on the probability that a term is a assigned to a topic [Ost15]. In this project, the result
of LDA is a list of maps which contains terms and probabilities to approximate the topic.
The results of LDA are rendered in a simple list of these terms and probabilities next to
the corresponding documents.

Output Keywords and scores per topic

3.7.2 NMF

Nonnegative matrix factorization (NMF) is a multi-variate analysis method used for
clustering and classification of data [LYC10]. Term-document-matrices (TDMs) are
high-dimensional non-negative feature matrices, which are perfectly suitable for this
operation. Within this project NMF is applied for topic extraction and to determine
the strength of links between estimated topics and documents (represented by the title
of a document). The NMF topic modeling used in this project accepts an m× n TDM
matrix. A TDM uses documents as column vectors and term occurrences as row vectors.
A TDM can look like the following.

A =

d0 d1 ... dn

t0 0 1 ... 1
t1 1 1 ... 0
...
tm 0 0 ... 0

In this example, the TDM uses only a binary metric to specify whether a document
contains a term (1) or not (0). Other possible metrics are term frequency, which is a
count of term occurences per document, and then there is tf-idf, which refers to "term
frequency - inverse document frequency". It is used to give terms that appear in fewer
documents a higher importance [KI15]. Depending on the prior segmentation, the tf-idf
score is calculated either on terms in sentences, paragraphs or entire reports. This work
uses tf-idf as weighting scheme for the DTM.

NMF factorizes the given m × n A matrix into two matrices W and H [LS00]. W is
an m × r-matrix and H is an r × n-matrix. Matrix A can be approximated by linear
combination of the columns of W with weights of the components of H, A ≈WH. Usually
r < m ∨ r < n, which leads to W and H matrices being smaller. That factorization is
performed in multiplicative updates, which are executed until convergence or a fixed
number of iterations is reached. The results of NMF contain a topic estimation, which is
a map of keywords and scores per topic. In addition to that, an H matrix is created that
determines the link strength between topics and the original documents.

12

3.8. Text Rendering

A benefit of providing NMF in addition to LDA is increased variety and different results.
According to Choo et al, NMF has an advantage over LDA when it comes to user feedback
[CLRP13]. The local results of NMF are visualized in a horizontal bar chart that shows
keywords within the bar and the width of the bar corresponds to the score of the topic.

Output Keywords and scores per topic, H matrix (link strength)

3.8 Text Rendering

To give a detailed visualization of a single processed document a text visualization takes
place. Based on previously created results, selected sentences or tokens are given a
markup to describe their visual appearance, see section 4.1.4 for further details.

Explicit PoS tagging operations always result in a visualization. Nouns have a green
font color. Verbs use an orange font color. Adjectives are given a purple font color.
Entire sentences can be highlighted as well. Sentiments for sentences are highlighted
using a light green background color for a positive sentiment and light red for a negative
sentiment. Terms that are contained in the positive termlist are highlighted with a
cyan background. Terms, which are in the negative termlist are highlighted with a
pink background. Sentences that are most representative of a topic, are highlighted
with a light yellow background. These sentences are selected, using the sentence that is
associated to the column with the maximum membership value (component) of the H
matrix. Colors are chosen to have varying degrees of intensity/saturation to minimize
overlap. A combined visualization of the aforementioned features is shown in Figure 3.2.

If multiple highlighting options are enabled in combination, then there is a priority by
which terms are highlighted. First, sentences will be highlighted, based on topic. If there
is no topic keyword contained within the sentence, then it will be highlighted based on
sentiment. If there is no sentiment data on this sentence, it will not be highlighted at
all (but individual tokens within the sentence still can). After sentence highlighting is
complete, each token of the sentence will be checked and highlighted, if eligible. Tokens
are highlighted, as previously described, based on their PoS tags and also whether they
are part of a termlist hit. Tokens can have a font color according to their tag and a
background color, which overrides the sentence’s background color, if present, according
to the termlist.

Input Tokenized and segmented document vector, topic keywords and scores

Parameters None

Output Text with markup for rendering in HTML

Constraints None

13

3. Natural Language Pipeline Interface

Figure 3.2: A fully rendered text with background color on sentences and font color on
individual tokens.

3.9 Global Summary
If topic modeling using NMF or LDA has been performed, a global summary is created
after the pipeline execution has finished. In case of NMF, the global summary will
contain a visualization that represents the titles of the input documents and extracted
keywords based on their content. To prepare the data for the visualization, a map of
entities (document titles and topic keywords) has to be generated. The NMF output,
as described in Section 3.7.2, containing the H matrix, is used to specify edges and
their thickness. This kind of visualization presents the user an up front overview of all
documents (represented by their titles) and all topics, as well as their association with
them (see Figure 3.3 for an illustration and Section 4.1.5 for implementation related
details). In case of LDA, the global summary will display a textual representation of
global keyword and score pairs in a list (see Section 4.2.3 for details). The global LDA
based result is shown in Figure 3.4.

Input Tokenized and segmented document vector for all documents, global topic key-
words and scores

Parameters None

Output Visualization

Constraints None

14

3.9. Global Summary

Figure 3.3: A global summary visualization using NMF. 15 document titles are on the left.
5 topics with 5 keywords each are on the right. Edges represent link strength between
documents and topic keywords.

Figure 3.4: A global summary visualization using LDA, represented in an unordered list
containing 5 topics with 5 keywords each and a score for each keyword within parentheses.

15

CHAPTER 4
Implementation

The implementation has been carried out using web technologies, primarily TypeScript
and JavaScript. Due to requirements of the stakeholders of this project, the entire
computation has to be carried out within the local client and must not transfer any
document content to or via an external network.

4.1 Client

The web client is designed to run in most common web browsers (Chrome, Firefox, Edge).
It itself requires a web server to be hosted and be accessible. Within the client a UI
that has been build from ground-up using state of the art components namely Angular
(including RxJS), Bootstrap, jQuery and d3 (see Section 4.2 for further details).

The first visible artifact that appears in the browser is a login screen, as can be seen in
Figure 4.1. After a successful login the main UI appears (see Figure 4.2). The main UI
is designed like a dashboard. It provides multiple cards that contain information and
are arranged in a grid. In this view the card component "report loader" is the first card
that is present. It can be used to load documents from a data source. Further cards
are added and removed dynamically, when the user loads reports from a data source. If
the user wants to load different reports from a different data source than the currently
loaded documents, the currently loaded document cards will be removed and new ones,
for the new documents, will be created. The cards can be rearranged dynamically as
well, if order information is presented, which can be created using termlist rating.

After documents have been loaded the card "NLP pipeline" appears and a card for each
individual report/document as shown in Figure 4.3. To see the full text content of a
document, the "Expand" button has to be clicked on the card of a document. A dialog
containing the full text content is then displayed, as can be seen in Figure 4.4.

17

4. Implementation

Figure 4.1: Login Page.

Figure 4.2: Report Page without reports.

18

4.1. Client

Figure 4.3: Report Loader.

Figure 4.4: Detailed view of document content without pipeline results.

At this point, the user can create a custom NLP pipeline in a custom order with custom
elements. A fully configured pipeline card usually looks like what is shown in Figure 4.5.
When this pipeline is executed, there are three kinds of results. One are brief results,
which are displayed within the document cards below the brief text summary of every
document. Then there is a detailed result, which is visible in a dialog that appears when
clicked on "Expand" of a card. The detailed result is shown as in Figure 4.7. On the left
of this dialog, there are interactive controls to manipulate the visualization in real time.
The last way to show results is the global result, which provides a summary across all
loaded documents, if selected and processed accordingly. The global result can be seen
in Figures 3.3 for NMF and 3.4 for LDA.

19

4. Implementation

4.1.1 Data Sources

The application supports two data sources from which documents can be loaded. The first
one are RSS Feeds and the second one are plain text files. RSS feeds contain metadata
about author, date as well as structural information like paragraphs, which are used
for segmentation. That metadata is in XML. XML markup needs to be removed for
further processing and display. To retrieve these RSS feeds, rss2json.com web service
is used. This service enables easy conversion from RSS feeds to JSON strings, which
can be conveniently used in the web client implementation. The drawback of rss2json is
that it limits the number of results to 15 in its free version (at the time of writing). As
requested by the stakeholders, the application contains a list of predefined RSS URLs for
all available types of commodities at mining.com.

In contrast, text files that are supported have none of these metadata tags. To support
date and title information within these plain text documents, a check is performed on
the first line whether it contains a "|" character. If this is the case, then the part of the
line before the "|" character is checked for a date, if so, it is used as date of the document.
The second half of the line will be used as title. This is a custom parsing method which is
adjusted to data provided by stakeholders. The supplied data was automatically crawled
from non-RSS mining.com articles, which are a preferred data source from this work’s
stakeholders.

4.1.2 Data Structures

During segmentation and tokenization, the data is transformed from a raw text string
into multiple nested arrays. At first, there is an array which is organized by documents.
Before segmentation and tokenization, every element in this array contains a string. After
segmentation, every element of that array contains another array, which is organized by
segments. If segmentation is set to "Documents", then a document array element contains
exactly one (segment) array. Every segment array contains an array of sentences that are
included in it. A sentence is a JavaScript object, which is based on compendium-js’s result
structure (see Section 4.2.2 for further details). Every sentence object has a property
"tokens", which is an array of token objects.

Since some operations like topic modeling require a string or string array as input, a
string content array of the segments is maintained in parallel (per document). This
string array is updated based on filter operations on the aforementioned data structure,
which is derived from compendium-js’s results. This is a means of caching results to
improve reusability and performance within the application. This is because results
can be required more than once, e.g. once for a local summary and once for a global
summary.

4.1.3 Pipeline Configuration Card

In the actual implementation, the features "Noun Selection", "Verb Selection" and "Adjec-
tive Selection" are binary parameters for PoS Selection. These parameters can be set via

20

4.1. Client

checkbox in the parameter dialog for PoS Selection. The parameter dialog can be seen in
Figure 4.6. PoS Selection requires PoS tagging to take place. PoS tagging is necessary
to determine the tag for a term. There are two flags for each of these features, namely
"nouns", "verbs" and "adjectives", as well as whether it is "selection" or "highlighting only.
See Figure 4.5 for reference. This is due to compendium-js behaviour, which has been
used to perform the three aforementioned selection operations, see Section 4.2, Subsection
4.2.2 for further details. The highlighting option can be changed at the details view to
enable and disable visualization with instant results, as shown in Figure 4.7.

Figure 4.5: Fully configured NLP pipeline card.

Figure 4.6: Parameter dialog for PoS Selection.

4.1.4 Text Rendering Implementation

To perform text rendering, the native HTML element "span" is used with a class attribute
to describe the visual appearance of one or more tokens. As described in Section 3.8,
the application iterates over every segment, and every sentence, and every token within
it. Segments are not relevant for the text rendering implementation. If sentences have

21

4. Implementation

sentiment data or contain a keyword of a topic, then a span-tag with the corresponding
class attribute is wrapped around the sentence. This class is described in CSS, to either
have a yellow background color for topic keywords or a red or green background for
negative or positive sentiment, respectively. A combination of all text rendering options
can be seen in Figure 4.7.

Figure 4.7: Fully rendered text with all highlighting options enabled.

4.1.5 Global NMF Visualization

For the global visualization of NMF results, a parallel list with edges has been implemented
using d3. It is based on the BiSet Edge Bundeling [SMNR16] implementation by Lukas
Eibensteiner and Manuel Kapferer [Eib17] and adaptations made for topic modeling by
Michael Mazurek [MW18]. These adaptations remove (bi)clustering and edge bundling,
since they are not needed to represent the documents, topics and the relationship between
them.

4.1.6 Default Settings and Values

The whole user interface as well as each pipeline step has default settings or values to
make usage easier and reduce initial configuration time. These settings and values are
listed here. For document loading a default setting is set to the predefined mining.com
RSS feeds, as described in Section 4.1.1. This list of RSS feeds is available to the users
via a dropdown menu. The default number of entries to load from an RSS feed is 3.
Regardless of rss2json, mining.com only provides up to 15 entries. The default splitting
level for segmentation is set to "Sentences". Topic modeling has 2 as topic count and 3
as terms each by default. Every highlighting option for text rendering/visualization is
set to "true" by default.

22

4.2. Frameworks and Libraries

4.2 Frameworks and Libraries

To achieve a state-of-the-art implementation of the aforementioned methodology, a
number of libraries and frameworks is used.

4.2.1 UI Frameworks and Libraries

To provide an interactive and reliable user interface that is compatible with various web
browsers, the Angular (ng) web framework (v4) has been chosen. The angular framework
embraces a multi-paradigm programming approach that is both functional and reactive
(FRP) on top of being object-oriented [Jac16]. This framework imposes an architecture
design on this project that is regarded state-of-the-art. Furthermore, this brings a lot of
advantages to the development of the herein described project. The angular framework
brings a whole collection of libraries and features like Angular Components, RxJS and
Observables. Angular Components provide an efficient way of managing view templates
and storing related logic/code in separate containers. Using RxJS and Observables,
changes in data are propagated automatically, so when a variable changes all other
occurrences (like functions) of the variable get updated/re-executed as well.

The chosen angular framework version uses TypeScript (v2) as its language, which is
a substantial enrichment for developers when compared to regular JavaScript (ES5)
that’s commonly used in browsers. The selected version of TS allows static type safety
and a higher degree of abstraction for web applications when compared to common
JavaScript (ES5) [GBB17]. In this project, the benefits of using TypeScript outweigh the
drawbacks. One major benefit is improved robustness to the application. The adjustable
NLP pipeline is heavily focused around user interaction and user input. Using TypeScript
in combination with Angular components it makes it easier and more readable to create
a proper UI for manipulating and setting steps of the pipeline [GBB17]. It also improves
recycling of code through abstraction (e.g., using interfaces). Another major benefit
is improved error detection and handling which allows to find common UI bugs more
quickly or prevent them entirely by design.

The project uses Twitter Bootstrap 4, the most recent version of Bootstrap. Bootstrap
offers a streamlined collection of UI elements and styles for the browser that follow general
design principles and strive look appealing to users [Ott17]. It features responsive design
to enable size and resolution independent display of the website on multiple different
devices. Mobile support is also present. Grid based alignment systems and standardized
size properties aid creating an easy to follow and coherent user interface. In combination
with Angular, view templates fit into the standard look and feel of Bootstrap [BWSP13].
Bootstrap features like (modal) dialogues and menus are used to display data stored in
models inside Angular seamlessly and updated in real-time.

As a template for Bootstrap 4, the theme ModularAdmin has been chosen and applied
[VH17]. ModularAdmin is an open source (and MIT licensed) theme for Bootstrap 4 and
contains a card-oriented dashboard design. Unfortunately, it is not designed for Angular

23

4. Implementation

and had to be adapted. ModularAdmin’s templates were written using Handlebars.js
(HBS) template syntax, which had to be translated to angular template syntax and
wrapped in angular components. Angular also imposes stricter rules regarding access
to variables and other components (e.g. from inside the template code), which had to
be respected during the transition to angular. Unnecessary features like the included
JavaScript chart libraries have been removed, since d3 is used in this work. This template
has been chosen because it offers a standard layout and design that can be reused and
built upon. In combination with angular, it aids at a structured and standardized
development process and reduces engineering workload throughout the project (i.e. in
long term), especially when compared to writing everything from scratch. Another reason
for this template is that it was accepted (and favoured) by this project’s stakeholders.

4.2.2 compendium-js

Compendium-js is a natural language processing library written in JavaScript that
performs PoS tagging, stemming and sentiment analysis on given input texts [Lau18]. In
this project the version 0.0.28 of compendium-js is used. Compendium-js has been chosen
because it delivers all results up-front in a data structure that is (re)used for most of the
pipeline steps. The result’s data structure is organized around sentences and tokens. It
is an array of sentences, where each sentence has a set of properties including sentiment
and tokens. The (JavaScript) object property "tokens" contains an array of tokens. Every
token object contains the following data: raw term, stem, PoS tag and various attributes
like whether it is an acronym, plural. Compendium-js tokenizes on term level. For
additional structural information, the compendium-js results are performed per segment
(depending on segmentation as described in Section 3.2) and then stored in an array
which resembles the segments.

Compendium-js uses a lexicon which consists of 10,000 most common English words and
a list of sentiment scores [Lau18]. Its PoS tagger achieves a score of 92% when tested
against the Penn Treebank reference corpus. It is based on a Brill tagger, which is a
simple, yet very effective rule based PoS tagger [Bri92]. In contrast to a statistical tagger,
which picks tags based on probabilities, this tagger determines the tag of a term using a
set of logical rules. These rules can be thought of like if-then statements, e.g. "If a term
has a tag x in context C, then set that tag to y, or ...". The tags of a term are usually
adjusted throughout the tagging process.

4.2.3 lda

LDA is a JavaScript implementation of latent dirichlet analysis (LDA) to extract topic
information from a given document [Bec17]. This library has a simple API that has
one function called "lda" with 3 parameters: document, topic count and number of
terms per topic. The first parameter, document, is a simple text string. Therefore, if
previous tokenization took place, the term vector is joined back together into a text string
(respecting segmentation). The result is an array containing the topics and within the

24

4.2. Frameworks and Libraries

topics there are terms and corresponding scores. At first this LDA library was the primary
element of topic modeling but this focus has been shifted towards nmf-js since the LDA
library lacks flexibility and does not offer information about the link strength between
keywords and the original documents. Due to this lack of relationship data, the options
for visualization are limited and the result is presented as a list with topic keywords and
scores. LDA is still included as a library for topic modeling in the implementation.

4.2.4 nmf-js

The JavaScript library nmf-js performs non-negative matrix factorization (NMF) [Ane13].
It provides a function that performs multiplicative updates called "mu" which accepts
a n × m-Matrix (DTM in this case), number of topics and terms to be extracted, a
tolerance value and a maximum number of iterations as parameters. The tolerance value
is set to 0.001 and the maximum number of iterations is capped at 75. The higher the
number of iterations, to longer topic modeling can take, if convergence is not reached
before.

4.2.5 d3

Data-Driven-Documents (d3) is a commonly used web visualization library, which uses the
standard web technologies HTML, SVG, CSS and JavaScript to visualize data [BOH11].
It is applied for the herein described project to visualize the results of NMF topic modeling.
The visualization is used as described in Sections 3.7.2 and 3.9.

25

CHAPTER 5
Evaluation and Results

A set of tests and evaluations has been performed to establish a comparative basis for the
outcome of this project. During this process, the software was has been tested against a
defined specification (i.e., pipeline configurations and documents). Some of the artefacts
produced by the software have been presented to different users and their responds has
been documented. In addition to that, performance of the application was measured.

5.1 Test Configuration and Input
To illustrate variety and differences in configuration and results, three pipeline examples
and their results for three document are provided (see appendix). These configurations,
documents and results are used as a reference throughout the evaluation.

Pipeline 1:

1. Segmentation

a) Splitting level: "sentence"

2. Topic Modeling

a) Topics: 3
b) Terms each: 4
c) Library: NMF

Pipeline 2:

1. Segmentation

27

5. Evaluation and Results

a) Splitting level: "sentence"

2. Stopword Removal

3. Topic Modeling

a) Topics: 3
b) Terms each: 4
c) Library: NMF

Pipeline 3:

1. Segmentation

a) Splitting level: "sentence"

2. PoS Selection

a) Noun Selection
b) Adjective Selection

3. Topic Modeling

a) Topics: 3
b) Terms each: 4
c) Library: NMF

5.2 User Feedback

To encompass feedback, two different surveys have been carried through with a different
audience each. The first audience is a general audience (lay persons), which has been
issued a structured feedback form. This feedback form contained a set of documents and
a set of results for each document. The users had to read through three documents and
look at the three different application outputs for each document (see Appendix 6) and
rate them using a 5 point Likert scale (from 1 = "strongly agree" to 5 = "not agree at
all"). The results have been created using the three previously defined pipelines. The
test documents have been chosen to be long (between 1000 and 2000 words each) but as
little domain specific as possible. Since the target audience is not directly reachable but
only through a stakeholder, it is not possible to get exact feedback from traders. Because
of that, the four surveyed users are from a general audience. The results were presented
to users who then answered the prepared questions regarding the outcome. Users were
asked how much they agree on the representational quality of the results in relation to
the input texts. The collected results are presented in Tables 5.1, 5.2 and 5.3.

28

5.2. User Feedback

Document 1 Score Pipeline 1 Score Pipeline 2 Score Pipeline 3
Person 1 3 2 4
Person 2 3 2 4
Person 3 4 3 3
Person 4 3 3 1

Table 5.1: User scores for document 1.

Document 2 Score Pipeline 1 Score Pipeline 2 Score Pipeline 3
Person 1 1 3 3
Person 2 2 3 4
Person 3 2 4 4
Person 4 2 3 3

Table 5.2: User scores for document 2.

Document 3 Score Pipeline 1 Score Pipeline 2 Score Pipeline 3
Person 1 2 3 2
Person 2 2 3 4
Person 3 4 4 2
Person 4 1 2 3

Table 5.3: User scores for document 3.

Documents Average Score Pipeline 1 Average Score Pipeline 2 Average Score Pipeline 3
Document 1 3.25 2.5 3.0
Document 2 1.75 3.25 3.5
Document 3 2.25 3.0 2.75

Table 5.4: Average user scores across all three documents.

To sum it up, the average scores for each document are shown in Table 5.4. A visual
representation of the results can be seen in Figure 5.1.

The outcome of this survey suggests that pipeline 2 works slightly better than pipeline
1 and 3 for document 1. Document 2 appears to work best with pipeline 1 , which
does neither PoS selection nor stopword removal. For document 3 the pipeline 1 also
seems to work slightly better than 3, which seems to work slightly better than pipeline 2.
Pipeline 1, which lacks preprocessing almost entirely (except segmentation and therefore
markup removal), appears to perform best (in 2 out of 3 cases) according to surveyed
audience. Examples like document 1, indicate, that preprocessing can improve the quality
of results. Overall, there is no clear winner, however. In the cases of document 2 and
3 the combination of the preprocessing and the selected weighting scheme tf-idf seem
to worsen the results. In such cases, a different weighting scheme, such as simply term

29

5. Evaluation and Results

Figure 5.1: Bar chart representation of the survey results (the lower, the better).

frequency (tf), could improve results.

The survey also contained an open question at the end, which was "How do you think
these keywords could be useful?". Among the answers to the question were suggestions
to use it to create "links to other articles". However, a major issue on the user side
(by 3 out of 4 participants) was that they cannot imagine that these keywords could
be useful to them. Beyond that, one user noted that critical keywords were missing in
her opinion, which were "rotten tomatoes" for document 1 and "ceasefire" for document
2. This lack can be explained due to the high frequency of these keywords, which are
neglected because of the tf-idf weighting scheme and can be improved, as described before,
by using tf as a weighting scheme.

In addition to the previously described lay person survey (general audience), an informal
review with the stakeholders has been conducted to gather further feedback. During
this review, the software has been presented to the stakeholders, who then described
their experience with it and shared their opinion about the application. In general, the
application is helpful and very appealing to companies in the commodity market. The
review suggested that the results do not replace the need for reading the documents
entirely, but aid at focusing on specific ones.

5.3 Performance

To provide an insight about performance a few executions have been measured for their
duration. These tests have been carried out on a Windows 10 64-Bit machine (with all
updates until 2018-02 installed, including Meltdown/Spectre fix) within Google Chrome
version 63 (64-Bit). The hardware used was an Intel Core i7 7700HQ with 16GB DDR4
RAM on a 1920x1080 resolution display.

Note that these numbers have been measured using debug output from a development

30

5.3. Performance

Documents Pipeline 1 Pipeline 2 Pipeline 3
Survey (all three documents) 5.5 seconds 5.7 seconds 7.5 seconds

Table 5.5: Measured performance for all used pipelines and documents.

environment. To provide one more example using more files, a pipeline execution
consisting of "pipeline 2" on 20 documents of roughly the same size as the reference
documents provided, takes 17,8 seconds.

All of these times are perceived as slow and are clearly noticeable to the user, which
has been discussed in the aforementioned review as well. Purely web based approaches
are limited technologically. On the one hand, web browsers have multiple layers of
abstraction since the application has to be hardware independent. On the other hand, as
mentioned in Section 2.1, most reference implementations are written in other languages
or environments, such as Python. The latter case limits the variety of libraries to choose
from and related works for references. These limitations could not be overcome in this
work since this would violate the constraints of the stakeholders.

31

CHAPTER 6
Conclusion

Based on the previously presented outcomes, the pipeline configuration including seg-
mentation (on sentence level), no PoS selection, stopword removal and NMF for topic
modeling (i.e., pipeline 2 in Section 5.2) seems to work better than the pipeline without
stopword removal and PoS selection instead. According to the feedback, users seemed to
lean towards the pipeline without any preprocessing. Another finding revealed that PoS
selection costs quite some performance and does not benefit the quality of results.

In the end, however, there is no universal method that suits all different documents and
domains, hence the user can adjust and tweak pipeline configurations to find results that
fit the given documents best. It aids at finding documents and document sections that
are relevant more quickly and avoiding ones that are not relevant.

Using keywords to represent topics and what a document is about may not be enough
to give the user a good understanding about certain documents. A more sufficient
representation and summarization approach would be to present the sentences that are
most representative for a topic/keyword.

To improve performance and gain a bigger variety of reference implementations, a
substantial change in the software architecture would be necessary. For example, a
Python server could be set up to perform NLP operations and the web front end could
only be used to display results. For this, however, the user would have to send her or his
data to a remote server or install and run a server locally.

For future work in the commodity domain, a more advanced topic modeling approach, that
supports training of domain specific data is a desired feature. Individual preprocessing
steps could be expanded for better support of n-grams, enabling, for example, custom
weighting mechanisms for individual n-grams. Another possible expansion is to aggregate
documents with specific contents by date to detect possible events that occurred in a
specific topic at a specific time. Also, deep exploration and analysis for which NLP
pipeline works best would be an important future work to deliver tangible comparisons.

33

List of Figures

2.1 UTOPIAN Topic Modeling Visualization Result [CLRP13]. 5

3.1 NLP Pipeline illustration. User input is available through parameters. . . 8
3.2 A fully rendered text with background color on sentences and font color on

individual tokens. 14
3.3 A global summary visualization using NMF. 15 document titles are on the

left. 5 topics with 5 keywords each are on the right. Edges represent link
strength between documents and topic keywords. 15

3.4 A global summary visualization using LDA, represented in an unordered list
containing 5 topics with 5 keywords each and a score for each keyword within
parentheses. 15

4.1 Login Page. 18
4.2 Report Page without reports. 18
4.3 Report Loader. 19
4.4 Detailed view of document content without pipeline results. 19
4.5 Fully configured NLP pipeline card. 21
4.6 Parameter dialog for PoS Selection. 21
4.7 Fully rendered text with all highlighting options enabled. 22

5.1 Bar chart representation of the survey results (the lower, the better). . . . 30

1 Local topic modeling result for document 1 using pipeline 1. 45
2 Local topic modeling result for document 1 using pipeline 2. 46
3 Local topic modeling result for document 1 using pipeline 3. 46
4 Local topic modeling result for document 2 using pipeline 1. 48
5 Local topic modeling result for document 2 using pipeline 2. 49
6 Local topic modeling result for document 2 using pipeline 3. 49
7 Local topic modeling result for document 3 using pipeline 1. 51
8 Local topic modeling result for document 3 using pipeline 2. 52
9 Local topic modeling result for document 3 using pipeline 3. 52

35

List of Tables

5.1 User scores for document 1. 29
5.2 User scores for document 2. 29
5.3 User scores for document 3. 29
5.4 Average user scores across all three documents. 29
5.5 Measured performance for all used pipelines and documents. 31

37

Bibliography

[Ane13] Aneesha. nmf.js. https://github.com/aneesha/nmf.js, Dec 2013.
Accessed: 2018-02-28.

[awe18] keon/awesome-nlp. https://github.com/keon/awesome-nlp, Jan
2018. Accessed: 2018-02-28.

[Bec17] Kory Becker. Lda topic modeling for node.js. https://github.com/
primaryobjects/lda, Sep 2017. Accessed: 2018-02-28.

[BOH11] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven documents. IEEE
Transactions on Visualization and Computer Graphics, 17(12):2301–2309, Dec
2011.

[Bri92] Eric Brill. A simple rule-based part of speech tagger. In Proceedings of
the Third Conference on Applied Natural Language Processing, ANLC ’92,
pages 152–155, Stroudsburg, PA, USA, 1992. Association for Computational
Linguistics.

[BWSP13] V. Balasubramanee, C. Wimalasena, R. Singh, and M. Pierce. Twitter
bootstrap and angularjs: Frontend frameworks to expedite science gateway
development. In 2013 IEEE International Conference on Cluster Computing
(CLUSTER), pages 1–1, Sept 2013.

[CLRP13] J. Choo, C. Lee, C. K. Reddy, and H. Park. Utopian: User-driven topic model-
ing based on interactive nonnegative matrix factorization. IEEE Transactions
on Visualization and Computer Graphics, 19(12):1992–2001, Dec 2013.

[cor] Corenlp server. https://stanfordnlp.github.io/CoreNLP/
corenlp-server.html. Accessed: 2018-02-28.

[Eib17] Lukas Eibensteiner. Biset implementation. https://www.cg.tuwien.
ac.at/courses/Visualisierung2/HallOfFame/2017/Sun2015/
html/index.html, May 2017. Accessed: 2018-02-28.

[Gan14] Kavita Ganesan. Text mining, analytics and more. http:
//text-analytics101.rxnlp.com/2014/11/what-are-n-grams.
html, Nov 2014. Accessed: 2018-02-28.

39

https://github.com/aneesha/nmf.js
https://github.com/keon/awesome-nlp
https://github.com/primaryobjects/lda
https://github.com/primaryobjects/lda
https://stanfordnlp.github.io/CoreNLP/corenlp-server.html
https://stanfordnlp.github.io/CoreNLP/corenlp-server.html
https://www.cg.tuwien.ac.at/courses/Visualisierung2/HallOfFame/2017/Sun2015/html/index.html
https://www.cg.tuwien.ac.at/courses/Visualisierung2/HallOfFame/2017/Sun2015/html/index.html
https://www.cg.tuwien.ac.at/courses/Visualisierung2/HallOfFame/2017/Sun2015/html/index.html
http://text-analytics101.rxnlp.com/2014/11/what-are-n-grams.html
http://text-analytics101.rxnlp.com/2014/11/what-are-n-grams.html
http://text-analytics101.rxnlp.com/2014/11/what-are-n-grams.html

[GBB17] Z. Gao, C. Bird, and E. T. Barr. To type or not to type: Quantifying detectable
bugs in javascript. In 2017 IEEE/ACM 39th International Conference on
Software Engineering (ICSE), pages 758–769, May 2017.

[Jac16] Luka Jacobowitz. Functional reactive programming in angular
2. http://lukajcb.github.io/blog/angular2/2016/04/02/
frp-in-angular-2.html, Apr 2016. Accessed: 2018-02-28.

[JZ16] Xinyi Jiang and Jiawan Zhang. A text visualization method for cross-domain
research topic mining. Journal of Visualization, 19(3):561–576, Aug 2016.

[KI15] B. A. Kuncoro and B. H. Iswanto. Tf-idf method in ranking keywords
of instagram users’ image captions. In 2015 International Conference on
Information Technology Systems and Innovation (ICITSI), pages 1–5, Nov
2015.

[KK15] K. Kucher and A. Kerren. Text visualization techniques: Taxonomy, vi-
sual survey, and community insights. In 2015 IEEE Pacific Visualization
Symposium (PacificVis), pages 117–121, April 2015.

[Lau18] Xav Laumonier. compendium-js. https://github.com/Ulflander/
compendium-js/wiki/analysis-process, Jan 2018. Accessed: 2018-
02-28.

[LRR11] M. Lobur, A. Romanyuk, and M. Romanyshyn. Using nltk for educational
and scientific purposes. In 2011 11th International Conference The Experience
of Designing and Application of CAD Systems in Microelectronics (CADSM),
pages 426–428, Feb 2011.

[LS00] Daniel D. Lee and H. Sebastian Seung. Algorithms for non-negative matrix
factorization. In Proceedings of the 13th International Conference on Neural
Information Processing Systems, NIPS’00, pages 535–541, Cambridge, MA,
USA, 2000. MIT Press.

[LYC10] H. Lee, J. Yoo, and S. Choi. Semi-supervised nonnegative matrix factorization.
IEEE Signal Processing Letters, 17(1):4–7, Jan 2010.

[MDH08] Anuj Mahajan, Lipika Dey, and Sk. Mirajul Haque. Mining financial news
for major events and their impacts on the market. In Proceedings of the 2008
IEEE/WIC/ACM International Conference on Web Intelligence and Intelli-
gent Agent Technology - Volume 01, WI-IAT ’08, pages 423–426, Washington,
DC, USA, 2008. IEEE Computer Society.

[MDP+11] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y.
Ng, and Christopher Potts. Learning word vectors for sentiment analysis. In
Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies - Volume 1, HLT ’11, pages 142–
150, Stroudsburg, PA, USA, 2011. Association for Computational Linguistics.

40

http://lukajcb.github.io/blog/angular2/2016/04/02/frp-in-angular-2.html
http://lukajcb.github.io/blog/angular2/2016/04/02/frp-in-angular-2.html
https://github.com/Ulflander/compendium-js/wiki/analysis-process
https://github.com/Ulflander/compendium-js/wiki/analysis-process

[MSB+14] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J.
Bethard, and David McClosky. The Stanford CoreNLP natural language
processing toolkit. In Association for Computational Linguistics (ACL)
System Demonstrations, pages 55–60, 2014.

[MW18] Michael Mazurek and Manuela Waldner. Visualizing query expansion results.
to appear: Computer Graphics Forum 2018, 2018.

[Ope] Apache opennlp manual. https://opennlp.apache.org/docs/1.8.
4/manual/opennlp.html. Accessed: 2018-02-28.

[Ost15] D. A. Ostrowski. Using latent dirichlet allocation for topic modelling in
twitter. In Proceedings of the 2015 IEEE 9th International Conference on
Semantic Computing (IEEE ICSC 2015), pages 493–497, Feb 2015.

[Ott17] Mark Otto. Bootstrap 4. https://blog.getbootstrap.com/, Dec 2017.
Accessed: 2018-02-28.

[Ros18] Steve Rose. Ripe for a kicking: Hollywood’s love-hate relationship with
rotten tomatoes. https://www.theguardian.com/film/2018/feb/
26/rotten-tomatoes-hollywood-love-hate-relationship, Feb
2018.

[SG16] Jasmeet Singh and Vishal Gupta. Text stemming: Approaches, applications,
and challenges. ACM Comput. Surv., 49(3):45:1–45:46, September 2016.

[Sid18] Sabrina Siddiqui. Trump renews attack on florida
deputy: ’i’d run in there even if i didn’t have a weapon’.
https://www.theguardian.com/us-news/2018/feb/26/
gun-control-laws-nra-congress-return-recess, Feb 2018.

[SMNR16] M. Sun, P. Mi, C. North, and N. Ramakrishnan. Biset: Semantic edge
bundling with biclusters for sensemaking. IEEE Transactions on Visualization
and Computer Graphics, 22(1):310–319, Jan 2016.

[SOK+16] H. Strobelt, D. Oelke, B. C. Kwon, T. Schreck, and H. Pfister. Guidelines
for effective usage of text highlighting techniques. IEEE Transactions on
Visualization and Computer Graphics, 22(1):489–498, Jan 2016.

[SOR+09] H. Strobelt, D. Oelke, C. Rohrdantz, A. Stoffel, D. A. Keim, and O. Deussen.
Document cards: A top trumps visualization for documents. IEEE Transac-
tions on Visualization and Computer Graphics, 15(6):1145–1152, Nov 2009.

[SR18] Kareem Shaheen and Andrew Roth. Syria: Putin orders five-hour daily cease-
fires in eastern ghouta. https://www.theguardian.com/world/2018/
feb/26/syria-eastern-ghouta-assad-forces-un-ceasefire,
Feb 2018.

41

https://opennlp.apache.org/docs/1.8.4/manual/opennlp.html
https://opennlp.apache.org/docs/1.8.4/manual/opennlp.html
https://blog.getbootstrap.com/
https://www.theguardian.com/film/2018/feb/26/rotten-tomatoes-hollywood-love-hate-relationship
https://www.theguardian.com/film/2018/feb/26/rotten-tomatoes-hollywood-love-hate-relationship
https://www.theguardian.com/us-news/2018/feb/26/gun-control-laws-nra-congress-return-recess
https://www.theguardian.com/us-news/2018/feb/26/gun-control-laws-nra-congress-return-recess
https://www.theguardian.com/world/2018/feb/26/syria-eastern-ghouta-assad-forces-un-ceasefire
https://www.theguardian.com/world/2018/feb/26/syria-eastern-ghouta-assad-forces-un-ceasefire

[VH17] Kirill Voronov and Gevorg Harutyunyan. Modularadmin. https://github.
com/modularcode/modular-admin-html, Dec 2017. Accessed: 2018-
02-28.

[Wal06] Hanna M. Wallach. Topic modeling: Beyond bag-of-words. In Proceedings
of the 23rd International Conference on Machine Learning, ICML ’06, pages
977–984, New York, NY, USA, 2006. ACM.

42

https://github.com/modularcode/modular-admin-html
https://github.com/modularcode/modular-admin-html

Appendix

The survey for user feedback contained three documents with three pipeline results each.
The input documents and results were the following.

Document 1
Document 1 is the following news article from The Guardian [Ros18]:

Twenty years ago, the internet was a very different place. Google was a
fresh rival to Alta Vista and Lycos. Apple computers looked like boiled
sweets, and we dialled up to “surf the net”, having installed the software via
CD-Rom. The movie world of 1998 was also somewhat different: the box
office was ruled by meteorite movies and Adam Sandler; Harvey Weinstein
was an Oscar winner; and The Avengers was a lame, retro spy comedy with
Ralph Fiennes and Uma Thurman. It was into this climate that Senh Duong
launched Rotten Tomatoes – known in the business as RT – a site that has
transformed both worlds, although nobody seems quite sure if it has done so
for better or worse. Duong’s idea was simple – to compile movie reviews – and
it still drives Rotten Tomatoes. He was inspired by his love of Jackie Chan
and Jet Li movies and would scour the internet looking for reviews of them.
So why not put them in one place? Duong already had a full-time job, he
says. “Rotten Tomatoes was a side project I worked on in the evenings.” He
single-handedly designed and coded the site in just two weeks. “It was very
laborious. Every page was manually assembled using HTML. Every review
was manually searched for, read and quoted.” In the same way that, say,
lastminute.com and Expedia compare plane ticket prices, Rotten Tomatoes’
review aggregation has turned out to be super-useful, particularly as it boils
all those reviews down to a single, convenient percentage score. It then boils
down that score even further, to a simple graphic of a tomato. In the same
way that Siskel and Ebert gave a “thumbs up” or a “thumbs down”, or the
man from Del Monte tasted a pineapple and said “yes” or “no”, so Rotten
Tomatoes’ “Tomatometer” separates movies into “fresh” or “rotten”. If at
least 60% of a movie’s reviews are positive, it is graded “fresh”, signified by a
ripe, red tomato. Less than 60% and it is “rotten”, signified by a green splat.

43

Over 75% gets you a “certified fresh” logo, like a sticker on a quality piece of
fruit. (The 1998 Avengers movie, if you were wondering, scored a supremely
rotten 5Today, movies supposedly live or die by the ripeness of that virtual
fruit. Rotten Tomatoes has become the one movie site to aggregate them all.
The Tomatometer appears not only on Rotten Tomatoes’ site but also on
ticketing sites such as AMC cinemas and Fandango (which has owned Rotten
Tomatoes since 2016). It comes up on Google searches, iTunes, SoundCloud,
in Twitter and chatroom discussions and (as long as the rating is “fresh”) in
movie studios’ marketing campaigns. It is a news item when a movie achieves
a “100% fresh” rating, as recently happened with Paddington 2 and, before
that, Greta Gerwig’s Lady Bird. With its dominance and prominence, Rotten
Tomatoes is becoming the story – and not always in a good way. After Lady
Bird got its 100% score, for example, one critic opted to lob a green splat into
the mix, not because he hated the movie, but because everyone else liked it so
much. “I had to consider whether to cast Lady Bird as fresh or rotten in the
context of a perfect score that people were using to trumpet Lady Bird as the
all-time best-reviewed movie on RT,” Cole Smithey tweeted. In other words,
Rotten Tomatoes’ status as a neutral measure of critics’ opinions comes into
question when it starts to influence those opinions. The possible gaming of
Rotten Tomatoes scores has taken on more sinister aspects lately. Earlier
this month, Facebook announced it had taken down the page of a group
called Down With Disney’s Treatment of Franchises and Its Fanboys, which
was attempting to orchestrate a mass troll assault on the Rotten Tomatoes
score of the superhero movie Black Panther. Alongside the critic-designated
Tomatometer score, Rotten Tomatoes also gives each movie an “audience
score”, determined by registered users and represented by a popcorn bucket:
red and full for positive; green and tipped-over for negative. The anti-Black
Panther group sought to lower the movie’s audience score by bombarding the
site with negative reviews. It claimed to have programmed bots to create
fake user accounts. It also said it was acting in the name of DC comics, the
main rival to Black Panther’s (Disney-owned) Marvel, but suspicions of far-
right motivations persist, particularly because the same group had previously
targeted Star Wars: The Last Jedi (also Disney-owned) on account of its
supposed “social justice warrior concepts”. Rotten Tomatoes has denied the
attacks succeeded, but at present The Last Jedi’s Tomatometer score is 91%
(a critical “Yay!”) while its audience score is 48% (a public “Meh”). Was this
discrepancy the result of far-right bots or genuine audience division? Either
way, it didn’t matter much: The Last Jedi is now the ninth-highest-grossing
movie in history. Black Panther is likely to be a billion-dollar movie, too.
When movies bomb, however, the studios have been quick to blame Rotten
Tomatoes. Last summer, Hollywood resorted to tomato-shaming to spare
its own blushes over colossal failures such as Baywatch (Tomatometer score:
18%), The Mummy (16%), King Arthur: Legend of the Sword (29%) and

44

Pirates of the Caribbean 5 (30%). “The critic aggregation site increasingly
is slowing down the potential business of popcorn movies,” complained the
website Deadline. Director Brett Ratner called Rotten Tomatoes “the worst
thing we have in today’s movie culture” and “the destruction of our business”.
He may have been stung by the fate of Warner Bros’ blockbuster Batman
v Superman: Dawn of Justice, which Ratner’s company co-produced; it
earned a malodorous 27%. The situation came to the boil with Batman v
Superman’s 2017 follow-up: Justice League. For Warner Bros, the movie
was a big deal: a superhero team-up with an estimated $300m budget. So,
eyebrows were raised when Justice League’s Rotten Tomatoes score did not
appear on the site as expected, once an embargo on critics’ reviews lifted.
Even when those reviews were available on other sites and the movie was
previewing in cinemas, Rotten Tomatoes’ webpage for Justice League was
blank. Instead, the excuse ran, Justice League’s score was to be announced
on Rotten Tomatoes’ new web show, See It Or Skip It, in which presenters
provide “context and conversation” around the movie of the week before
revealing its all-important Tomatometer score. For Justice League, that score
was a decidedly unripe 43%. By the time it appeared on the website, it had
dropped to 40%. Some observers smelled a conspiracy, since Warner Bros
holds a 30% stake in Rotten Tomatoes’ parent company, Fandango (Universal
owns the other 70%). Rotten Tomatoes, however, denied Warner Bros had
anything to do with the decision: “We are absolutely autonomous, like any
news organisation,” it said. “There is no outside influence on anything we
put on the site.” If the studio was secretly trying to bury bad news, it didn’t
work. The incident ultimately generated negative publicity for Justice League,
Warner Bros and Rotten Tomatoes.

The results are displayed in Figures 1, 2, and 3.

Figure 1: Local topic modeling result for document 1 using pipeline 1.

45

Figure 2: Local topic modeling result for document 1 using pipeline 2.

Figure 3: Local topic modeling result for document 1 using pipeline 3.

Document 2

Document 2 is also a news article from The Guardian [SR18]:

Vladimir Putin has ordered a daily five-hour “humanitarian pause” in the
besieged Syrian enclave of eastern Ghouta to begin on Tuesday, effectively
replacing a United Nations security council resolution that had demanded a
month-long ceasefire in the embattled region. The Russian president’s move,
which was announced by his defence minister, Sergei Shoigu, highlighted in
stark terms Russia’s primacy in Syrian affairs and the UN’s failure to impose
an end to the fighting in the area bordering Damascus. More than 500 people
have been killed in eight days of one of the deadliest bombing campaigns by
the regime of Bashar al-Assad and his allies during the seven-year war. The
move by Moscow follows mounting condemnation of the violence, with the UN
secretary general, António Guterres, describing the situation in Ghouta as “hell
on earth”. Shoigu said a ceasefire would begin on Tuesday in the Damascus

46

suburb and would take place from 9am until 2pm (7am GMT to 12pm) daily,
according to a transcript of his remarks published by the Russian news agency
Interfax. Russia, a key ally of the Syrian regime, would also help create an
evacuation route for civilians in the area, he added. The Syrian Observatory
for Human Rights said calm had generally prevailed in eastern Ghouta since
midnight, though four rockets had hit the town of Douma on Tuesday morning.
The announcement on Monday came after at least 29 people were killed in
eastern Ghouta despite a UN security council resolutionthat demanded an
immediate cessation of the fighting. Local doctors and monitors said at least
18 people had been injured by a suspected chlorine attack in eastern Ghouta
on Sunday evening. Residents have condemned the international community’s
inability to put an end to the fighting. “I am embarrassed for the UN security
council,” said Ghanem Tayara, the chairman of the Union of Medical Care
and Relief Organisations, which helps run dozens of hospitals in Syria. “The
mightiest nations on the planet cannot enforce the most basic standards of
human rights and decency.” The latest deaths in eastern Ghouta brought
the weeklong carnage in the enclave to more than 500 killed in airstrikes and
shelling by forces loyal to Assad. The security council resolution, which was
unanimously approved on Saturday, called for a monthlong ceasefire “without
delay”. “Eastern Ghouta cannot wait. It is high time to stop this hell on
earth,” Guterres told the UN Human Rights Council in Geneva. Zeid Ra’ad
al-Hussein, the high commissioner for human rights, condemned the security
council’s failure to end seven years of “unremitting and frightful mass killing”.
He said: “Second to those who are criminally responsible – those who kill and
those who maim – the responsibility for the continuation of so much pain lies
with the five permanent members of the UN security council. So long as the
veto is used by them to block any unity of action, when it is needed the most,
when it could reduce the extreme suffering of innocent people, then it is they –
the permanent members – who must answer before the victims.” The violence
has highlighted the Syrian government’s desire, alongside its allies in Moscow
and Tehran, to score a military victory in the area, which has been under a
tightening siege for nearly a year and is strategically significant owing to its
proximity to Damascus. Reports of an attack using chlorine, which has been
used frequently in the past by the Assad regime, would represent a further
escalation if confirmed. Doctors said they had treated patients in the town of
Shifounieh after a bombing. The patients exhibited symptoms consistent with
exposure to chlorine, including respiratory problems, inflammation in the
eyes and mucous membranes, as well as cases of hysteria and dizziness, the
doctors said. A video released by the Syrian American Medical Society, which
also helps run hospitals in opposition-held parts of Syria, showed children
and first responders doused with water and breathing through oxygen masks.
“The most heartbreaking thing is the children and infants who are brought
into the hospital from under the rubble and their entire family has been killed

47

– mother, father and siblings,” said one doctor in Ghouta. “Where do we go
with this child? Children whose age is in the single digits who have known
nothing except fear and terror and death and shelling. Babies and children
treated in Ghouta hospital on Sunday “The humanitarian organisations have
failed. I wonder if we can appeal to the animal rights organisations,” he added.
The watered-down resolution passed by the security council did not have a
timeframe, though it called for a ceasefire “without delay” and the lifting of
sieges as well as the delivery of humanitarian aid. On Monday, the French
president, Emmanuel Macron, told his Turkish counterpart, Reçep Tayyip
Erdoğan, that the UN’s proposed 30-day ceasefire must be applied across
the country, including in Afrin, where Turkey is waging an offensive against
a Kurdish militia. It “must be put into effect everywhere and by everyone
without delay”, Macron said in a telephone call to Erdoğan, adding that
Turkey, Russia and Iran, the three countries overseeing talks in Astana aimed
at ending the civil war, “have a direct responsibility in this regard that must
be applied on the ground”. Ankara launched an offensive last month against
the Kurdish People’s Protection Units (YPG) in Afrin in northern Syria. On
Sunday the Turkish government said the UN ceasefire would not affect its
operation, which it claims is aimed at fighting “terrorist organisations that
threaten the territorial integrity and political unity of Syria”. Turkey sees the
YPG as the Syrian branch of the Kurdistan Workers’ party (PKK), which for
more than three decades has waged an insurgency against the Turkish state
and is classified by Turkey, the US and the European Union as a terrorist
group. But the offensive has raised tensions with Washington, which works
closely with the YPG in the fight against jihadists in Syria.

The results are displayed in Figures 4, 5, and 6.

Figure 4: Local topic modeling result for document 2 using pipeline 1.

48

Figure 5: Local topic modeling result for document 2 using pipeline 2.

Figure 6: Local topic modeling result for document 2 using pipeline 3.

Document 3
Document 3 is another news article from The Guardian [Sid18]:

Addressing a gathering of 39 state governors at the White House, Trump
said officers who were outside the school at the time of the shooting “weren’t
exactly medal of honor winners”. “The way they performed was really a
disgrace,” he added. “I really believe I’d run in there even if I didn’t have a
weapon.” The president spoke as lawmakers returned to Washington following
a week-long recess and amid intensifying debate over gun laws. The 14
February massacre at Marjory Stoneman Douglas high school, in which
17 people were killed, has forced Congress to contend yet again with one
of the most politically controversial issues. Trump has pushed for arming
teachers – a proposal that has been pilloried by educators. In doing so he
has repeatedly criticised Scot Peterson, the armed school resource deputy
who waited outside Marjory Stoneman Douglas high school as the shooting
transpired. Peterson resigned, after being suspended without pay. Trump

49

has publicly attacked Peterson as a “coward” who he said “doesn’t love the
children, probably doesn’t know the children”. Peterson denied the allegation
in a written statement released through his lawyer on Monday, saying he had
not entered the building because he believed the gunfire was coming from
outside. “Mr Peterson wishes that he could have prevented the untimely
passing of the 17 victims,” the attorney, Joseph DiRuzzo, wrote. “However,
the allegations that Mr Peterson was a coward and that his performance,
under the circumstances, failed to meet the standards of police officers, are
patently untrue.” On Sunday, the Broward County sheriff, Scott Israel, told
CNN he was investigating the behavior of three other deputies, who the
network reported had been at the campus but had not entered the school.
Moment of silence for Florida school shooting victims on House floor – video
On Monday, Trump continued to call on Congress to take action on gun
law – a departure from his response to previous shootings under his watch.
The president has signaled support for tightening background checks and
instructed the Bureau of Alcohol, Tobacco, Firearms and Explosives to work
on a memorandum to outlaw bump stocks – the attachments that enable
semiautomatic rifles and other devices to fire faster. Lawmakers are likely,
however, to face familiar obstacles in passing even modest legislation, as
midterm elections loom. The National Rifle Association has also come out
aggressively against any new restrictions, even as public support for stricter
gun laws has risen to its highest level since the early 1990s, according to a
CNN poll released on Sunday. Trump told the group of governors on Monday
he believed the NRA was open to at least some changes to gun laws, noting
he had had dinner with the group’s leaders Wayne LaPierre and Chris Cox
over the weekend. “Don’t worry about the NRA, they’re on our side,” Trump
said. “Half of you are so afraid of the NRA. There’s nothing to be afraid of.”
Although mass shootings had become almost routine in the US, drawing little
reaction in Washington, events in Florida have spawned a rare grassroots
backlash, led by students. The national outcry in the wake of Parkland could
tee up the first major debate over gun laws since the 2012 massacre at the
Sandy Hook elementary school in Newtown, Connecticut, in which 20 young
children and six adults were killed. The Senate failed to expand background
checks in the aftermath of Sandy Hook, due to a Republican-led filibuster
of a bipartisan bill joined by a handful of Democrats. But several Democrat
and Republican senators who were in office then said on Monday that the
ground “has shifted”, owing in large part to the vocal activism of Parkland
student survivors. Several pieces of legislation are under consideration. But
only incremental measures appear to have any chance of passing, including
a bipartisan proposal aimed at ensuring that states and federal agencies
comply with and accurately report criminal and mental health records to
the National Instant Criminal Background Check System (Nics). The White
House has said Trump supports the bill, known as Fix Nics, but may seek

50

some revisions to its language. ’We must immediately harden our schools’
says NRA’s Wayne LaPierre – video A pair of senators are also poised to
introduce bipartisan legislation that would raise the age for buying assault
weapons, including the AR-15 used by the gunman in Parkland, from 18 to
21. Trump was supportive of the idea in the initial days after the Parkland
shooting but has been less vocal since the NRA came out against the proposal
last week. Sarah Sanders, the White House press secretary, told reporters
on Monday that Trump was “still supportive of the concept” and denied the
president had been influenced by the NRA. The president has nonetheless sent
mixed signals on the issue of guns, most often returning to the controversial
suggestion that the way to prevent school shootings such as that in Florida is
to arm teachers. The proposal, which is backed by the NRA, is unlikely to
garner support on Capitol Hill – but is indicative of Trump’s allegiance to
gun rights activists and his base. Trump signaled on Monday he was open to
taking on the NRA if necessary, stating: “If they’re not with you, we have to
fight them every once in a while. “They’re doing what they think is right,” he
added. “But sometimes we’re gonna have to be very tough and we’re gonna
have to fight them.”

The results are displayed in Figures 9, 7, and 8.

Figure 7: Local topic modeling result for document 3 using pipeline 1.

51

Figure 8: Local topic modeling result for document 3 using pipeline 2.

Figure 9: Local topic modeling result for document 3 using pipeline 3.

52

	Abstract
	Contents
	Introduction
	Related Work
	Natural Language Processing
	TextVis

	Natural Language Pipeline Interface
	Termlist Rating
	Segmentation
	Tokenization
	Part-of-Speech Selection
	Stopword removal
	Sentiment Analysis
	Topic Modeling
	Text Rendering
	Global Summary

	Implementation
	Client
	Frameworks and Libraries

	Evaluation and Results
	Test Configuration and Input
	User Feedback
	Performance

	Conclusion
	List of Figures
	List of Tables
	Bibliography
	Appendix
	Document 1
	Document 2
	Document 3

