
Progressive Real-Time Rendering
of Unprocessed Point Clouds

Markus Schuetz, Michael Wimmer
TU Wien

http://cg.tuwien.ac.at
mschuetz@cg.tuwien.ac.at
wimmer@cg.tuwien.ac.at

Rendering tens of millions of points in real time usually requires
high-end GPUs or the use of spatial acceleration structures. How-
ever, even high-end GPUs are limited in how many points they can
draw in real time and generating acceleration structures requires a
preprocessing step.
 Two major bottlenecks of point cloud rendering are the signifi-
cantly larger amount of vertices that are necessary to achieve a
similar level of detail as textured polygon models, and the large
amount of overlapping fragments that are generated from said ver-
tices.

Problem

• distributes the workload of rendering a single, large blob of
points over multiple frames, without the need to generate
acceleration structures in advance.

• reuses details that were already drawn in previous frames
and progresses uniformly towards the finished result, typi-
cally in less than a second.

• is designed to work while points are being loaded or
scanned so that users can immediately see results.

• uses a single, randomly shuffled array of points as its data
structure. Shuffling happens incrementally while points are
loaded.

• allows users to explore any point cloud that fits into GPU
memory in real time.

Our Approach ...

• Futterlieb et al. developed a method that accumulates detail
when the camera is still and creates a new vertex buffer
from visible points in discrete intervalls, in order to preserve
the accumulated details when the camera moves again [1].
Our method differs in that we create an index buffer every
frame, instead of a vertex buffer in discrete intervalls.

• Similar to our approach, Ponto et al. reprojects every frame
to the next, but they add nodes of a hierarchical structure,
instead [2]. As such, it converges faster but in non-uniform
way, and it requires a hierarchical structure.

Related Work

References Acknowledgements

Method

Incrementally building a shuffled VBOProgressive Rendering

Our method consists of two parts, the progressive rendering and the incremental generation of a shuffled vertex buffer object.

[1] Jörg Futterlieb, Christian Teutsch, and Dirk Berndt. 2016. Smooth visualization of large point clouds.
IADIS International Journal on Computer Science and Information

[2] K. Ponto, R. Tredinnick, and G. Casper. 2017. Simulating the experience of home environments. In
2017 International Conference on Virtual Rehabilitation (ICVR). 1–9. https://-
doi.org/10.1109/ICVR.2017.8007521

We would like to thank the following institutions for providing the respective data sets:
• Heidentor: Ludwig Boltzmann Institute for Archaeological Prospection and Virtual Archaeology
• Retz courtesy of RIEGL Laser Measurement Systems
• Candi Sari courtesy of TU Wien, Institute of History of Art, Building Archaeology and Restoration

Results

12345 794321 24 . . .

Pass 1
reproject previous

Pass 2
add random

Pass 3
generate new IBO

Current Frame nFrame n-1 Frame n+3

Render only points that were
visible in the previous frame.
This limits the number of points
drawn to the number of pixels,
which heavily reduces workload.

This pass uses glDrawElemen-
tsIndirect because the index
buffer object (IBO) and the draw
parameters were generated di-
rectly on the GPU by pass 3 of
the previous frame.

We benchmarked three point clouds on
three GPUs and compared the rendering
performance of our progressive approach
to the performance of a bruteforce (all
points every frame) approach. For the
bruteforce timings, we used the unshuffled
VBO since it renders faster that way.
 To exploit higher performance of some
GPUs, we add 3M points per frame on the
1080 GTX, 2M on the 1060 GTX, and 1M
on the 940 MX. Higher values increases
rendering times but reduces the number of
frames until convergence.

Code samples available at:
https://github.com/m-schuetz/siggraph2018

Add a random selection of
points to fill gaps that appear
after transformations. A random
selection results in a more uni-
form progression to the final
result. In each frame, at most
(numPixels + numAdded) points
are drawn.

Random selections are obtained
by drawing subranges of a shuf-
fled vertex buffer object (VBO).

Generate an index buffer from all cur-
rently visible points, which is used in
Pass 1 of the next frame to render only
what is visible now.

Pass 1 and 2 also write the point indi-
ces to a hidden color attachment. Pass
3 is implemented as a compute shader
that executes for each pixel and writes
the respective point indices to the new
index buffer.

a b c d
b a c d
0 0 0 0

b a c d

b a c d

load points
shuffle batch

random target buckets

append to VBO

swap within VBO

 x y z w
 w z x y
 0 1 1 0

b a c d w z x y

w a c y b z x d

 i j k l
 j k i l
 2 0 1 2

w a c y b z x d j k i l

w k c y b z i d j a x l

Batch 1 Batch 2 Batch 3

We use an incrementally shuffled VBO in order to efficiently pick random points
during rendering, even while points are being loaded. This is done by shuffling
each new batch of points, appending it as a new bucket to the VBO, and finally
swapping the newly appended points with other points in random buckets. Swap-
ping between buckets is necessary because shuffling just the batch preserves lo-
cality within that batch. Race conditions are avoided because each point of the
appended bucket is swapped with a point at the same relative position of a
random target bucket.
This method maintains a sufficiently randomly shuffled array, without having to re-
shuffle all previously loaded points in each step. Instead, only #batchSize points
are shuffled and swapped with each batch.

Heidentor, 26M points
GPU bruteforce ours #add converges in
1080 GTX 8.483ms 2.154ms 3M 9 frames / 0.02s
1060 GTX 13.554ms 3.414ms 2M 13 frames / 0.05s
940 MX 37.311ms 11.281ms 1M 26 frames / 0.30s

Retz, 120M points
GPU bruteforce ours #add converges in
1080 GTX 46.289ms 2.892ms 3M 40 frames / 0.12s
1060 GTX 59.736ms 5.642ms 2M 60 frames / 0.34s
940 MX <not enough GPU memory>

Candi Sari, 250M points
GPU bruteforce ours #add converges in
1080 GTX 98.459ms 2.744ms 3M 83 frames / 0.23 s
1060 GTX <not enough GPU memory>
940 MX <not enough GPU memory>

(Candi Sari, 250M points, many of them projected onto the same pixels)

bucket 1 bucket 2 bucket 3bucket 1 bucket 2bucket 1

CPU

Compute Shader

