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ABSTRACT
Rendering tens of millions of points in real time usually requires
either high-end graphics cards, or the use of spatial acceleration
structures. We introduce a method to progressively display as many
points as the GPU memory can hold in real time by reprojecting
what was visible and randomly adding additional points to uni-
formly converge towards the full result within a few frames.

Our method heavily limits the number of points that have to
be rendered each frame and it converges quickly and in a visually
pleasing way, which makes it suitable even for notebooks with
low-end GPUs. The data structure consists of a randomly shuffled
array of points that is incrementally generated on-the-fly while
points are being loaded.

Due to this, it can be used to directly view point clouds in com-
mon sequential formats such as LAS or LAZ while they are being
loaded and without the need to generate spatial acceleration struc-
tures in advance, as long as the data fits into GPU memory.
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1 INTRODUCTION
Point clouds are commonly obtained by scanning the real world
through various devices and methods, such as laser scanners and
photogrammetry.

One of the difficulties of point-basedmodels is that a significantly
larger number of vertices is required to achieve a similar level
of detail as polygon models. Textures can be used to represent
surface features in between the vertices of a polygon, but with
point clouds, all the features are represented with colored points.
As a consequence, even small point-cloud models tend to consist of
tens of millions to hundreds of millions of points.

Another issue of point-based rendering is the overdraw due to
the large amount of overlapping fragments, as depicted in Figure 1a.
When a user moves away from a textured triangle, the number of
fragments it produces is reduced. However, if a user moves away
from a point cloud, the number of fragments remains the same but
with many of them projected onto the same pixel.

2 RELATEDWORK
Futterlieb et al. developed a method that accumulates detail when
the camera is still and creates a new vertex buffer from visible points
in discrete intervalls, in order to preserve the accumulated details
when the camera moves again [Futterlieb et al. 2016]. Our method
differs in that we create an index buffer every frame, instead of a
vertex buffer in discrete intervalls.

Similar to our approach, Ponto et al. reprojects every frame to
the next, but they add nodes of a hierarchical structure, instead
[Ponto et al. 2017]. As such, it converges faster but in non-uniform
way, and it requires a hierarchical structure.

3 METHOD
The basic idea of our method is to reduce the amount of points that
are drawn each frame by only rendering points that were visible
in the previous frame, plus a random set of additional points to fill
gaps that appear after transformations. This is done in three passes:

(1) Reproject previous frame.
(2) Add random points.
(3) Compute Dynamic Index Buffer (IBO) from visible points.
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Reproject Previous Frame: The previous frame is reprojected
by rendering the vertex buffer object (VBO) with an index buffer
that contains only the indices of points that were visible in the
previous frame. This index buffer is generated directly on the GPU
through a screen-space compute shader in the third pass of the
previous frame. We use glDrawElementsIndirect to draw the GPU-
generated index buffer and index buffer arguments without the
need to send them to the CPU first.

Add random points: During transformations, gaps will appear
because previously occluded areas become visible and points that
occupied adjacent pixels in the previous frame may not be adjacent
in the current frame anymore. These gaps are filled by adding a
different set of random points each frame.

Random points are selected by looping through and rendering
subranges of a shuffled VBO. In the first frame, points in range [0,
numRandom) are rendered, then in the second frame, points within
range [numRandom, 2 * numRandom), and so on. After the end of
the VBO is reached, this process starts from the beginning.

Without camera movement, this method converges to the same
result as if all points were rendered at once. It takes numPoints /
numRandom frames to converge. For example, if 1 million points
are added each frame and the point cloud contains 26 million points,
then it takes 26 frames until this method converges.

We decided to add random points because it results in a uniform
progression to the final result. Adding points that are sorted in
some way has shown to be faster in our benchmarks, likely because
of improved cache behaviour of texture writes, but it results in very
noticeable and unpleasant flickering.

Compute Dynamic IBO from visible points: This last pass is
a preperation for the next frame. A compute shader dynamically
creates an IBO of all visible points by running over each pixel in the
point-index color attachment and storing the indices in a buffer. It
also generates the arguments for the next draw call of the Reproject-
Pass, mainly the numer of indices that are stored in the dynamic
IBO, directly on the GPU so that a roundtrip to, and syncing with,
the CPU is avoided.

3.1 Data Stucture
The data structure for our method is a single randomly shuffled
VBO, which allows us to add random points to a frame by rendering
a range of vertices from the VBO.

Since one of the goals of this method is that it can be used while
a file is being loaded or while a scan is still in progress, this VBO has
to be kept in random order over all the points it contains, even when
a new batch of points is added. Shuffling just the newly added batch
of points is not sufficient, but shuffling all previously added points
along with it would significantly decrease performance as the total
number of points increases. To avoid this, we incrementally build a
randomly shuffled VBO by adding new points to random locations
inside the VBO using a compute shader. If there is a collision with
a previously added point, we move the existing point towards the
end of the VBO before inserting the new point to its target location.

Table 1: Timings for Heidentor (26M points), Retz (120M
points) and Candi Sari (250M points), in milliseconds. To ex-
ploit faster GPUs, 1M, 2M and 3M points were added each
frame on the 940 MX, 1060 GTX and 1080 GTX, respectively.
Even though Candi Sari contains more points, it renders
faster because views of the temple tend to cover fewer pix-
els.

Model GPU Reproject Add Build IBO Total
Heidentor 1080 GTX 0.312 1.804 0.038 2.154

1060 GTX 0.415 2.913 0.086 3.414
940 MX 2.293 8.649 0.339 11.281

Retz 1080 GTX 1.697 1.126 0.069 2.892
1060 GTX 1.523 4.002 0.117 5.642

Candi Sari 1080 GTX 0.976 1.716 0.052 2.744

4 PERFORMANCE
The maximum number of points that are rendered each frame is
limited to numPixels + numRandom, with 0.5 to 10million as suitable
values for numRandom, depending on the performance of the GPU.

Table 1 shows benchmark results on different GPUs. We were
able to push up to 120M points to the 1060 GTX, and 250M points to
the 1080 GTX before the GPU started to render from main memory
instead of GPU memory.

It takes numPoints / numRandom frames until the result con-
verges. At a framerate of 300fps for Candi Sari on a 1080 GTX, it
takes about a third of a second until it converges, with numRandom
set to 3M.

5 CONCLUSIONS AND FUTUREWORK
We have shown a method that can be used to progressively render
any point cloud that fits on GPU memory in real time using a
shuffled array as data structure, and how to incrementally build
this shuffled array while the points are being loaded.

In the future, we would like to explore ways to handle point
clouds that are larger than GPU memory, for example by asyn-
chronously streaming points from CPU memory, which is usually
larger than GPU memory.
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