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A B S T R A C T

Functional imaging techniques provide radiobiological information that can be included into tumour control
probability (TCP) models to enable individualized outcome predictions in radiotherapy. However, functional
imaging and the derived radiobiological information are influenced by uncertainties, translating into variations
in individual TCP predictions. In this study we applied a previously developed analytical tool to quantify dose
and TCP uncertainty bands when initial cell density is estimated from MRI-based apparent diffusion coefficient
maps of eleven patients. TCP uncertainty bands of 16% were observed at patient level, while dose variations
bands up to 8 Gy were found at voxel level for an iso-TCP approach.

1. Introduction

Tumour control probability (TCP) models are developed to predict
radiotherapy (RT) outcomes, both across populations and on a patient-
specific level [1,2]. Initial TCP modelling studies assumed spatially
uniform distributions of radiobiological characteristics, both within and
between patients [3]. There is currently considerable interest in in-
tegrating and adapting RT according to biological information acquired
during all stages of the treatment process [4]. In recent TCP studies,
patient-specific tumour information including features related to inter-
and intra-tumour heterogeneities have been incorporated into the
models, while also considering different dose distributions patterns
within the tumour for maximum tumour control [5]. Some of these
models exploit the benefit of functional imaging that non-invasively
provides information on tumour characteristics [6]. However, this in-
formation may be influenced by inherent inaccuracies in the image
acquisition process, which in turn leads to uncertainties in the TCP
model.

Uncertainty in the TCP models, as well as the underlying tumour
information may be difficult to explore and analyse. Methods from the
field of Visual Analytics (VA) – a discipline that combines visualization

with semi-automatic methods of data analysis [7] – could be used to
explore and analyse the TCP models. The particular application of VA to
TCP models may facilitate the inclusion of uncertainties associated with
biological information and the visualization of patient-specific TCP
uncertainty bands.

The aim of the present work was therefore to quantify uncertainty
bands by using a previously developed VA tool [8], built to include
Apparent Diffusion Coefficient (ADC)-induced uncertainties in the TCP
calculation, when ADC maps were used to calculate the initial number
of clonogens [9]. The study was based on ADC maps of patients with
prostate cancer and explored the uncertainties associated with two
different approaches to relate ADC values to cell densities.

2. Materials and methods

2.1. Patient information

Magnetic Resonance Imaging (MRI)-based ADC maps derived from
diffusion weighted imaging (DWI) together with index-volume contours
of eleven prostate cancer patients were included in this study. Image
data sets were acquired using an integrated endorectal and pelvic
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phased-array coil in a 1.5 T whole body MRI unit Siemens Avanto
(Siemens Medical Systems, Erlangen, Germany). Further information on
image acquisition, post-processing and patient characteristics were
described by Reisæter et al. [10].

2.2. Visual analysis tool

A VA tool was developed [8] to evaluate the propagation of un-
certainties into TCP calculations, caused by cell density estimations
from MRI-based ADC maps in prostate cancer patients [9]. In brief, the
proposed VA framework incorporated the following four main compo-
nents: (1) It supported quantification and exploration of ADC-induced
uncertainty (cell density uncertainties within the index lesion derived
from ADC maps) and its propagation to TCP modelling; (2) it facilitated
exploration and analysis of the sensitivity of TCP models to different
assumptions and parameter variations; (3) it enabled identification and
exploration of inter-patient response variability within cohorts; (4) it
allowed, given a targeted treatment outcome, to identify the treatment
strategies or parameters that would achieve it.

2.3. Cell density, ADC uncertainties and TCP computations

The cell density at each voxel within the index lesion was calculated
using two different approaches: (1) A linear relation between ADC and
cell density [11]; (2) an inverse sigmoid relation between ADC and cell
densities, with cell densities in the range of 105–107 cell/cm3. Voxels
outside the index lesion were considered to have a constant cell density
of 105 cell/cm3 for both cases; further details about the two different
approaches to derive cell densities have been described elsewhere [9].

ADC map uncertainties were included in the calculations of voxel
cell densities based on the results of a multicentre study previously
performed across three different clinical platforms, where ADC maps
from a phantom and a volunteer (http://drtherapat.eu/deliverables/
reports/) were derived by using the same image sequences. The ADC
value at each voxel was then modelled as a Gaussian distribution, as-
suming a standard deviation (σ) of 3% of the unknown real value. From
this, the quantitative real ADC value at each voxel position was esti-
mated by an analytical approximation of the probability that the real
value occurred, given the measured ADC value. The uncertainties on
ADC values for the experimental data were also considered to compute
the linear relation between volumetric cell density and measured ADC
values [8].

TCP modelling was based on Linear-Quadratic (LQ) curves, com-
bined with a Poisson dose–response model. The LQ model parameters
were set as: α=0.18 Gy−1 and α/β=1.93 Gy, and considering an
intra-tumour normal distribution of both α and β of 15% [12].

2.4. Evaluation of the tool

The eleven patients were loaded into the visualization tool frame,
assuming the aforementioned radiobiological parameters, the two dif-
ferent approaches for the relation between cell density and ADC values,
and the voxel-wise intrinsic uncertainty bands for the ADC maps.

TCP bands for each patient derived from the uncertainties in the cell
density were calculated assuming a prescribed dose of 95 Gy in 2.7 Gy/
fraction to the index lesion, while the rest of prostate received con-
comitantly 77 Gy in 2.2 Gy/fraction, mimicking an integrated boost
treatment [13]. The overall patient TCP and dose uncertainty bands
were evaluated at two different levels of the mean TCP: 0.7 (TCP0.7) and
0.9 (TCP0.9). TCP levels and dose uncertainties bands were compared
using paired t-test.

Additionally, assuming voxel-wise iso-TCP distributions across the
whole prostatic volumes for the overall patient TCP0.7 and TCP0.9 le-
vels, mean dose per voxel and the associated dose uncertainty bands
were also calculated.

3. Results

The ratio between the index volume and prostate volume ranged from
1% to 20% across the eleven patients. Across the population, the ADC
values inside the index lesion (mean ± SD: 1.07 ± 0.17·103mm2/s)
were lower than outside the index (1.22 ± 0.16·103mm2/s), indicating
higher cell density values inside the index lesion (Table 1).

The visualization tool allowed quantification of TCP and dose un-
certainty bands at each subject and at different levels of the overall
mean TCP. For TCP0.7, the individual TCP bands ranged between 3%
and 4% across the patients for the linear approach, and between 1%
and 16% for the sigmoid approach. At TCP0.9, the TCP uncertainty
bands ranged from 1% to 3% for the linear approach, and from 1% to
11% using the sigmoid approach.

Mean doses at the index volume needed to achieve the overall pa-
tient TCP0.7 and TCP0.9 levels (iso-TCP for all voxels) were 110 Gy and
118 Gy for the linear approach; and 92 Gy and 100 Gy for the sigmoid
approach, reflecting the lower cell density values resulting from the

Table 1
Dose and TCP bands, and voxel dose variability for all the patients, assuming the ADC uncertainties inside the index lesion at the two different levels of
total TCP, 0.7 and 0.9 (TCP0.7 and TCP0.9 respectively), and for the two cell density approaches.
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latter (Table 1).
Dose variability bands were similar for all patients and for the two

TCP levels (0.7 and 0.9), ranging between 1 Gy and 2 Gy for the linear
approach, and between 1 Gy and 3 Gy for the sigmoid approach. TCP
variability bands were slightly higher at the TCP0.7 level compared to
those at TCP0.9 level (mean ± SD, 1.1 ± 0.3 Gy vs. 1.0 ± 0.0 Gy
linear approach, t-test p-value < .05; 1.6 ± 0.7 Gy vs. 1.1 ± 0.3 Gy
sigmoid approach, t-test p-value < .05). The TCP bands followed the
same trend, and wider ranges were observed for the sigmoid compared
to the linear approach (mean ± SD, 3.2 ± 0.4% vs. 2.2 ± 0.4%
linear approach, 6.5 ± 4.7% vs. 4.7 ± 3.4% sigmoid approach). At
voxel-level, the mean dose variability was similar at the two dose levels
(1.1 Gy and 2.4 Gy for the linear and sigmoid approaches respectively,
Table 1, Fig. 1).

4. Discussion

In the present study we have evaluated a TCP visualization tool
previously developed to quantify uncertainties in dose and TCP when
functional imaging information was used to estimate radiobiological
parameters. We observed patient specific TCP variations (up to 16%)
and voxel specific dose variations (up to 8 Gy) when uncertainties were
included in the estimation of the radiobiological information in a data
set of prostate cancer patients. This study included the evaluation of
two different approaches (a linear and a sigmoid model) to calculate
cell density from ADC maps. The linear model represented the experi-
mental relation observed between ADC values and cell density [11]
resulting in denser tissues, while the sigmoid model included conven-
tional values for prostate tissue density, used in previous TCP models.

To the best of our knowledge this is the first study showing the
suitability of a VA tool [8] to evaluate individual image-based TCP
bands after RT in the presence of uncertainties. More specifically, this
study exemplifies propagation of imaging uncertainty into image-based
TCP models for RT of prostate cancer, by the inclusion of three tumour
parameters: the index volume, the prostate volume and the clonogenic
cell density extracted from ADC maps. Although patient-specific ADC
time variations are negligible [14], ADC map acquisition has poor re-
producibility across centres and scanners, having a limited spatial re-
solution and non-straight forward translation into specific radio-
biological parameters [15]. Therefore, the latter limitations should be
considered in future perspectives, or if further tumour information is

included in the models. Additionally, MRI acquisitions require extra
time and resources, while at the same time provide patient-specific
radiobiological information. Tools like the one presented here might be
suitable for incorporation into clinical routine, providing important
information for treatment selection or pre- and post-treatment evalua-
tion.

In the present study, tumour size and cell density were incorporated
into the model to estimate patient’s TCPs. Also other tumour para-
meters, such as radio-sensitivity, oxygenation or tumour proliferation,
might play a more important role in the overall treatment response.
These other radiobiological features may also be extracted using func-
tional imaging [16], and generalization to a more complete biological
description may lead to a more individualized and accurate tumour
control probability estimation. Several studies have aimed to predict
prostate tumour presence from multi-parametric MRI [17,18], which
enabled radiobiological optimization of dose distributions based on
tumour presence probability and functional imaging uncertainties [19].
Additionally associations between imaging patterns and histopatholo-
gical features were used to score tumour aggressiveness and/or activity
[20], and other recent studies identified MRI-based predictive bio-
markers of radiation response, being mostly associated with tumour
hypoxia [21,22]. Therefore, more sophisticated numerical methods,
e.g. support vector machine or vector recognition, are needed to in-
crease ability to determine tumour features [5,23,24]. Besides, each
imaging modality that can be incorporated in the model carry un-
certainties that need to be explored and their effect on the final TCP
outcome needs to be analyzed.

The inclusion of uncertainties in TCP calculations together with
patient-specific tumour biology features may allow evaluation of RT
plan suitability and be relevant for the treatment decision making
processes. Besides, this tool can also be part of biological-targeted dose
optimization process, where not only tumour information is used to
estimate the ideal dose distribution, but also to redistribute the dose in
order to minimize uncertainties. Besides, this tool has the potential of
performing patient clustering, where similar patients can be recognized
based on their tumour characteristics.

In conclusion, by using a VA tool this study has estimated dose and
TCP bands, as well as voxel dose variability owing to ADC uncertainties
for prostate cancer patients, when ADC maps are used to estimate cell
densities inside index lesions. Further improvements in functional
imaging to increase accuracy in radiobiological parameter estimations

Fig. 1. Left Panel: Uncertainty bands for one the patients and for the two different approaches to relate cell density and ADC values, assuming an iso-TCP for all the voxels inside the
prostate. Right Panel: Index and prostate contours over the ADC maps for one plane at the central part of the prostate for the same patient; showing mean dose and dose variability (blue
circles) at the voxel level for the two density approaches and for the two TCP levels. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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may increase the need for such tools to predict individual tumour re-
sponses before RT, enabling more appropriate dose prescriptions or
biologically guided dose painting.
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