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by Separating Connectivity from Residual Uncertainty of Samples
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(a) Original smooth curve (b) Samples with noise extent (c) Pass #1: Connected manifold (d) Pass #2: Denoised curve

Figure 1: Our parameter-free method reconstructs features while effectively removing noise by a two-pass approach.

Abstract
We reconstruct a closed denoised curve from an unstructured and highly noisy 2D point cloud. Our proposed method uses a
two-pass approach: Previously recovered manifold connectivity is used for ordering noisy samples along this manifold and
express these as residuals in order to enable parametric denoising. This separates recovering low-frequency features from
denoising high frequencies, which avoids over-smoothing. The noise probability density functions (PDFs) at samples are either
taken from sensor noise models or from estimates of the connectivity recovered in the first pass. The output curve balances
the signed distances (inside/outside) to the samples. Additionally, the angles between edges of the polygon representing the
connectivity become minimized in the least-square sense. The movement of the polygon’s vertices is restricted to their noise
extent, i.e., a cut-off distance corresponding to a maximum variance of the PDFs. We approximate the resulting optimization
model, which consists of higher-order functions, by a linear model with good correspondence. Our algorithm is parameter-free
and operates fast on the local neighborhoods determined by the connectivity. This enables us to guarantee stochastic error
bounds for sampled curves corrupted by noise, e.g., silhouettes from sensed data, and we improve on the reconstruction error
from ground truth. Source code is available online. An extended version is available at: https://arxiv.org/abs/1808.07778

CCS Concepts
•Computing methodologies → Shape modeling; Point-based models;

1. Introduction

Reconstructing closed curves from noisy samples is considered an
important problem in computational geometry by itself. Further-
more it has applications in image analysis, computer vision and re-
verse engineering. An example use case is the extraction of silhou-
ettes from sensed depth images [BBP16], which consist of noisy
points, to segment the color data once reconstruction and denoising
have generated clear contours. Existing curve reconstruction and

denoising methods [Lee00, GG07, MTSM10, DGCSAD11, KH13]
often rely on Gaussian smoothing, which creates nice visual output
but may oversmooth features. Also the actual noise extent is not
considered, even if sensor device properties are known [Köp17], in
order to (stochastically) guarantee the error of acquisition. How-
ever, recovering the connectivity requires knowing the extent of
noise, and the high frequencies of the signal, the noise, can in turn
only be estimated well if the baseline of the signal, the connectiv-
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ity, is known. This mutual dependency is why such algorithms often
output curves which are not manifold, or over-smooth features. We
therefore propose a two-pass approach:

First, to break up the mutual dependence of connectivity and
noise, we apply FITCONNECT [OW18], an algorithm which man-
ages to reconstruct the connectivity by testing for consistent mani-
fold fittings of circular arcs as curve segments on increasing scales.
For a closed curve, it outputs a polygon with samples as vertices
that are sparsely chosen in proportion of the size of noise clusters
and therefore recover features. These vertices are augmented with
normals, and the neighborhood of samples contributing to its local
curve fit. This allows us to order and associate the noisy samples
along the reconstructed connectivity, in a single-parametric space,
with their Hausdorff distances as residuals separated from the un-
derlying low-frequency manifold connectivity.

Secondly, we move the vertices of the reconstructed polygon to
find the most probable curve fitting the noisy samples. We maxi-
mally straighten the curve while keeping it within the error bounds,
specified based on sensor noise models, for example. If a cut-off
PDF is used, a probability of being within the ground truth can be
guaranteed. At the same time we keep the samples’ Hausdorff dis-
tances balanced between the in- and outside of the curve to avoid
area shrinking.

Our contributions are:

• A two-pass reconstruction approach that uses prior connectivity
to enable a simpler and more efficient denoising model while
conserving features emerging over the noise extent (Figure 1).
• A parameter-free denoising method with stochastic guarantees.

2. Problem Definition

As input we take a set of noisy points S sampling a closed smooth
curve C. We obtain the connectivity by running the algorithm FIT-
CONNECT [OW18], which fits a linear piece-wise curve to the sam-
ples, i.e., a polygon P with vertices V ⊆ S. To do so, FITCONNECT

iteratively fits increasing k-neighborhoods of noisy samples with
circular arcs until adjacent fits become mutually consistent. In that
process it eliminates samples in noisy clusters which are redun-
dant w.r.t. connectivity. For the remaining points it blends the arcs
along their determined normals as a simple post-processing step to
approximate the original curve. In this paper, we omit this step in
order to apply our own denoising method, which assumes the fol-
lowing input: Each vertex vi ∈V has a neighborhood Ni, which is a
list of samples in S ordered by their projection onto its fit, as well as
a normal ni and a maximum noise extent ri detected by FITCON-
NECT (ri is zero if the sample can be interpolated without requiring
fitting to local noise). In case a noise cut-off radius ri is available
from another source, e.g., if a sensor noise model is known, we will
take these values as input instead. With d(x,P) being the Hausdorff
distance between a point x and polygon P, we define its signed vari-
ant as:

d̂(x) =

{
d(x,P), if x on or outside P.
−d(x,P), if x inside P.

(1)

Noise from sensed data is often modeled as a Gaussian prob-
ability distribution function (PDF). In our use case – silhouettes

extracted from sensed data and projected onto the view plane as
point sets – we only consider lateral noise and define a simplified
isotropic radial PDF, since this corresponds closely to the x- and
y-axis distribution of sensed data [Köp17]:

fX (x) =
1

σ
√

2π
exp

{
− (x−µ)2

2σ2

}
,σ > 0 (2)

This guarantees the sample to lie within a cut-off radius r with prob-
ability Π, which depends on a user-defined maximum allowed σ.

To achieve a curve that optimally both denoises and fits the noisy
samples, we pursue the following three goals:

1. Eliminate high frequencies (noise) by regularizing the curve in
the sense of straightening it where no features protrude over the
noise extent. We achieve this maximal denoising of the curve by
minimizing the angles of the polygon in the least-squares sense:

argmin
V ∑‖αi‖2

2,αi = ∠−−−−→vi−1,vi,
−−−−→vi,vi+1 (3)

2. Balancing the curve with respect to the number of samples that
lie inside and outside. This is achieved by setting the desired
mean signed distance to P to zero:

|S|

∑
i

d̂(si) = 0. (4)

Using the signed distance prohibits area shrinking.
3. Bounding the curve within the discs Di(vi,ri) of the maximum

permitted distance from samples, in order to preserve the fea-
tures recovered by FITCONNECT:

{∀si ∈ S : d(si,P)≤ ri} (5)

This results in the stochastic guarantee of the samples having
been produced by the curve with probability Π.

Note that we do not consider outlier points, for example intro-
duced by sensing errors. Those are not connected to P by FITCON-
NECT since they lie too far from the curve to be mutually consistent
with inlier points. Thus, we assume V to be free of outliers.

3. Denoising Algorithm

The above-mentioned constrained optimization model poses some
challenges: It allows too much freedom, and is formulated glob-
ally, both of which make it difficult to solve it effectively and in
reasonable run time. Moving the polygon vertices V freely in R2

would result in higher-order functions in the minimization problem
as well as in the constraints and bounds, making it slow to solve and
becoming trapped inside local minima. Since the curve polygon is
locally mostly tangential to the normals anyway, free movement is
too lenient and we restrict the problem by allowing vertices vi to
move only along their normals ni. This allows us to model all func-
tions as linear ones, enabling fast solving for the minimum, and we
do not expect a significant deviation from the minimum of the exact
model specified above.
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3.1. Adapted Model

We adapt and detail the above-mentioned model in the following
ways to obtain linear functions:

Let v′i = vi + xini, with xi ∈ x as a vector of displacement scalar
values and n as the normalized normals at v.

1. Angles: We approximate the non-linear computation of an angle
between incident edges of a vertex v′i by its linear distance to the
baseline b of its neighbor vertices, weighted by its reciprocal
length to get relative values proportional to angles:

y(i) =
d(vi,b)
‖b‖ ,b = (vi−1,vi+1),≈ αi = ∠(vi−1,vi),(vi,vi+1)

(6)
Both angle and the weighted distance correspond at their zero
values. Since these values are summed up as squares before min-
imizing, we expect the non-linear mapping to have little impact.
When we move a vi to v′i = vi +xini, this affects not only αi but
also adjacent αi−1 and αi+1, multiplied by the dot product of
their normals ni−1,ni+1 with ni,and therefore:

H(i−1, i) = nT
i−1ni

d(v′i ,(vi−2,vi−1))

‖b‖ (7)

H(i, i) = nT
i−1ni

d(v′i ,b)
‖b‖ (8)

H(i+1, i) = nT
i ni+1

d(v′i ,(vi+1,vi+2))

‖b‖ (9)

We can then substitute into Equation 3 to approximately express
the linear squares minimization of angles in terms of x:

argmin
x
‖Hx−y‖2

2 (10)

as a sparse diagonal matrix with 3 non-zero colums per row.
2. Balance: When we move a vertex vi, this displaces its two ad-

jacent edges ei,prev(vi−1,vi) and ei,next(vi,vi+1). In turn, this af-
fects the Hausdorff distance of the samples Se closest to an edge
e. We consider the initial distance of samples as orthogonal to
the edge:

bi(e) =
Se

∑
s j

(s j−vi)
T ne,ne =⊥e (11)

and clamped unit values of samples’ positions along the edge
since they will move more in terms of xi the closer they are to
vi, with a factor of [0,1]:

ci(e) =
Se

∑
s j

(s j−vi)
T e

‖e‖2 |[0,1] (12)

so that we can express the displacement of samples in terms of
xi along ni approximatively by substituting Equations 11 and 12
into Equation 4. This computes the distances of the samples xici
from the moving edge minus their initial displacement bi:

|S(vi)|

∑
i

xi[ci(e(si))]−bi(e(si)) = 0 (13)

Note that while our initial (constant) displacement corresponds

(a) δ=0.1r (b) δ=0.25r (c) δ=0.5r (d) δ=0.75r (e) δ=r

(f) δ=0.1r (g) δ=0.25r (h) δ=0.5r (i) δ=0.75r (j) δ=r

Figure 2: Top: Blending of fitted circular arcs as in FITCONNECT

post-processing. Bottom: Our denoising based on FITCONNECT

connectivity, but considering individual noise extents per sample.

to the Hausdorff distance as being orthogonal to the edge,
we use distance along the vertex normal to approximate this
quadratic term by a linear one. Since the linear term (non-
orthogonal distance of point to line) is an upper bound of the
quadratic term (Hausdorff distance), xi values will not diverge.

3. Bounds: We set lower and upper bounds:

{∀i ∈ |S| :−ri ≤ xi ≤ ri} (14)

Note that this would also permit using anisotropic PDFs.

Our adapted model now contains:

• A least-squares minimization (Equation 10)
• A linear system (Equation 13) with a single row and
• Lower+upper bounds (Equation 14).

Concisely we formulate this as:

minimize Hx−y
subject to Cx−b = 0

and −r≤ x≤ r
(15)

and we solve this as a constrained least squares problem, using
Lagrangian multipliers [Sel13].

4. Results

We have analyzed a large number and wide variety of point
sets with our method. This includes (1) data sets from re-
lated work in order to compare and show our improve-
ments, (2) synthetic data sets to measure the reconstruction er-
ror with respect to ground truth in order to demonstrate the
guarantees, and (3) real data, i.e., segmented silhouettes from
noisy sensed data. Open source code that replicates all re-
sult figures and tables of this paper is available online at
https://github.com/stefango74/stretchdenoise

Figure 2 shows how our method is able to recover the circle curve
from very large extents of noise (up to its entire radius) and denoise
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Input Blend Ours
δ max mean RMS max mean RMS max mean RMS
0.1 0.076 0.016 0.023 0.073 0.013 0.020 0.023 0.006 0.008
0.25 0.183 0.039 0.059 0.109 0.024 0.034 0.069 0.020 0.027
0.5 0.367 0.079 0.117 0.126 0.041 0.053 0.140 0.042 0.055
0.75 0.553 0.118 0.175 0.188 0.053 0.069 0.162 0.056 0.073
1 0.741 0.155 0.230 0.233 0.079 0.098 0.145 0.054 0.065

Table 1: Comparison of the error of the noisy input samples versus
FITCONNECT blending and our denoising method, as Hausdorff
distances from the original circle. The noise δ varies as shown in
Figure 2 and all values are in terms of the circle radius.

(a) (b) (c)

Figure 3: Reconstruction of highly noisy point sets. Left and cen-
ter: from a noisy curve construction algorithm (point sets courtesy
of Lee [Lee00]), with assumed uniform noise extent. Right: BUNNY

with approximate noise extent of δ = 1
3 lfs.

it effectively, compared to simple blending of the fitted circular arcs
that FITCONNECT performs as post-processing. Table 1 shows how
well both approaches reduce the input noise, and that our method
mostly denoises much better, reducing the input noise (mean or
RMSE) typically by a factor of 2-3.

Figure 3 shows the results of comparing our denoising method
on point sets with uniform very high noise. Note that the compared
algorithm [Lee00] only works on open curves whereas FITCON-
NECT reconstruction closes the curve (see Fig. 13+14 in [Lee00]).
Further, it is iterative as opposed to ours, requires parameter tun-
ing, and while its regression analysis will produce a nice-looking
smooth curve, it is likely to over-smooth fine features.

Runtime for our unoptimized denoising algorithm part varies be-
tween 0.003 and 0.2 milliseconds for the shown point sets.

(a) THING (b) THING (c) THING

Figure 4: Segmented silhouette of sensed 3D object denoised with
the individual noise extents per sample detected by FITCONNECT

but a minimum noise extent of derived from range image properties
of the samples. Left: Sensed RGBD point cloud. Center: FITCON-
NECT connectivity overlaid on RGB image. Right: Our denoised re-
construction overlaid on RGB image. Note that some deviations are
due to imprecise silhouette extraction not being part of our method.

In Figure 4, we show segmented silhouettes of sensed 3D objects
where the noise extent is computed from the range image properties
of the samples’ (x,y,z) position. Note that the extracted silhouettes
show some deviations to the objects’ real boundaries in the images,
due to the used silhouette extraction algorithm.

5. Conclusion

We have shown that our two-pass method successfully enables re-
constructing a curve from arbitrarily noisy points within a stochas-
tically guaranteed distance to the original curve while at the same
time retaining the features emerging over the local noise extent. The
error between the reconstructed and original curve is guaranteed in
terms of the input noise, which can be provided either by sensor-
specific properties, or estimates from FITCONNECT. Our method is
parameter-free since we model the requirements of a most probable
curve as minimization, equality and bounds respectively. We suc-
cessfully apply a technique that we developed ourselves to solve
this constrained optimization problem effectively and efficiently.
One sample application is determining silhouettes of objects in
sensed data, however the underlying assumptions extend directly
into 3D where reconstruction is a much more interesting and chal-
lenging problem. Our non-optimized denoising algorithm runs fast
enough for practical use, it can be verified using the open source
available online. Further extensions aside from reconstruction of
surfaces for 3D objects include a sharp corner detector to optimize
in-between segments locally, e.g., straight lines of man-made ob-
jects, as well as handling open curves.

This work has been funded by the Austrian Science Fund (FWF)
project no. P24600-N23. Data set THING thanks to Martin Novak.
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