
Optimized Sorting for Out-of-Core
Surface Reconstruction

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Medieninformatik und Visual Computing

eingereicht von

Sebastian Mazza
Matrikelnummer 00825828

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Mitwirkung: Dipl.-Ing. Dr.techn. Claus Scheiblauer

Wien, 5. April 2018
Sebastian Mazza Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Optimized Sorting for Out-of-Core
Surface Reconstruction

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Media Informatics and Visual Computing

by

Sebastian Mazza
Registration Number 00825828

to the Faculty of Informatics

at the TU Wien

Advisor: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Assistance: Dipl.-Ing. Dr.techn. Claus Scheiblauer

Vienna, 5th April, 2018
Sebastian Mazza Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Sebastian Mazza
Ritzlingbachstraße 308, 3610 Weißenkirchen in der Wachau

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 5. April 2018
Sebastian Mazza

v

Acknowledgements

I would like to thank Claus Scheiblauer for his support during my Bachelor project
especially for his advice and feedback during the development of the Scanopy plugin.

Further I would like to thank Michael Wimmer for his help in order to achieve my goals.

Thanks to the Stanford Computer Graphics Laboratory for distributing their 3D models
in the Stanford 3D Scanning Repository [Sta].

Last but not least I would like to thank my family, especially Franzi, for their endless
support and motivation during the whole time. Special thanks to Carl and Edith who
supported me in various ways.

vii

Kurzfassung

In den letzten Jahren hat die Anzahl der Akquisitionsmethoden für Punktwolken konti-
nuierlich zugenommen und gewinnt zunehmend an Bedeutung für die Gesellschaft. Auch
wenn es bereits möglich ist, Punktwolken direkt zu rendern, gibt es viel mehr Algorithmen,
welche mit Dreiecks-Meshes arbeiten, als mit Punktwolken. Zum Beispiel benötigt die
Software für 3D Drucker wasserdichte Meshes als Input. Diese Tatsachen machen das au-
tomatische Konvertieren von Punktmengen in Dreiecks-Meshes zu einem sehr relevanten
Forschungsthema. Das Ziel dieser Bachelorarbeit war die Implementierung eines Plugins
für Scanopy (ein Programm zum Rendern und Bearbeiten von Punktwolken), welches
Punktwolken mit hunderten von Millionen von Samples in einem so hoch detaillierten
Grad konvertieren kann, dass die Datenmenge übliche Hauptspeichergrößen übersteigt.
Daher wurde ein Out-of-Core Algorithmus benötigt. Der verwendete Out-of-Core Poisson
Surface Reconstruction Ansatz benötigt als Input sortierte Point Samples. Diese werden
daher in einem Vorverarbeitungsschritt sortiert. In dieser Bachelorarbeit wird aufgezeigt,
dass durch das Sortieren der Daten mit einem optimierten Multithreaded Mergesort Al-
gorithmus die für die gesamte Rekonstruktion benötigte Zeit signifikant reduziert werden
kann. Weiters wird in dieser Arbeit ein Problem dargelegt, welches bei der Rekonstruktion
von Scans von offenen Terrains mittels Poisson basierter Rekonstruktion auftritt und zu
großen und unnötigen Dreiecken führt, die die rekonstuierte Oberfläche verdecken. Ein
grundlegender Lösungsansatz für dieses Problem wird ebenfalls beschrieben.

ix

Abstract

In recent years the amount of acquisition methods for point clouds has been increasing
consequently and it is getting more and more interesting for society. Even if it is
possible to render point clouds directly, nowadays there exist many more algorithms
which deal with triangle meshes than point clouds. For example 3D printer software
requires watertight meshes as input. This makes automatic conversion of point sets to
triangle meshes an important research topic. The aim of this Bachelor Thesis was to
implement a plugin for Scanopy (a point cloud editing and rendering program) which
can convert point clouds with hundreds of millions of samples in such a detailed degree
that the data exceeds common main memory sizes. Therefore, an out-of-core algorithm
was needed. The used out-of-core Poisson surface reconstruction approach requires the
sorting of the input point samples in a preprocessing step. In this Bachelor Thesis it is
shown that the sorting of the data with an optimized multithreaded merge sort algorithm
can improve the total required time for the reconstruction process significantly. Further,
this work indicates a problem which occurs while reconstructing meshes with a Poisson
based reconstruction approach from scans of an open terrain. The problem leads to
large unnecessary triangles which hide the reconstructed surface. A very basic solution
approach for this problem is also stated.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Point Cloud . 1
1.2 Scanopy . 3
1.3 Converting point clouds to triangle meshes 3
1.4 Developed optimizations for out-of-core surface reconstruction 4

2 Previous Work 7
2.1 Surface reconstruction . 7
2.2 Out-of-core surface reconstruction . 10
2.3 Sorting . 14

3 Merge Sort 15
3.1 Why is fast sorting important? . 15
3.2 Existing quicksort implementation . 16
3.3 Multithreaded sorting . 16
3.4 The implementation of multithreaded merge sort 20
3.5 Reduce the memory consumption of merge sort 29
3.6 Optimization of merge sort through insertionsort 38

4 Postprocessing 45

5 Results 49
5.1 Test environment . 49
5.2 Sorting runtime . 49
5.3 Surface reconstruction . 53

6 Conclusion 57
6.1 Future work . 57

xiii

List of Figures 59

List of Tables 61

List of Algorithms 63

Bibliography 65

CHAPTER 1
Introduction

The goal of this work was to develop a plugin for Scanopy (see Section 1.2) that can
convert huge point clouds to triangle meshes. The implemented code is based on the
out-of-core surface reconstruction from Bolitho et al. [BKBH07]. This work presents
a sorting method that can significantly improve the total required time for the surface
reconstruction approach from Bolitho et al. [BKBH07]. Details of the used multithreaded
merge sort can be found in Chapter 3. Furthermore, a discussion about postprocessing
algorithms that try to remove unnecessary triangles from the reconstructed surface can
be found in Chapter 4.

This chapter contains a short introduction to point clouds (Section 1.1). Furthermore,
Section 1.3 explains why an out-of-core surface reconstruction is required. Finally in this
chapter Section 1.4 describes the motivation for the optimizations to out-of-core surface
reconstruction that are covered by this work and gives a brief overview about it.

1.1 Point Cloud
A point cloud is a set of points. In a mathematical sense a point defines only a location
in a space. It does not occupy any space because it is infinitely small. In the context
of this thesis, a point defines a rendering primitive with at least a 3 dimensional vector
that defines the location of the point in space. When a point gets rendered, its position
gets visualized at least by one pixel on the screen. A point can also contain further
information like a color, a normal vector or information about measurement precision.

Point clouds can for example be obtained from a range scanner. A range scanner is
mounted on a fixed position during a scan operation. It calculates the distance of a point
on a surface from a real world object by sending out a laser light pulse and measures
the time it takes for the light to be reflected from the surface and reach a sensor on the
scanner. Because the speed of light is a known constant, the distance can be calculated

1

1. Introduction

from this measured time. The scanner rotates in discrete angles around its vertical and
horizontal axis during the scanning. Therefore, the scanner measures the distances to the
next surface along discrete angles. Because the angles are known for each distance sample,
a 3-dimensional point relative to the position of the range scanner can be calculated for
each sample. Furthermore, images can be taken during the scan. These images can be
used to colorize a rendering of the point cloud. To scan larger areas it may be necessary
to take multiple scans from different positions and merge the resulting point clouds
together. This is also required if someone needs surface information from different sides
of an object.

Laser scanners can also be mounted on a plane. Then the scanner only needs to rotate
around the pitch axis of the plane, because the movement of the plane generates the
second scan direction. For smaller objects scanners exist that move only up and down
along the vertical axis and rotate the object that should be scanned with a turntable in
front of the scanner.

Point clouds can also be obtained by photogrammetry. This is a technique that extracts
3D data from images. Explanations about fully automated 3D model reconstruction
methods and algorithms can be found in [Sze11].

In the last years cheap and broadly available structured light scanners like the Microsoft
Kinect have enabled nearly everyone to generate point clouds of a real world environment.
Therefore, simple, fast and reliable algorithms for surface reconstruction have become
more important than ever before.

All these acquisition methods have one problem in common: the produced data is not
perfect. The property of the imperfections vary between the different acquisition methods,
which leads to different challenges for the reconstruction algorithms. Imagine for example
a range scanner. Because the scanner rotates along discreet angles, surfaces that are
further away from the scanner are represented by less denser points than objects that are
near the scanner. Therefore, point clouds that are obtained by a range scanner typically
have a non-regular density.

1.1.1 Rendering of point clouds

In the last years many algorithms were developed that can render point clouds without a
previous conversion from point clouds to polygonal meshes. Many of them are based on
the pioneering Surfel approach [PZvBG00]. The basic idea behind the Surfel approach
is to define a point as a small ellipsoidal disk with normal vector. This approach even
allows to render point clouds at interactive frame rates.

However, many methods require a lot of preprocessing. Also, rendering of large point
clouds that do not fit into the main memory was a big issue for many years. The first
approach that was able to render large datasets from range-scanners and at least partially
solved this problem was QSplat [RL00]. The QSplat approach requires a preprocessing
step, where the a hierarchy of bounding spheres is created. This hierarchy is then used for

2

1.2. Scanopy

visibility culling, level-of-detail control and rendering. However, the creation of hierarchy
of bounding spheres and the selection of the nodes that needs to be rendered is done
on the CPU. The Instant Points approach from Michael Wimmer et al. [WS06] requires
much less preprocessing because it does not make any assumptions about sampling
density or availability of normal vectors for the points. Because Instant Points is an
out-of-core algorithm, it can render a huge amount of points in realtime. A nested octree
is used as data representation.

Today, even point-cloud rendering systems for web-browsers exist. “Potree: Rendering
Large Point Clouds in Web Browsers” from Markus Schütz [Sch15] is based on the Instant
Points approach [WS06]. The nested octree he used is optimized for fast streaming of
point data through the network and, therefore, uses small chunks. For rendering of points
in web browsers, Potree makes use of graphics hardware through WebGL.

1.2 Scanopy
Scanopy is a point cloud rendering and editing application written in C++, developed
by the Institute of Computer Graphics and Algorithms at the Vienna University of
Technology. It is designed for a large amount of point data. Scanopy can handle point
clouds that do not fit in the main memory. Furthermore, Scanopy can read and write
from and to different Point Cloud Data Formats. This allows the user to quickly preview
the scan results in the field. Furthermore, it supports the registration of different range
scans. Registration means to bring different range images from the same object to one
coordinate system. This allows the user to see the whole picture and not only the result
of one single scan.

1.3 Converting point clouds to triangle meshes
Although nowadays many methods working directly on point clouds exist, polygonal
meshes still have a lot advantages. An innumerable number of methods, algorithms, tools
and programs already exist that can handle polygonal meshes. If it is possible, to convert
even point clouds with hundreds of millions of points to polygonal meshes, all of this
already existing tools can be used to work with the data obtained by range scanners or
other point cloud acquisition methods. Furthermore, a polygonal surface representation
can be much more compact for many surfaces than a point-cloud representation, which
leads to a considerably smaller file size. Imagine a surface with many flat areas like a
cube, which can be defined by only twelve triangles, but a point cloud of the same cube
would probably require at least some hundred points in order to describe the shape of
the cube in a recognizable form.

1.3.1 Out-of-core surface reconstruction

Because of the advantages that polygonal meshes can provide, a Qt-plugin for Scanopy
that can export triangle meshes should be developed. Converting point clouds to polygonal

3

1. Introduction

meshes is a well studied problem in computer graphics. There are even ready to use
applications that can perform surface reconstruction. Meshlab [CCC+08] is one example,
it comes with three different algorithms for surface reconstruction. The goal was to
develop a plugin that is able to convert point clouds with hundreds of millions of points.
Therefore, an out-of-core algorithm is required because such big point clouds do not fit
into present typical main memories. The representation of the implicit function required
by approximating surface reconstruction approaches that support globally smooth results
(see Section 2.1.2) can take even more space than the point cloud itself.

Most parts of the plugin for Scanopy that was developed by the author is based on the
work “Multilevel Streaming for Out-of-Core Surface Reconstruction” from Bolitho et
al. [BKBH07]. They also provide a working implementation [BKBH] of their approach,
which greatly helped to understand the details of their out-of-core surface reconstruction
approach and to develop the point cloud to mesh conversion plugin for Scanopy.

1.4 Developed optimizations for out-of-core surface
reconstruction

The first step of development was to port the C++ source code from Bolitho et al.
[BKBH] into a plugin for Scanopy. After fixing lots of incompatibilities with Microsoft’s
Visual Studio 2010, smart pointer implementations, string representations and many
other problems, a Qt-based GUI for the plugin was created. During the tests of the newly
written Scanopy plugin with our own data sets, some more challenging insufficiencies of
the approach [BKBH07] were discovered.

1.4.1 Sorting runtime

The first improvement that was made by the author did not change anything on the
reconstructed polygonal mesh but did greatly improve the overall runtime of the conversion.
The implementation of the out-of-core surface reconstruction from Bolitho et al. [BKBH]
uses a quicksort implementation for sorting points during the preprocessing. This sorting
operation often takes more time than the actual reconstruction process (see Table 5.1).
Therefore, a faster sorting method can greatly improve the overall runtime of the surface
reconstruction process.

In Chapter 3 the author will present one possible implementation of a multithreaded
sorting algorithm based on John von Neumann’s [Knu73] merge sort. The idea to
implement multithreaded sorting algorithms is not new but the way this was implemented
is a little different. The advantage is that the implementation makes use of the balanced
tree structure which a merge sort algorithm creates in memory for the distribution of the
sorting problem across different threads. This has the advantage of much less overhead
and, as the results in Section 5 show, this approach provides a very fast general-purpose
sorting algorithm. Furthermore, Section 3.4.1 explains some changes that make it possible
to obtain an algorithm that has optimal speedup with very little initialization overhead.

4

1.4. Developed optimizations for out-of-core surface reconstruction

The presented merge sort implementation outperforms quicksort at sorting large arrays
even if just one thread is used.

Even if this does not directly affect the resulting polygonal mesh, it greatly improves the
user experience because it speeds up the conversion process massively.

1.4.2 Postprocessing

The approach from Bolitho et al. [BKBH07] is based on the work “Poisson Surface
Reconstruction” from Kazhdan et al. [KBH06]. Poisson surface reconstruction tries to
create watertight triangulated meshes. This is a big advantage over many other surface
reconstruction algorithms because the resulting mesh has no holes in regions where the
point cloud is undersampled. But as the authors of Poisson surface reconstruction [KBH06]
already noted, this behavior can lead to wrongly connected regions for undersampled
areas. Point clouds generated by a scan of a terrain represent only a height field and not
a closed surface. For such terrain scans, Poisson surface reconstruction [KBH06] creates
meshes with a rough approximation of a hemisphere (half sphere) over the reconstructed
terrain surface. This rough hemisphere consists of some very large triangles that hide
the actual important surface. With a mesh editing software an experienced user can
easily remove those wrongly created triangles, but this forces the user to one more
inconvenient step during the conversion process. Therefore, a postprocessing step that
can automatically remove such disturbing triangles would be beneficial.

Chapter 4 provides a discussion about two different approaches that were developed to
solve this issue. Tests showed that none of them are able to provide a perfect result but
one delivers acceptable results.

5

CHAPTER 2
Previous Work

2.1 Surface reconstruction
Surface reconstruction methods try to reconstruct the unknown surface S from a point
cloud P. The points pi ∈ P represent discreet samples of the surface S. Most such
methods output a triangle mesh that represents the surface S. There are also methods
like the Moving least squares that resample the point cloud and output a so called point
set surface [BTS+14]. A survey on the MLS method can be found in [CWL+08]. Because
the Scanopy plugin should convert point clouds to triangle meshes only approaches that
output the surface S as a polygonal mesh are of interest in the context of this work.

A lot of surface reconstruction approaches were developed in the past two decades.
The approaches often address different imperfections of the input point cloud or make
assumptions on the shape and topology of the scanned data. Some approaches are
developed for a special acquisition method because they use additional scanner information
such as RGB, confidence measures or oriented normals.

In general, surface reconstruction approaches can be classified by the form in which the
reconstructed surface is represented: Explicit methods that interpolate the Surface by
connecting sample points to polygons and implicit methods that approximate the Surface
based on the input point set. Figure 2.1 illustrates how differently explicit methods
(Subfigure 2.1b) and implicit methods (Subfigure 2.1c) behave for the same input data
set (Subfigure 2.1a). The next two sections contain a bit more details about these two
methods and Table 2.1 contains a comparison with the most important differences.

2.1.1 Explicit surface reconstruction methods

The most common explicit surface reconstruction methods are Delaunay-based approaches.
They first compute a Delaunay triangulation or a dual Voronoi diagram. The resulting
cells are then used to define the connectivity between the input point samples. A short

7

2. Previous Work

(a) Input (b) Interpolate (Explicit) (c) Approximate (Implicit)

Figure 2.1: Intuitive 2D illustration of the difference between an interpolated and
approximated surface reconstruction

survey on Delaunay triangulation based surface reconstruction can be found in [CGY04].
Explicit reconstruction methods typically create triangle meshes containing all or at least
most of the points from the input point cloud. The biggest advantage of explicit methods
is that they only require the positional information from scanned data. They do not need
normal vectors or any other additional information. Another advantage of these methods
is the precision of the reconstructed mesh, they can even make provable guarantees
on the geometric quality of the reconstructed surface [CGY04]. The computation of
interpolating algorithms is often done only on a local subset of the entire Point cloud.
Therefore, an easy and efficient parallelization is possible. However, explicit methods
require high quality point clouds as input in order to deliver good results [BTS+14].
Therefore, the point cloud should be uniform and densely sampled everywhere, because
otherwise the resulting mesh will contain holes. Furthermore, the point cloud should not
contain noise or outliers because interpolation strategies are not able to remove them.
Therefore, the output surface will have lots of creases where noise was present in the input
point cloud and outliers can result in wrongly added and connected polygons. In general,
explicit methods do not generate manifold meshes1, the rather generate topological
complex meshes. Scans of the real world can in general not fulfill the requirements
explicit methods have to the input data [BTS+14]. The creases in the output mesh that
is created by the noise would also make the resulting polygonal mesh unnecessary large,
which makes the rendering or any further processing of meshes created from point clouds
with hundreds of millions of points more sophisticated. Therefore, explicit methods do
not fulfill the requirements of the Scanopy plugin that should be developed.

2.1.2 Implicit surface reconstruction methods

Implicit surface reconstruction methods fit much better to the requirements, because
they can generally deal much better with challenging imperfections of point clouds. The
characteristic property of implicit methods is the representation of the intermediate result
as an implicit function. The computation of this implicit function is the key challenge

1A mesh is called manifold if each edge belongs to only one or two faces.

8

2.1. Surface reconstruction

for implicit methods. The implicit function can be a signed distance field2 [HDD+92]
or an indicator function3 [Kaz05] and is usually sampled on a regular 3-dimensional
grid [HDD+92, Kaz05] or an octree [KBH06, BKBH07]. The reconstructed surface is
extracted from the voxels via iso-contouring (the zero-set for signed distance fields or at
the value change for indicator functions).

Implicit methods can build smoothed surfaces from noisy point clouds and therefore can
create much smaller triangle meshes. Furthermore, implicit methods create topological
simpler meshes (manifold). However, most of such methods require a surface normal
vector for every sampled point [BTS+14]. For acquisition methods that can provide
normals this is not an issue but calculating surface normals from point clouds that contain
only positional information this is a challenging problem, especially if the data contains
noise. A simple method that uses a Principal Comonent Analysis (PCA) for calculating
an unoriented normal was described in “Surface Reconstruction from Unorganized Points”
from Hoppe H. et al. [HDD+92]. They defined a local neighborhood Np around the point
p and compute the covariance matrix of Np by:

Cp =
∑

q∈Np

(p− q)(p− q)ᵀ

((p − q)(p − q)ᵀ is the outer product of two vectors.) The unoriented normal is then
defined by the eigenvector of Cp with the smallest eigenvalue. For reconstruction methods
that require an oriented normal, the orientation of the normal vector can be estimated
by propagating a normal vector that is initially defined for a start point to neighboring
points whose unoriented normal has a similar direction [HDD+92]. This method is not
very reliable in the presence of noise. – see [BTS+14]

Reconstruction methods that are able to provide a globally smooth, watertight surface
even if the input data is noisy and nonuniform sampled, require a global process-
ing/optimization. This leads to two problems: The size of the point cloud that should be
processed is limited by the computers main memory size and it is difficult to parallelize
such algorithms.

A comprehensive comparison of different approximating surface reconstruction algorithms
can be found in “State of the Art in surface reconstruction from Point Clouds” from Berge
M. et al. [BTS+14]. They provide an overview of different point cloud imperfections
and discuss which algorithms can deal with the different types of imperfections. They
also provide a more detailed description about surface normals and shortly discuss more
complex methods for calculating unoriented and oriented normals than the already
mentioned very simple methods.
2A signed distance function or a oriented distance function is a function that determines the distance of

a given point x from the surface. The values are > 0 for points outside the model and < 0 inside.
Therefore, it is 0 on the surface.

3An indicator function or a characteristic function is a function that is equal to 1 inside the model and 0
outside of it.

9

2. Previous Work

Advantages Disadvantages
Interpolating
Explicit methods

• more precise / guarantees
• easy parallelization for local
algorithms
• do not need normals at points

• do not remove noise
• topological complex meshes

Approximating
Implicit methods

• can deal with noisy data and
handles outliers
• simpler meshes (2-manifold,
generic)
• watertight meshes

• oversmooth (reconstructed
surface is far away from
scanned points)

• requires a global solution
• requires normals at points

Table 2.1: Comparison overview of explicit- and implicit-surface reconstruction methods

2.2 Out-of-core surface reconstruction

As already mentioned the Scanopy plugin for Automatic Conversion of Point Clouds to
Triangle Meshes is based on “Multilevel Streaming for Out-of-Core Surface Reconstruction”
from Bolitho at al. [BKBH07]. Their approach is an implicit method that uses an octree
to sample the indicator function. The reconstructed meshes are watertight and globally
smooth. The method can handle non-uniform sampled point clouds and is resilient
against imperfections of input data such as noise and outliers. Furthermore, the method
uses the same reconstruction scheme as the Poisson surface reconstruction [KBH06] which
is known for its stability and reliability [BTS+14].

2.2.1 FFT-based reconstruction

The “Poisson Surface Reconstruction” [KBH06] is based on the idea of “Reconstruction
of Solid Models from Oriented Point Sets” from Kathdan [Kaz05]. The method requires
as input oriented points. An oriented point is a point with information about its position
(pi ∈ R3) and an oriented surface normal for that point (ni ∈ R3).

Their idea is to compute the indicator function by computing its Fourier coefficients.
Stokes’ Theorem provides a method for expressing the integral of a function over the
interior of a region as an integral over the region’s boundary. They used the Divergence
Theorem or Gauss’s Theorem which is a specific instance of Stokes’ Theorem to express the
volume integral as a surface integral. This makes it possible to approximate the volume
integral of a three-dimensional solid model by integrating a uniformly sampled point set
sampled from that model using a Monte-Carlo integration. Since the Fourier coefficients
of the characteristic function can be expressed as volume integrals the indicator function
can be calculated by applying the inverse Fourier transform to these Fourier coefficients.
[Kaz05]

10

2.2. Out-of-core surface reconstruction

In practice, they implement this reconstruction of the indicator function by “splatting”
the sample normals into a voxel grid (where each voxel stores a vector-3), this grid can
be seen as a vector field which points in the direction of the surface normals at points on
the surface and is zero everywhere else. Convolving the voxel grid with the integration
filter results in a function that is like the indicator function but only defined up to an
additive constant. Therefore, the function is constant almost everywhere, with a sharp
change in value at the sample points so that all points inside the model have the same
constant value ci and all points outside have the same constant value co, with ci 6= co. If
the normals are facing inward the values inside the model are larger than those outside
the model (ci > co). Finally, the reconstructed surface is extracted as an iso-surface of
the voxel grid. [Kaz05] In order to allow non uniformly sampled point clouds they used
a simple heuristic method that scales the normal vectors of a sample by a weight which
represents the reciprocal sampling density in the region of the sample.

This method is able to reconstruct watertight meshes from noisy, non-uniform sampled
point clouds. The biggest limitations of this method is the maximum resolution r of the
reconstructed mesh because it is limited to the used voxel grid size. Hence, the grid has
a voxel count of r3 and each voxel has to store multiple floats, the grid will fill up the
memory of common computer hardware even for relative low resolutions.

2.2.2 Poisson surface reconstruction

The “Poisson Surface Reconstruction” [KBH06] is like the FFT-based reconstruction
[Kaz05] a global optimization approach that considers all points from the point cloud at
once. The authors of “Poisson Surface Reconstruction” [KBH06] also used oriented points
as input and stated that the oriented point samples (Subfigure 2.2a) can be viewed as
samples of the gradient (Subfigure 2.2b) of the model’s indicator function (Subfigure 2.2c).
Therefore, the indicator function can be computed by inverting the gradient operator.
They showed that the operation that calculates the indicator function from its gradient
can be expressed as a Poisson problem. The advantage of the Poisson problem is that it
can be solved from a hierarchy of locally supported function. Hence, an accurate solution

(a) Oriented points
~V

Indicator function
0

0 0

0

0

0

0

(b) Indicator gradient
∇χM FM

Indicator function

1

0
0

0

0
0 0

1
1

1
1
1

0 0
(c) Indicator function

χM

Indicator function

1

0

0
(d) Surface

∂M

Figure 2.2: Intuitive illustration of Poisson reconstruction in 2D. (Taken from [KBH06])

11

2. Previous Work

is only required close to the reconstructed surface adaptive Poisson solvers can be used
to solve this sparse linear system. This allows the authors to replace the voxel grid
that was used by [Kaz05] with an adaptive octree that represents the implicit function.
Furthermore, the octree can be used to solve the Poisson system.

The resolution r of the reconstructed mesh is controlled by the maximal depth of the octree.
Some examples from Kazhdan et at. [KBH06] demonstrate that the memory consumption
of the adaptive octree behave approximately quadratic to the reconstruction resolution.
The memory consumption of the voxel grid used by the FFT-based reconstruction approach
[Kaz05] instead is proportional to r3. Therefore, the “Poisson Surface Reconstruction”
[KBH06] scales much better to higher resolutions and can therefore provide much more
detailed triangle meshes.

In order to allow non-uniformly sampled point clouds they improved the method that
scales normal vectors of a sample used by [Kaz05] in a way that allows sharper features
in regions with high sampling density.

To obtain the final mesh from the reconstructed indicator function the iso-surface of
the indicator function must be extracted. For this purpose an adapted Marching Cubes
[LC87] method that can handle the nonconforming properties of the octree is used. Figure
2.2 illustrates all processing steps performed by the “Poisson Surface Reconstruction”
[KBH06] for a simple 2D point cloud. It starts with the input data set (Subfigure 2.2a)
and the interpretation of the point normals as gradient of the indicator function (Subfigure
2.2b). Next, the indicator function (Subfigure 2.2c) is calculated from the gradient and
finally the surface 2.2d is created by an iso-surface extraction from the indicator function.

2.2.3 Multilevel streaming for out-of-core surface reconstruction

“Multilevel Streaming for Out-of-Core Surface Reconstruction” from Bolitho et al.
[BKBH07] is able to reconstruct meshes from point clouds with billions of points. Instead
of splitting the point cloud, solving local problems and merging the result by methods like
blending the approach from Bolitho et al. [BKBH07] solves the problem globally which
makes it more resilient to imperfect input data and allows globally smooth watertight
results. Furthermore, the method is able to preserve fine details of such huge point clouds
which requires resolutions that are not feasible with the method of [KBH06] because the
resulting complexity would exceeds the memory available in standard computer hardware.

Bolitho et al. [BKBH07] also compute the indicator function by using an adaptive
octree to represent the data and solve the Poisson equation like described in the work
of [KBH06]. However, they enhance the approach of [KBH06] and allow the octree to
be out-of-core. This makes it possible to use higher octree depth and therefore obtain
resulting surfaces with higher resolutions. In order to allow the octree to be out-of-core
and still ensure fast data access without disk IO at random addresses which would make
the reconstruction incredibly slow the octree is represented by multiple data streams.
For each level of the octree one stream is created. Therefore, an octree with the height h
is stored in h different streams on disk. The stream for the level d contains all nodes that

12

2.2. Out-of-core surface reconstruction

Figure 2.3: Illustration of the multilevel stream structure (top row) and the corresponding
quadtree nodes (bottom rows) at two moments in time (i = 3, 4). In-core blocks and
nodes are highlighted in blue. (Adapted from [BKBH07])

the octree has in level d. The nodes within one stream are grouped into blocks. Each of
these blocks contain all nodes with the same x coordinate. Therefore, the stream for the
level d is partitioned into 2d blocks. In order to allow the files to be streamed and not
accessed randomly the blocks inside a stream are sorted by the x coordinate. Figure 2.3
illustrates this multilevel streaming approach for a 2D quadtree.

Bolitho et al. [BKBH07] showed that the Poisson equation can be reduced to the sparse
symmetric system Lx = b and that a single pass of an Gauss-Seidel solver is able to
produce a solution with adequate accuracy for surface reconstruction. This observation
allows them [BKBH07] to decompose the “Poisson Surface Reconstruction” [KBH06]
into only three streaming passes over the multilevel stream data representation. Each
pass traverses the octree by scrubbing all streams in parallel along the x-axis. Because
only local data of each stream is required for computation only a small set of nodes
near the current x position need to be in-core. During a streaming pass nodes in lower
level streams stay longer in memory than nodes in streams for higher levels. Therefore,
streams for higher level need to be read and written faster than streams for lower levels
of the octree. This behavior is also observable from the changes of the in-core nodes
(blue) between the left and right stream states in the top row of Figure 2.3.

This approach not only allows the matrix L to be larger than the main memory but
also the vectors b and x can exceed the main memory. The size of the in-core nodes
of the octree scales approximately linear to the resolution of the reconstructed surface.
[BKBH07]

13

2. Previous Work

2.3 Sorting
General purpose sorting algorithms are used to bring elements of an array in a certain
order [CGD11]. The main difference between sorting algorithms is their runtime. Another
important characteristic of a sorting algorithm is if it is stable or not. A sorting algorithm
is stable if elements with equal keys do not change the relative order during the sorting
[CGD11].

2.3.1 Insertion sort

Insertion sort is a very simple sorting algorithm with a runtime of O(n2). It is not efficient
on large arrays but for short sequences or already sorted arrays (O(n) for already sorted
arrays) it is often faster than more complex algorithms such as quicksort and merge sort.
Furthermore, it is simple to implement and provides stable results. [CGD11]

2.3.2 Merge sort

Merge sort was presented by John von Neumann in 1945 [Knu73]. It is a stable, divide
and conquer algorithm with a runtime of (O(n · log2(n))). Important about merge sort is
its worst-case runtime because it is only O(n · log2(n)) and the fact that it can efficiently
sort data that can only be accessed sequentially [CGD11]. (more details follow in Section
3.3.1)

2.3.3 Quicksort

Quicksort was invented by Hoare [Hoa62]. It has an average runtime of O(n · log2(n))
but can have a worst case runtime of O(n2). However, if it is implemented correctly this
worst case runtime should occur only in very rare cases [CGD11]. Canaan et al. [CGD11]
state that Quicksort is typically significantly faster in practice than other O(n · log2(n))
algorithms. In general and especially for performance optimized implementations quicksort
is not stable. The main steps executed by quicksort during sorting:

1. Pick an element from the array (often randomly). This element is called the pivot.

2. Move the elements of the array in a way that all elements with a smaller value than
the pivot come before the pivot and all elements with a bigger value comes after
the pivot. Note: the pivot is now at its final position.

3. Recursively sort the subsequences left and right from the pivot.

A more comprehensive list and more detailed discussion about popular sorting algorithms
can be found in [CGD11] from Canaan et al..

14

CHAPTER 3
Merge Sort

3.1 Why is fast sorting important?

In order to be able to calculate the surfaces of arbitrary point clouds, the algorithm
described by Bolitho et al. [BKBH07] requires a preprocessing. During the preprocessing
the points of the point cloud are uniformly translated and scaled so that the whole point
cloud fits into a unit cube. Further, the points will be rotated with the intention to
align the dominant axis of the covariance matrix with the x-axis. This is done in order
to reduce the size of the in-core octree to a minimum during the reconstruction. The
transformation matrix that defines the required rotation and scaling are calculated within
three streaming passes over the point cloud file. In the first pass the centroid is calculated,
in the second pass the covariance matrix and in the third pass the bounding box of the
point cloud is computed. The point cloud does not have to fit into the main memory for
these calculations, because the computation is implemented in three streaming operation.

Subsequently, in one more streaming pass all points of the input point cloud are trans-
formed by the transformation matrix. The transformed points are segmented into equally
long partitions along the x-axis, in order to produce subsets Pi ⊂ P. Then, for every
subset Pi a file is created and opened for writing before the transformation starts. This
makes it possible to perform the transformation and partitioning of the point cloud in
one singe input-multiple output streaming pass.

Every Pi needs to be small enough to fit into the main memory, because the points within
the individual subsets Pi need to be sorted. The Pi are created by splitting the x-axis
into equally long partitions, therefore, the size of Pi can vary strongly between different
Pi because it depends on the count of points that have a x-value within the x-range of a
specific Pi. Therefore, the partition length must be chosen short enough that even the
largest Pi fits into the main memory.

15

3. Merge Sort

During the sorting all files containing the individual Pi are read into the main memory,
then the points of the Pi are sorted and finally the points are written back to the disk.
This sorting occupies the most time of the preprocessing. Therefore, the overall processing
time highly depends on the efficiency of the used sorting algorithm.

3.2 Existing quicksort implementation

The sorting algorithm used by the implementation of Bolitho et al. [BKBH] is an
optimized version of quicksort. An explanation of the fundamental function of quicksort
is stated in Section 2.3.3.

One of the optimizations used in the algorithm was first suggested already back in 1962
by Hoare, who invented the quicksort algorithm. His idea was to use another algorithm
suitable for sorting small numbers of items when the partition contains only a few numbers
of items [Hoa62]. Sedgewick et al. picked up the idea and used insertion sort for sorting
small partitions in order to speed up quicksort [SA78]. This can also reduce the size of
required stack memory [MJG16]. But this is not really important in this implementation,
because of the next optimization.

The second optimization addresses the problem of a high amount of stack space and
overhead, by removing the recursion and using an explicit stack [SA78].
Additionally, there is an optimized pivot selection that tries to produce two equally
long subsequences left and right of the pivot element, no matter how the input data
is constituted (i.e. if the input data is already sorted). This works by estimating the
median of the subsequence based on 3 samples of the subsequence. This procedure
is called “Median-of-Three Modification” and was already mentioned by Hoare in his
original paper about quicksort. The implementation of “Median-of-Three Modification”
used by Bolito for the StreamingReconsructor [BKBH] takes the first, middle and last
element of the subsequence as samples based on which the median is estimated. These
specific indices were already used by Singelton in 1969 [Sin69]. A detailed discussion
about “Median-of-Three Modification” can also be found in “Implementing Quicksort
Program” by Sedgewick et al. [SA78].

The algorithms 3.4 and 3.5 show the above mentioned quicksort implementation in the
code of the StreamingReconstructors by Bolitho et al. [BKBH].

3.3 Multithreaded sorting

This quicksort algorithm uses only one thread and is therefore not able to take advantage
of modern multicore systems. So it was natural to implement a multithreaded sorting
algorithm that fits exactly the requirements that occur during sorting the point data.
The decision which sorting algorithm should be used as a base was much in favor for
merge sort, which was first presented by John von Neumann in 1945 [Knu73], because
like quicksort it is a general-purpose and comparison-based sorting algorithm with a

16

3.3. Multithreaded sorting

runtime of n · log2(n) [CGD11]. Most importantly, the parallelization of different merge
operations is relatively straightforward.

3.3.1 Explanation of merge sort

In order to understand why parallelization of the different merge operations was so
obvious from the author’s point of view, it is first necessary to understand how a top-
down implementation of merge sort works. Merge sort is a so-called divide and conquer
algorithm. This means that the algorithm divides the data into two equal subsequences
recursively until only subsequences containing one element are left. Each sequence
with only one element is always a correct ordered sequence. Afterwards, in each case
two ordered subsequences are merged. The merge operation takes two already sorted
subsequences as input. It compares the elements located farthest to the left in both
sequences which are not already used. The smaller element of those two is written to the
next free index in the temporary output array B. This process continues until one of the

(a) Comparison 1: i = 0, j = 0, k = 0 (b) Comparison 2: i = 1, j = 0, k = 1

(c) Comparison 3: i = 1, j = 1, k = 2 (d) Comparison 4: i = 1, j = 2, k = 3

(e) Comparison 5: i = 1, j = 3, k = 4 (f) Comparison 6: i = 2, j = 3, k = 5

(g) Final result

Figure 3.1: Illustration of merge; first 6 comparison for n = m = 16 and the final merged
sequence;

17

3. Merge Sort

Figure 3.2: Illustration of merge sort

input subsequences is exhausted. As soon as one of the input subsequences is exhausted
the remaining elements of the other input subsequence are copied into the temporary
array B past the last already written element. Afterwards, all ordered elements of the
temporary array B need to be copied back to the array A at the indices where the
two input sequences have been located. Following to the completion of the two merge
operations of one recursive divide, both subsequences from those two merge operations
are merged as well. All subsequences are merged until the original sequence which has
been previously divided is merged and is therefore ordered correctly.

This merge operation is very efficient due to the fact that only the first unused elements
of each subsequence are compared. Since both subsequences are already in the correct
order, one of the first elements needs to be the smallest element. This described merge
algorithm is only one of many possibilities to implement a merge. Figure 3.1 illustrates
the first six iterations of a merge operation. Algorithm 3.1 shows an implementation of
merge which gets along with fewer checks for index boundaries and therefore is more
efficient than the above described merge algorithm. However, both algorithms need a
temporary array B with the same size as A.

Algorithm 3.2 shows a recursive implementation of merge sort and Figure 3.2 provides a
visualization of that algorithm for an input array with 32 elements.

3.3.2 Comparison between quicksort and merge sort

Merge sort divides all sequences into subsequences with equal size. Quicksort on the
other hand has a very high probability to divide the sequence in subsequences with
unequal size due to the fact that it divides the sequence into subsequences based on the
final position of the so called pivot element. The selection of the pivot element depends

18

3.3. Multithreaded sorting

Algorithm 3.1: Merge (Taken from [Rai09])

Input: sorted subsets Array A[l],...,A[m], A[m + 1],...,A[r] and temporary array B
Parameters : sorting begin middle and end indices l, m, r
Output: merged, sorted subset A[l],...,A[r]

1 procedure merge(integer l, integer m, integer r)
2 B[l,...,m] ← A[l,...,m]
3 B[m + 1,...,r] ← A[r,...,m + 1] // ordered upside down!
4 p← l
5 q ← r
6 foreach i = l, ..., r do
7 if B[p] ≤ A[q] then
8 A[i] ← B[p]
9 p ← p+ 1

10 else
11 A[i] ← B[q]
12 q ← q − 1
13 end
14 end

Algorithm 3.2: Mergesort (Taken from [Rai09])

Input: unsorted Array A and temporary array B
Parameters : sorting begin and end indices l, r
Output: sorted subset A[l],...,A[r]

1 procedure mergesort(integer l, integer r)
2 if l < r then
3 m ← b l+r

2 c
4 mergesort (l, m)
5 mergesort (m+ 1, r)
6 merge (l, m, r)
7 end

on the chosen implementation of the particular quicksort. However, the fact that the
final position of the pivot element is not predictable is common to all implementation
possibilities (at least for an unsorted input). Therefore, the size of the subsequences on
the left and the right site of the pivot element is not predictable either and therefore the
two subsequences are in general not of equal size. This behavior makes quicksort less
suitable for parallel execution (i.e. multithreaded implementation).

As mentioned above, merge sort always divides all sequences in subsequences with equal
size. This leads to the fact that in case of sorting each of these array subsequences with

19

3. Merge Sort

another thread each thread has to do nearly the same amount of work. Therefore, it is
highly likely that both threads finish nearly at the same time, which ensures an optimal
resource utilization of the CPU cores. Of course quicksort could be parallelized by sorting
the partition on the left and on the right side of the pivot element with two different
threads. However, since the partitions have a very high probability to have different sizes,
the threads have a high likelihood to finish the sorting of the subsequences in a different
amount of time. This means that a lot more threads than available CPU cores would
need to be created and synchronized in order to provide the utilization of all CPU cores.
The creation and synchronization of more threads than available CPU cores would lead
to an unnecessary overhead. The use of thread pools would surely help, although a lot
more synchronizations than available CPU cores would be needed and this leads to an
unnecessary increase in computing effort and waiting time.

A detailed discussion of the above mentioned approach of parallelizing quicksort is
presented by “Parallel quicksort using Thread Pool Pattern” by Somshubra Majumdar,
Ishaan Jain und Aruna Gawade [MJG16].

Merge sort accesses the main memory in a more linear way than quicksort does, because
the main memory access pattern of quicksort tends to be random. Through the linear
memory access of merge sort, all caches of the CPU should be used in an optimal way,
which leads to a decrease of waiting time for the data to be loaded into the CPU registers.
This has not a big influence on the amount of data which does not exceed the fast CPU
memory caches, but it has a huge impact on the total amount of time needed for an
amount of data which exceeds the CPU memory caches by hundreds or thousands of
times. Since the sorting of points within a point cloud includes a huge amount of data
which massively exceeds the size of the CPU caches and the rather optimal use of the
CPU caches is yet another argument in favor for the use of merge sort.

Another advantage of merge sort is its ability to produce stable sorts, an ability quicksort
does not provide [CGD11]. However, that is of no real interest to our goal, which is
sorting point clouds for surface reconstruction. An additional disadvantage of quicksort
is its runtime behavior that is dependent on the input data [MJG16].

3.4 The implementation of multithreaded merge sort

The approach chosen by the author to parallelize the merge sort is based on the fact that
(also view Algorithm 3.2) the second recursive invoke of merge sort is made within a new
thread. This means that the second half of the data to be sorted is sorted within a new
thread and, parallel to that, the first half is sorted by the thread which already invoked
the actual merge sort method. Figure 3.3 illustrates this approach for four threads.

Of course it does not make any sense to apply this method to every invoke of merge sort
because the use of another thread for subsequences with only a small amount of data to
be sorted would rather lead to more overhead than it would help to decrease the run

20

3.4. The implementation of multithreaded merge sort

start thread 1

start thread 3start thread 2

su
bd
iv
id
e
ar
ra
y

synchronize thread 0 & 2

synchronize thread 0 & 1

synchronize thread 1 & 3

m
er
ge
ar
ra
y

executed by 1 thread

executed by 1 thread

executed by 2 threads

executed by 2 threads
ex
ec
ut
ed
by
4
th
re
ad
s

Figure 3.3: Illustration of multithreaded merge sort (4 threads); the color indicates the
thread that is executing the visualized operations (thread 0: red, thread 1: turquoise,
thread 2: green, thread 3: purple);

time. The most efficient way to use the parallelized version of merge sort is to create
only as many threads as CPU cores are available.

Since merge sort recursively divides all data that has to be sorted into two equal halves,
an equal and therefore optimal distribution of the required computation to an amount of
t threads can be ensured if t is a power of two (t = 2x). In case the amount of available
CPU cores p is 2x as well, all necessary computation can be distributed equally to all
available computing resources with a minimum of overhead. To ensure the optimal
resource utilization for any amount (unequal 2x) of p CPU cores, more threads t than
available CPU cores p need to be used. The minimum number of threads that should
ensure an utilization of all CPU cores during most of the time in that case is t = 2dlog2(p)e.
In other words, the amount of CPU cores needs to be rounded up to the next bigger

21

3. Merge Sort

power of two. After the requested amount of threads is available as a power of two,
the merge sort method can check if a new thread should be started which sorts the
right subsequence or if both subsequences can be computed by the actual thread. This
check can be easily performed against the recursion depth d. In order to do that, it
needs to be evaluated if 2d+1 ≤ t is fulfilled. As long as 2d+1 is smaller or equal to
the amount of requested threads t a new thread will be used to sort the second half.
Algorithm 3.9 shows the concept described above whereby the parameters maxThreads
and threadStartDepth meet the variables t and d.

3.4.1 Runtime analysis

The concept of parallelizing only the different merge operations at the top of the call
tree has the advantage of relatively little overhead. Also, for the whole sorting process,
just t synchronizations are needed. However, it has the disadvantage of not being able to
parallelize the last t − 1 merge operations over all available CPU cores p and the last
merge operation is done only by one thread. This is due to the fact that the level d
with 0 ≤ d ≤ dlog2(n)e < h of the call tree can only be processed by 2d different threads,
because there are no more merge operations in that level.

The lowest level d that contains t merge operations can be calculated as follows:

2d = t

d = log2(t)

In level log2(t)− 1 and all levels above there are therefore not enough merge operations
to use t threads. Hence, for all merge sort calls where 2d < t is fulfilled not all available
CPU cores are used. That occurs exactly at t− 1 merge operations, because in level
log2(t)− 1 the number of 2log2(t)−1 = t/2 merge operations have to be executed. In the
level above there are just (t/2)/2 = t/4 merge operations left. With every decrease of d
the count of merge operations gets divided by 2 until there is only one merge operation
left at level 0. One can imagine the recursive merge operation calls like the nodes of
binary tree. Therefore, the count of merge operations in and above the levels log2(t)− 1
can be calculated in the same manner as the count of nodes of a balanced binary tree
with height h. (It is important to point out that the levels start with 0. Therefore, the
highest possible d in a binary tree with the height h is d = h− 1.)

2h − 1 = 2d+1 − 1
= 2(log2(t)−1)+1 − 1
= 2log2(t) − 1
= t− 1

In every level the threads are doubled, starting with level d = 0 having one thread, level
d = 1 having two threads, and so on, until the level d = log2(t), where all t threads are

22

3.4. The implementation of multithreaded merge sort

used for the first time. This leads to the following runtime for the first d < log2(t) levels:

log2(t)−1∑
i=0

(
n

2i

)
= 2n(t− 1)

t
= 2n− 2n

t

= O (2n)

For all further levels the runtime is calculated as follows:

log2(n)∑
i=log2(t)

(
n

t

)
= (log2(n)− log2(t)) · n

t

And therefore the total runtime of the algorithm is:

2n(t− 1)
t

+ (log2(n)− log2(t)) · n
t

= n

t
(2t− 2 + log2(n)− log2(t))

The speedup of a parallel algorithm is calculated by Speedup(t) = Θseq(n)/Θpar(t, n)
where Θseq(n) is the runtime of the best sequential algorithm for solving a problem and
Θpar(t, n) is the time taken by the parallel algorithm to solve the same problem using t
threads. The best possible, absolute speedup is linear in t. An optimal parallelization of
the merge sort would lead to a runtime of n·log2(n)/t, because a sequential implementation
of the merge sort algorithm has a runtime of n · log2(n) [CGD11]. The speedup of the
described algorithm at the merge operations where d ≥ log2(t) is calculated by:

(log2(n)− log2(t)) · n
(log2(n)− log2(t)) · n

t

= 1
1
t

= t

That means, for merge operations where d ≥ log2(t) is true the speedup is t. It is
therefore linear to the count of the used threads and, hence, the best possible speedup.
The algorithm is less optimal for merge operations where d < log2(t) is true:

(log2(t)− 1) · n
2n(t−1)

t

= t · (log2(t)− 1)
2 · (t− 1)

= Θ
(
t · log2(t)

t

)
= Θ (log2(t))

Therefore, the described parallel merge sort implementation has a total speedup of:

n · log2(n)
n
t (2t− 2 + log2(n)− log2(t)) = t · log2(n)

2t− 2 + log2(n)− log2(t)

For very large n, the whole algorithm has a speedup of approximately t, because:

23

3. Merge Sort

lim
n→∞

t · log2(n)
2t− 2 + log2(n)− log2(t) = t

However, the smaller n gets the less optimal the speedup gets. It is particularly adverse,
if additionally a large amount of threads t comes together with a small n. Here is an
example where 105 elements are to be sorted by 32 threads. For modern workstations
32 CPU cores could be a realistic number. Now, if n = 105 and t = 32 are put into the
equation for the total speedup of the algorithm, the result is:

t · log2(n)
2t− 2 + log2(n)− log2(t) = 32 · log2(105)

2 · 105 − 2 + log2(105)− log2(32) ≈ 7.22064

However, a speedup of ≈ 7.2 is far from optimal, because the optimal speedup for
this example would be 32. The larger t gets in relation to n the more influence merge
operations where d < log2(t) have on the total runtime.
The speedup of the theoretical worst case (t tends to ∞):

lim
t→∞

t · log2(n)
2t− 2 + log2(n)− log2(t) = log2(n)

2

Use co-rank for an optimal speedup

In the following, a method is described that makes it possible to use all available CPU
cores for the last t− 1 merge operation. In order to do that, the merge operation itself
has to be parallelized, if the condition 2d ≤ t is fulfilled at a call of merge sort. While
this method was out of scope for this bachelor thesis and was therefore not implemented
by the author, it is still discussed here for completeness.

co-rank

Figure 3.4: Illustration of co-rank; the co-rank defines the indices j and k in A1 and
A2 for any given index i (rank) in B before merging A1 and A2 into B. (Adapted from
[ST13])

24

3.4. The implementation of multithreaded merge sort

During one merge operation two already sorted subsequences will be merged to one
newly sorted subsequence which contains all elements of the two already sorted input
subsequences. The author uses the "[x]" notation within the following text to indicate
indices of one array as it is common in the programming language C. Further, all
subsequences of the arrays start with index 0 for an improved understanding. At a
concrete implementation of merge sort the indices would not start with 0 since the
starting index of the particular subsequence would need to be added to the indices shown
in this section.

For an improved understanding the two sorted input subsequences are named subsequence
A1 and A2 with an amount of m or n elements. Since A1 and A2 are sorted ascendingly
the following applies: A1[j − 1] ≤ A1[j] for 1 ≤ j < m, and A2[k − 1] ≤ A1[k] for
1 ≤ k < n. The output of the merge operation will be named B, analogous to the
previous described temporary array which is always required by merge sort. The output
subsequence B is also required to be sorted, therefore: B[i− 1] ≤ B[i] for 1 ≤ i < m+ n
must hold.

In order to guarantee an optimal utilization of all threads t which are involved at the
merge operation, each thread should write m+n

t element in B. The calculation for the
necessary beginning and ending indices for each thread within the not yet calculated
output array B is simple. If r is a unique ID for each thread and 0 ≤ r < t applies,
the start index istart at which the thread with the ID r starts to write within B can be
calculated as follows: istart = bm+n

t · rc. Analogous to that the last index iend at which
the thread r writes, can be calculated as follows: iend = bm+n

t · (r + 1)c − 1.

Of course the beginning and ending indices of the input subsequences B1 and B2 will be
also needed. The calculation of those two is not as easy as the calculation of the beginning
and ending indices described above. A very time-consuming additional calculation effort
seems to be required, at least at first sight. For each index i within B, also called rank,
must be available either an index j within A1 or an index k within A2, at which the
same element is given. The indices j and k, at which the same element as in B[i] must
be stored, are called co-rank. Figure 3.4 provides a visual definition for the co-rank.

With [ST13], Christian Siebert and Jesper Larsson Träff have introduced an algorithm
in 2013 which resolves the mentioned problem very efficiently and elegantly. Since the
algorithm calculates the so called co-rank they just named it co-rank.

The basic idea for co-rank was first introduced in [AS87], but it was only used for solving
one special case where the rank i is the median of B. The authors of [ST13] found a way
to generalize that idea. Furthermore they developed a simple algorithm that solves any
merging problem in a stable way and provides an intuitive proof for it.

The base for the co-rank algorithm is the Lemma 1 developed and written down by
Christian Siebert and Jesper Larsson Träff in [ST13].

25

3. Merge Sort

Lemma 1 For any i, 0 ≤ i < m+ n, there exists a unique j, 0 ≤ j ≤ m, and a unique
k, 0 ≤ k ≤ n, with j + k = i such that

1. j = 0 ∨A1[j − 1] ≤ A2[k] and

2. k = 0 ∨A2[k − 1] < A1[j]

A proof for Lemma 1 can be found in [ST13].

The co-rank algorithm starts with the extreme assumption that all i elements that have to
be written into B are coming from the Array A1, at least as far as possible: j = min(i,m)
(because A1 has only m elements, the algorithm can only copy m elements from A1 to
B). In order to fulfill the equation j + k = i the index k must therefore be initiated
through k = i − j. Furthermore a lower bound for j is defined through jlow. In the
case that i > n, the index jlow can be defined larger than 0, because if the amount of
elements in A2 is smaller than i at least i−n have to come from A1. Otherwise there are
not enough elements to fill up B until the index i. Therefore, jlow is initialized through:
jlow = max(0, i − n). The requested index for A1 is therefore located between j and
jlow. Furthermore the initialization of jlow through max(0, i− n) is important because it
ensures that k is not larger or equal to n after the first iteration.

After the initiation, the algorithm starts a binary search. Therefore, a loop will be
repeated over and over again until both conditions from Lemma 1 are fulfilled. During
the entire search, the algorithm ensures that the equation y + k = i is satisfied. In
order to perform the binary search, jlow and klow will be updated after each iteration
in addition to j and k. At any time during this process, jlow ≤ j and klow ≤ k must be
satisfied. Further, it is necessary that either the searched index of A1 is located within
the interval jlow and j or the searched index of A2 is located within the interval klow and
k.

Within the first loop iteration either the first Lemma condition is violated, this means
A1[j − 1] > A2[k] or the extreme assumption j = min(i,m) is correct and the co-rank
was already found throughout the initialization. If the second Lemma condition would be
violated, it would mean that A2[k − 1] ≥ A1[j] and therefore that j would be too small.
But, this dilemma is not possible since j was initiated with the highest possible value.

If A1[j − 1] > A2 is fulfilled, and therefore the first Lemma condition is violated, the
index j is too large. Therefore, j will now be decreased by δ = d j−jlow

2 e. Further, the
lower bound klow can be raised to k since no smaller index than k can fulfill the first
Lemma condition. (If there would be an index smaller than k for A2 that can fulfill the
first Lemma condition, this would mean that j is too small, which is in conflict with the
violation of the first Lemma condition.) Since j must be reduced by δ, the index k must
be increased by δ so that the equation j + k = i still applies.

If now the second Lemma condition is violated, which is the case when A2[k− 1] ≥ A1[j]
and therefore k is too large, k must be decreased by δ = dk−klow

2 e. Since no index

26

3.4. The implementation of multithreaded merge sort

Iteration 1 (First Lemma condition violated)

Initialization

Iteration 2 (First Lemma condition violated)

Iteration 3 (Second Lemma condition violated)

Iteration 4 (Second Lemma condition violated)

Iteration 5 (No Lemma condition violated)

Figure 3.5: Illustration of a co-rank algorithm run for i = 16 (Adapted from [ST13])

smaller than j can fulfill the first Lemma condition, the lower bound jlow can therefore
be increased to j. Also, in this case, it must be ensured that j + k = i is fulfilled and
therefore j must be increased by δ.

Before the particular Lemma conditions can be verified, the index boarders need to be
checked. j > 0 ∧ k < n must be fulfilled before for A1[j − 1] > A2 can be evaluated and
k > 0 ∧ j < m must be fulfilled before for A2[k − 1] ≥ A1[j] can be evaluated.

27

3. Merge Sort

The loop with the above-described checks and calculations will be repeated until none of
the two Lemma conditions is violated any more. After the loop execution, both variables
k and j contain the searched co-rank and, therefore, the indices of the two input arrays
A1 and A2 at which the values start that have to be written into the output array B
from the index i on. A run of the co-rank algorithm is illustrated in Figure 3.5.

The co-rank algorithm has a worst case runtime of O(log2(min(m,n))). A proof for this
formula can be found in [ST13].

For each istart and iend the respective indices jstart, jend for A1 and kstart, kend for
A2 can now be calculated very efficiently through the co-rank algorithm. If the start
and end indices for each thread will be calculated separately, and therefore the start
index of the thread r + 1 is not used as the base for the end index of the thread r, the
co-rank calculation can be parallelized as well. That means, the whole merge operation,
including the calculations for the co-rank, can be parallelized without the need for any
synchronization. This leads to a total runtime of O(n+m

t + log2(min(m,n))) for the merge
operation that is parallelized by t threads [ST13].

Furthermore this parallel merge algorithm has an optimal speedup if the algorithm
is executed by t threads on a computing system with p = t processing cores and
t = p ≤ log2(min(m,n)). [ST13]

If one now uses that parallel merge algorithm to solve the problem with the last t− 1
merge operations and, therefore, to further decrease the total runtime of merge sort, one
should pay attention to the following: Since merge sort calls with a recursion depth of
d are already running in parallel with a total number of d2 merge sort calls, the merge
operation itself should not be parallelized by t threads. Instead t

d2 should be used. This
is because t

d2 threads within one merge sort call times d2 parallel executed merge sort
methods results in t

d2 · d2 = t total threads. This should ensure an optimum utilization of
all available CPU cores with a minimum overhead for the creation and synchronisation
of threads.

This means, further more, that the length of input subsequences m and n for the co-rank
can never be smaller than b |Ages|2·t c. Where Ages is the entire array to be sorted. Out
of m = n ≥ b |Ages|2·t c follows again that the total merge sort algorithm would achieve an
optimal speedup if t does not exceed log2(b |Ages|2·t c).

In theory the usage of the described co-rank should lead to an optimal speedup for the
whole multithreaded merge sort, but the author did not validate this in an empirical
test. All the runtime measurements shown in Chapter 5 are done without the co-rank
optimization. That means the code that was used for the test was not able to use all
available CPU cores during the last t− 1 merge operations.

28

3.5. Reduce the memory consumption of merge sort

3.5 Reduce the memory consumption of merge sort

A naive implementation of the merge sort algorithm would allocate the temporary array
B with the same size as the array A that should be sorted. However, the merge algorithm
can be written in a way so that only the first half of elements need to be written into the
temporary array B. The second half of elements can stay in A. The merge algorithm
then compares elements in B with elements in the second half of A. This means that B
only needs to have half the size of A.

3.5.1 Relevance of the topic

Nowadays, where we have Gigabytes of main memory available, it does not really matter
if the algorithm needs 0.5 Mbyte or 1Mbyte of additional temporary space to sort an array
with the size of 1 Mbyte. Though if one needs to sort an array with a size of 2 Gigabytes
it can make a difference if the algorithm needs 1 or 2 Gigabytes of additional temporary
space in the main memory. Especially if the used computer has just 4 Gigabytes of main
memory. To give an example let’s say the operating system and the program code need
1 Gigabyte and an array with 2 Gigabytes of data that should be sorted is loaded into
the memory, then there is only 1 Gigabyte left. In such a scenario, using n or just n

2
can make the difference if sorting is possible or not. Furthermore, the smaller an array
is the less likely it gets fragmented in main memory and reading continuous lines from
main memory is much faster than if the data is fragmented. Therefore, the target was to
keep the size of B as small as possible. In order to achieve that goal the author has
implemented a merge algorithm as follows.

3.5.2 Memory reduced merge algorithm

To ensure a better readability we divide A into two halves and name the first half A1 for
all A[x] with l ≤ x ≤ m and the second half A2 for all A[x] with m < x ≤ r. Thereby,
the index m separates the two already sorted input sequences in A. Further, we define
the index at which the next final sorted element in A is written as k. As well as the two
indices at which the two elements that shall be compared next are located, as j for A2
and i for B. As mentioned above, all elements from A1 need to be copied to B at the
beginning of the merge algorithm. For a multithreaded merge sort implementation it is
crucial that not all merge operations are allowed to start writing at the index 0 in B.
Therefore, the first index which is the starting point for writing in B is named lB.

After the elements of A1 are copied to B, the 3 indices i, j and k are set to the following
values: i = lB, which is the first usable index for the current thread in B; j = m + 1,
which is the first index in the second sortet input subset A2; k = l which is equivalent to
the beginning of array A. Now, a classic merge operation for the input arrays A2 und B
can be executed. A serves as destination for the merged output sequence. Within that
operation, the next element which will be placed to A[k] is determined by the comparison
B[i] ≤ A[j]. If B[i] ≤ A[j] is fulfilled, the value of B[i] will be written to A[k] and i will

29

3. Merge Sort

(a) C. 1: i = lB + 0, j = m+ 1, k = l + 0 (b) C. 2: i = lB + 1, j = m+ 1, k = l + 1

(c) C. 3: i = lB + 1, j = m+ 2, k = l + 2 (d) C. 4: i = lB + 1, j = m+ 3, k = l + 3

(e) C. 17: i = lB + 7, j = m+ 10, k = l+ 16 (f) C. 29: i = lB +13, j = m+16, k = l+28

(g) Final result

Figure 3.6: Illustration of memory reduced merge; Subfigures a, b, c and d show the first
4 comparisons. Subfigure e shows the action of the 17th comparison, which is the first one
that writes the result to an index which is located in A2 instead of A1. Subfigure f shows
the 29th comparison, which is the last comparison, because it uses the last Element in
A2. The remaining 3 elements in B are then copied back to A, which results in the final
merged array which is shown in Subfigure g. The values drawn in gray are not required
any more and can be overwritten.

be increased by 1. In case B[i] ≤ A[j] is not fulfilled, the value of A[j] will be written to
A[k] and j will be increased by 1. In both cases the index k needs to be increased by 1.

This process will be repeated until either all elements of A2 are used and therefore copied
to a lower index in A (j > r is fulfilled), or when all elements in B are copied back to A
to their final position. In the first case, when A2 is exhausted before B, the remaining
elements in B need to be subsequently written to the end of A, starting of course at
index k, like always when something is written in A. In the second case, if B is exhausted

30

3.5. Reduce the memory consumption of merge sort

before A2, the merge process is finished without any further operations. Because if B is
exhausted, the index k must have catched up to index j, and therefore k = j is valid.
This means further that all unchanged elements which are left in A2 are placed on their
correct position, because the distance between k and j is always equal to the amount of
elements in B which are not used: j − k = rB − i with rB = lB + (m− l). Furthermore,
it is impossible that more elements from B are used than available in B. Therefore, the
index k at which is always written into A can never overtake the index j at which is
read in A. This ensures that no value in A2, which is not yet copied to an other position,
will be overwritten. Therefore, an error-free functionality of the merge operations which
only needs half of the additional temporary space is ensured. The algorithm 3.8 shows a
working implementation of merge which only requires a B that is only half as large as
A. In the first condition (k < j) of the second loop of this algorithm it is also directly
observable that it is impossible to overwrite a still needed element in A. Figure 3.6
illustrates the functionality of this memory reduced merge algorithm – also compare with
Figure 3.1.

3.5.3 Memory reduced merge sort algorithm

The merge algorithm described above makes it possible to optimize the memory con-
sumption of an individual merge operation, but the actual target is to keep the memory
consumption of the entire merge sort algorithm as low as possible.

The execution of merge with the most elements to merge is the last one that is executed
during a run of merge sort. This last execution of merge merges the first half and the
second half of all elements in A. That implies that the size of B only needs to be n

2 for
the total merge sort algorithm when A is of size n.

For a single threaded implementation of merge sort this is a relatively easy task, because
every execution of merge can use the indices between 0 and m − l to store data in B.
But for a multithreaded implementation of merge sort this can lead to a race condition,
because different threads will write and read to B in an undefined order. Synchronization
between the threads is not really a solution because of its huge negative performance
impact. Most of the time there would be only one thread running, because all merge
operations would need an exclusive access for B and the merge routine consumes the
most processing time of the merge sort algorithm. Therefore, this would not improve the
performance compared to a single-threaded merge sort.

To solve this problem, each thread needs its own range in B where only this thread is
allowed to read and write. After all child-threads which have been started by a thread
are terminated again, the parent thread can of course reuse also the memory area that
was reserved for the child-threads. For example: merge sort should be executed with two
threads. Then, the first half of the input data is sorted by the parent thread and the
second half by the child thread. Thereby, the parent thread is only allowed to use the
first half of B as long as the child thread is running. The child thread may only use the
second half of B. After the two halves have been sorted, the child thread terminates and

31

3. Merge Sort

t0
A[0-7]:8
B[0-3]:4

t0
A[0-3]:4
B[0-1]:2

t0
A[0-1]:2
B[0]:1

t0
A[0]:1
B:0

t0
A[1]:1
B:0

t1
A[2-3]:2
B[1]:1

t1
A[2]:1
B:0

t1
A[3]:1
B:0

t2
A[4-7]:4
B[2-3]:2

t2
A[4-5]:2
B[2]:1

t2
A[4]:1
B:0

t2
A[5]:1
B:0

t3
A[6-7]:2
B[3]:1

t3
A[6]:1
B:0

t3
A[7]:1
B:0

(a) nA = 8, nB = 4

t0
A[0-8]:9
B[0-3]:4

t0
A[0-3]:4
B[0-1]:2

t0
A[0-1]:2
B[0]:1

t0
A[0]:1
B:0

t0
A[1]:1
B:0

t1
A[2-3]:2
B[1]:1

t1
A[2]:1
B:0

t1
A[3]:1
B:0

t2
A[4-8]:5
B[2-3]:2

t2
A[4-5]:2
B[2]:1

t2
A[4]:1
B:0

t2
A[5]:1
B:0

t3
A[6-8]:3
B[3]:1

t3
A[6]:1
B:0

t3
A[7-8]:2
B[3]:1

t3
A[7]
B:0

t3
A[8]
B:0

(b) nA = 9, nB = 4
t0

A[0-9]:10
B[0-4]:5

t0
A[0-4]:5
B[0-1]:2

t0
A[0-1]:2
B[0]:1

t0
A[0]:1
B:0

t0
A[1]:1
B:0

t1
A[2-4]:3
B[1]:1

t1
A[2]:1
B:0

t1
A[3-4]:2
B[1]:1

t1
A[3]
B:0

t1
A[4]
B:0

t2
A[5-9]:5
B[2-3]:2

t2
A[5-6]:2
B[2]:1

t2
A[5]:1
B:0

t2
A[6]:1
B:0

t3
A[7-9]:3
B[3]:1

t3
A[7]:1
B:0

t3
A[8-9]:2
B[3]:1

t3
A[8]
B:0

t3
A[9]
B:0

(c) nA = 10, nB = 5

t0
A[0-10]:11
B[0-4]:5

t0
A[0-4]:5
B[0-1]:2

t0
A[0-1]:2
B[0]:1

t0
A[0]:1
B:0

t0
A[1]:1
B:0

t1
A[2-4]:3
B[1]:1

t1
A[2]:1
B:0

t1
A[3-4]:2
B[1]:1

t1
A[3]
B:0

t1
A[4]
B:0

t2
A[5-10]:6
B[2-4]:3

t2
A[5-7]:3
B[2]:1

t2
A[5]:1
B:0

t2
A[6-7]:2
B[2]:1

t2
A[6]
B:0

t2
A[7]
B:0

t3
A[8-10]:3
B[3]:1

t3
A[8]:1
B:0

t3
A[9-10]:2
B[3]:1

t3
A[9]
B:0

t3
A[10]
B:0

(d) nA = 11, nB = 5
t0

A[0-11]:12
B[0-5]:6

t0
A[0-5]:6
B[0-2]:3

t0
A[0-2]:3
B[0]:1

t0
A[0]:1
B:0

t0
A[1-2]:2
B[0]:1

t0
A[1]
B:0

t0
A[2]
B:0

t1
A[3-5]:3
B[1]:1

t1
A[3]:1
B:0

t1
A[4-5]:2
B[1]:1

t1
A[4]
B:0

t1
A[5]
B:0

t2
A[6-11]:6
B[3-5]:3

t2
A[6-8]:3
B[3]:1

t2
A[6]:1
B:0

t2
A[7-8]:2
B[3]:1

t2
A[7]
B:0

t2
A[8]
B:0

t3
A[9-11]:3
B[4]:1

t3
A[9]:1
B:0

t3
A[10-11]:2
B[4]:1

t3
A[10]
B:0

t3
A[11]
B:0

(e) nA = 12, nB = 6

t0
A[0-12]:13
B[0-5]:6

t0
A[0-5]:6
B[0-2]:3

t0
A[0-2]:3
B[0]:1

t0
A[0]:1
B:0

t0
A[1-2]:2
B[0]:1

t0
A[1]
B:0

t0
A[2]
B:0

t1
A[3-5]:3
B[1]:1

t1
A[3]:1
B:0

t1
A[4-5]:2
B[1]:1

t1
A[4]
B:0

t1
A[5]
B:0

t2
A[6-12]:7
B[3-5]:3

t2
A[6-8]:3
B[3]:1

t2
A[6]:1
B:0

t2
A[7-8]:2
B[3]:1

t2
A[7]
B:0

t2
A[8]
B:0

t3
A[9-12]:4
B[4-5]:2

t3
A[9-10]:2
B[4]:1

t3
A[9]
B:0

t3
A[10]
B:0

t3
A[11-12]:2
B[4]:1

t3
A[11]
B:0

t3
A[12]
B:0

(f) nA = 13, nB = 6
t0

A[0-13]:14
B[0-6]:7

t0
A[0-6]:7
B[0-2]:3

t0
A[0-2]:3
B[0]:1

t0
A[0]:1
B:0

t0
A[1-2]:2
B[0]:1

t0
A[1]
B:0

t0
A[2]
B:0

t1
A[3-6]:4
B[1-2]:2

t1
A[3-4]:2
B[1]:1

t1
A[3]
B:0

t1
A[4]
B:0

t1
A[5-6]:2
B[1]:1

t1
A[5]
B:0

t1
A[6]
B:0

t2
A[7-13]:7
B[3-5]:3

t2
A[7-9]:3
B[3]:1

t2
A[7]:1
B:0

t2
A[8-9]:2
B[3]:1

t2
A[8]
B:0

t2
A[9]
B:0

t3
A[10-13]:4
B[4-5]:2

t3
A[10-11]:2
B[4]:1

t3
A[10]
B:0

t3
A[11]
B:0

t3
A[12-13]:2
B[4]:1

t3
A[12]
B:0

t3
A[13]
B:0

(g) nA = 14, nB = 4

t0
A[0-14]:15
B[0-6]:7

t0
A[0-6]:7
B[0-2]:3

t0
A[0-2]:3
B[0]:1

t0
A[0]:1
B:0

t0
A[1-2]:2
B[0]:1

t0
A[1]
B:0

t0
A[2]
B:0

t1
A[3-6]:4
B[1-2]:2

t1
A[3-4]:2
B[1]:1

t1
A[3]
B:0

t1
A[4]
B:0

t1
A[5-6]:2
B[1]:1

t1
A[5]
B:0

t1
A[6]
B:0

t2
A[7-14]:8
B[3-6]:4

t2
A[7-10]:4
B[3-4]:2

t2
A[7-8]:2
B[3]:1

t2
A[7]
B:0

t2
A[8]
B:0

t2
A[9-10]:2
B[3]:1

t2
A[9]
B:0

t2
A[10]
B:0

t3
A[11-14]:4
B[5-6]:2

t3
A[11-12]:2
B[5]:1

t3
A[11]
B:0

t3
A[12]
B:0

t3
A[13-14]:2
B[5]:1

t3
A[13]
B:0

t3
A[14]
B:0

(h) nA = 15, nB = 7

Figure 3.7: Illustration of the required indices in B for a multithreaded merge sort (4
threads) that ensures nl ≤ nr for every recursive call; the color indicates the thread that
is executing the merge; all nodes represent the tree TA, the nodes with “B: 0” does not
belong to TB

now the parent thread can use the entire memory space in B to merge the two already
sorted halves to the final sorted output sequence. For a merge sort call with more than
two threads, the same principle applies recursively.

In order to control from which index on each thread is allowed to write into B the

32

3.5. Reduce the memory consumption of merge sort

already mentioned parameter lB (left for B) is needed in the merge algorithm. All merge
sort calls within threads are allowed to use the same start index lB since everything is
executed serially within a thread and therefore no race condition can occur. Since for each
recursive call of merge sort the length of the array to be sorted is cut in half, the required
memory capacity in B is cut in half as well with every recursive call. Therefore, the
biggest amount of the space that is required by a thread in B is needed in the recursion
level in which the thread itself was generated. This means that a new lB has to be
calculated only for those merge sort calls for which a new thread is started. Furthermore,
when calculating a lB for a new thread only merge sort calls for which a new thread is
started and that sorts subsequences further to the left than the thread for which the lB
is calculated must be taken into account.

Concretely, this means that the merge sort algorithm further has to calculate the first
index lBsub−r from which on the new thread can write into B, if the right half is sorted
by a new thread. lBsub−r is provided to the merge sort call that sorts the right half of
the current subsequence as parameter lB. lBsub−r can be defined in dependence on the
current start index lB in B and the length of the left half of A.

If the center m and the right end r represent the last valid indices (x ≤ m, x ≤ r) as it
is the case in the presented pseudocodes, the length of the left part can be calculated
by nl = m+ 1− l. However, if m and l are considered to be lengthwise and therefore
valid indices must fulfill x < m or x < r, the length of the left part must be calculated
by nl = m − l. Also, one should pay attention to calculate m in a way that for input
array lengths n which are not dividable by 2 the larger half always gets processed by the
merge sort call which sorts the right half. So the following equation is valid: nl ≤ nr

with nl = |A1| = |A[l, ...,m]| and nr = |A2| = |A[m+ 1, ..., r]|. Therefore, if valid indices
x defined by x ≤ m, x ≤ r the middle m should be calculated by m = b l+r−1

2 c. Because
then the index range l to m (including) corresponds to the rounded-down half of n.

If the computation of m is chosen in a way that nl ≤ nr always holds, lBsub−r can be
calculated by lBsub−r = lB + bnl

2 c. This works because the merge algorithm described
above only copies the first half of A (A1 = A[l, ...,m]) into B and the second half
A2 = A[m+ 1, ..., r] always remains in A. Since the second half contains the remainder of
the division n

2 , the remainder does not need to be considered in the calculation of lBsub−r .
Figure 3.7 illustrates the memory usage in B per thread in dependence of the size of A
for a merge sort implementation where nl ≤ nr always holds.

Length of B for nl ≥ nr

If on the other hand the calculation of m is chosen in a way that the remainder of the
division n

2 is contained in the first half (nl ≥ nr), the calculation of lBsub−r is much more
complex. This case for example would happen if m is calculated by m = b l+r

2 c in a
system which defines the index boundaries as x ≤ m, x ≤ r. This case would probably
occur very frequently in real implementations. Also in this case it is possible to calculate
the size in B required by the merge sort call. Therefore, every lB can be calculated.

33

3. Merge Sort

In order to better understand the memory consumption of the merge calls one should
imagine a binary tree TA whose depth-first traversal corresponds to the recursive calls
of the merge sort method. If a node of this tree is passed at the left side, A is divided
into two halves and both subtrees below the node are sorting the left and right half of A.
After these two halves are being sorted by the subtrees, the node is passed on the right
side. Thereby, both sorted halves of A are merged together to the one sorted sequence.

In the leaves of this binary tree TA, the length of the arrays that are to be sorted is only
1. Because one element is sorted correctly – which is trivial – the leaves of this tree do
not need any memory in B. Therefore, the only relevant aspect for calculating the size
of B is the subtree TB which consists of all inner nodes of the tree TA.

Let us define hB as the height of the tree TB and define the levels of the tree as dB with
0 ≤ dB < hB. The height hB can be calculated based on n by hB = hA− 1 = dlog2(n)e.

For every node of the tree TB in the last level that is entirely filled with nodes an element
in B is required. If this level is indeed the last level then the calculation of lBsub−r would
be done, because in this case the result of log2(n) is a nonnegative integer (log2(n) ∈ N).
Consequently, A can be divided into two equal halves with no remainder. Therefore, for
every node nl = nr is fulfilled.

Because we can assume that TB is a balanced tree the count of the nodes in the last
complete level of TB is defined by:

N c
B = N c

A

2 = 2blog2(n)c

2 = 2blog2(n)c−1

(N c
A is the count of the nodes in the last complete level of TA.) If the last level is not

completely filled up with nodes, the memory consumption that goes beyond N c
B can be

calculated by the count of the nodes in the last level, therefore, by the “remainder” of
log2. The count of nodes in the last level of the tree TB can be calculated as follows:

N l
B =

(⌊n
2
⌋
−N c

B

)
· 2 =

(⌊n
2
⌋
− 2blog2(n)c−1

)
· 2 = n− 2blog2(n)c

In order to be able to calculate the required size of B, we also need the number of threads
which computes the subset of A for which the current node is responsible. The number
of threads that work in a subtree whose root node is in the level d can be calculated as
follows:

td = 2log2(t)−d

Theoretically, it is possible that n is in comparison to t so small that not all available
threads t are ever used. Therefore, for an exact calculation of the length of B, the number
of really running threads needs to be calculated:

tw = max
(
1,min

(
td, N

c
B + max(0, N l

B −N c
B)
))

34

3.5. Reduce the memory consumption of merge sort

t0
A[0-7]:8
B[0-3]:4

t0
A[0-3]:4
B[0-1]:2

t0
A[0-1]:2
B[0]:1

t0
A[0]:1
B:0

t0
A[1]:1
B:0

t1
A[2-3]:2
B[1]:1

t1
A[2]:1
B:0

t1
A[3]:1
B:0

t2
A[4-7]:4
B[2-3]:2

t2
A[4-5]:2
B[2]:1

t2
A[4]:1
B:0

t2
A[5]:1
B:0

t3
A[6-7]:2
B[3]:1

t3
A[6]:1
B:0

t3
A[7]:1
B:0

(a) nA = 8, nB = 4

t0
A[0-8]:9
B[0-4]:5

t0
A[0-4]:5
B[0-2]:3

t0
A[0-2]:3
B[0-1]:2

t0
A[0-1]:2
B[0]:1

t0
A[0]
B:0

t0
A[1]
B:0

t0
A[2]:1
B:0

t1
A[3-4]:2
B[2]:1

t1
A[3]:1
B:0

t1
A[4]:1
B:0

t2
A[5-8]:4
B[3-4]:2

t2
A[5-6]:2
B[3]:1

t2
A[5]:1
B:0

t2
A[6]:1
B:0

t3
A[7-8]:2
B[4]:1

t3
A[7]:1
B:0

t3
A[8]:1
B:0

(b) nA = 9, nB = 5
t0

A[0-9]:10
B[0-4]:5

t0
A[0-4]:5
B[0-2]:3

t0
A[0-2]:3
B[0-1]:2

t0
A[0-1]:2
B[0]:1

t0
A[0]
B:0

t0
A[1]
B:0

t0
A[2]:1
B:0

t1
A[3-4]:2
B[2]:1

t1
A[3]:1
B:0

t1
A[4]:1
B:0

t2
A[5-9]:5
B[3-5]:3

t2
A[5-7]:3
B[3-4]:2

t2
A[5-6]:2
B[3]:1

t2
A[5]
B:0

t2
A[6]
B:0

t2
A[7]:1
B:0

t3
A[8-9]:2
B[5]:1

t3
A[8]:1
B:0

t3
A[9]:1
B:0

(c) nA = 10, nB = 6

t0
A[0-10]:11
B[0-5]:6

t0
A[0-5]:6
B[0-2]:3

t0
A[0-2]:3
B[0-1]:2

t0
A[0-1]:2
B[0]:1

t0
A[0]
B:0

t0
A[1]
B:0

t0
A[2]:1
B:0

t1
A[3-5]:3
B[2-3]:2

t1
A[3-4]:2
B[2]:1

t1
A[3]
B:0

t1
A[4]
B:0

t1
A[5]:1
B:0

t2
A[6-10]:5
B[4-6]:3

t2
A[6-8]:3
B[4-5]:2

t2
A[6-7]:2
B[4]:1

t2
A[6]
B:0

t2
A[7]
B:0

t2
A[8]:1
B:0

t3
A[9-10]:2
B[6]:1

t3
A[9]:1
B:0

t3
A[10]:1
B:0

(d) nA = 11, nB = 7
t0

A[0-11]:12
B[0-5]:6

t0
A[0-5]:6
B[0-2]:3

t0
A[0-2]:3
B[0-1]:2

t0
A[0-1]:2
B[0]:1

t0
A[0]
B:0

t0
A[1]
B:0

t0
A[2]:1
B:0

t1
A[3-5]:3
B[2-3]:2

t1
A[3-4]:2
B[2]:1

t1
A[3]
B:0

t1
A[4]
B:0

t1
A[5]:1
B:0

t2
A[6-11]:6
B[4-6]:3

t2
A[6-8]:3
B[4-5]:2

t2
A[6-7]:2
B[4]:1

t2
A[6]
B:0

t2
A[7]
B:0

t2
A[8]:1
B:0

t3
A[9-11]:3
B[6-7]:2

t3
A[9-10]:2
B[6]:1

t3
A[9]
B:0

t3
A[10]
B:0

t3
A[11]:1
B:0

(e) nA = 12, nB = 8

t0
A[0-12]:13
B[0-6]:7

t0
A[0-6]:7
B[0-3]:4

t0
A[0-3]:4
B[0-1]:2

t0
A[0-1]:2
B[0]:1

t0
A[0]
B:0

t0
A[1]
B:0

t0
A[2-3]:2
B[0]:1

t0
A[2]
B:0

t0
A[3]
B:0

t1
A[4-6]:3
B[2-3]:2

t1
A[4-5]:2
B[2]:1

t1
A[4]
B:0

t1
A[5]
B:0

t1
A[6]:1
B:0

t2
A[7-12]:6
B[4-6]:3

t2
A[7-9]:3
B[4-5]:2

t2
A[7-8]:2
B[4]:1

t2
A[7]
B:0

t2
A[8]
B:0

t2
A[9]:1
B:0

t3
A[10-12]:3
B[6-7]:2

t3
A[10-11]:2
B[6]:1

t3
A[10]
B:0

t3
A[11]
B:0

t3
A[12]:1
B:0

(f) nA = 13, nB = 8
t0

A[0-13]:14
B[0-6]:7

t0
A[0-6]:7
B[0-3]:4

t0
A[0-3]:4
B[0-1]:2

t0
A[0-1]:2
B[0]:1

t0
A[0]
B:0

t0
A[1]
B:0

t0
A[2-3]:2
B[0]:1

t0
A[2]
B:0

t0
A[3]
B:0

t1
A[4-6]:3
B[2-3]:2

t1
A[4-5]:2
B[2]:1

t1
A[4]
B:0

t1
A[5]
B:0

t1
A[6]:1
B:0

t2
A[7-13]:7
B[4-7]:4

t2
A[7-10]:4
B[4-5]:2

t2
A[7-8]:2
B[4]:1

t2
A[7]
B:0

t2
A[8]
B:0

t2
A[9-10]:2
B[4]:1

t2
A[9]
B:0

t2
A[10]
B:0

t3
A[11-13]:3
B[6-7]:2

t3
A[11-12]:2
B[6]:1

t3
A[11]
B:0

t3
A[12]
B:0

t3
A[13]:1
B:0

(g) nA = 14, nB = 8

t0
A[0-14]:15
B[0-7]:8

t0
A[0-7]:8
B[0-3]:4

t0
A[0-3]:4
B[0-1]:2

t0
A[0-1]:2
B[0]:1

t0
A[0]
B:0

t0
A[1]
B:0

t0
A[2-3]:2
B[0]:1

t0
A[2]
B:0

t0
A[3]
B:0

t1
A[4-7]:4
B[2-3]:2

t1
A[4-5]:2
B[2]:1

t1
A[4]
B:0

t1
A[5]
B:0

t1
A[6-7]:2
B[2]:1

t1
A[6]
B:0

t1
A[7]
B:0

t2
A[8-14]:7
B[4-7]:4

t2
A[8-11]:4
B[4-5]:2

t2
A[8-9]:2
B[4]:1

t2
A[8]
B:0

t2
A[9]
B:0

t2
A[10-11]:2
B[4]:1

t2
A[10]
B:0

t2
A[11]
B:0

t3
A[12-14]:3
B[6-7]:2

t3
A[12-13]:2
B[6]:1

t3
A[12]
B:0

t3
A[13]
B:0

t3
A[14]:1
B:0

(h) nA = 15, nB = 8

Figure 3.8: Illustration of the required indices in B for a multithreaded merge sort (4
threads) that ensures nl ≥ nr for every recursive call; the color indicates the thread that
is executing the merge; all nodes represent the tree TA, the nodes with “B: 0” does not
belong to TB

The lowest level that contains nodes for which new threads are created is defined by: dt =
log2(t). For better readability all nodes in the level dt are label as: “Threaded-Node“

Let us assume an array A of the length n0 = 2x that needs to be sorted. Therefore, the
corresponding tree TB has a last level completely filled with nodes (see Subfigure 3.8a).

35

3. Merge Sort

If the length of array A is increased by one element, the subtree that is sorted by the
thread with the ID 0 will get one new leaf node at the left end of the tree. The thread
with ID 0 must therefore sort one element more than all other threads. Since nl ≥ nr

holds, it also requires a by one element larger memory area in B (see Subfigure 3.8b).
If A is increased by one additional element, the tree obtains a new leaf in the far left
at the right half of the tree. The thread with the ID t/2 now has to sort one element
more and therefore needs space for one more element in B (see Subfigure 3.8c). The next
additional element must be sorted by the thread with the ID t/4. Of course also this
thread therefore needs now an additional element in B (see Subfigure 3.8d).

The same happens with every additional element added to A until A has reached a
length of n0 + t (see Subfigure 3.8e). When the length of A is then increased by one
further element and is therefore n0 + t+ 1 elements long, this new element is added to
the subtree that is sorted by the thread with the ID 0 (see Subfigure 3.8f). This time,
however, the element is added to the right subtree below the Threaded-Node. Since
all merge operations within a thread can use the same memory range in B, the right
subtree can use the memory that was already added for the element count n0 + 1. The
merge operation of the Threaded-Node also includes one element more, but this has
no effect on the size of B required by the Threaded-Node because the newly added
element stays in A during the merge operation performed in the Threaded-Node and
therefore, does not have to be copied to B. For this Threaded-Node nl = nr does now
apply. But the nodes that are located in the tree above the Threaded-Node have to
copy again one element more to B, because for these nodes nl ≥ nr does now apply.
However, for an A with a length of n0 + t, two Threaded-Nodes with one common
parent node together need more space in B than the parent node. Therefore, there is
already enough space in B for all nodes above the Threaded-Node, and the length of
B does not need to be increased.

If A is further increased, the nl and nr of all Threaded-Nodes are being rebalanced.
Therefore, there is no need to change the size of B until the input array A reaches the
length of n0 + 2 · t. Figure 3.8 illustrates this behaviour of the memory usage in B per
thread in dependence of the size of A for a merge sort implementation where nl ≥ nr

always holds (also compare with Figure 3.7).

From n0 + 2 · t+ 1 on, the left subtrees below the Threaded-Nodes starts again to get
larger than the right subtrees, which leads to nl ≥ nr inside the Threaded-Nodes and
therefore B must be increased again for each additional element. After t elements have
been added, all nl and nr values inside the Threaded-Nodes start to rebalance again
and therefore the length of B is not required to change. This behavior alternates always
after t added elements and repeats until the tree has a last level that is completely filled
with nodes again. A function that illustrates this behavior when increasing the length of
A is shown in the Figure 3.9.

36

3.5. Reduce the memory consumption of merge sort

0 1t 2t 3t 4t 5t 6t

0

1t

2t

3t

N l
B (Nodes in last row of binary tree TB)

U
pp

er
bo

un
d
fo
r
n

B
−
N

c B

f1(x, t) = x mod t+
⌊

x+t
2·t

⌋
· t

f2(x, t) = bx+t
2·t c · t

f(x, t) = max(f1(x, t),f2(x, t))

Figure 3.9: Upper bound for additional elements that are required for leaves N l
B

A mathematical definition for this mapping can be constructed by the following functions:

• A function that looks like a sawtooth whose teeth rise at 45 degrees and have a
length as well as a height of t. (Corresponds to the number of all those nodes in
the last level of TB which can not be evenly distributed across all threads.)

f1a(x, t) = x− bx
t
· tc = x mod t

• Staircase function whose step height equals to t and the step depth to 2 · t. (Cor-
responds to the half of the nodes in the last level, which can be evenly distribute
across all threads.)

f1b(x, t) =
⌊ x

t

2
⌋
· t =

⌊ x

2 · t
⌋
· t

• f1 is generated by adding together f1a and f1b. Thereby, the staircase function f1b

always raises the sawtooth f1a by t after 2·t elements. The result is a function which
increases by 1 for every added element until t elements are added and afterwards
falls to 0. Subsequently, however, for the next 2·t element, the mapping continuously
increases by 1 each time an element is added and then it is decreased by t. This
behavior is repeated for each additional element. As a matter of principle, the
mapped values are always increasing but not continuously.

f1(x, t) = f1a(x, t) + f1b(x, t)

37

3. Merge Sort

• f2 is a staircase function like f1b but moved to the left by t. This function is required
to trap the decreasing function values that occurs always when bx/tc mod 2 = 1 in
f1.

f2(x, t) =
⌊ x+t

t

2
⌋
· t =

⌊x+ t

2 · t
⌋
· t

• The final function f can then be defined as follows:

f(x, t) = max(f1(x, t), f2(x, t))

For n < 2 · t, the following must be considered: Once the last level of the tree TB contains
more than half of its maximum possible nodes, with every element added to A, not only
the number of leaves increases but also the number of actually started threads tw. This
causes the function f to return a too large result. To solve this problem, one could use
the number of threads already started above the last level of the tree TB instead of tw.
This could be done by replacing tw with 2blog2(tw)c. Or it can be solved by simply limiting
f by N c

B which exactly corresponds to the half of the maximum possible nodes in the
last level of TB. Since the function f never returns values greater than N c

B for n ≥ 2 · t,
no distinction of cases is required. Therefore, N c

B can always be used as an upper bound
for f : min(N c

B, f(N l
B, t))

The effects described above on the length of B when increasing the length of A apply
not only to the root node of the whole tree, but also to all subsequences of A and B
for which a node is responsible that uses a new thread for sorting. The formulas can
therefore also be used for all recursive merge sort calls where a new thread is created.
Thereby, n has to be replaced just with the length of the respective subsequence which
is sorted by this particular merge sort call. Furthermore, of course, tw also has to be
recalculated in every merge sort call.

The required length nB for B can therefore be calculated for each node (merge sort call)
by the following function:

nB = N c
B + min

(
N c

B, f(N l
B, tw)

)
This results in the following function which is able to calculate every required lBsub−r for
a merge sort implementation that has r and m defined in a way that nl ≥ nr holds for
every merge operation.

lBsub−r = lB + nB = lB +N c
B + min

(
N c

B, f(N l
B, tw)

)
3.6 Optimization of merge sort through insertionsort
In order to further speedup the algorithm the author picked up the idea Hoare [Hoa62]
and Sedgewick et al. [SA78] had to speed up quicksort with the usage of insertion sort for

38

3.6. Optimization of merge sort through insertionsort

small subsequences and tested if this applies as well to merge sort. For sorting oriented
points it does not improve the performace significantly, but for some test cases a slight
runtime improvemen can be obtained – see Section 5.2 for details.

Algorithm 3.3: InsertionSort (Adapted from [BKBH])

Input: array A
Parameters : sorting begin and end indices l, r
Output: sorted subset A[l],...,A[r]

1 procedure insertionSort(integer l, integer r)
2 for j ← l + 1 to r do
3 key ← A[j]
4 i ← j− 1
5 while i ≥ l and i < r and key < A[i] do
6 A[i + 1] ← A[i]
7 i← i− 1
8 end
9 A[i + 1] ← key

10 end

39

3. Merge Sort

Algorithm 3.4: SortPartition (Adapted from [BKBH])

Input: array A
Parameters : sorting begin and end indices l, r
Output: sorted subset A[l],...,A[r]

1 procedure sortPartition(integer l, integer r)
// choosing pivot item as median of l-m-r.

2 m ← l + r−l
2

3 r ← r − 1
4 if A[m] < A[l] then swap A[m] and A[l]
5 if A[r] < A[l] then swap A[r] and A[l]
6 if A[r] < A[m] then swap A[r] and A[m]
7 swap A[m] and A[l]
8 pivot ← l
9 while l < r do

// move left while item ≤ pivot
10 while l 6= r do
11 if A[l] < A[pivot] then l ← l + 1 // less
12 else if A[pivot] < A[l] then break
13 else l ← l + 1 // equal

14 end
// move right while item > pivot

15 i ← 0
16 while A[pivot] < A[r] do
17 i ← i + 1
18 r ← r − 1
19 end
20 if l < r then swap A[l] and A[r]
21 end

// right is final position for the pivot
22 swap A[pivot] and A[r]
23 return r

40

3.6. Optimization of merge sort through insertionsort

Algorithm 3.5: Quicksort (Adapted from [BKBH])

Input: array A
Parameters : sorting begin and end indices l = 0, r = A.size()
Output: sorted subset A[l],...,A[r]

1 procedure quicksort(integer l, integer r)
2 stackP ← 1
3 repeat
4 if l < r then
5 if r − l < 10 and use insertion sort for small subsequences then
6 insertionSort(l, r)
7 stackP ← stackP− 1
8 l ← lowStack[stackP]
9 r ← highStack[stackP]

10 continue
11 end
12 pivot ← sortPartition(l,r)
13 if pivot− 1− l < r − pivot + 1 then
14 lowStack[stackP] ← pivot + 1
15 highStack[stackP] ← r
16 stackP ← pivot + 1
17 r ← pivot
18 else
19 lowStack[stackP] ← l
20 highStack[stackP] ← pivot
21 stackP ← stackP + 1
22 l ← pivot + 1
23 end
24 else
25 stackP ← stackP− 1
26 l ← lowStack[stackP]
27 r ← highStack[stackP]
28 end
29 until stackP > 0

41

3. Merge Sort

Algorithm 3.6: Merge sort initialisation for multithreaded and memory optimized
merge sort

Input: array A
Parameters : number of threads that should be used to sort the array
Output: sorted array A

1 procedure mergesortInit(integer maxThreads)
// make shure maxThreads is in 2x

2 threadedDepth← blog2(maxThreads)c
3 threadCount← 2threadedDepth

4 allocate array B with calcSizeOfB(threadCount,A.size()) elements
5 mergesortThreaded (0, A.size()− 1, 0, threadCount, 0)

Algorithm 3.7: CalcSizeOfB for multithreaded and memory optimized merge sort

Parameters : elementCountA: number of elements to sort;
maxThreads: number of threads that should be used to sort the array

Result: required temporary array size (size of B)
// maxThreads have to be 2x

1 procedure calcSizeOfB(integer maxThreads, integer elementCountA)
2 N c

A ← 2bld(elementCountA)c // The count of nodes in last complete
level of binary tree of A

3 N l
A ← (elementCountA− 2bld(elementCountA)c) · 2 // The count of nodes
in last level in binary tree of A

4 N c
B ← b

Nc
A

2 c // The count of nodes in last complete level of
binary tree of B

5 N l
B ← b

N l
A

2 c // The count of nodes in last level of binary
tree of B

6 Tw ← max(1,min(maxThreads, N c
B +max(0, N l

B −N c
B))) // number of

really working threads

7 s← N c
B +min(N c

B,max(N l
B − b

N l
B

Tw
c · Tw + b

Nl
B

Tw
2 c · Tw, b

Nl
B

+Tw

Tw
2 c · Tw))

8 return s;

42

3.6. Optimization of merge sort through insertionsort

Algorithm 3.8: Merge for multithreaded and memory optimized merge sort

Input: array A, array B
Parameters : sorting begin middle and end indices l, m, r

Integer lB
Output: sorted subset A[l],...,A[r]

1 procedure mergeT(integer l, integer m, integer r, integer lB)
2 i ← lB
3 j ← l;

// Copy the first half of elements from A to B.
4 while j ≤ m do
5 B[i] = A[j]
6 i ← i + 1
7 j ← j + 1
8 end
9 i ← lB

10 k ← l
// Copy the values back from A2 and B to A, in correctly

sorted order.
11 while k < j and j ≤ r do
12 if B[i] < A[j] then // use ≤ for a stable merge
13
14 A[k] ← B[i]
15 i ← i + 1
16 else
17 A[k] ← A[j]
18 j ← j + 1
19 end
20 k ← k + 1
21 end

// Copy back the remaining values from B to A
22 while k < j do
23 A[k] ← B[i]
24 k ← k + 1
25 i ← i + 1
26 end

43

3. Merge Sort

Algorithm 3.9: Multithreaded and memory optimized merge sort

Input: array A, array B
Parameters : sorting begin and end indices l, r
Output: sorted subset A[l],...,A[r]

1 procedure mergesortThreaded(integer l, integer r, integer lB, integer
maxThreads, integer threadStartDepth)

2 if r − l < 10 and use insertion sort for small subsequences then
3 insertionSort(l, r + 1)
4 else if l < r then
5 m ← b l+r

2 c
6 if 2threadStartDepth+1 ≤ maxThreads then

// sort second half with a new thread

7 Tl ← 2ld(maxThreads)−(threadStartDepth+1)

8 lBsub−r ← lB + calcSizeOfB(Tl,m + 1− l)
9 threadStartDepth ← threadStartDepth + 1

10 Tnew ← execute new Thread begin
11 mergesortThreaded (m + 1, r, lBsub−r , maxThreads,

threadStartDepth)
12 end

// sort first half with current thread
13 mergesortThreaded (l, m, lB, maxThreads, threadStartDepth)
14 wait until Tnew is finished
15 else
16 mergesortThreaded (l, m, lB, maxThreads, threadStartDepth)
17 mergesortThreaded (m + 1, r, lB, maxThreads, threadStartDepth)
18 end
19 mergeT(l, m, r, lB)
20 end

44

CHAPTER 4
Postprocessing

As already mentioned in Section 2.2, the “Multilevel Streaming for Out-of-Core Surface
Reconstruction” approach from Bolitho et al. [BKBH07] produces watertight surface
reconstructions. While this is a nice behavior for many cases, it can sometimes lead to
problems. For scanned point clouds of objects with a closed surface such as characters,
this works very well. Figure 5.4 shows a reconstructed surface mesh of a point cloud
sampled from a dragon sculpture [Sta] with such a closed surface. For scans of a terrain,
which does not have a closed surface, the behavior of the Poisson Surface Reconstruction
[KBH06] often leads to some big unwanted triangles. The reconstruction of a point cloud
acquired from Mount St. Helens shown in Figure 4.1 shows such unwanted triangles in
the two images on the left side. These unwanted triangles sometimes create something
like a half sphere over the terrain, which makes it harder to take a quick look on the
reconstructed surface than necessary. This is especially a problem for unexperienced
users. To overcome this problem, two simple approaches with the aim to remove these
big unwanted triangles from the reconstructed mesh were tested.

The idea of the first approach was to check how many samples of the point cloud are
located near to the triangle in order to evaluate the relation of the size of the triangle to
the count of nearby located samples. In order to do that, first an axis-aligned bounding
box (AABB) is computed for each triangle. Then the number of samples of the point
cloud that lie inside the AABB is calculated. To calculate the “density” of the triangle
the number of points within the AABB is divided through the volume of the AABB. Then
all triangles are sorted according to their “density” and then a user-controlled percentage
of triangles with the least density will be removed. The problem with this approach is
that – at least for reconstruction resolutions that are high enough to reconstruct as many
details as possible – most AABB do not contain any samples. This happens because the
Poisson Surface Reconstruction [KBH06] creates meshes that are so smooth that most of
the triangles are located too far away from the samples of the input point cloud.

45

4. Postprocessing

Since the first approach mostly does not reach the goals a second approach was
tested. Within this approach the triangles are sorted by their area and a user-controlled
percentage of the triangles with the largest area will be removed. This approach works
acceptably for low-resolution reconstruction (28), though narrow but large triangles often
will not be removed. For high resolution reconstructions holes often occur for surface parts
with low sampling density or at very planar surface parts. If the user uses a very small
percentage (0.1), it works generally, though the reconstructed mesh still contains some
unnecessary triangles and ragged boarders. However, the optimal percentage depends
on the reconstruction resolution. In order to avoid the removal of needed triangles, a
further constraint was added to the algorithm: namely every edge of the triangle needs
to exceed a certain length (0.005) to be considered for a removal. This check of the edge
lengths makes the approach more independent from the reconstruction resolution and the
sampling density of the input point cloud. With this approach still unnecessary triangles
exist, though they do not disturb a quick view over the model.

Figure 4.1 shows a reconstructed mesh from a point cloud with 5.7 million points. The
mesh was reconstructed with a maximum octree depth of 10. The left two images show
the result without any postprocessing. The right two images show the results with
postprocessing, where a percentage of max. 1% of the largest triangles with a minimum
edge length of 0.005 has been removed.

Both approaches where implemented as a postproccessing step and designed as out-of-
core algorithms. Therefore, they can also be used to postprocess meshes reconstructed
with resolutions of 214 and higher, which generally have a vertex count that does not
fit in common main memory. In order to make the algorithm out-of-core, the file which
contains the faces and their vertex indices are streamed. The vertex positions are read
from another file and buffered in a least recently used (LRU) cache. Since the neighboring
triangles are stored close to each other in the face index file that was created by the
reconstruction process, the LRU cache in combination with a buffered reader efficiently
prevents random readings from disk. The indices of the faces that should be removed
from the mesh are just stored in an in-core hash-table. Because the faces that should be
removed are only some 100 or 1, 000, this hash-table is so small that it does not need
to be out-of-core. Finally, when writing out the mesh as ply or obj file, every face is
checked against the hash-table that contains the indices of unwanted faces. If the actual
face is in the hash-table of unwanted faces it is just not written to the final output.

46

Figure 4.1: Reconstructed mesh with 43.0602 vertices and 86.0242 faces from a scan of
Mount St. Helens. with 5.784.252 Points. For the reconstruction a maximal octree depth
of 10 was used. Left images: without Postprocessing, right images: removed maximal 1%
of the largest triangle with an minimum edge length of 0.005

47

CHAPTER 5
Results

5.1 Test environment
All runtime tests were done on an Apple MacMini with a 2.3GHz Intel R© CoreTMi7-
3615QM quad-core processor, 16GB RAM and a 500GB Crucial MX200 SSD connected
via Thunderbolt. The used operating system was Windows 8.1 Pro 64Bit. All tested
algorithms were implemented in C++ and compiled with Microsoft R© Visual Studio R©

2010 Premium as 64Bit application.

If you look at the runtime results, which were performed with 8 threads, be aware that
the used CPU has only 4 cores. Therefore, the slight difference that can be seen between
the test with 4 and 8 threads does not mean that the algorithm does not scale well for
more then 4 threads. The little runtime improvement when using 8 instead of 4 threads
comes from Intel’s Hyper-Threading Technology only and not from using the double
amount of real CPU cores.

5.2 Sorting runtime
The results of the runtime measurements are shown in Figure 5.2. The tests have shown
that at least for data with simple comparison operations (integer & float) the total
runtime can be improved by using insertion sort for small subsequences – exactly like
it applies to quicksort. Unfortunately, it seems that the use of insertion sort does not
have any influence on the total runtime of sorting-processes which require rather complex
comparison operations like the comparator for the oriented points.

One of the possible explanations for that phenomenon could be that the runtime needed
by the oriented-point comparator is so huge that it destroys the advantages of smaller
overheads of insertion sort even if a small n (= 9) is used due to the higher amount
of necessary comparisons required by insertion sort. Insertion sort has in principal the

49

5. Results

advantage of a smaller overhead compared to merge sort or quicksort because no recursive
method calls are needed. However, insertion sort requires n2 comparisons, whereas merge
sort or quicksort need only n · log2(n) comparisons. Since the overhead for the recursive
method calls is independent from the runtime complexity of the comparison operator,
the runtime advantages of insertion sort decrease with increasing runtime complexity of
the comparison operator even with very small n.

During the test for run-time measurements, however, other interesting observations have
been made. One of them occurred in the tests with integer and float arrays: Quicksort
seems to benefit more from the use of insertion sort at n < 104 than merge sort. But at
approximate 106 elements it does not seem to have any significant influence on the total
runtime of quicksort any more. At least the optimization through insertion sort does not
behave logarithmically to the amount of elements to be sorted. In contrast to that the
total runtime of merge sort also benefits at n > 106 from the usage of insertion sort.

Another interesting observation is the fact that the total runtime of quicksort does not
behave like n · log2(n) in practice as one would assume theoretically [Hoa62, CGD11].
The total runtime of merge sort on the other hand behaves also with big amount of data
(n > 106) like n · log2(n) and therefore exactly like assumed.

This leads to the fact that merge sort is faster than quicksort for the purpose of sorting
big point clouds even under the use of only one thread (clearly visible in Figure 5.1).
Another advantage of merge sort is its predictable runtime. The number of required
comparisons and merge operations is defined by just the count of elements that need
to be sorted. The required copy operations of a single merge operation are not exactly
known at the beginning but even without that information, a good runtime estimation
can be calculated easily. This allows an application developer to present an accurate
remaining time estimation to the user. As a result, merge sort is better suited to our
needs than quicksort.

50

5.2. Sorting runtime

0 10 20 30 40 50

quick-/insertion sort

merge-/insertion
sort 1 thread

merge-/insertion
sort 2 threads

merge-/insertion
sort 4 threads

merge-/insertion
sort 8 threads

43.79

8.68

4.57

2.5

1.97

40.72

8.52

4.47

2.47

1.97

required time (seconds)

integer

float

0 1000 2000 3000 4000 5000

4,392.15

85.02

45.27

26.52

21.33

required time (seconds)

oriented point (6 x float)

Figure 5.1: comparison of required time for sorting 50 · 106 elements

51

5. Results

104 105 106 107 108

10−3

10−2

10−1

100

101

102

element count

re
qu

ire
d
tim

e
(s
ec
on

ds
)

integer

104 105 106 107 108

10−3

10−2

10−1

100

101

102

element count

re
qu

ire
d
tim

e
(s
ec
on

ds
)

float

104 105 106 107 108
10−4

10−2

100

102

104

element count

re
qu

ire
d
tim

e
(s
ec
on

ds
)

oriented point (6 x float)

quicksort quick-/insertion sort
merge sort - 1 thread merge-/insertion sort - 1 thread
merge sort - 2 threads merge-/insertion sort - 2 threads
merge sort - 4 threads merge-/insertion sort - 4 threads
merge sort - 8 threads merge-/insertion sort - 8 threads
n·log2(n)

108

Figure 5.2: integer, float and oriented point sorting performance

52

5.3. Surface reconstruction

5.3 Surface reconstruction

The author has evaluated the Surface Reconstruction Plugin for Scanopy with point
clouds of different sizes. In order to show the most relevant results, the author indicated
runtime measurements for two different point clouds, each reconstructed with 3 different
maximum octree depths as visible in Table 5.1. The right bar chart in Figure 5.3 clearly
shows that for reconstructions of point clouds with hundreds of millions of points, the
total runtime of the reconstruction was significantly reduced by the multithreaded merge
sort algorithm introduced in Chapter 3. For relatively small point clouds (less than 5
million points) and high octree depths (12) the time required for sorting is only a small
percentage of the total runtime. This can be seen from the left bar chart in Figure 5.3.
Since the multithreaded merge sort algorithm affects sorting only, the result on the total
runtime is not significant. However, for point clouds with hundreds of millions of points,
where the time required for sorting is up to 80% and more, the sorting algorithm has
a high impact on the total runtime. Therefore, the proposed multithreaded merge sort
algorithm can significantly reduce the total runtime as indicated in Table 5.1 from nearly
7 hours to less than 1 hour.

The reconstruction results for the Asian Dragon and the Siebenschläferhöhle data set
that was used for the runtime measuring visible in Table 5.1 and Figure 5.3 are shown in

Name Asian Dragon Siebenschläferhöhle
Points 3,609,600 382,784,008
Buckets 8 512
Octree depth 8 10 12 8 10 12
Resolution 256 1,024 4,096 256 1,024 4,096
Vertices 69,745 1,207,014 3,584,152 68,374 1,101,233 17,880,635
Faces 139,280 2,413,718 7,167,844 136,563 2,202,242 35,760,188
Computing Centroid 1.1 167.5
Computing Covariance 1.0 158.1
Computing Bounding Box 1.1 170.4
Creating Buckets 1.3 190.2
Sort Algorithm quick merge quick merge
Sorting (in-core) 7.6 1.6 21,346.0 145.7
Read & writ Buckets for S. 0.3 0.4 54.8 73.8
Sorting total 7.9 2.0 21,400.7 219.6
Preprocessing total 12.5 6.5 22,086.9 905.8
Building Octree 5.5 17.6 71.8 443.4 621.0 1,070.3
Solving Laplacian 1.1 22.5 72.7 1.0 21.4 458.2
Extracting Iso-Surface 1.0 16.1 61.0 1.0 16.2 312.2
Reconstruction total 7.6 56.3 205.6 445.5 658.6 1,840.7
Save Obj File 0.6 10.1 30.4 0.6 9.5 162.2
Sort Algorithm quick merge quick merge quick merge quick merge quick merge quick merge
Total 20.7 14.7 78.8 72.8 248.4 242.4 22,533.0 1,351.8 22,755.0 1,573.8 24,089.8 2,908.7
Total without Sorting 12.7 70.9 240.4 1,132.2 1,354.2 2,689.1
Sorting % 38.5% 13.4% 10.1% 2.7% 3.2% 0.8% 95.0% 16.2% 94.0% 14.0% 88.8% 7.5%

Table 5.1: Required time (in seconds) for reconstruction with different models and
different reconstruction resolutions. The rows labeled with Vertices and Faces belong to
the reconstructed mesh. The row Total without Sorting contains the total time required
for preprocessing, reconstruction and file saving except the time required for sorting
(Total - Sorting total). The last row Sorting % expresses how much time of the total
required time was spent on sorting (Sorting total/Total). All tests where merge sort was
used are executed with 8 threads (on a quad-core CPU with Hyper-Threading).

53

5. Results

256 1024 40960

100

200

300

resolution

re
qu

ire
d
tim

e
(s
ec
on

ds
)

Asian Dragon
(3,609,600 points)

256 1024 40960

0.5

1

1.5

2

2.5
·104

resolution

re
qu

ire
d
tim

e
(s
ec
on

ds
)

Siebenschläferhöhle
(382,784,008 points)

sorting - quicksort all other processing
sorting - merge sort all other processing

Figure 5.3: Comparison of the time (in seconds) required for sorting in comparison to the
total time required for reconstruction with different models and different reconstruction
resolutions. The blue bars visualize the time required when the original quicksort is used
and the green bars visualize the time required when the multithreaded merge sort is used
with 8 threads (on a quad-core CPU with Hyper-Threading).

Figures 5.4, 5.5 and 5.6. Figures 5.4 (Asian Dragon) and 5.5 (Siebenschläferhöhle) show
the results of the reconstruction with a maximum octree depth of 12. Figures 5.5 provides
a comparison of some details from the Siebenschläferhöhle data set reconstructed with
different maximum octree depths (8, 10 and 12).

The reconstruction approach from Bolitho et al. [BKBH07] is able to perform the whole
reconstruction process out-of-core. Therefore, even meshes which are so detailed, that
they do not fit into the main memory can be reconstructed. For example: a reconstruction
of the Siebenschläferhöhle data set with nearly 383 million points can be processed with
a maximal octree depth of 14. This corresponds to a reconstruction resolution of 16.384
and an out-of-core octree size of 75.9 GByte. The result of this surface reconstruction is
a mesh with approximately 143 million vertices and 285 million faces. When the sorting
is done with the multithreaded merge sort algorithm, this reconstruction takes only
4.5 hours. Though realtime rendering of such a huge triangle mesh is another problem
because only the vertex positions would require 1.6 Gbyte of graphics memory.

54

5.3. Surface reconstruction

Figure 5.4: Reconstruction with a maximal octree depth of 12 from the Asian Dragon
sculpture (point cloud data set from the Stanford 3D Scanning Repository [Sta]).

Figure 5.5: Mesh with 17M veteces and 35M faces reconstructed from the Siebenschläfer
data set with a maximal octree depth of 12.

55

5. Results

2

Figure 5.6: Comparison of reconstructions with different octree depth from the Sieben-
schläfer data set. The first image (upper left) shows an overview of the mesh; the second
image (upper right) shows also an overview but with some faces cut away in order to allow
a look inside the rooms under the earth. The nine images below show details of the same
dataset. The images within one row show the same detail from meshes reconstructed
with different resolutions. (The maximal octree depth is noted inside the image as h =.)

56

CHAPTER 6
Conclusion

The approach from Bolitho et al. [BKBH07] was implemented in order to convert point
clouds of hundreds of millions of points in polygonal meshes. The author showed that the
optimized multithreaded merge sort algorithm is able to significantly reduce the sorting
time of very large point clouds. This is not so important for smaller point clouds but for
huge point clouds this can improve the overall processing time for the out-of-core surface
reconstructions significantly. Further, the author indicated that the reconstruction with
the approach of Bolitho et al. [BKBH07] leads to problems if it reconstructs a surface
from a non-closed object, e.g. the scan of a terrain like the Siebenschläferhöhle. The
author has presented a simple approach how to remove the disturbing triangles of such
reconstructions.

6.1 Future work
One possible option for future works could improve the removal of disturbing triangles.
It would be interesting if it is possible to find a cluster which consists only of triangles
with large area and remove the whole cluster. Further it would be interesting if the
implementation of the mentioned co-rank algorithm for paralyzing the last t− 1 merging
operations during a run of merge sort would lead to a further significant improvement of
the overall sorting time.

As the tests showed, the used reconstruction approach is able to reconstruct meshes
that are too big to be rendered on common graphics hardware. Therefore, it would be
interesting to generate height maps that can be used to tessellate lower resolution meshes
in order to obtain very detailed real-time renderings from meshes which are small enough
to fit into common sized graphics memory.

The author got the impression that the used reconstruction algorithms led to an over-
smoothing of the data. Further tests are required to investigate this observation and if

57

6. Conclusion

this is the case, further research would be required in order to improve this behavior.

58

List of Figures

2.1 Intuitive 2D illustration of the difference between an interpolated and approx-
imated surface reconstruction . 8

2.2 Intuitive illustration of Poisson reconstruction in 2D. (Taken from [KBH06]) 11
2.3 Illustration of the multilevel stream structure (top row) and the corresponding

quadtree nodes (bottom rows) at two moments in time (i = 3, 4). In-core
blocks and nodes are highlighted in blue. (Adapted from [BKBH07]) . . . 13

3.1 Illustration of merge; first 6 comparison for n = m = 16 and the final merged
sequence; . 17

3.2 Illustration of merge sort . 18
3.3 Illustration of multithreaded merge sort (4 threads); the color indicates the

thread that is executing the visualized operations (thread 0: red, thread 1:
turquoise, thread 2: green, thread 3: purple); 21

3.4 Illustration of co-rank; the co-rank defines the indices j and k in A1 and A2
for any given index i (rank) in B before merging A1 and A2 into B. (Adapted
from [ST13]) . 24

3.5 Illustration of a co-rank algorithm run for i = 16 (Adapted from [ST13]) . 27
3.6 Illustration of memory reduced merge; Subfigures a, b, c and d show the first

4 comparisons. Subfigure e shows the action of the 17th comparison, which is
the first one that writes the result to an index which is located in A2 instead
of A1. Subfigure f shows the 29th comparison, which is the last comparison,
because it uses the last Element in A2. The remaining 3 elements in B are
then copied back to A, which results in the final merged array which is shown
in Subfigure g. The values drawn in gray are not required any more and can
be overwritten. 30

3.7 Illustration of the required indices in B for a multithreaded merge sort (4
threads) that ensures nl ≤ nr for every recursive call; the color indicates the
thread that is executing the merge; all nodes represent the tree TA, the nodes
with “B: 0” does not belong to TB . 32

3.8 Illustration of the required indices in B for a multithreaded merge sort (4
threads) that ensures nl ≥ nr for every recursive call; the color indicates the
thread that is executing the merge; all nodes represent the tree TA, the nodes
with “B: 0” does not belong to TB . 35

59

3.9 Upper bound for additional elements that are required for leaves N l
B . . . 37

4.1 Reconstructed mesh with 43.0602 vertices and 86.0242 faces from a scan of
Mount St. Helens. with 5.784.252 Points. For the reconstruction a maximal
octree depth of 10 was used. Left images: without Postprocessing, right
images: removed maximal 1% of the largest triangle with an minimum edge
length of 0.005 . 47

5.1 comparison of required time for sorting 50 · 106 elements 51
5.2 integer, float and oriented point sorting performance 52
5.3 Comparison of the time (in seconds) required for sorting in comparison to

the total time required for reconstruction with different models and different
reconstruction resolutions. The blue bars visualize the time required when
the original quicksort is used and the green bars visualize the time required
when the multithreaded merge sort is used with 8 threads (on a quad-core
CPU with Hyper-Threading). 54

5.4 Reconstruction with a maximal octree depth of 12 from the Asian Dragon
sculpture (point cloud data set from the Stanford 3D Scanning Repository
[Sta]). 55

5.5 Mesh with 17M veteces and 35M faces reconstructed from the Siebenschläfer
data set with a maximal octree depth of 12. 55

5.6 Comparison of reconstructions with different octree depth from the Sieben-
schläfer data set. The first image (upper left) shows an overview of the mesh;
the second image (upper right) shows also an overview but with some faces
cut away in order to allow a look inside the rooms under the earth. The nine
images below show details of the same dataset. The images within one row
show the same detail from meshes reconstructed with different resolutions.
(The maximal octree depth is noted inside the image as h =.) 56

60

List of Tables

2.1 Comparison overview of explicit- and implicit-surface reconstruction methods 10

5.1 Required time (in seconds) for reconstruction with different models and
different reconstruction resolutions. The rows labeled with Vertices and Faces
belong to the reconstructed mesh. The row Total without Sorting contains the
total time required for preprocessing, reconstruction and file saving except
the time required for sorting (Total - Sorting total). The last row Sorting
% expresses how much time of the total required time was spent on sorting
(Sorting total/Total). All tests where merge sort was used are executed with
8 threads (on a quad-core CPU with Hyper-Threading). 53

61

List of Algorithms

3.1 Merge (Taken from [Rai09]) . 19

3.2 Mergesort (Taken from [Rai09]) . 19

3.3 InsertionSort (Adapted from [BKBH]) 39

3.4 SortPartition (Adapted from [BKBH]) 40

3.5 Quicksort (Adapted from [BKBH]) . 41

3.6 Merge sort initialisation for multithreaded and memory optimized merge
sort . 42

3.7 CalcSizeOfB for multithreaded and memory optimized merge sort . . . 42

3.8 Merge for multithreaded and memory optimized merge sort 43

3.9 Multithreaded and memory optimized merge sort 44

63

Bibliography

[AS87] Selim G. Akl and Nicola Santoro. Optimal parallel merging and sorting
without memory conflicts. IEEE Transactions on Computers, 36(11):1367–
1369, November 1987.

[BKBH] Matthew Bolitho, Michael Kazhdan, Randal Burns, and Hugues Hoppe. url-
http://www.cs.jhu.edu/%7Ebolitho/Research/StreamingSurfaceReconstruction/.
Multilevel Streaming for Out-of-Core Surface Reconstruction - Sourcecode,
Accessed: 2016-05-05.

[BKBH07] Matthew Bolitho, Michael Kazhdan, Randal Burns, and Hugues Hoppe.
Multilevel streaming for out-of-core surface reconstruction. In Proceedings of
the Fifth Eurographics Symposium on Geometry Processing, SGP ’07, pages
69–78, Aire-la-Ville, Switzerland, 2007. Eurographics Association.

[BTS+14] Matthew Berger, Andrea Tagliasacchi, Lee M. Seversky, Pierre Alliez,
Joshua A. Levine, Andrei Sharf, and Claudio T. Silva. State of the Art in
Surface Reconstruction from Point Clouds. In Eurographics 2014 - State of
the Art Reports. The Eurographics Association, 2014.

[CCC+08] Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo Dellepiane,
Fabio Ganovelli, and Guido Ranzuglia. MeshLab: an Open-Source Mesh Pro-
cessing Tool. In Eurographics Italian Chapter Conference. The Eurographics
Association, 2008.

[CGD11] C. Canaan, M. S. Garai, and M. Daya. Popular sorting algorithms. World
Applied Programming, 1(1):62–71, April 2011.

[CGY04] Frédéric Cazals, Joachim Giesen, and Mariette Yvinec. Delaunay Trian-
gulation Based Surface Reconstruction : a short survey. Technical Report
RR-5394, INRIA, November 2004.

[CWL+08] Z.-Q. Cheng, Y.-Z. Wang, B. Li, K. Xu, G. Dang, and S.-Y. Jin. A Survey
of Methods for Moving Least Squares Surfaces. In IEEE/ EG Symposium
on Volume and Point-Based Graphics. The Eurographics Association, 2008.

65

[HDD+92] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner
Stuetzle. Surface reconstruction from unorganized points. In Proceedings of
the 19th Annual Conference on Computer Graphics and Interactive Tech-
niques, SIGGRAPH ’92, pages 71–78, New York, NY, USA, 1992. ACM.

[Hoa62] C. A. R. Hoare. Quicksort. The Computer Journal, 5(1):10–16, 1962.

[Kaz05] Michael Kazhdan. Reconstruction of solid models from oriented point sets.
In Proceedings of the Third Eurographics Symposium on Geometry Process-
ing, SGP ’05, Aire-la-Ville, Switzerland, Switzerland, 2005. Eurographics
Association.

[KBH06] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson surface
reconstruction. In Proceedings of the Fourth Eurographics Symposium on
Geometry Processing, SGP ’06, pages 61–70, Aire-la-Ville, Switzerland, 2006.
Eurographics Association.

[Knu73] Donald Ervin Knuth. The art of computer programming - Sorting and search-
ing, volume 3 of Addison-Wesley series in computer science and information
processing, chapter Sorting by Merging, pages 159–169. Addison-Wesley
Professional, 1973.

[LC87] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolu-
tion 3d surface construction algorithm. In Proceedings of the 14th Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH
’87, pages 163–169, New York, NY, USA, 1987. ACM.

[MJG16] Somshubra Majumdar, Ishaan Jain, and Aruna Gawade. Parallel quick sort
using thread pool pattern. International Journal of Computer Applications,
136(7):36–41, February 2016.

[PZvBG00] Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar, and Markus Gross.
Surfels: Surface elements as rendering primitives. In Proceedings of the 27th
Annual Conference on Computer Graphics and Interactive Techniques, SIG-
GRAPH ’00, pages 335–342, New York, NY, USA, 2000. ACM Press/Addison-
Wesley Publishing Co.

[Rai09] Günther Raidl. Algorithmen und datenstrukturen. Vorlesungsskript, Institut
für Computergraphik und Algorithmen, Technische Univerität Wien, 2009.

[RL00] Szymon Rusinkiewicz and Marc Levoy. Qsplat: A multiresolution point ren-
dering system for large meshes. In Proceedings of the 27th Annual Conference
on Computer Graphics and Interactive Techniques, SIGGRAPH ’00, pages
343–352, New York, NY, USA, 2000. ACM Press/Addison-Wesley Publishing
Co.

66

[SA78] Robert Sedgewick and Robert Ashenhurst. Implementing quicksort programs.
Communications of the ACM, 21(10):847–857, Octobre 1978.

[Sch15] Markus Schuetz. Potree: rendering large point clouds in web browsers.
Master’s thesis, Fakultät für Informatik der Technischen Universität Wien,
Wien, 2015.

[Sin69] Richard Singleton. Algorithm 347: an efficient algorithm for sorting with
minimal storage. Communications of the ACM, 12(3):185–186, March 1969.

[ST13] Christian Siebert and Jesper Larsson Träff. Perfectly load-balanced, optimal,
stable, parallel merge. CoRR, abs/1303.4312, November 2013.

[Sta] The Stanford 3D Scanning Repository. http://graphics.stanford.
edu/data/3Dscanrep/.

[Sze11] Richard Szeliski. Computer vision Algorithms and Applications, chapter
Structure from motion, pages 345–376. Texts in computer science. Springer,
London, 2011.

[WS06] Michael Wimmer and Claus Scheiblauer. Instant points: Fast rendering of
unprocessed point clouds. In Proceedings of the 3rd Eurographics / IEEE
VGTC Conference on Point-Based Graphics, SPBG’06, pages 129–137, Aire-
la-Ville, Switzerland, 2006. Eurographics Association.

67

http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/

	Kurzfassung
	Abstract
	Contents
	Introduction
	Point Cloud
	Scanopy
	Converting point clouds to triangle meshes
	Developed optimizations for out-of-core surface reconstruction

	Previous Work
	Surface reconstruction
	Out-of-core surface reconstruction
	Sorting

	Merge Sort
	Why is fast sorting important?
	Existing quicksort implementation
	Multithreaded sorting
	The implementation of multithreaded merge sort
	Reduce the memory consumption of merge sort
	Optimization of merge sort through insertionsort

	Postprocessing
	Results
	Test environment
	Sorting runtime
	Surface reconstruction

	Conclusion
	Future work

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

