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a b s t r a c t 

Memory, visual attention and perception play a critical role in the design of visualizations. The way users 

observe a visualization is affected by salient stimuli in a scene as well as by domain knowledge, interest, 

and the task. While recent saliency models manage to predict the users’ visual attention in visualiza- 

tions during exploratory analysis, there is little evidence how much influence bottom-up saliency has on 

task-based visual analysis. Therefore, we performed an eye-tracking study with 47 users to determine the 

users’ path of attention when solving three low-level analytical tasks using 30 different charts from the 

MASSVIS database [1]. We also compared our task-based eye tracking data to the data from the original 

memorability experiment by Borkin et al. [2]. We found that solving a task leads to more consistent view- 

ing patterns compared to exploratory visual analysis. However, bottom-up saliency of a visualization has 

negligible influence on users’ fixations and task efficiency when performing a low-level analytical task. 

Also, the efficiency of visual search for an extreme target data point is barely influenced by the target’s 

bottom-up saliency. Therefore, we conclude that bottom-up saliency models tailored towards information 

visualization are not suitable for predicting visual attention when performing task-based visual analy- 

sis. We discuss potential reasons and suggest extensions to visual attention models to better account for 

task-based visual analysis. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Visualization designers use a large variety of visual channels to

effectively encode data. Due to the limited computational capacity

of the brain, parsing and interpreting these visual channels cannot

be performed rapidly. Instead, visual attention is serially directed

to different regions in the visualization, and the information is

gradually decoded. Visual attention is a set of cognitive processes

that selects relevant information and filters out irrelevant informa-

tion from the environment [3] . Attention is driven by both bottom-

up and top-down factors. The aim of exogenous and very rapid

bottom-up attention is to warn of impending danger. It is guided by

low-level salient visual features which stand out from their neigh-

borhood (the so-called “pop-out effect”), such as intensity or color

contrasts, texture and motion. Visual channels used in information

visualizations are perceived either with specialized receptors of the

human visual system (e.g. red-green opponency [4] , orientation or
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patial frequency [5] ) or by multiple receptors in the case of com-

lex channels, such as shape. In contrast to this stimulus-driven

ttention, endogenous and much slower top-down attention is bi-

sed by cognitive factors. It involves prior knowledge, expectations,

asks and goals that enhance bottom-up attention. Real scene per-

eption , referring to the organization and interpretation of sensory

nformation, lies in the interaction between bottom-up and top-

own processing of attention [6] . 

When users interpret visualizations, top-down factors of atten-

ion are incorporated in scene perception. Visual search is an im-

ortant component of the process of interpreting visualizations. It

s the process of finding a specific target object in a scene among

on-targets. Visual attention thereby guides the user’s gaze and the

isual search, respectively. Understanding visual attention is there-

ore essential for selecting appropriate visual channels and design-

ng effective visualizations. 

Computational saliency models have been developed to predict

sers’ visual attention (see Section 2 ). These models are quite ac-

urate for simple stimuli and natural images [7–9] . While saliency

odels have also been used as a quality measure in the informa-

ion visualization domain [10,11] , it has been shown that these

odels’ accuracy for predicting visual attention in visualizations
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s significantly poorer than for natural images [12] . Matzen

t al. [13] therefore recently introduced a saliency model tailored

owards information visualization, and showed that fixations dur-

ng exploratory visual analysis could be predicted more accurately.

While it has been shown that bottom-up factors captured by

his new model have a strong influence on users’ visual attention

uring exploratory visual analysis, it is still unknown how strong

op-down guidance influences attention during task-based visual

nalysis. This work investigates human gaze behavior and saliency

rediction when performing typical low-level analytical tasks with

isualizations. To this end, we performed an eye-tracking study

ith charts from the MASSVIS database [1] . During this study,

sers solved three different low-level analytical tasks. We com-

ared the data of this study with eye tracking data of the mem-

rability experiment [2] with conditions closer to natural image

iewing. We could show that fixations are more coherent between

sers, but correlate less with the visualization-tailored saliency

ap when performing a low-level analytical task. We discuss some

otential extensions of saliency models to incorporate these added

op-down factors. 

. Visual attention models 

In recent decades, various attention models have been proposed

hat differ in how they predict human visual attention. As pio-

eers, Itti et al. [4] defined a computational bottom-up saliency

odel using local center-surround differences of intensity, color

nd orientation features at multiple spatial scales. This approach

f feature extraction has been adopted in many attention mod-

ls. Harel et al. [14] also followed this approach. Their model

omputes saliency using graph-based dissimilarity measures. Hou

t al. [15] introduced a model analyzing the frequency domain

nstead of the spatial domain to predict saliency. The bottom-up

odel presented by Zhang and Sclaroff [16] is based on the prin-

iple of figure-background segregation. The model identifies fig-

res in a set of Boolean maps generated by thresholding feature

aps. A work presented by Bruce and Tsotsos [17] defines saliency

s the self-information of visual features of the image. Zhang

t al. [18] proposed a Bayesian framework that incorporates top-

own information dependent on the target’s features with bottom-

p saliency that is represented as the self-information derived

rom the statistics of natural images. Goferman et al. [19] pro-

osed saliency detection based on patches with unique low-level

eatures, visual organization rules according to which regions close

o salient pixels are also salient and high-level factors, such as hu-

an faces. Vig et al. [20] and Cornia et al. [21] introduced saliency

odels that employ neural networks to predict fixations. 

Visual saliency predicted by computational models can be ap-

lied in many areas of computer science including image pro-

essing [22–24] , computer graphics [25] , robotics [26,27] , surveil-

ance systems [28,29] and human-computer interaction [30,31] .

aliency models have been widely evaluated against different

atasets that usually contain natural scenes and fixations from free

iewing [7,32–35] . The benchmarks [36–38] show for some image

atabases a small difference between the state-of-the-art models

nd human inter-observer (IO) that outputs a fixation map inte-

rated from other subjects than the one under test. The map serves

s an upper bound for prediction accuracy. Generally, the predic-

ion accuracy of the models is higher for simple images with few

alient objects. However, predicting human fixations in complex

mages with multiple objects is a challenging task [39,40] . 

The models are commonly used to predict where the observer’s

ttention is directed in natural images. However, they have also

een used in visualization research to predict attention and to

erive quality measures, respectively. For instance, Jänicke and

hen [11] describe a saliency-based quality metric for visualiza-
ions. It compares a saliency map using the cognitive model by Itti

t al. [4] and importance of visualized data, generated automati-

ally from data or manually by visualization designers. The metric

s then computed as the difference of these maps. Attention in dy-

amic geovisualizations was studied by Gagarlandini and Fabrikant

10] . Saliency of dynamic visualizations was predicted by the spa-

iotemporal model by Itti et al. [41] . The highest saliency value was

redicted in regions of the change. Saliency was also applied in

olume visualizations to guide attention to selected regions [42] .

aliency was first determined for each voxel, and was then en-

anced by center-surround operations between voxels inspired by

he standard cognitive saliency model [4] . 

These works are based on the assumption that saliency models,

riginally developed for natural image viewing, are equally accu-

ate for predicting the attention when interpreting visualizations.

owever, there are some notable differences between natural im-

ges and classic charts used in information visualization. Graphical

arks, such as dots or lines, are usually abstract and simple com-

ared to complex objects in natural images. Also, the background

s mostly uniform and the visualizations contain a lot of textual in-

ormation, such as labels and legends. Graphical marks and visual

hannels are chosen by a visualization designer according to design

uidelines and visualization domain knowledge with the goal to

xpressively and effectively represent the underlying data. Thereby,

isualization designers choose their visual channels to maximize

he amount of information displayed [43] . Matzen et al. [13] also

ote that most saliency models tend to omit fine-grained visual

eatures, like thin lines, which are highly relevant for information

isualization. 

Therefore, special variations of saliency models have been de-

eloped for information visualization. Lee et al. [44] , for instance,

ntroduced a saliency model for categorical map visualizations.

hey define point saliency as color difference of each point against

ts neighborhood. The class visibility quantifies the point saliency

alues that correspond to a given category. Most relevant for our

ork, Matzen et al. [13] proposed a novel saliency model that

ombines the model of Itti et al. with text saliency to predict

aliency in data visualization with higher precision. The presented

ork evaluated saliency models on the MASSVIS database [1] . The

esults highlight the importance of text in visual attention since

he model that relies only on text saliency outperforms classic

aliency models in most evaluation metrics. 

In our work, we will compute all above mentioned saliency

odels for the visualizations used in our experiment and compute

he correlations to the obtained fixations from our eye tracking

ata. 

. Related work 

To explore the applicability of saliency models beyond nat-

ral images, Borji et al. [7] compared the performance of four

aliency models to eye tracking data obtained during free view-

ng of 20 different image categories, including abstract patterns

nd line drawings. In their study, saliency models predicted fixa-

ions surprisingly well for sketches. Matzen et al. [45] compared

xation maps of novices and professional analysts when analyzing

ynthetic aperture radar imagery to Itti et al.’s [4] saliency model.

hey showed that fixation maps of novices were more correlated

ith the saliency maps, compared to those of the professionals.

hey concluded that novices are much more likely to be directed

y bottom-up salient features than experienced users. 

Haass et al. [12] compared the performance of three different

aliency models between the cat20 0 0 dataset [7] and the MASSVIS

ataset from Borkin et al.’s memorability experiment [2] using

ight different com parison metrics. They found that saliency mod-

ls performed worse for information visualizations than for the
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natural images. One possible explanation by the authors is that

text labels in visualizations attract the users’ attention to a higher

extent than indicated by the saliency models. Indeed, Matzen

et al. [46] and Bylinskii et al. [31] showed that most fixations in

visualizations can be accounted to regions containing text. In the

DVS model [13] , Matzen et al. linearly combined a variation of Itti

et al.’s model [4] with text saliency, and could thereby increase

the performance of the saliency model significantly. Our work ex-

tends this knowledge by comparing the effect of bottom-up visual

saliency on visual attention between exploratory and task-based

visual analysis. In combination with analysis of fixation patterns,

we can characterize the top-down guidance imposed by low-level

analytical tasks. 

Eye tracking is becoming a popular alternative for evaluating

visualizations, compared to classic completion time and accuracy

evaluations [47] . Mostly, it is employed to understand how users

read a particular encoding, such as parallel coordinates [48] , or to

compare visual exploration of different encodings, such as differ-

ent tree layouts [49,50] , graph layouts [51] , linear and radial charts

[52] , or user strategies for sorting in tabular visualizations [53] .

Task-dependent areas of interest can be used to assess in which or-

der and frequency users fixate crucial chart elements when decod-

ing the visualization [52,54,55] . In contrast to prior task-based eye

tracking experiments, we analyze the influence of visual saliency

on users’ attention when solving different tasks. 

In the memorability experiment by Borkin et al. [2] , eye track-

ing data was gathered in two separate treatments using various

charts of the MASSVIS dataset [1] : In a 10-second encoding phase,

users examined a visualization without a pre-defined goal. In the

subsequent 2-second recognition phase, they were asked to in-

dicate whether they had seen the particular visualization before.

Finally, in the 20-minute recall phase without eye tracking, they

were presented with small blurred versions of recognized visual-

izations, and were asked to write down everything they remem-

ber being shown. The outcomes of this experiment give indica-

tions which visualization elements attract the users’ attention, and

which elements make a visualization memorable. 

Based on the data obtained during the memorability experi-

ment [2] , Bylinskii et al. [56] explored different eye fixation metrics

to assess the MASSVIS dataset. The presented metrics are based on

overall fixations, fixations within areas of interest, gaze coverage

and human IO. These metrics can reveal interesting differences be-

tween visualization types, such as the observation that fewer vi-

sualization elements lead to more consistent viewing patterns be-

tween participants. To the best of our knowledge, our work is a

first attempt to assess the influence of bottom-up saliency on vi-

sual attention when performing task-based analysis of a visualiza-

tion given different low-level tasks, compared to task-free explo-

ration in the memorability experiment [2] . 

4. Task-based visual analysis experiment 

Data analysis using visualizations is commonly divided into

three categories [57] : 

1. exploratory analysis : to formulate a new hypothesis about the

data, 

2. confirmatory analysis : to confirm or reject given hypotheses

about the data, 

3. presentation : to communicate facts efficiently and effectively. 

We can assume that the impact of top-down factors on the

user’s visual attention varies for these activities. Exploratory analy-

sis is less driven by top-down factors than confirmatory analysis to

answer a specific question. For presenting known facts, often high-

lighting is used to effectively draw the attention to specific regions,

but the task-imposed guidance is also low. 
In our experiment, we compare confirmatory (or task-based) vi-

ual analysis and exploratory visual analysis. The purpose is to test

f task-based visual analysis is indeed strongly driven by top-down

actors, so that bottom-up saliency has negligible influence on the

ser’s attention during the task. 

.1. Hypotheses 

Our experiment is based on two major hypotheses, which we

urther sub-divided: 

H1: Overall, top-down factors, such as a particular task, play such

n important role in guiding visual attention that bottom-up factors

ave a negligible effect on the recorded fixation patterns. We reason

hat fixations of users will be strongly guided by the task during

ask-based visual analysis. To solve a task, users have to look at

re-defined areas of interest within the visualization, which will

equire most of their attention. On the other hand, we expect that

uring exploratory analysis, users will be more strongly guided by

ottom-up factors. We therefore expect the following results: 

H1.1: Fixations between users solving the same low-level analyti-

cal task will be more coherent than when exploring a visu-

alization without a specific task. 

H1.2: When solving a low-level analytical task, users fixate on a

sequence of specific chart areas in a task-dependent order. 

H1.3: The similarity between the recorded fixation maps and

bottom-up saliency maps will be higher when users explore

a visualization without a specific task than when perform-

ing a low-level analytical task. 

H2: Bottom-up factors have an influence on visual attention when

erforming a visual search for a target. While we assume that

ottom-up saliency does not have a strong influence on users’ fix-

tions (see H1.3), we do believe that it has an influence on visual

earch efficiency for target areas when solving a low-level analyt-

cal task. In particular, extreme values should stand out in their

ssociated visual channel, for instance as the longest bar in a bar

hart or the darkest region in a choropleth map. We therefore as-

ume that extreme values should also show up as salient regions

n the saliency maps, and that salient target data points are there-

ore fixated more quickly than non-salient data points. As a conse-

uence, we assume that users can find extreme values more effi-

iently than retrieving values of specific items or items associated

ith specific values. Our specific hypotheses are the following: 

H2.1: Efficiency of visual search for a target area depends on the

area’s visual saliency. 

H2.2: Extreme data points show up as highly salient graphical

marks in saliency maps. 

H2.3: Extreme values can be found most efficiently. 

.2. Image data 

Since our hypotheses are not targeted towards a specific visu-

lization type, we chose the MASSVIS database [1] as source for

ur image data. This database contains around 50 0 0 static visual-

zations obtained from different online sources, such as news me-

ia or blogs. The contained visualizations are targeted towards a

road audience and are therefore a popular choice to evaluate how

on-experts read visualizations [1,2,12,13,56] . We selected a sub-

et of 30 visualizations from the dataset with the goal to cover a

arge variety of visualization types, such as bar charts, maps, area

harts, tables, point charts and line charts ( Fig. 1 ) from the “news

edia” and “infographics” categories. Thereby, we only chose visu-

lizations with associated eye tracking data. 

16 charts contain human recognizable objects (HROs) such as

ictograms and real objects (e.g., bottles as in Fig. 1 )(e). We se-

ected visualizations with a rather low average data-ink ratio (ratio
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Fig. 1. Categories of visualizations used in the experiment. 

Fig. 2. Target-dependent AOIs of sub-parts of visualizations for the RV-task (a), the F-task (b), and the FE-task (c), respectively. Red, green and blue outlines define the target 

data points, their item labels and value labels respectively. To complete the RV-task, a target item label has to be searched. Then, the value label of the target data point (i.e., 

bar) is read. For the F-task, participants search the value label that satisfies the given condition. Then, they search data points (i.e. states) with the color that corresponds 

to this value and read their names. The scatterplot has data points sorted by the anticipated personal spending on Christmas gifts. Thus, participants only have to find the 

left-most dot without reading the actual value label. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 

Table 1 

Original labels of the MASSVIS dataset [1] . 

Category Description 

Annotation Visual elements 

annotating the data 

Axis Axes including tick 

marks and values 

Data Area where data are plotted 

Data (type) Visual representation 

of the actual data 

Graphical Elements not related 

element To data 

Legend Legends or keys 

Object HROs 

Text Textual elements 
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f data and non-data elements) of 1.5 (measured on a scale from

 = low to 3 = high). The dataset is accompanied by manually de-

ned labels summarized in Table 1 . 

.3. Tasks 

Visualization research has produced various task taxonomies

hat formalize activities with visualizations. We adopted the taxon-

my proposed by Amar et al. [58] that specifies low-level analytic

asks in the field of information visualization. According to Amar
t al., these are simple, easily solvable tasks, where users have to

nalyze the visualized data points. In contrast to high-level tasks,

sers do not require higher-level domain knowledge. Amar et al.’s

ollection of simple tasks is one of the most frequently cited task

axonomies in the visualization community [59] . We picked the

hree simplest tasks out of this taxonomy, which are easily solv-

ble across a wide range of visualization types – in particular the

isualization types in the MASSVIS database. 

For each visualization, we formulated a question according to

he task: 

• retrieve value of a specific data element (RV-task) ( Fig. 2 (a)), 
• filter data elements based on specific criteria (F-task) ( Fig. 2 (b)),
• find an extremum attribute value within a dataset (FE-task)

( Fig. 2 (c)). 

For comparing task-based visual analysis to more exploratory

nalysis, we additionally analyzed the eye tracking data of the

emorability experiment [2] (Mem-task). The aim of the memora-

ility experiment was to encode displayed visualizations and later

ecall as many details as possible. Participants were shown about

00 visualizations, each for 10 s. For the evaluation, we used fix-

tions from the first phase (encoding phase) of the memorability

xperiment, when participants were shown visualizations for the

rst time. 
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Table 2 

Task-dependent AOIs. 

Category Description 

Value label Textual value label of a target attribute 

Value Textual elements annotating 

annotation values of an attribute 

Value Legend or keys of attribute 

legend values of data points 

Data point Target data point 

Item label Textual identification of a target 

Item legend Legend of item encodings 

Table 3 

Optimal viewing order of task-dependent AOIs. 

Task Step 1 Step 2 Step 3 

RV Search Map to Read the 

item label the item value label 

F Search Map to Read the 

value label(s) the item(s) item label(s) 

FE Search Map to Read 

value label(s) the item(s) the item 

search item(s) label(s) 
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4.4. Areas of interest 

To be able to more specifically analyze eye tracking data with

respect to the given task, we additionally defined task-dependent

areas of interest (AOIs) for each visualization and low-level task

(RV, F, FE), respectively, listed in Table 2 . They comprise all ele-

ments of the visualization that need to be attended to correctly

answer the question. It is important to note that not all visual-

izations contain all AOIs, such as legends. Fig. 2 shows exemplary

visualizations with task-dependent AOIs. 

Depending on the task, there is an optimal viewing sequence

in which these task-dependent AOIs should be examined in or-

der to answer the question. For their eye tracking experiments,

Goldberg and Helfman [54] defined AOIs for three sequential steps

required to retrieve values in linear or radial graphs: “find di-

mension”, “find associated datapoint”, “get datapoint value”. We

adopted these three steps for the three low-level tasks in our ex-

periment ( Table 3 ). Step 1 thereby is always a visual search for an

item label, a value label, or a target data point, respectively. Item

or value labels can be axis labels, listed in legends, or directly as-

sociated with a data point. In the second step, this label has to be

mapped to the actual data point (i.e., the graphical mark). In Step

3, the associated value or item label has to be read. 

The F-task and the FE-task share the same goal – namely, to

read one or multiple item labels of targets whose attribute values

fulfill the given criteria. When solving the FE-task, users may di-

rectly search for the data point without reading value labels if data

entities are sorted according to the attribute’s value in question

(e.g., as shown in Fig. 2 (c)). Mind that our experiment included 27

F-tasks and four FE-tasks with multiple targets. 

The optimal viewing order of the RV-task is reversed. A target

label is given, and the goal is to find the value of its required at-

tribute, as shown, for instance, in Fig. 2 (a). For the RV-task, users

always had to find only a single value. 

4.5. Experimental design and procedure 

Using a within-subjects design, participants were shown the

same subset of 30 visualizations without any repetitions. The order

of appearance was counterbalanced with a Latin square across par-

ticipants. We formulated one RV-task, one F-task and one FE-task

for each visualization, but participants solved only one task type
er visualization. The order of the types was randomized with the

qual distribution of each type and balanced across participants. 

Participants had to correctly solve the task as quickly as possi-

le. The procedure of task completion consisted of three steps that

ere repeated for each visualization: 

1. Task description : First, participants were shown a question. After

they understood and remembered the question, they pressed

the spacebar. 

2. Visualization : Next, they saw a visualization which they should

analyze to answer the question. We did not show a central fix-

ation cross before displaying the visualization. In order to keep

the same viewing conditions as in the original memorability

experiment [2] , the task description that would affect partici-

pants’ scanning sequence, was not displayed in this step of the

experiment. As soon as they found the answer, they pressed the

spacebar again. 

3. Answer form : Finally, participants were shown a form where

they entered their answer. 

The experiment started with three example tasks to familiarize

ith each task type. The whole experiment took 29 minutes per

articipant, on average. Prior to this experiment, a pilot test was

erformed with three participants to ensure that task descriptions

re easy to understand and remember. 

.6. Measures and analysis 

For each user and visualization, we recorded eye tracking data,

he task completion time, and whether the given response was cor-

ect. For each visualization, we additionally created a saliency map.

rom this raw data, we used the following measures in our analy-

is: 

Correctness refers to the ratio of correctly answered questions

or a given task per user. An answer was considered as correct

hen it contained all target labels or their values. Task correctness

as checked manually after the experiment. We used the correct-

ess to test if the complexity of the tasks was similar, and only

ncluded measures of correctly answered samples for further anal-

sis. 

From the recorded eye tracking data, we computed several fix-

tion and AOI fixation measures: 

To measure fixation similarity within and across tasks, we built

 binary fixation map for each participant with ones at exact fix-

tion locations and blurred the maps (Gaussian filter: size = 200,

= 32). The inter-participant fixation similarity corresponds to the

verage value of correlation coefficients (CC) between each partici-

ant pair’s fixation map solving the same task for the same visu-

lization. This measure reveals the coherence of the fixations be-

ween users solving the same task (H1.1). The inter-task fixation

imilarity is the average of CC between each task pair’s fixation

ap for the same visualization. 

For the AOI fixation measures, we set the maximum distance

etween a fixation and an AOI to 50 px. This corresponds approx-

mately to 1.3 ° of visual angle. The first fixation time (FF) – or time

o first fixation – describes how much time passed from stimulus

nset until the first fixation was registered within an AOI. The FF

s used to compare the fixation sequence of task-dependent AOIs

etween tasks (H1.2). 

To evaluate the prediction ability of saliency models and to

easure the impact of saliency on attention (the fixation-saliency

imilarity ), we generated saliency maps from 12 saliency algo-

ithms described in Section 2 , denoted Itti [4] (implementation by

arel [14] ), AIM [17] , GBVS [14] , SUN [18] , CAS [19] , Sign [15] , BMS

16] , eDN [20] , SAMv and SAMr [21] (feature maps extracted by

he convolutional neural model based on VGG-16 [60] and ResNet-

0 [61] , respectively), DVS [13] (with the optimal weight of text
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Fig. 3. Correctness of answers per visualization. 

Fig. 4. Similarity between fixations of the same type of activity. 
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aliency for MASSVIS database) and TextS [13] (text saliency of the

VS model separately). 

We used two evaluation scores – Area under the Receiver Op-

rating Characteristic Curve and Normalized Scanpath Saliency . The

eceiver Operating Characteristic (ROC) curve represents the trade-

ff between the true positive rate and the false positive rate. A

aliency map is treated as a binary classifier. Saliency pixels at fix-

tions and the same number of random pixels are extracted. Fix-

tions with saliency above a threshold that is gradually increas-

ng and random pixels above the threshold are considered as true

ositives and false positives, respectively. Then, the ROC is plotted

nd the area under the curve (AUC) is computed. An AUC value of

 corresponds to a perfect fit between fixation map and saliency

ap, while 0.5 corresponds to chance level. The Normalized Scan-

ath Saliency (NSS) first normalizes saliency to have a zero mean

nd a unit standard deviation. The NSS score is then the average

f saliency pixels at fixation locations. For NSS, a value of 0 cor-

esponds to chance level, and the higher the NSS score, the bet-

er the fit. We chose these two metrics, because AUC is the most

idely used metric, and NSS has been shown to be the fairest

omparison metric in a formal evaluation [62] . We also report the

core of human IO that generates output maps from fixations of

ll participants except one under the test. The score can be con-

idered as upper bound to the fixation-saliency similarity evalu-

tion scores. Fixation-similarity measures are compared between

he three low-level analytical tasks and the Mem-task to verify hy-

othesis H1.3. 

The AOI saliency is computed as the average saliency value in an

OI. We computed the correlation between the AOI saliency and

ts FF to test its visual search efficiency depending on its saliency

alue (H2.1). Also, we compared the AOI saliencies of target data

oints between the tasks to test if extreme data points are more

alient (H2.2). 

Finally, the task completion time (TCT) is measured after under-

tanding of a task, from the initial display of a visualization to the

ress of the spacebar. We use TCT to test if the FE-task can be

olved more efficiently (H2.3). 

Eye-tracking data of our experiment are publicly available at

ttp://vgg.fiit.stuba.sk/2018-02/taskvis/ . Eye-tracking data of the

riginal memorability experiment [2] can be found at http://

assvis.mit.edu/ . 

.7. Apparatus 

We recorded eye-tracking data using Tobii X2-60 eye-trackers

t 60 Hz. All stimuli were displayed on 24.1-inch monitors with a

esolution of 1920 × 1080 pixels at a viewing distance of approx-

mately 60 cm. The gaze data were recorded with Tobii Studio and

rocessed by Tobii I-VT fixation filter. Users’ heads were not fixed,

ut they were instructed to avoid unnecessary head movements.

he experiment was conducted in normal indoor daylight lighting

onditions. 

.8. Participants 

We recorded eye-tracking data, response times, and the tex-

ual responses of 47 students participating in a data visualization

ourse and a computer vision course. Students were aged 20 to 25

ears; 44 were male, three female. Participants who normally wore

lasses or contact lenses for distant viewing were asked to wear

hem during the experiment. None of the participants had any

olor vision problems. All participants gave their informed consent

o the study and received an explanation of the experiment. The

tudy was performed at the end of the course and participation

as compulsory to gain all credits for the course. However, once
aving started the study, students were free to stop the experi-

ent at any time without having their data recorded and losing

ny course credits. 

. Results 

Each of the 47 users answered 30 questions in total. This cor-

esponds to 10 answers per task for each participant, resulting

n a total of 1410 gathered responses. From these responses, 199

14.1%) were incorrectly answered and excluded from further anal-

sis, leaving 1211 responses. While, in total, the highest number of

ncorrect answers was given for the F-task (81), there is no signif-

cant difference in correctness between the three tasks (Friedman

est: χ2 (2) = 5 . 081 , p = . 079 ; Fig. 3 ). The difficulty of the three

asks therefore seems to be comparable. 

.1. Fixation similarities 

To test if fixation patterns are more coherent between users

olving the same low-level task than when trying to memorize

he visualized information, we compared the inter-participant fix-

tion similarity between the three low-level analytical tasks, as

ell as the Mem-task. An ANOVA with Bonferroni-adjusted post-

oc comparisons showed that fixation similarity between partici-

ants is indeed significantly higher for the three analytical tasks

f our experiment than for the Mem-task (as visualized in Fig. 4 ;

 (3 , 87) = 20 . 274 ; p < . 001 ;η2 = . 411 ). This means that users solving

he same low-level task indeed have more coherent fixations, thereby

onfirming hypothesis H1.1. 

We illustrate this finding with a map visualization example in

ig. 5 . The matrix in Fig. 6 visualizes the similarity between fix-

tion maps of individual participants for this particular visualiza-

ion. Fixations obtained for the same task are usually more similar,

ndicated by blocks of red cells along the matrix diagonal. How-

ver, it can also be seen that fixations between the FE-task and

he Mem-task are quite similar (top right quarter of the matrix).

http://vgg.fiit.stuba.sk/2018-02/taskvis/
http://massvis.mit.edu/
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Fig. 5. A map used in our experiment. 

Fig. 6. Fixation similarity matrix for the map in Fig. 5 : The matrix visualizes CCs 

between all participant pairs. Participants are ordered by the activity they per- 

formed. The more red, the more similar are the fixation maps. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

Fig. 7. Similarity between fixations of different types of activity. 
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Mind that the targets of the FE-task – the countries with the high-

est ecological footprint – are clearly popping out in Fig. 5 . 

To further explore this similarity between the fixations of the

FE-task and the Mem-task, we compared the inter-task fixation sim-

ilarities between all four tasks using an ANOVA with Bonferroni-

corrected post-hoc comparisons. We found that the similarity be-

tween the FE-task and the Mem-task (rightmost bar in Fig. 7 ) is

significantly higher than between the F-task and the Mem-task,

as well as the RV-task and the Mem-task ( F (5 , 145) = 3 . 136 ; p =
. 010 ;η2 = . 098 ). We did not find any statistical differences be-

tween inter-task fixation similarities of any other task pairs. In

other words, the gaze patterns obtained during the Mem-task are

indeed most similar to those of the FE-task, while the other two

low-level analytical tasks lead to significantly less similar fixation

patterns to the Mem-task. 
.2. Task-dependent fixation sequence 

We then tested if the high similarity between the fixation

aps of users solving the same low-level analytical task can be

xplained by the sequence of fixations in the pre-defined task-

ependent AOIs. We therefore compared the first fixation times

FF) of the three task-dependent AOIs defined in Table 3 for each

ask type to test whether users follow the optimal viewing se-

uence ( Fig. 9 ). We conducted Friedman tests to compare the

Fs on the target item label, data point, and value label, respec-

ively, for the RV-task and F-task. For the FE-task, we conducted

 Wilcoxon-Signed Rank test to compare the FFs on the target

ata point and its associated item label. We only found a signif-

cant difference in FFs for the RV-task ( χ2 (2) = 111 . 972 , p < . 001 ).

ilcoxon-Signed Rank pairwise post-hoc comparisons showed that

ll FFs were significantly different from each other, with the low-

st FF for the item label, and the highest for the value label, as

redicted in Table 3 . The lowest median FF was recorded for data

oint in the FE-task, and interestingly also in the F-task. However,

hese differences are not statistically significant. This only partially

onfirms hypothesis H1.2: while the task-dependent sequence of AOIs

ould predict the sequence of first fixations for the RV-task, this se-

uence could not be observed in the scanpaths recorded for the F-task,

nd is not pronounced for the FE-task. 

Fig. 8 illustrates the fixation sequences using scanpaths of a se-

ected visualization and selected users performing one of the four

asks each. It is interesting to note how the user of the RV-task

equentially searched for the correct item label first (fixations 15

o 27) before finding the associated data point (fixation 29) and

nally its value (fixation 32). In the example scanpaths for the F-

nd FE-task, users scanned the target data point and its associated

abels more often. In all three tasks, the top area containing the

egends was visited repeatedly during the task. In contrast, observe

ow the user of the Mem-task parsed the header and the value

egend first, before switching the attention to selected items. 

.3. Fixation-saliency similarities 

To test whether the fixation-saliency similarity is higher for the

em-task than for the three low-level analytical tasks, we created

aliency maps of all the 30 visualizations using 12 different algo-

ithms and computed the fixation-saliency similarities for all four

onditions. In Table 4 and 5 , we report average AUC and NSS scores

f these saliency models and the human IO . 

Comparing the performance of Itti et al.’s saliency model [4] to

he human IO score in Tables 4 and 5 , there is a remarkable

ap between the saliency prediction and human visual attention

or all four tasks. These scores are similar to the AUC and NSS

cores of data visualization eye tracking data compared to Itti

t al.’s [4] saliency model, reported by Haass et al. [12] (0.68 and

.64, respectively). For reference, the average AUC and NSS scores

hey computed for natural images were 0.77 and 1.06, respectively.

We statistically compared the performance of two selected

aliency models between the four tasks: the widely used saliency

odel by Itti et al. [4] , as well as the state-of-the-art for mod-

ling visual attention for visualizations [13] (DVS) using Kruskal–

allis H tests. For both, AUC and NSS scores, we did not find

ny statistically significant differences between the tasks using

tti et al.’s saliency model (AUC: χ2 (3) = . 017 ; p = . 999 , NSS:
2 (3) = . 117 ; p = . 990 ). However, we found significant differences

or DVS (AUC: χ2 (3) = 10 . 6 6 6 ; p = . 014 , NSS: χ2 (3) = 16 . 972 ; p =
 001 ). Bonferroni-corrected Mann–Whitney U post-hoc compar-

sons showed a significantly higher AUC-score for the Mem-task

han for the F-test and a significantly higher NSS-score for the

em-task than all three low-level analytical tasks. 
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Fig. 8. Example scanpaths during the RV-task (How many deceased organ donors per million population does Brazil have?), the F-task (Which country has 25 of deceased 

organ donors per million population?), the FE-task (Which country has the lowest number of living organ donors per million population?) and the Mem-task, respectively. 

Fixations are colored according to their order in the scanpath, from red to yellow color. The scanpaths recorded during low-level tasks all contain the optimal viewing 

sequence of target-dependent AOIs defined in Table 3 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 

Table 4 

The average AUC for each task (saliency models sorted by publication year). 

Task Itti AIM GBVS SUN CAS Sign BMS eDN SAMv SAMr TextS DVS IO 

RV .684 .646 .608 .593 .595 .576 .621 .596 .630 .632 .647 .702 .812 

F .690 .645 .642 .593 .604 .622 .651 .595 .618 .631 .624 .692 .819 

FE .679 .654 .599 .602 .601 .600 .638 .568 .637 .647 .651 .705 .809 

Mem .686 .675 .553 .622 .637 .589 .652 .554 .653 .664 .696 .738 .781 

Table 5 

The average NSS for each task (saliency models sorted by publication year). 

Task Itti AIM GBVS SUN CAS Sign BMS eDN SAMv SAMr TextS DVS IO 

RV 0.66 0.53 0.42 0.39 0.43 0.27 0.39 0.34 0.70 0.65 0.69 0.80 2.00 

F 0.66 0.52 0.55 0.41 0.44 0.45 0.51 0.33 0.68 0.65 0.56 0.71 2.00 

FE 0.64 0.55 0.41 0.45 0.46 0.35 0.48 0.24 0.80 0.78 0.72 0.81 1.93 

Mem 0.67 0.62 0.24 0.53 0.63 0.34 0.54 0.19 0.83 0.88 1.03 1.06 1.50 
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For the DVS model [13] , we can therefore confirm our hypothe-

is H1.3 that bottom-up saliency strongly influences fixations of users

hen freely exploring the visualization, but has a significantly lower

ffect on visual attention when performing a low-level analytical task.

The major difference between the saliency model by Itti

t al. [4] and DVS by Matzen et al. [13] is that the latter explic-

tly encodes text regions within visualizations as highly salient. A

otential explanation for the significantly worse performance of

VS for the low-level analytical tasks compared to the Mem-task

ould be that users direct their attention more towards the data ar-

as than the text areas when performing low-level analytical tasks,
han when trying to memorize the visualization. Therefore, we ex-

lored the AOI fixation ratios in task-independent AOIs defined in

able 1 . Indeed, a Kruskal–Wallis H test with Mann-Whitney U

ost-hoc comparisons revealed that the data areas of visualizations

ere fixated more frequently during task-based analysis than dur-

ng the memorability experiment ( χ2 (3) = 41 . 435 ; p < . 001 ; see

ig. 10 ). The reason for this could be that users were seeking more

xplicitly for a particular data point and spent less time reading

nnotations, legends, and titles to memorize textual information,

hich was irrelevant for the present task. For both, text elements

nd legends, the fixation ratio was significantly lower for the F-task
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Fig. 9. First fixation times of target-dependent AOIs defined in Table 3 . 

Fig. 10. Fixations in task-independent AOIs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Relationship between the average saliency value of the target (Itti et al.’s 

algorithm [4] ) and the first fixation time (the item label for RV-task, the value la- 

bel for F-task and the data point itself for FE-task). The red dashed lines are lines 

of best fit. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

Fig. 12. Saliency map (Itti et al. [4] ) of the visualization shown in Fig. 14 (b). 
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than for all other tasks (Kruskal–Wallis H test: χ2 (3) = 23 . 701 ; p <

. 001 and χ2 (3) = 37 . 121 ; p < . 001 ). However, there is no signifi-

cant difference between the Mem-task and the other two low-level

analytical tasks. 

5.4. Correlation between target point saliency and first fixation time 

To test the influence of a target area’s visual saliency on vi-

sual search performance, we computed the correlation between

the task-dependent AOI saliency (using the model by Itti et al. [4] )

and its FF for each of the three low-level analytical tasks. We only

analyzed the first task-dependent AOI to be fixated according to

the task-dependent AOI sequence shown as Step 1 in Table 3 . Since

each task has a different optimal solution process, we set the tar-

get item label as visual search target for the RV-task, the target

value label for the F-task, and the target data point for the FE-task.

According to our hypothesis H2.1, there should be a negative cor-

relation between the visual search target’s AOI saliency and its FF

– in other words: the more salient the target, the faster it should

be fixated by the user. As visualized in Fig. 11 , there is a negative

correlation, but this correlation is weak. In other words, the visual

search efficiency for a target in the course of a low-level analytical

task does not strongly correlate with its target saliency. Therefore, we

have to reject hypothesis H2.1. 

5.5. Saliency of extreme data points 

Our assumption is that data points with extreme values usu-

ally stand out visually, i.e., have a higher saliency than target data

points for the RV-task or the F-task. However, a Friedman test on

the AOI saliency values computed using Itti et al.’s saliency model

showed that there is, in fact, no difference in target data point

saliency ( χ2 (2) = 2 . 381 ; p = . 304 ). Therefore, we have to reject hy-

pothesis H2.2: target data points of the FE-task do not show up as

more salient in saliency maps than target data points of the other

two tasks. 
For illustration of this result, consider Fig. 14 (b): The peak in

he line chart intuitively stands out. However, neither is this peak

he most salient region in the saliency map (see Fig. 12 ), nor is it

he extremum that was requested in the task question, which is

he highest blue bar. 

.6. Find-extremum task efficiency 

Finally, we tested the hypothesis that extrema can be found

ore efficiently than values associated with given items or items

ssociated with given value ranges. We therefore compared the

ask completion time between the three low-level analytical tasks.

 Friedman test showed that there is a significant difference

etween the tasks: χ2 (2) = 16 . 128 , p < . 001 . Post-hoc Wilcoxon

igned-Rank tests revealed that the F-task takes significantly

onger to be solved than the RV-task ( Z = −3 . 757 , p < . 001 ) and

he FE-task ( Z = −4 . 011 , p < . 001 ), but there is no difference in

ask completion time between the RV-task and the FE-task ( Z =
. 328 , p = . 743 ). We therefore also have to reject hypothesis 2.3: the

E-task was not more efficient to solve than the RV-task. 
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Fig. 13. Task completion time per task. 

Fig. 14. Fixation heat maps of visualizations with the lowest number of correct an- 

swers (a) and highest task completion time (b) for the FE-task. 
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To further explore the difference of task efficiency between the

E-task and the other two low-level analytical tasks, we compared

ow quickly participants fixated the target data points for the first

ime (FF of target data points, see first block in Fig. 9 ). Search for

he target data point took significantly longer for the RV-task than

or the other two task, and was accomplished fastest during the F-

ask (Kruskal–Wallis H: χ2 (2) = 56 . 512 ; p < . 001 ). In other words,

isual search for an extreme data point was more efficient than

nding a data point associated with a given item label. However,

isual search for any target data point within a given value range

as even more efficient. Mind how this finding contrasts the dif-

erences in task completion time. This illustrates that efficient vi-

ual search for a target data point does not automatically lead to

n efficient overall task performance. 

For illustration purposes, we show the visualizations leading to

he lowest correctness score and highest task completion time (i.e.,

owest overall performance), respectively, for the FE-task in Fig. 14 .

n Fig. 14 (a), the low correctness was caused by the fact that the

econd target item – Hawaii – has a salient color, but is very small

nd therefore easy to miss. In Fig. 14 (b) (i.e. the example leading to

he highest task completion time in the FE-task) users were con-

ronted with charts encoding two attributes in a one-dimensional
hart and had to figure out the visual mapping of the target at-

ribute first. This can explain why most fixations were captured

round the legend on the top left in Fig. 14 (b). This can also ex-

lain why extreme targets do not necessarily show up as salient

egions in the visualization, since they can be confounded by other

ata attributes, such as the size and shape given by the geography

f the state in Fig. 14 (a) or a second dependent variable encoded

n Fig. 14 (b). 

. Discussion 

For our discussion, we will relate our results to our hypotheses

nd finally discuss the implications. 

.1. Influence of bottom-up saliency during task-based visual analysis 

Fixation patterns of users solving different low-level analytical

asks showed that fixations between users solving the same task

ighly correlate, while the fixation map correlation between users

rying to memorize the visualization is significantly lower. This re-

ult was expected ( H1.1 ). However only in the RV-task could we

how that users clearly fixated the areas of interest in the optimal

equence for solving the task. The given low-level analytical task

herefore seems to have a measurable top-down guidance for the

sers where to look, but not necessarily in which order (H1.2). 

An unexpected finding during our experiment was that fixa-

ion maps of the memorability experiment much closer resembled

hose of the find-extremum task than those of the retrieve-value

r filter task. There are two possible explanations for this obser-

ation. A naive assumption could be that because extreme val-

es are highly salient, the users’ attention is guided there dur-

ng exploratory analysis. This might be true in some cases (e.g.,

ig. 5 ), but is often not the case (e.g., Fig. 8 and Fig. 12 ). In fact,

e found that target data points in our FE-tasks did not have a

igher bottom-up saliency than those of the RV-task and the F-

ask (H2.2). 

An alternative explanation is that users were intentionally seek-

ng for extrema as representative values to memorize the con-

ent of the visualization. This tendency is reflected in the se-

ected descriptions of visualization content of users in Borkin

t al.’s [2] memorability experiment (supplemental material). Most

f the listed user descriptions contain a short summary of what is

isualized together with one or more extreme items. This would

ean that a memorability task would lead to similar top-down

uidance as a find-extremum task. 

Despite the higher diversity of the fixations during the mem-

rability experiment, the fixations are more likely to co-incide

ith highly salient regions than during low-level analytical tasks.

his is true for the DVS model recently presented by Matzen

t al. [13] ( H1.3 ). However, for the seminal saliency model by Itti

t al. [4] , the fixation-saliency similarities are equally low for the

ow-level analytical tasks as for the memorability task. The dif-

erence between these two saliency models is that DVS explicitly

etects regions containing text and marks these regions as highly

alient. Since it has been found that users attend textual elements

or a long time when trying to memorize or free-viewing a visu-

lization [46] , DVS can better predict fixation patterns while per-

orming exploratory visual analysis. During task-based visual anal-

sis, however, users’ attention is more strongly directed towards

he data areas of the visualization, while, presumably, text areas

re targeted only selectively. 

.2. Influence of bottom-up saliency during visual search 

Our second hypothesis was that bottom-up visual saliency may

e a useful tool to predict the efficiency of visual search that needs
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Fig. 15. Saliency map [4] and fixations during the RV-task (What was the earthquake magnitude in Kamchatka in 1952?), the F-task (Which earthquakes reached a magnitude 

of 9 and higher?), the FE-task (What was the largest earthquake since 1900?), and the Mem-task for a bar chart. 
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to be conducted in the course of task-based visual analysis. De-

pending on the task, this may be a visual search for an item la-

bel, a value label, or an extreme data point. Especially in the latter

case, we expected to see that extreme data points stand out in the

saliency maps, and that therefore find-extremum tasks are more

efficient to solve overall. 

However, we could neither find a strong correlation between

the target point’s saliency and its first fixation time (H2.1), nor a

significantly higher saliency of extreme data points compared to

data point of the other the two tasks (H2.2), nor an increased task

efficiency for the find-extremum task (H2.3). In other words: ex-

treme data points are not necessarily more salient in classic visu-

alizations, and more salient data points are not necessarily faster

to detect during task-based visual analysis. 

We showed several examples why extreme data points in these

in-the-wild visualizations are often not more salient than other

data points. In many examples, there is more than one attribute

encoded in the visualization, so that two visual encodings compete

for the user’s attention (see, for instance, Fig. 8 or Fig. 14 ). 

Another example for a mismatch between apparent pop-out

effect and bottom-up visual saliency, as modeled by Itti et al.’s

saliency model, is illustrated in Fig. 15 . Here, the highlighted bar

is associated with a low saliency value, because the contrast of the

bright bar to the bright background is lower than of the remaining

bars. 

6.3. Alternative visual attention models for information visualization 

As illustrated in Fig. 15 , classic saliency models may contra-

dict the intuitive impression of which data points stand out from

a visualization. In information visualization, attention is affected

not only by pixels that differ from their neighborhood. Instead,

attention may rather be attracted by graphical marks whose vi-

sual channels differ notably from the remaining marks. Note that

graphical marks and visual channels are generated by a visualiza-

tion designer. Saliency models targeted towards information visu-

alization therefore do not need to be computed from the result-

ing image. Instead, the saliency of a graphical mark could be com-

puted when the visualization is constructed from its relative visual

prominence with respect to all remaining graphical marks. 

In the field of information visualization, a few specialized

saliency models quantifying the visual prominence of graphical

marks have been proposed. For instance, Lee et al. [44] introduced

point and class saliency measures to quantify the color saliency of

a single data point or a class of data points in a categorical map

visualization. Waldner et al. [63] derived a visual prominence mea-

sure of data points in scatterplots that use luminance and blur for

highlighting. In the future, it will therefore be of interest to com-

pare the prediction accuracy of these measures to classic saliency

models, or to find ways how to combine them. 

However, while we could observe that more attention is tar-

geted towards the actual data points when performing a low-level

analytical task as compared to the memorability task (see Fig. 10 ),
 considerable amount of attention is also attributed to textual el-

ments, like labels and legends. By taking text into account, the

VS model [13] can therefore achieve considerably higher accuracy

han the classic saliency models for the memorability task. When

erforming low-level analytical tasks, users also direct a lot of at-

ention towards text, but it is more selective. For instance, in the

V-task, users have to search for the matching item label. For the

xample shown in Fig. 15 , this would correspond to a visual search

or a text label on the vertical axis of the chart. In the F-task, users

ave to find a matching value range, which corresponds to a label

n the horizontal axis. 

For real-world scenes, Wang and Pomplun [64] showed that

sers are likely to direct their attention to text content, if they as-

ume that it is at an informative location. Low-level features, like

olor, are not the main attractors. In the case of visual analysis,

hether or not users assume text to be at an informative location

s task-dependent. For the RV-task in Fig. 15 , for instance, the ver-

ical location and length of the textual item label might be a more

eliable prediction for fixations than its visual saliency. For the FE-

ask, on the other hand, a saliency model targeted towards graph-

cal marks and their visual channels, could be more applicable. 

.4. Study limitations 

Our study highlighted some unknown aspects about visual at-

ention during task-based visual analysis. However, there are some

imitations to our study. 

First, the set of visualizations and the task questions were quite

eterogeneous. The disadvantage is that there are, therefore, many

actors potentially confounding the results, such as different visu-

lization types, varying numbers of dependent variables encoded

n the visualizations, or the usage of human recognizable objects.

e suspect that some hypotheses would require a more controlled

etup to be fully verified. One advantage of this variety, however,

s that the visualizations of the MASSVIS database are considered

s representative samples of in-the-wild visualizations that non-

xpert users are regularly confronted with. Another advantage is

hat we were able to collect a variety of eye tracking samples and

ould informally explore various factors that may have an influence

n visual attention during goal-driven analysis. 

Second, our user group was composed of data visualization stu-

ents who have gained some experience in analyzing visualiza-

ion compared to novices. As also shown in a prior study [45] , it

an be expected that novices are less strongly guided by top-down

actors when performing confirmatory analysis than more experi-

nced users. The participants of Borkin et al.’s [2] experiment were

recruited from the local communities of Cambridge and Boston”,

ut no information about their visualization literacy is provided. If

hese participants were novices, an alternative explanation to the

ower human IO scores could be that users of the memorability ex-

eriment analyzed the visualization in a less structured way than

he users of our task-based visual analysis experiment. 
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Third, we only tested three very simple analytical tasks in our

xperiment. However, in the task taxonomy by Amar et al. [58] ,

here are more low-level tasks, like sort, determine range, cluster,

r characterize distribution. Many of these tasks are not straight-

orward to solve on some of the visualization types in the MASSVIS

atabase or require very elaborate responses. We therefore did not

nclude them in this experiment. The eye movement characteristics

uring these tasks are yet to be investigated in future work. 

. Conclusions 

Our results show that despite having improved bottom-up

aliency models for information visualization, like DVS [13] , the

nfluence of bottom-up visual saliency is drastically reduced dur-

ng task-based visual analysis. We showed that users focus more

n data areas of the visualization during task-based visual analy-

is than when trying to memorize a visualization. Therefore, the

dded text saliency in the DVS model did not increase the accu-

acy for task-based visual analysis in the same extent as for ex-

loratory visual analysis. However, despite the increased attention

n the data area, we did not find a strong correlation between

 task-dependent area’s saliency and visual search efficiency. This

eans that visual attention is only slightly affected by early fea-

ures when performing task-based visual analysis using informa-

ion visualization – in contrast to observation of natural images

r during exploratory visual analysis. Yet, fixations between users

re more similar than during the memorability experiment. This

eans that task-based visual analysis is strongly guided by top-

own factors imposed by the task. 

To improve existing saliency models and tailor them more

owards task-based visual analysis, we therefore recommended

o merge classic image-based saliency models with object-based

aliency models. When quantifying how much individual graphical

arks stand out from their surrounding marks, the model should

ocalize and identify the marks, compare their features at object

evel (e.g. color, orientation, size and shape) and estimate their

elationships. In addition, other element types in a visualization,

uch as text areas, legends or axes, should be also incorporated in

he model. For instance, saliency of text labels should vary with

he task, so that text at informative locations for a given task re-

eives higher saliency. 

Our experiment was conducted using rather simple in-the-wild

isualizations and low-level analytical tasks. These tasks could be

asily solved by attending to only a few areas of interest in the vi-

ualization. More complex exploratory or task-based visual analy-

is requires more complex visual encodings, multiple (coordinated)

iews, and user actions to explore the data, like dynamic queries

r brushing and linking. Ultimately, saliency models tailored to in-

ormation visualization have to be extended to model the user’s

ttention in these more complex displays that dynamically change

s the user is interacting. 

In the future, it will be important to perform more system-

tic comparisons of eye tracking patterns between low-level ana-

ytical tasks by using carefully selected simple charts, such as bar

harts. Also, further low-level tasks, such as assessing correlations

n scatterplots, need to be explored. Finally, our user group had a

uite high level of visualization literacy. Comparing groups of visu-

lization experts with non-experts could reveal whether top-down

uidance of low-level analytical tasks is similarly strong for non-

xpert users. Since neural network models successfully reduced

he gap between human fixations and saliency prediction for nat-

ral scenes, a similar approach could be applied in data visualiza-

ions, too. By training a neural network on viewers’ fixation data

cquired during a specific task, saliency maps could be tailored for

 particular viewer and task, respectively. 
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