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Visualization Strategies Addressing Uncertainty at Each Step of the Pipeline
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Figure 1: Schematic depiction of the uncertainty sources at each step of the radiotherapy pipeline, with the visualization strategies designed
to address them and to communicate them to the intended clinical users. Underlined text indicates uncertainties tackled in previous work.

Abstract
Radiotherapy is one of the most common treatment strategy for prostate cancer. Prior to radiotherapy, a complex process
consisting of several steps is employed to create an optimal treatment plan. However, all these steps include several sources
of uncertainty, which can be detrimental for the successful outcome of the treatment. In this work, we present a number of
strategies from the field of Visual Analytics that have been recently designed and implemented, for the visualization of data,
processes and uncertainties at each step of the planning pipeline. We additionally document our opinion on topics that have not
been yet addressed, and could be interesting directions for future work.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications—Applications; J.3 [Com-
puter Applications]: Life and Medical Sciences—Life and Medical Sciences
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1. Introduction

Radiotherapy is one of the most common treatment approaches
for prostate cancer treatment. The basic concept of radiotherapy is
that tumors should be irradiated with high ionizing radiation doses,
while the surrounding healthy tissues should be preserved [Was15].
In the past decade, radiotherapy technology has managed to offer
exceptional flexibility in dose delivery and to minimize the side
effects of radiation on the adjacent healthy organs [TOG06]. How-
ever, prostate cancer radiotherapy sometimes still results in a num-
ber of toxicity-related side effects, especially for the bladder and
rectum. With respect to tumor treatment, there is also room for im-
provement. To this end, a standardized pipeline including all avail-
able patient- and tumor-specific information has been recently pro-
posed by Raidou et al. [RBV17]. This pipeline is shown in Figure 1.

All steps of the radiotherapy planning pipeline involve several
sources of uncertainty. Although some of these uncertainties can be
minimized, others cannot be eliminated, and analysis and commu-
nication to clinical users is essential. The accumulation and propa-
gation of uncertainties, throughout the entire pipeline, may have an
influence on the dose planning, and the final outcome of the plan-
ning procedure. In this paper, we analyze different sources of uncer-
tainty from disctinct steps of the pipeline, we provide an overview
on conducted work related to each step and we sketch some ideas
about challenging – yet, unaddressed – topics for future work.

2. Uncertainty in the Radiotherapy Planning Pipeline

In the pipeline depicted in Figure 1, imaging data of the prostate
of the patient are initially acquired, using several modalities. From
these, additional features indicative of tissue characteristics may
be computed. After registration, tumor tissue characterization takes
place to enable the identification of intra-tumor regions, where spe-
cific characteristics of each region, such as aggressiveness or re-
sistance to treatment, are derived. The structures surrounding the
prostate, which need to be spared during treatment, must be identi-
fied as well. This is done during segmentation. Based on all tumor
tissue and anatomical information, radiation plans are adequately
performed to more effectively treat tumors, without inducing harm
to the adjacent healthy organs. After the radiotherapy plan is de-
signed, the eventual response of the tumor to the employed radio-
therapy treatment strategy is modeled. From radiobiological mod-
eling, clinical researchers can predict the outcome of the treatment.

An important aspect in the radiotherapy planning pipeline is the
uncertainty, which is present at all steps. In literature, there is no
unanimous opinion on the definition of uncertainty. According to
Griethe et al. [GS06], uncertainty can be defined as error – outlier
or deviation from a true value, imprecision – resolution of a value
compared to the needed resolution, subjectivity – degree of subjec-
tive influence in the data, and non-specificity – lack of distinction
for objects. In our case, we define uncertainty as any variation in
the dose planning outcome, which is produced by an ad-hoc choice
or a stochastic process, at any step of the radiotherapy pipeline.

Although the importance of raising awareness on uncertainty in-
formation and its influence on the data has been stressed multi-
ple times, it is still overlooked with serious implications [BWE06,
LPSW96]. For example, in radiotherapy treatment planning, the

precision and accuracy of the steps of the pipeline can have severe
consequences on the treatment outcome. Despite its importance in
clinical practice, uncertainty visualization in radiotherapy planning
is not a commonly researched topic.

3. Recent Developments in Uncertainty Visualization for
Prostate Radiotherapy Planning

Uncertainty visualization is a challenging and popular
field [BPK∗14, JS03]. Often, uncertainty comes as an addi-
tional channel of information, which needs to be visualized on top
of other underlying data – increasing the complexity of the view,
and decreasing the understanding of implicated information. When
approaching an uncertainty visualization problem, the choice of
design methods depends on the nature of the uncertainty data, on
the uncertainty data type and on the already employed visualiza-
tions for the underlying data [GS06]. Uncertainty visualization
design is often not easy, as uncertainty tends to dominate over cer-
tainty in the data [BOL12]. This results into visualizations where
the underlying data are distorted or obscured, while uncertainty
is emphasized. Some of the most common design approaches
for the visualization of uncertainty are summarized in overview
papers [BOL12, BHJ∗14, PWL97, RPHL14]. However, a review
on uncertainty visualization is out of the scope of this work and
we focus only on topics related to radiotherapy. In this section,
we provide an overview of uncertainty sources at each step of the
pipeline and strategies to address them.

Multi-Parametric Imaging and Feature Derivation — The pur-
pose of the first part of the pipeline is to obtain images needed
for radiotherapy planning, from a multitude of medical imaging
sequences [HCE∗07]. Imaging modalities employed in prostate
cancer research include Computed Tomography (CT), Magnetic
Resonance Imaging (MRI), Diffusion-Weighted Imaging (DWI),
Dynamic-Contrast Enhanced MR Imaging (DCE-MRI) and, op-
tionally, MR Spectroscopy (MRS). All these imaging acquisitions
are accompanied by uncertainty – mainly due to resolution, distor-
tion at interfaces between tissues, noise, or artifacts inherent in each
scanning procedure. Motion artifacts, such as patient motion dur-
ing acquisition, involuntary rectal motion or due to bladder filling,
are also significant. Additionally, these modalities differ in sensi-
tivity and specificity for tumor detection and characterization. For
example, MRI has high sensitivity and poor specificity for tumor
identification. Parameterizations or modeling choices are also note-
worthy sources of uncertainty. Of particular interest is the selection
of pharmacokinetic models for the derivation of features, indicative
of tissue characteristics, from DCE-MRI data. Different modeling
approaches exist, the selection of which results into repeatability
and reproducibility problems.

From the aforementioned sources of uncertainty, the ones related
to specificity and sensitivity are often minimized by combining
the different imaging modalities [BRC∗12, HCE∗07]. The others
– related to parameterizations and modeling selection – cannot be
avoided, and their impact needs to be analyzed and explored. In
the present case, we focus on the uncertainty emerging during the
derivation of features from DCE-MRI data. For clinical researchers
working on pharmacokinetic modeling, it is valuable to investigate
how the derived tissue parameters behave with different modeling
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choices. A visualization application for the interactive exploration
and analysis of model-induced variability in pharmacokinetic mod-
eling parameters was proposed [RvdHvH∗14]. It offers a single
combined exploratory view on different parameters from different
modeling alternatives. An example of the use of the tool is shown
in Figure 1(a). A related approaches was proposed by Nguyen et
al. [NBYR12].

Registration — In the presented radiotherapy planning pipeline,
all previously mentioned modalities need to be registered to ensure
that they are in the same coordinate system. Potentially available
histopathological data also need to be registered. Registration may
be accompanied by uncertainty, which may have a strong impact on
the remainder of the radiotherapy planning pipeline. Uncertainty in
image registration is primarily related to the inherent characteristics
of the different imaging modalities that are co-registered. In addi-
tion to this, different registration algorithms may bring different
types of uncertainty, related to localization accuracy or robustness.
In other cases, the lack of objective ground truth in the validation
of registration creates the need for manual registrations by experts,
which introduces uncertainty from inter-observer variability.

To the best of our knowledge, very few attemps have been made
in the past to visualize uncertainty in registration. The most recent
work was proposed by Schlachter et al. [SFJ∗16], with a framework
for the exploration and assessment of deformable image registra-
tion. The approach offers several interactive visualizations for the
exploration of candidate regions, with the goal of simplifying the
local visual assessment of co-registered images. Other approaches
were proposed by Smit et al. [SHS∗14].

Tumor Tissue Characterization — Tumors are heterogeneous tis-
sues, enclosing multiple regions with distinct characteristics. Incor-
porating patient-specific intra-tumor tissue information into radio-
therapy planning can lead more effective treatment, where distinct
intra-tumor tissues are irradiated with adequately selected radia-
tion doses [TOG06]. To perform a non-invasive in-vivo identifi-
cation and exploration of intra-tumor tissues, clinical researchers
need to associate histopathological findings, with features derived
from co-registered imaging data, such as DCE-MRI, or DWI data.
Uncertainty at this step of the pipeline involves all uncertainties
that are being propagated from the imaging or registration step of
the pipeline. Uncertainties in the histopathological data are signif-
icant, but they can be minimized by, for example, having different
observers characterizing the tumor regions.

For the exploration and analysis of the characteristics of distinct
intra-tumor regions, a user-guided exploratory tool [RvdHD∗15,
RKS∗16] has been proposed. In this approach, a 2D t-SNE em-
bedding [MH08] of the imaging-derived features is used to re-
veal potential intra-tumor regions with consistent high-dimensional
characteristics. Additional multiple linked interactive views pro-
vide functionality for the user-driven exploration and analysis of
the local structure of the tumor tissue feature space, enabling link-
ing to patient anatomy and clinical reference data. A user-in-the-
loop approach is followed to incorporate the knowledge of expert
users. The incorporation of uncertainty into the proposed approach
is done in two ways. The quality assessment of the employed im-
ages can be incorporated into the t-SNE embedding, as an addi-
tional encoding of quality metrics, such as the Goodness of Fit

(GoF) or Akaike Criterion (AIC). The parameterizations or mod-
eling choices produce one t-SNE embedding each, which can be
easily compared side-by-side, given a finite number of choices. An
example of the tool is shown in Figure 1(b).

Segmentation — The segmentation step of the radiotherapy plan-
ning pipeline aims at constructing models of the prostate and the or-
gans at risk, such as the rectum and the bladder [EPW∗11,BSS∗12].
The results of this step are highly dependent on the selected seg-
mentation method and its eventual parameter settings. Segmen-
tation can be either performed manually, semi-automatically, or
automatically. Manual segmentation by experts is time consum-
ing, but it can also create inter-observer variability, posing critical
questions concerning reproducibility and accuracy. Therefore, au-
tomatic methods are preferred. Still, these methods might not be
able to account for all cases and may perform sub-optimally. In
such cases, it is required to predict anatomic regions and circum-
stances under which, they are more prone to inaccuracies. The main
source of uncertainty in segmentation relates to the characteristics
of the selected algorithm, its eventual parameterizations and also its
applicability to the different structures that need to be segmented. A
second source relates to the fact that pelvic organs are flexible, soft
tissue structures with large variability in shape, size and imaging
intensity, where organ motion is also common.

We focus on these two sources of uncertainty in two distinct
approaches. For the first one, a visual analytics approach for the
prediction of the performance of a statistical shape modeling seg-
mentation algorithm, helping algorithm developers to understand
their results was introduced [RMB∗16]. This approach supports
the exploration and assessment of errors of pelvic organ segmen-
tations starting from a cohort of patients. Also, it enables drilling
down to individual subjects, for a more personalized exploration
and assessment of segmentation errors. An example of the use of
this web-based tool is shown in Figure 1(c.1). The second source
is addressed with a web-based framework, which enables easy ex-
ploration and detailed analysis of shape variability, facilitating seg-
mentation experts to generate hypotheses in relation to the perfor-
mance of their algorithms, within a cohort of patients [RBGR18].
This approach allows developers of the algorithms to quickly iden-
tify inaccurately segmented organs, and to deliberate about the re-
lation of shape variability to anatomical features and segmenta-
tion quality. This framework is depicted in Figure 1(c.2). Related
approaches include the work of Saad et al. [SMH10], Torsney et
al. [TWSM∗11] and Smit et al. [SLK∗17].

Radiotherapy Dose Planning — After segmentation, a simulation
of the treatment planning is performed in dedicated software. Our
focus at this step of the pipeline is not on the actual dose plan-
ning procedure, but on the incorporation of variability in planning,
which can be induced as a result of assumptions, adjustments, or
choices in the previous steps of the pipeline.

It is valuable for clinical researchers to understand and evalu-
ate the sensitivity of the treatment plan to the previous steps of the
pipeline. In that way, they can assess whether different choices in
the planning pipeline have an impact on the final treatment plan-
ning and be aware of this, when designing their treatment plans.
A visualization design to address the exploration and analysis of
variability in an ensemble of radiotherapy dose plans was intro-
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duced [SRV16]. First, an analysis based on the radiotherapy dose
iso-contours across different dose plans resulting from different as-
sumptions is performed. Secondly, the analysis is also conducted
directly at a voxel level, for obtaining more granular details. An ex-
ample of the use of the tool is shown in Figure 1(d), for the explo-
ration of the variability of the produced dose planning iso-contours.

Radiobiological Modeling — Clinical practice aims at choosing
the most effective radiotherapy strategy, based on clinical knowl-
edge and guidelines. However, clinical research aims at thoroughly
evaluating all possible treatment alternatives. For this purpose, ra-
diobiological modeling is used. This involves two aspects: Tumor
Control Probability (TCP) modeling and Normal Tissue Complica-
tion Probability (NTCP) modeling. TCP models are statistical mod-
els that quantify the probability that a tumor is effectively treated,
given a radiation dose. NTCP models are statistical models that
quantify the probability that normal tissue around the tumor is
harmed, given a radiation dose. Different sources of uncertainty are
present in both models.

Conventional TCP models are linear regression models, based
only on statistical knowledge. Recently, novel TCP models started
incorporating additional information from imaging modalities,
such as DWI [CMvdHR∗16]. In this way, patient-specific proper-
ties of tumor tissues are included, improving the radiobiological
accuracy of TCP modeling. As a consequence, the uncertainties
of the modalities are propagated into the TCP models. In addition
to this, the modeling step includes parameter assumptions, which
are not always crisp choices. Parameter sensitivity analysis of the
model is important when predicting the outcome of a specific radio-
therapy strategy. This is addressed with a new visual analytics sys-
tem [RCMM∗16] for the exploration and analysis of TCP model-
ing. With this approach, the – so far – disregarded imaging-induced
uncertainty and parameter sensitivity analysis can be incorporated
in the workflow of clinical researchers, providing new possibilities
for the evaluation of the selected radiotherapy strategies, even in
large cohorts of patients [CMRR∗18]. A new way of exploration,
which enables clinical researchers to start their analysis from the
desired outcome and to determine whether there are feasible radio-
therapy strategies to achieve it, is also made possible. An example
of this tool is shown in Figure 1(e.1).

NTCP modeling involves many aspects. One of it takes into ac-
count the natural shape variation of the organs of patients, to predict
whether toxicity was induced to the tissue. This is addressed with a
novel tool to enable detailed visual exploration and analysis of the
impact of bladder shape variation on the accuracy of dose deliv-
ery [RCMA∗18]. The tool enables the investigation of individual
patients and cohorts through the entire treatment process, and it
can give indications of RT-induced complications for the patient.
Individual patients can be explored and analyzed through the en-
tire treatment period, while inter-patient and temporal exploration,
analysis and comparison are also supported. This approach is de-
picted in Figure 1(e.2).

4. Future Challenges in Uncertainty Visualization for Prostate
Radiotherapy Planning

We described a number of approaches that have been recently pro-
posed to address some of the uncertainties at different steps of the

radiotherapy pipeline. However, as briefly mentioned in each of the
previous subsections, every step of the pipeline involves an innu-
merable amount of uncertainties. Not all of them have been ad-
dressed and, most probably, not all of them can be addressed. Al-
though extensive studies are being conducted with respect to the
errors or inaccuracies of the imaging acquisition step, as long as
the acquisition procedures are not being standardized, uncertainty
due to imaging will remain a problem for the entire pipeline.

Through the course of this work, we learnt several lessons, which
open new challenges and directions for future work. One of the
most important parts of uncertainty in radiotherapy, as well as in
every application that involves a pipeline, is related to the prop-
agation of uncertainty and its accumulation through the different
steps. For example, it is important to know how uncertainty prop-
agates from the imaging to the next steps of registration, segmen-
tation and to the final outcome of the pipeline. In the discussed
approaches, propagation was only partially addressed.

An additional gain both for users and for visualization experts
is that the communication of uncertainty allows the user to gain
confidence when employing various visualization frameworks. For
example, when exploring the uncertainty at a step of the pipeline,
it is important to be able to answer "how sure I am about this re-
sult?", "how was this uncertainty created?", "which previous steps
are mainly responsible for this uncertainty?", and "if something
changes in the previous steps, how much is the uncertainty af-
fected?". However, answering all these questions requires adequate
integration and linking of all pipeline components.

Other challenges for the future should also consider uncertainties
that may occur during the actual delivery of the treatment. This is
necessary, in order to provide a complete overview of the potential
inaccuracies in the final dose plan and their potential impact on
the treatment and prognosis. At this point, additional non-imaging
patient-specific characteristics of the patients (health record data)
should also be incorporated in the analysis.

Another point that has not been taken into account is the uncer-
tainty brought into the workflow by the use of the previously intro-
duced visual analytics strategies. Visual analytics is known to com-
bine the strengths of automated algorithms with the knowledge and
the cognitive abilities of human experts. In most of the previously
discussed cases, the focus was on communicating uncertainty due
to the employed methods. However, the user of the designed visu-
alizations is responsible for guiding the exploratory and analytical
process, for discovering new knowledge in the data, for generating
or confirming hypotheses. Therefore, at this point, we may wonder
how reproducible and how accurate are the user’s results and how
we can account for inter-observer variability.

5. Conclusions

In this work, we presented a number of strategies from the field of
Visual Analytics that have been designed and implemented recently
for the visualization of the data and uncertainty involved at each
step of the radiotherapy planning pipeline. We also documented
our own experience working in the field, regarding topics that could
evolve into interesting future directions.
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