
Instant Construction and Visualization of
Crowded Biological Environments

Tobias Klein, Ludovic Autin, Barbora Kozlı́ková, David S. Goodsell, Arthur Olson, M. Eduard Gröller, and Ivan Viola

Abstract— We present the first approach to integrative structural modeling of the biological mesoscale within an interactive visual
environment. These complex models can comprise up to millions of molecules with defined atomic structures, locations, and interactions.
Their construction has previously been attempted only within a non-visual and non-interactive environment. Our solution unites the
modeling and visualization aspect, enabling interactive construction of atomic resolution mesoscale models of large portions of
a cell. We present a novel set of GPU algorithms that build the basis for the rapid construction of complex biological structures.
These structures consist of multiple membrane-enclosed compartments including both soluble molecules and fibrous structures. The
compartments are defined using volume voxelization of triangulated meshes. For membranes, we present an extension of the Wang Tile
concept that populates the bilayer with individual lipids. Soluble molecules are populated within compartments distributed according to
a Halton sequence. Fibrous structures, such as RNA or actin filaments, are created by self-avoiding random walks. Resulting overlaps
of molecules are resolved by a forced-based system. Our approach opens new possibilities to the world of interactive construction of
cellular compartments. We demonstrate its effectiveness by showcasing scenes of different scale and complexity that comprise blood
plasma, mycoplasma, and HIV.

Index Terms—Interactive modeling, population, biological data, interactive visualization

1 INTRODUCTION

Technological advances in structural biology, proteomics, and bio-
physics, combined with the rapid advance of computational capabilities,
have opened the door to studying increasingly large and complex bio-
logical systems. Recently, we have seen a shift from studying individual
proteins to modeling and analyzing functional protein assemblies and

• Tobias Klein and Ivan Viola are with TU Wien, Austria. E-mails:
tklein@cg.tuwien.ac.at, viola@cg.tuwien.ac.at.

• M. Eduard Gröller is with TU Wien and VRVis Research Center, Austria.
E-mail: groeller@cg.tuwien.ac.at.

• Ludovic Autin, David S. Goodsell, and Arthur Olson are with The Scripps
Research Institute, California, USA. E-mails: ludovic.autin@gmail.com,
goodsell@scripps.edu, olson@scripps.edu.

• Barbora Kozlı́ková is with Masaryk University, Brno, Czech Republic.
E-mail: kozlikova@fi.muni.cz.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

even larger systems, such as viruses, bacteria, and portions of eukary-
otic cells. These are often denoted as biological mesoscale structures,
representing an intermediate scale between molecular and cellular bi-
ology. On the molecular (nanoscale) level, cells are built of proteins,
nucleic acids, lipids, and polysaccharides. The mesoscale level reveals
how these molecules are assembled into more complex subcellular en-
vironments that orchestrate the processes of life. Given the complexity
of these massive mesoscale environments, modeling must be tightly
coupled with a proper visual representation. This provides intuitive
feedback for their validation, tools for exploration of the models, and
visual materials for public dissemination and to communicate findings
to peers. In typical scenarios, these visualizations are created by sci-
entific illustrators who traditionally produce images by hand drawing
or by using 3D modeling tools. Examples include our illustrations
of cellular environments [15], and a detailed 3D model of a synaptic
bouton created in Maya [47]. This is a laborious process with limited
interaction and exploration capabilities, which also requires non trivial
domain knowledge about the depicted biological structures.

A more general solution is to describe the scene on a higher level of
abstraction and use this description to automatically create the resulting
scene. This approach has recently been implemented in cellPACK [24]



to generate and visualize 3D models of complex biological environ-
ments. CellPACK integrates data from multiple sources into a ’recipe’
that describes the constitution of the desired environment. The envi-
ronment is partitioned into membrane-bounded compartments, often
arranged hierarchically. The compartments are defined by mesh sur-
faces that represent the lipid-bilayer membranes. Each compartment,
including membranes, can be populated by a different set of ingredients,
which include soluble molecules inside the compartment and molecules
embedded in the membranes. These ingredients can be fibrous com-
ponents, such as RNA or carbohydrate chains, soluble components
such as proteins and metabolites, or lipids in membranes. CellPACK
combines the knowledge about membranes, compartments, and ingre-
dients, and then assembles a mesoscale model with respect to mutual
biologically-relevant interactions between them.

The main drawback of this approach is the computation time for
assembling the 3D mesoscale model from the input data and the recipe.
Depending on the desired quality of the distribution of ingredients, this
stage spans from minutes to hours. Therefore, it is often a lengthy
process to, for example, change parameters like the number of ingre-
dients (molarity) or their interactions and observe the impact of the
change. Our aim is to overcome this limitation and to instantly provide
distributions of various ingredients within biological compartments and
on membranes. This will open new possibilities for biologists to gather
domain-specific knowledge about mesoscale-level structures, integrate
it into a model, and explore the consequences of gaps in knowledge or
ranges of experimentally-observed parameters.

Another irreplaceable part of the whole process is the visual represen-
tation of the scene and its content. Molecular visualization techniques
have been developed in the last decades, which predominantly focus
on visual depictions of molecules captured by X-ray crystallography,
NMR spectroscopy, and more recently, electron microscopy. Due to
the nature of this structural data, the molecules may be visualized at
atomic resolution. However, the mesoscale level poses new challenges.
Mesoscale models are larger, with millions of atoms, taxing existing
visualization hardware and software. They are also more complex, of-
ten integrating multiple types of data at different resolutions, and with
complex hierarchical relationships that span from individual molecules
to entire cells. Visual representations must provide the user with an
overview of the structures as well as with means to explore their details.
To address this challenge, our state-of-the art tool cellVIEW [36] en-
ables a seamless transition between visual representations of structures
on different levels of detail. CellVIEW integrates the latest GPU-based
algorithms from computer graphics and visualization to interactively
render large biological scenes.

The approach described here incorporates instant modeling into
cellVIEW to provide a unified visual framework for modeling and for
visualization. The main contributions include:

• New algorithms for instant modeling of different types of compart-
ments and membranes of biological structures on the mesoscale
level.

• An interactive visual environment that allows users to change the
population parameters and instantly explore the resulting scene
on both nanoscale and mesoscale levels.

• Enhancing the process of creating models of mesoscale structures
by shifting it from a non-visual and non-interactive environment
to a fully interactive and visually-supported one.

We demonstrate the approach with mesoscale models of different
scale and complexity, including blood plasma, HIV, and an entire
mycoplasma bacterium.

2 RELATED WORK

Experimental methods to determine mesoscale structures are extending
to larger and larger subjects, but currently fall short of being able to de-
termine the atomic structure of living cells. For instance, cryo-electron
microscopy (EM) can give a detailed structure of the regular envelope
of the Zika virus, but the more randomly arranged genome inside is

still largely inaccessible to experiments [40]. Similarly, cryo-EM to-
mography is currently yielding detailed views of complex enveloped
viruses, bacteria, and eukaryotic cells, but are typically able to resolve
only large molecules such as ribosomes, cytoskeletal elements, and
membranes [2].

Many groups are attempting the structural modeling of the mesoscale
with atomic detail, using computation to combine information from
mesoscale experimental techniques with atomic structural information
on the components [22, 38]. Much of the work in structural mesoscale
modeling has focused on the soluble components of bacterial cyto-
plasm, using models to explore diffusion in crowded environments [35].
More recently, several groups are building tools for full structural mod-
els that include cellular infrastructure, including our own work with
cellPACK [24] and LIFEEXPLORER [21, 43].

Procedural Modeling. The mesoscale structure of cells is similar
to other natural phenomena with high geometric and visual complexity
as well as with requirements for explicit control of details. Other ex-
amples include the modeling of clouds and meadows covered by grass.
The general approach to model these types of phenomena is to first
define the overall shape of the environment, then fill it in with detailed
objects using a stochastic process. This approach, called procedural
modeling, has a long tradition in computer graphics, for example, for
on-the-fly generation of infinite cities [16] or forests [7] within rich
game environments. Currently the focus is rather on parallelization and
scheduling optimizations, so that the procedural content generation is
efficiently realized on graphics hardware [4, 41]. Wonka et al. [49] pre-
sented a method for the automatic modeling of architecture. Recently,
a novel technique was proposed for viewpoint-guided generation of
high geometric details on facades [30]. These techniques typically
use certain plans or grammars, which provide structural rules for the
generation of shapes. In our work, we focus rather on the distribution
of objects where the space is already constrained by membranes and
divided into compartments.

Visualization of Large Biological Scenes. Driven by the wealth
of structural information available through sources like the Protein
Data Bank [3], highly effective software is currently available for the
visualization of biomolecules and assemblies. For recent reviews, see
Kozlikova et al. [29] and Johnson and Hertig [27]. These methods
typically fail when faced with the large number of mesoscale molecules.
Mesoscale structures require specialized, highly-optimized solutions.
Currently, there are two publicly-available open-source systems where
large numbers of atoms can be rendered efficiently by leveraging graph-
ics hardware capabilities. One system is MegaMol [17], which is useful
for various atomic representations, not only biomolecules. The other
one is cellVIEW [36], a tool for illustrative multiscale visualization of
large biomolecular datasets. An alternative approach, published by Wal-
termate et al. [45], introduces an interactive tool combining mesoscopic
and molecular scale visualization. They reach this by using a magnifier
tool that enables the user to select a region on the cell membrane and
map a pre-computed membrane patch with atomistic resolution onto it.
This approach is able to populate only a very limited area of the cell
surface.

Mesoscale scenes are also often produced by scientific illustrators
using general-purpose 3D modeling tools. To ease their tasks, several
extensions specific to molecular modeling have been introduced. For
example, our ePMV plugin [25] allows users to run molecular model-
ing software directly inside of professional 3D animation applications.
SketchBio [44] is another example of a 3D interface for molecular mod-
eling and animation. Lv et al. [33] explored the possibility to use game
technology in biomolecular visualization, using the Unity3D game
engine to develop and prototype a molecular visualization application
for subsequent use in research or education.

Texture Synthesis. Our approach to populate large biological mem-
branes with lipids is based on a tiling technique commonly used in
seamless 2D texture synthesis. We adapt Wang Tiles [46], which utilize
square tiles to generate a plane tiling. The positioning of tiles on the
plane is done according to their face-color rules to compose a desired
pattern. Recently, several extensions of this basic approach have been
published. Most of them were designed for synthesizing 2D textures



that are mapped onto 3D surfaces. Fu and Leung [13] applied Wang
Tiles to arbitrary topological surfaces. Our case differs in the necessity
to synthesize tiles containing 3D objects, such as lipids. Therefore,
the detection and handling of overlaps has to take these objects into
account. Here we were inspired by the solution provided by Lipid-
Wrapper [9]. LipidWrapper solves the collisions for each triangle on
the 3D mesh, which makes it unsuitable for large membranes. Neyret
and Cani [37] presented another strategy to tiling, using triangles with
homogeneous textures to tile surfaces. Culik and Kari [5] introduced
Wang Cubes, which extend the Wang Tiles approach and are able to
create non-periodic illustrative 3D patterns and textures. Lu et al. [32]
presented a framework for volume illustration utilizing Wang Cubes.
They extend the original idea and modify it for multipurpose tiling. The
Wang Cubes are not applicable in our case. Although we deal with 3D
tiles representing the lipid bilayer, the tiles are still defined by a 2D
plane. Fleischer et al. [12] presented an approach to texturing surfaces
with so called cellular textures. These are textures represented by more
complex geometry, which can cover the surface with small-scale fea-
tures, such as feathers or thorns. This is very close to our situation with
lipid bilayers. However, cellular textures cannot be applied in our case
because of the regularity of the produced surfaces and the algorithm
speed.

Population with Fibrous Structures. Algorithms for self-avoiding
walks may be used to populate a compartment with a fibrous structure.
Fan et al. [10] published an extension of a Manhattan lattice to generate
fibrous structures by going from 2D to 3D space. In our approach we
execute a procedural building of fibrous structures, which is similar
to the polymerization process addressed by Kolesar et al. [28]. Their
illustrative approach is a fusion of three different modeling techniques,
i.e., L-systems, agent-based systems, and systems of densities. Adding
new building blocks to the existing polymer is based on attraction
forces. Gruenert et al. [18] presented an approach to rule-based spatial
modeling of chemical reaction systems. The technique is also suitable
for simulating the polymerization process, showcased on the growth
of filaments. The growth is driven by parameters, such as torsion and
bending, that control the pathways and structures of formed complexes.

The problem of procedurally constructing paths is common in other
areas as well. As an example, Galin et al. [14] presented an automatic
method for generating roads between two given points, based on a
weighted anisotropic shortest path algorithm. The result path minimizes
a cost function influenced by different features of the scene, such as
terrain shape and obstacles.

3 OVERVIEW

When modeling scenes containing complex mesoscale biological struc-
tures, the workflow consists of the following basic steps:

1. Scene organization, to define the shape of each membrane-
bounded compartment.

2. Recipe definition, to determine the molecular composition of each
compartment and membrane.

3. Population of the model, to fill the soluble spaces and membranes
with ingredients defined in the recipe.

The organization of the scene is defined by closed 3D meshes that
represent the lipid bilayer membranes. The membranes specify the
separate compartments of the scene. For example, Figure 1 (a) shows a
scene with two concentric closed membranes defining two intracellular
environments (labeled 1 and 2) and a surrounding environment (labeled
3). The following step is to compile a recipe that defines the molecular
composition of these compartments and membranes (Figure 1 (b)).
This recipe includes the structures of the molecules, their concentration
(molarity), and constraints related to their position in the membranes,
specific interactions with other molecules, etc. The last step takes the
recipe and populates the compartments and membranes accordingly
(see Figure 1 (c)). This population step is typically stochastic, so it
may be repeated to provide an ensemble of similar models that are each
consistent with the scene organization and recipe.

(a) (b) (c)

Fig. 1: (a) The hierarchy is provided by compartments that organize the
scene (here marked as 1, 2, and 3). (b) For each individual compartment,
their composition is defined including the type and number of ingredi-
ents. (c) Our algorithms automatically populate the compartments and
their surfaces with the information about the ingredients.

With currently available approaches, such as cellPACK [24], the
process of transforming the scene definition and recipe to the final
model can take from minutes to hours, depending on the complexity
of the scene. This makes the modeling process non-interactive as the
user cannot immediately see the consequences of parameter changes.
We overcome this by applying parallel processing, to improve compu-
tational bottlenecks of the workflow.

As can be seen in Figure 1 (b), the individual compartments and
membranes can be populated in several ways. We can distinguish three
basic cases:

• Membranes represent a semi-permeable barrier between two
compartments. They often consist of a lipid bilayer with em-
bedded proteins used in the communication and transport of
molecules and ions across the membrane. In order to model
membranes, we have implemented a solution based on texture
tiling.

• Soluble components occupy the free space in each compartment.
They consist of ingredients (molecules) of different shape and
complexity, which influences the difficulty of the population step
inside of each predefined space. Our approach for positioning
ingredients in compartments consists of two steps. The first
step populates the spaces with ingredients without considering
overlaps between them. Collisions are resolved in the second
step.

• Fibrous structures such as DNA, RNA, or actin filaments, are
long strands folded inside specific compartments. We use a self-
avoiding random walk to construct fibers in the allowable regions
of the compartments.

Algorithms for populating spaces with each of these types of ingre-
dients, and the advantages of populating them in a specific order, are
described in detail in the following sections.

4 MEMBRANE POPULATION

Biological membranes are built around a continuous fluid sheet contain-
ing two opposed layers of lipids. Lipids are small molecules consisting
of several dozen atoms, with a characteristic chemical character. They
are composed of a head group that is soluble in water, and one or more
tails that are insoluble. In water, they spontaneously associate to hide
the insoluble tails, forming some of the largest structures in cells. These
membranes form the semi-permeable boundary that surrounds cells,
as well as the boundary of inner compartments such as the nucleus or
mitochondria. Different types of lipids may be distributed unequally
to create an asymmetry between the outer and inner surfaces, which
is important for the cell function. For each biological structure, such
as the HIV virion or the red blood cell, the bilayer has a unique lipid
composition. The common property is that lipids are densely packed
on the membrane and are oriented roughly perpendicularly to it.



The modeling of lipid bilayers is a complex and laborious task,
because of the dense packing and the large number of lipids com-
pared to other surrounding molecules. The main challenge, in terms
of modeling, is to incorporate the known structural information and
to avoid repetitive patterns on the surface. Several bilayer-modeling
programs are available, such as CHARMM-GUI [23], Packmol [34],
or cellPACK [24]. These tools position individual lipids one-by-one
on the membrane, which leads to unacceptable computational costs.
A more sophisticated solution is provided by LipidWrapper [9]. It
extracts whole patches from a pre-equilibrated planar membrane model.
These patches contain the detailed structural information about the
lipids. In order to produce the membrane surface, LipidWrapper uses
a triangulated mesh as input, where each triangle patch is randomly
cut out from the provided membrane model. However, the edges of
adjacent patches on the surface do not fit together and lipids potentially
overlap in these regions. LipidWrapper deletes overlapping lipids and
fills the resulting holes with new lipids. This is an expensive process
since it must be done for every triangle edge on the surface. Because
of this, the computational cost of LipidWrapper is significant and not
applicable to instant modeling.

For the interactive population of membranes, our solution uses a
tiling approach from texture synthesis to cover the membrane mesh
with lipids. In our approach, we require the mesh to be defined as
a quad-based surface map. In general, any method can be used that
resamples a given mesh into a quad-based surface if the resulting
surface map is conformal and has low area distortions. An example
can be PolyCubeMaps introduced by Tarini et al. [42]. The mesh
generated by this approach is only marginally affected by distortions,
which makes it suitable for our tiling approach.

To cover the mesh with lipids, we use only a small number of tiles.
These tiles are pre-populated with lipids and here we use the basic
principle of LipidWrapper. Our solution is significantly faster because
we generate the content for only a limited set of tiles instead of applying
it onto the whole mesh geometry. The tiles are subsequently used for
covering the membrane. They have to be placed in such a way that their
edges fit together and that the tiling will not result in periodic patterns.
As the repetition pattern should not be visible, we use Wang Tiles [46].

In the following, we describe individual steps of our approach in
detail. We start with the description of the concept and principle
of Wang Tiles. Then we present our adaptation of this concept to
membrane meshes.

4.1 Wang Tiles and their Extension to Membranes
The Wang tiling concept was introduced in the early ’60s and is well-
known in texture synthesis. A Wang Tile is defined as a square with
color-encoded edges. A set of Wang Tiles can be used to cover a 2D
plane without periodic patterns. The colors of edges restrict how the
tiles can be placed during the tiling process. The tiling is valid only if
shared edges have the same color. At least four colors are required to
tile a plane non-periodically.

There are several approaches that extend the concept of Wang Tiles to
3D space. In our solution, we follow the approach of Fu and Leun [13],
which applies the tiling concept of Wang Tiles to arbitrary topological
surfaces. They generate each tile from four different diamond-shaped
input patches that are positioned west, east, north, and south around
the tile center, respectively (Figure 2). These patches are combined to
generate a set of tiles with different colors on the edges. We adapt this
approach for use in membrane modeling by synthesizing a collection of
lipid-textured tiles and then mapping them onto the membrane mesh.

4.1.1 Tile Synthesis for Lipid Bilayer Models
Synthesis of the tiles is the major challenge to generating 3D models
of biological membranes. First, we have to extract the content for
the tiles from an input texture. For biological membranes, this input
texture is a planar representation of the lipid bilayer containing non-
overlapping, tightly-packed lipid molecules. Atomic coordinates for the
lipid bilayer can be generated, for example, by a molecular dynamics
simulation using the Amber force field for lipids [8]. The tiles are
generated in several steps. First, four small diamond-shaped patches

(a) (b)

(c) (d)

Fig. 2: Overview of the Wang Tile synthesis. (a) Four small patches are
extracted from the input texture. (b) A large patch is assembled from
the four small patches, and then the tile is extracted from the center
of the patch. (c) Bordering lipids with collisions are removed, leaving
holes in the tile. (d) Holes are filled by positioning new lipids.

are extracted from the large bilayer texture. When extracting these
patches (Figure 2 (a)), we include only lipids whose center is inside the
bounds of the specified patch, where the center of a lipid is defined as
the center of its bounding box. A large diamond-shaped patch is then
created by positioning four of these tiles together. Finally, we extract a
rectangular tile from the large diamond-shaped patch (see Figure 2 (b)).
The different tiles needed for Wang Tiling are generated by different
arrangements of the small patches into the large patches. The tile has
to be further processed to resolve overlaps and fill gaps.

Detection of Overlapping Lipids The assembly of a tile from
multiple input patches inherently leads to overlapping lipids in areas
where the input patches meet. Collisions are evaluated in a two step
process to improve performance. First the overlap between bounding
boxes is tested, then if necessary individual lipid atoms are checked.
The lipid with the highest number of collisions is removed from the tile.
If multiple lipids have the same number of collisions, one is chosen
randomly for removal. The number of collisions is then updated for all
neighbors of the removed lipid, and the procedure is repeated until all
collisions are eliminated. This leaves the tile with undesirable holes
(Figure 2 (c)), which are filled in the final step.

Hole Filling The holes in a tile are filled by non-colliding lipids
(Figure 2 (d)). Individual lipids are extracted from the same input
membrane bilayer that was used to generate patches for tiles.

For each side of the bilayer, a plane is defined that intersects the hy-
drophilic head groups of the lipids in the tile. Trial lipids are randomly
chosen from the input texture and placed at regular intervals along the
diagonals of the tile, aligning their head groups within the planes. If
there are no collisions, the lipid is added to the tile, otherwise, the lipid
is rotated around an axis perpendicular to the plane and tested for col-
lisions. If no acceptable orientations are found, the process continues
with another lipid from the input texture. Additionally, we reduce the
number of possible candidates by rejecting those that already intersect
with the lipids from the tile.

The result of the hole filling process depends on three parameters:
how many lipids do we have in the testing set, how many rotations of
lipids we test, and how many times we repeat the entire hole filling
procedure. These parameters can be adjusted according to user needs.



Fig. 3: Example of lipid-bilayer membrane populated by lipid tiles.
This cross-sectional view is visualized using a cutting plane.

As we apply the process only on the tiles and not on every quad of the
mesh, the parameter setting is not a critical aspect.

4.2 Tile Mapping
Finally, the generated tiles are mapped onto the membrane mesh con-
sisting of quads. Since we are using data from a bilayer lipid membrane
instead of textures, the 3D coordinates are mapped onto the quads
instead of 2D texture coordinates. For this reason, we use quadrilateral
coordinates to map lipid centers (λ ,µ) to the quad with the vertices
(v0,v1,v2,v3) through the following equation, where p is the resulting
vertex in 3D space.

p = (1−λ )(1−µ)v0 +λ (1−µ)v1

+λ µv2 +(1−λ )µv3
(1)

At each resulting position, the corresponding lipid is instantiated.
The orientation of the lipids on the quad has to be adjusted as well. As
the main axis of the lipids is always perpendicular to the plane of the
tile, we determine their orientation by computing the rotation angle
between the original tile and its position on the quad. This rotation
is applied to all lipids of a given tile. Figure 3 shows the result after
positioning the tiles with lipids on the membrane mesh.

5 SOLUBLE AND MEMBRANE-BOUNDED COMPONENTS

Cells are typically crowded with proteins, nucleic acids, and other
molecules. Soluble components and assemblies fill the compartments.
Membrane-bounded components are embedded in the lipid bilayers.
The recipe for a mesoscale scene specifies the quantity of these in-
gredients, their locations and orientations (if appropriate), and their
mutual interactions. The task of population boils down to spatially
distribute these ingredients in the corresponding space avoiding over-
laps. Currently available techniques are capable of positioning soluble
ingredients inside compartments, however, only in a sequential manner.
This means that they position ingredients one by one. After position-
ing each ingredient the surrounding space is updated so it is aware of
the distance to the closest ingredient. The next ingredient can only
be positioned at locations with a sufficient distance to the nearby in-
gredients. The computational cost of the sequential approach is not
acceptable for interactive environments. Therefore, our solution uses
parallel processing to increase the performance.

To make the procedure applicable to GPU implementation, we divide
our approach into three consecutive steps (see Figure 4):

1. Compartment space organization using voxelization.

2. Populating the space with the given ingredients.

3. Detecting and resolving collisions between ingredients.

The major advantage of this approach is that the processing of the
individual ingredients becomes mostly independent from the processing
of other ingredients. In the rest of this section we describe the steps in
more detail.

(a) (b) (c)

Fig. 4: The three steps of our approach to populate compartments with
soluble components. (a) Voxelization of the space and definition of
inner grids (purple and grey), surface grids (dark purple and dark blue),
and outer grid (light blue). (b) Positioning of individual ingredients
inside the inner compartments. Collisions between ingredients are
highlighted. (c) Scene after resolving collisions using a force-based
approach.

5.1 Step 1 – Space Partitioning using Voxelization
The first step is to partition the scene into a set of compartments,
delimited by membrane meshes. Our approach is based on the state-
of-the-art method of GPU voxelization by Schwarz and Seidel [39].
The voxelization process starts with the classification of voxels that
intersect with the compartments. In one of the grid axes, a scanline
algorithm is applied to all voxels to determine if they belong to cellular
compartments, membranes, or to the surrounding environment. We
assign a negative value to cellular compartment voxels, a positive value
to surface voxels, and zero to outside voxels. We repeat this process
for all compartments in the scene. The resulting structure, which we
call a compartment grid, identifies the compartment or membrane
associated with each voxel, for the rapid population in the following
step. Moreover, we can sort the voxels per compartment and estimate
the volume for each of them. Thus, given a molarity we can calculate
the proper count for a specific protein.

In addition to the compartment grid, we define an occupancy grid
that helps to resolve some of the overlaps between ingredients. The
occupancy grid is of the same size and resolution as the compartment
grid. It holds negative values for empty voxels or the corresponding ID
of the ingredient if the voxel is occupied. This is especially important
if the size of ingredients differs significantly, e.g., if surface ingredients
protrude from the compartment surface. For this reason, we start the
population process by distributing the large surface ingredients and then
use the remaining space for the interior ones by employing the updated
occupancy grid. This divides the population process into two passes,
but prevents small ingredients from being completely overlapped by
larger ingredients coming from a different compartment.

5.2 Step 2 – Population
In this step we populate a given compartment with individual ingredi-
ents defined in the recipe, using the compartment grid and occupancy
grid generated in the previous step. Here we distinguish between two
types of ingredients to be populated. The first type are ingredients
that occupy the inner part of a compartment but are bounded to the
compartment membrane. The second type of ingredients populates the
soluble space of the compartment. In order to avoid additional overlaps,
we first populate the surface of the compartment and then its inner part.

5.2.1 Population of Compartment Surface

Cell membranes typically include a diverse collection of membrane-
bounded proteins, which may interact just on one side of the membrane
or extend through the membrane. This poses several challenges: the
proteins must be oriented correctly, must face the proper direction,
and their membrane-spanning portions must be embedded in the mem-
brane. These proteins often have large portions extending from one or
both sides of the membrane, which must be evaluated for collisions
with other membrane-bounded proteins and soluble components. In
order to spatially distribute ingredients on a given membrane, we need



(a) (b)

(c) (d)

Fig. 5: (a) Ingredients distributed on the surface of a compartment. (b)
Occupancy grid containing information about the voxels occupied by
these ingredients (green for outside, yellow for inside). (c) Positioning
ingredients inside the compartment (new ingredients have red and
orange color). (d) Occupancy grid update.

the information about the ingredient type, its molarity, the ID of the
membrane, and the principal vector and offset of the ingredients (Fig-
ure 5 (a)). Then we update the information stored in the occupancy grid
(Figure 5 (b)).

The ingredients should be randomly distributed and should not over-
lap. To solve this issue, Willmott previously used the property of a
Halton sequence to distribute in real time non-overlapping objects in a
plane [48]. Similar to his approach, we use a Halton sequence to select
positions on the mesh of the membrane to place the ingredients.

In general, a Halton sequence [19] provides point sets with low
discrepancy, i.e., it produces well-spaced samples. The sequence is
constructed using a prime number that defines the number of divisions
of a unit interval into sub-intervals. These are subsequently divided
using the same prime number until the desired length of the sequence
is reached. The sequence is then ordered in such a way that it produces
subsets that evenly cover the entire domain. Halton sequences are often
used for numeric methods like Monte Carlo simulations [6]. Another
advantage of a Halton sequence is that it never contains the same
number twice so that we do not choose the same position for multiple
ingredients. This approach provides an efficient and rapid way of
distributing ingredients on the surface of the membrane with sufficient
randomness while minimizing potential overlaps.

The orientation of the ingredient is then described as the principal
vector defining the orientation of the ingredient with respect to the
membrane, and an offset vector that places the ingredient at the proper
position relative to the surface of the membrane (Figure 6). This
information is usually computed using the OPM webserver [31].

5.2.2 Population of Compartment Inner Area
For populating the soluble space of compartments, we use the infor-
mation stored in the compartment grid and the occupancy grid to find
appropriate positions for the ingredients. The membrane-bounded in-
gredients positioned in the previous step are considered as non-moving
obstacles, i.e., they are handled as static objects when resolving colli-
sions.

The population procedure works as follows. For each instance of
the ingredient defined in the recipe, we place it at a voxel marked

(a) (b)

Fig. 6: (a) Example of surface ingredient with proper principal vector
(black), and offset vector (white), pointing from the center of mass to
the anchor position at the surface. (b) Positioning of the ingredient
on the surface using the correct orientation and offset aligned to the
surface normal (top). Grid occupancy update (bottom).

with the appropriate value in the compartment grid, and with an empty
value in the occupancy grid. The occupancy grid is then updated with
the identity of the ingredient, and these steps are repeated until all
ingredients are positioned (Figure 5 (c), (d)). The occupancy grid is
updated even after the positioning of all ingredients is completed, so
that the grid may be used in populating this compartment with fibrous
structures (see Section 6).

As the size of the ingredients can be substantially larger than the
voxel size, this will ultimately result in intersecting ingredients if they
are placed in a close proximity. The population step does not necessar-
ily need to take overlap into consideration, although the less overlap is
produced, the less computation is required. The following resolves the
overlaps. A straightforward approach to avoid overlaps is to uniformly
distribute ingredients. However, this leads to an undesired visual ap-
pearance since the grid structure becomes clearly visible. In order to
introduce a certain degree of randomness and still reduce overlaps, we
again utilize a Halton sequence to choose potential grid points for pop-
ulation. In practice a compartment populated using a Halton sequence
can still suffer from visible regularities. Therefore, we additionally
introduce jittering by a random vector in each grid position and we also
apply a random rotation to each ingredient. With the Halton sequence,
we can significantly reduce the number of overlapping molecules but
it does not completely avoid them. The following step detects and
resolves these remaining overlaps.

5.3 Step 3 – Detecting and Resolving Collisions

Ideally, we would want to detect collisions by evaluating contacts be-
tween all atoms in the molecules. However, this is not practical in terms
of performance, so for every molecule type, we compute a two-level
proxy geometry that approximates its shape. The higher-level proxy
is simply the bounding sphere of the molecule. The lower-level proxy
approximates the molecule with a small number of spheres calculated
with a GPU-based K-means clustering algorithm [11]. As preset we use
16 spheres. The clustering provides the centers of the spheres and the
radii which correspond to the cluster sizes. This ensures that all atoms
are covered by the proxy geometry. The collision-detection process
first uses the higher level proxy geometry to detect potential collisions
between two molecules, which are then verified with the lower-level
proxy geometries using the finer approximation of the shape. Figure 7
shows the lower-level of the proxy geometries (a) and the scene popu-
lated by ingredients (b). The proxy geometry slightly overestimates the
actual shape of the molecule to ensure that a certain distance is created
between molecules after the collision is resolved. From a perceptual
point of view, the molecules are easier to distinguish if their shape
boundaries are not in direct contact.



(a)

(b)

Fig. 7: (a): Proxy geometry of ingredients. Overlapping geometries are
marked in red, non-overlapping ones in green, and static ones in grey.
(b) The same scene populated by ingredients.

The resolving of collisions is loosely based on standard rigid body
dynamics [1]. Usually the exact point of contact between two bodies
is detected and then corresponding forces are computed. Since our
molecules are already in a colliding state, we simply compute forces
that resolve these collisions. We use the information about collisions
from the lower-level of the proxy geometry as a basis for the com-
putation. For each intersecting pair of molecules we determine the
overlapping sphere pairs and consider each as one collision. Each
molecule accumulates a linear and angular force that is updated for
every collision. The linear force is defined by a direction and strength.
The direction is derived from the vector between the centers of the
two spheres. The distance between the two sphere centers determines
the strength of the force. As in rigid body dynamics, we compute the
angular force by taking into account the vector between the center of
the molecule and the collision, as well as the direction vector. After the
forces for all collisions are computed, they determine the new position
and rotation of molecules, as in a standard physics-based system. This
defines one integration step. During the collision-resolving process, a
molecule might temporarily leave its compartment. In this case we ap-
ply a force to the molecule, that will steer it back into the compartment.
This process is repeated for a certain number of integration steps until
all collisions are resolved or a stop criterion is reached. The criterion
can be set by the user and specifies a certain number of acceptable
remaining collisions. This makes the system flexible for less power-
ful hardware systems as well. Both the collision detection and the
subsequent resolving is computed on the GPU.

6 FIBROUS STRUCTURES

Fibrous ingredients are linear or branched polymers of repeated units,
found in many places in cells. They include protein filaments that
form infrastructure, polysaccharides that provide protection or store
energy, and nucleic acids that encode genetic information. They are
usually modeled using a procedural growing algorithm, such as self-
avoiding random walks. Angle and length are constrained to maintain
the persistent length of the processed fiber. The process of building
the fibrous structure is sequential by nature as we have to be aware of
the previous state of the fiber. However, this process can be greatly
improved by using the compartment and occupancy grid information.
For every incremental step of the walk, the corresponding grid element
can be checked if it belongs to the compartment (compartment grid) and

(a) (b)

Fig. 8: Fibrous structures are modeled using a self-avoiding random
walk. (a) The walk starts with a random point inside of a certain
compartment. A random direction in the forward-hemisphere at this
point is then chosen. If there is no intersection with existing structures
or compartment surfaces, the direction is selected and the segment is
added to the fiber. This process is repeated until the desired length of the
fiber is reached. (b) A very long DNA (yellow) with long persistence
length is combined with shorter RNA (red) with short persistence
length.

if it is occupied by some other protein (occupancy grid). This improves
the computational cost by restraining the growing fiber to allowed space
and minimizing intersections with previously positioned ingredients,
including self-intersections. For large systems, such as genomes, the
fiber can contain millions of subunits, so the complete fiber-growing
process will not be interactive. Here, we provide the possibility for
the user to observe the current progress of the fiber growth, to remain
interactive.

The self-avoiding random walk in our approach works as follows. In
the target compartment, a starting point is randomly chosen and the en-
suing protocol is iterated until the required length of the fiber is reached.
In each step, a random direction is selected from the hemisphere that
is oriented and positioned according to the previous direction, as il-
lustrated in Figure 8 (a). Possible intersections of the random walk
with membranes, soluble molecules or itself are tested by using the
occupancy and compartment grids. If there are no intersections, the
segment is added and the grids are updated. Otherwise, a different
random direction is chosen. A dead-end is reached if the walk cannot
be continued after a given number of attempts. In our experience, the
order in which molecules are distributed strongly influences the success
of the population step. We have obtained the best results by placing
membrane-bounded proteins first, followed by fibers, and finishing
with soluble ingredients. This sequence addresses two significant po-
tential problems: (i) membrane-bounded proteins often protrude in the
compartments, so the fiber must avoid them, and (ii) typical soluble
components are highly crowded into compartments, lead to few free
grid points, and leave no options for fiber growth. Figure 8 (b) shows
result of positioning DNA and RNA fibrous structures.

The method provides interactive performance for small fibers, such
as the lipopolysaccharides extending from the mycoplasma surface or
small RNA molecules in the cytoplasm. Long genomic DNA molecules,
however, require several minutes to generate. We provide two methods
to allow the user more interaction for these large structures: a premade
DNA model may be preloaded, or we grow the walk in real-time to
show the progress. This enables the user to stop and restart if the
growing model shows problems.

7 RESULTS AND DISCUSSION

The approach described here is flexible, allowing the user to model a
variety of biological systems. This ability is due, in part, to the relation-
ship of all living organisms on Earth. Similar membranes surround all
cells and define their inner organelles, and similar proteins orchestrate
the traffic of molecules and information across the membranes. Similar
proteins and nucleic acids are used for the many metabolic and genetic
tasks required for energy production, biosynthesis, and reproduction,
which are packaged in very similar compartments within cells. Since



Fig. 9: A cubic space, two cubic microns wide, filled with blood plasma,
with over 4.6 million soluble protein ingredients, populated in ∼0.6
sec.

viruses rely on cells for reproduction, they are also built from a subset
of this machinery. With a limited set of structural modeling tools, we
are able to build a variety of different cellular scenes.

Building mesoscale models is always an iterative process, where
the recipe, ultrastructure and other parameters are tuned to reflect
on and lend insight to the available experimental results. This is a
laborious process with systems such as cellPACK, where single models
require from minutes to hours to generate, followed by a significant
effort to visualize the results. Our approach tightens this research
cycle, allowing researchers to generate models or ensembles of models
rapidly in an intrinsically visual environment. This allows the users to
interactively optimize recipes, identify and correct any errors or bugs,
and incorporate new data rapidly as it becomes available.

We demonstrate the capabilities and advantages of this new approach
in three test systems. In a mesoscale model of blood plasma, the ef-
ficiency of the current method allows us to create a very large scene
containing millions of molecules, which required a prohibitive com-
putational effort with previous methods. With HIV, the interactive
capability allows us to generate multiple models from a single recipe,
and explore stochastic variations of a structurally complex subject. In
a model of an entire mycoplasma bacterium, we are able to tune the
recipe and modeling parameters interactively to achieve a particular
goal: creating a 3D version of an existing 2D rendering of the cell. In
the following sections, we describe these cases as well as the achieved
results. The performance was measured using a computer with an
Intel Core i7-6700K CPU 4.00 GHz and NVIDIA GeForce GTX 1080
graphics card with 8 GB memory.

Blood Plasma. Blood plasma is largely homogeneous and relatively
sparsely occupied by proteins and short fibrous components. These
proteins have a variety of functions, including molecules of the immune
system, blood clotting factors, transport molecules, and hormones. It is
a perfect system for early tests of methods for populating mesoscale
scenes, because the proteins have a variety of sizes and shapes, includ-
ing several with very large aspect ratios. When generating the model
using cellPACK, a scene containing nearly 30,000 molecules was cre-
ated in 116 seconds. With our approach we have tested a scene with
blood plasma containing more than 33,000 molecules. The population
step takes on average 100 ms and the consecutive overlap resolving
takes on average 2000 ms. Our system is also capable of populating
significantly larger scenes. As shown in Figure 9, we have populated a
scene with a volume of two cubic microns with blood plasma. Given
the exact molarity, our approach produces over 4.6 million soluble
protein ingredients in 0.6 seconds. In our current implementation, this
is beyond the capabilities of our force-based system to resolve potential
overlaps. The main bottleneck here is the collision detection. However,
this is not a conceptual limitation. Current research [20] has shown that
it is already possible to interactively solve the collisions of millions of
particles.

HIV. We have used HIV as a convenient test system for mesoscale
modeling since the inception of the cellPACK project. It has several

(a) (b) (c)

(d) (e) (f)

Fig. 10: Overview of the interactive modeling of the mature HIV
virion based on the cellPACK recipe. (a) Building the membrane
(magenta) based on a spherical mesh, and preloading the capsid (blue)
from a cryo-EM structure (PDB entry 3J3Q). (b) Solid voxelization
of compartments. (c) Updating the occupancy grid. (d) Populating
the surface ingredients (envelope protein in green, matrix protein in
yellow). (e) Building two copies of the RNA (red) using the fiber
growth method and attaching the HIV NC protein at all control points.
(f) Resulting model.

advantages: it is relatively small, but still taxes most methods and it is
one of the most-studied organisms, so there is abundant information
available. However, there are still significant gray areas in the available
data, so this leaves room for experimentation in the parameters of the
recipe.

The recipe used here was described by Johnson et al. [26], and
comprises five types of surface proteins, 19 types of interior proteins
and two RNA copies (9,200 bases, roughly 30,000 Ångströms long).
A membrane envelope surrounds the virion, with several copies of
the viral envelope protein embedded in the membrane and extending
outwards. Inside, a protein-enclosed capsid protects two copies of
the viral genome. A variety of proteins, including the viral enzymes
and several accessory proteins, are found in the space between the
membrane and the capsid.

Figure 10 depicts the different steps of our procedural approach to
model HIV. The final model consists of 11,790 protein ingredients. The
entire model requires 0.07 seconds to generate without the RNA, and
requires ∼3 seconds to generate the two copies of the RNA. It takes up
to an hour to generate this model using cellPACK.

Mycoplasma Bacterium. The ultimate goal of this work is to create
computational models of entire cells, to interpret experimental results,
and model structure/function relationships in healthy and diseased
states. To address this challenge, we have focused on one of the simplest
cells, a mycoplasma bacterium. This bacterium has a very simple
structure, with a single cellular membrane and a small genome. The
membrane is filled with pumps and channels, and decorated on the outer
surface with lipopolysaccharides that form a protective coat around the
cell. The detailed organization of molecules inside the cell is only now
beginning to be explored by cryo-EM microscopy, given the small size
of the cells. We have modeled a random tangle of DNA surrounded by
the soluble protein and RNA components.

The draft recipe for the current model (Figure 11) includes the mem-
brane, one strand of DNA (1,211,703 base pairs), 1500 lipopolysaccha-
rides, and a collection of 18 of the most prevalent proteins and nucleic
acids. The model required ∼100 sec for the generation of all the fibers
in the model (DNA, mRNA, peptides, lipopolysaccharides) and 0.1 sec
to fill the remaining space with soluble components. Using cellPACK,
the creation of the mycoplasma model takes several hours. We em-
ployed the interactive capabilities of the method to tune the recipe,



(a) (b) (c)

Fig. 11: Cross-sections of Mycoplasma mycoides. (a) A hand-drawn illustration. (b) 3D model generated with the draft recipe. (c) 3D model
generated by interactively tuning the recipe to match general characteristics of the illustration. In the 3D models, the membrane is in green, with
membrane-embedded proteins in orange and lipopolysaccharides in green. Inside, DNA is in yellow, soluble proteins in blue and magenta, and
RNA in red.

based on previous research used to create a hand-drawn illustration of
the cell. Figure 11 includes the illustration, a 3D model using the draft
recipe, and a 3D model generated after interactively tuning the recipe
to better match the illustration.

Performance and Interactive Capabilities
Creation of the presented types of models has previously been a labo-
rious process, forming a bottleneck in their study. For instance, the
micron-sized blood plasma scene previously required hours of compu-
tation time, and is modeled with the new method in less than a second.
Currently, the method is able to populate soluble compartments interac-
tively, allowing the user on-the-fly experimentation with recipes and
testing their effects on the resultant scenes. The performance of mod-
eling fibrous and membrane components has also been significantly
improved when comparing with previous approaches. It takes seconds
to generate a cell-sized membrane and about a minute to calculate a
genome-sized object.

One of the great advantages of our presented methods is the ability to
test hypotheses interactively. Biological research is an ongoing process,
and there are many gray areas in the body of knowledge about the
structure and function of cells at the mesoscale level. In many cases,
it is useful to test the emergent mesoscale consequences of different
properties at the molecular level. In the current implementation, many
useful parameters are tunable at runtime. The user imports meshes
that represent compartments, descriptions of ingredients, and then
creates and visualizes the model based on the recipe on the fly. Tunable
parameters in the recipe currently include the location, the molarity,
the orientation (as defined by principal vector and offset), and fiber-
generation parameters. Once the basic geometry is loaded, everything
may be changed interactively.

For example, in Figure 12, we tested two assumptions on DNA
persistence length in a model of a small genome packed into a spherical
bacterium. A longer persistence length leads to DNA strands that wrap
around the periphery of the cell, whereas a shorter persistence length
leads to a trajectory that is more reminiscent of a 3D random walk.
The reality is probably a combination of these two assumptions, since
DNA-binding proteins often form kinks that mimic the short persistence
length, while free strands of DNA show a longer persistence length.

8 CONCLUSION AND FUTURE WORK

In this work we have presented the first interactive approach to an inte-
grative structural modeling of the biological mesocale. The interactive
performance of the method provides several significant advantages in
scientific and educational applications. With the possibility to create
interactive models, domain experts are now able to tune parameters

(a) (b)

Fig. 12: Two models of DNA in a bacterial cell, using (a) a long
persistence length and (b) a short persistence length (7 sec to generate).

and explore the mesoscale properties that emerge. In addition it is now
possible to create an ensemble of models from a single recipe, allowing
researchers to explore the stochastic variations in mesoscale properties
and compare them with experiments. In education, interactive capa-
bilities can allow curriculum developers to better tune their models
and representations to optimize the clarity of the resultant imagery.
A long tradition in scientific illustration has proven the pedagogical
utility of introducing small artistic changes to a subject to improve the
interpretability of what is shown.

The next major enhancement of the method will be the incorporation
of a faster and more intuitive approach to model interactions between
the ingredients. For instance, modeling the interaction of ribosomes
with messenger RNA to form a polysome, or crosslinking of DNA
by DNA-binding proteins, is currently not feasible. We are currently
exploring particle simulation methods such as NVidia Flex to add this
capability. In addition, we will continue to optimize the generation
of fibrous components, which is currently the rate-limiting step of the
model generation with the new approach.

ACKNOWLEDGMENTS

This project has been funded by the Vienna Science and Technology
Fund (WWTF) through project VRG11-010 and also supported by EC
Marie Curie Career Integration Grant through project PCIG13-GA-
2013-618680. The Scripps Research Institute researchers acknowl-
edge support from NIH P41-GM103426 and R01-GM120604, and this
manuscript has TSRI reference number 29494.



REFERENCES

[1] D. Baraff. An introduction to physically based modeling: rigid body
simulation I-unconstrained rigid body dynamics. SIGGRAPH Course
Notes, pp. D31–D68, 1997.

[2] M. Beck and W. Baumeister. Cryo-electron tomography: Can it reveal
the molecular sociology of cells in atomic detail? Trends in Cell Biology,
26(11):825–837, 2016. Special Issue: Future of Cell Biology. doi: 10.
1016/j.tcb.2016.08.006

[3] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig,
I. N. Shindyalov, and P. E. Bourne. The Protein Data Bank. Nucleic Acids
Research, 28(1):235–242, 2000.

[4] P. Boechat, M. Dokter, M. Kenzel, H.-P. Seidel, D. Schmalstieg, and
M. Steinberger. Representing and scheduling procedural generation using
operator graphs. ACM Transactions on Graphics, 35(6):183:1–183:12,
2016. doi: 10.1145/2980179.2980227

[5] K. Culik and J. Kari. An aperiodic set of Wang Cubes. Journal of Universal
Computer Science, 1(10):675–686, 1996.

[6] I. L. Dalal, D. Stefan, and J. Harwayne-Gidansky. Low discrepancy
sequences for monte carlo simulations on reconfigurable platforms. In
Application-Specific Systems, Architectures and Processors, 2008. ASAP
2008. International Conference on, pp. 108–113. IEEE, 2008.

[7] P. Decaudin and F. Neyret. Rendering forest scenes in real-time. In
Proceedings of the Fifteenth Eurographics Conference on Rendering Tech-
niques, EGSR’04, pp. 93–102. Eurographics Association, 2004. doi: 10.
2312/EGWR/EGSR04/093-102

[8] C. J. Dickson, B. D. Madej, A. A. Skjevik, R. M. Betz, K. Teigen, I. R.
Gould, and R. C. Walker. Lipid14: The Amber lipid force field. Journal
of Chemical Theory and Computation, 10(2):865–879, 2014. PMID:
24803855. doi: 10.1021/ct4010307

[9] J. D. Durrant and R. E. Amaro. LipidWrapper: an algorithm for generating
large-scale membrane models of arbitrary geometry. PLOS Computational
Biology, 10(7):e1003720, 2014.

[10] K. Fan, X.-Y. Li, and D.-C. Wu. Self-avoiding walk on a three-dimensional
Manhattan lattice. Journal of Physics A: Mathematical and General,
33(22):3971, 2000.

[11] R. Farivar, D. Rebolledo, E. Chan, and R. H. Campbell. A Parallel
Implementation of K-Means Clustering on GPUs. In PDPTA’08 - The
2008 International Conference on Parallel and Distributed Processing
Techniques and Applications, pp. 340–345, 2008.

[12] K. W. Fleischer, D. H. Laidlaw, B. L. Currin, and A. H. Barr. Cellular
texture generation. In Proceedings of the 22nd Annual Conference on
Computer Graphics and Interactive Techniques, pp. 239–248. ACM, New
York, NY, USA, 1995. doi: 10.1145/218380.218447

[13] C.-W. Fu and M.-K. Leung. Texture tiling on arbitrary topological surfaces
using wang tiles. In Rendering Techniques, pp. 99–104, 2005.

[14] E. Galin, A. Peytavie, N. Maréchal, and E. Guérin. Procedural Generation
of Roads. Computer Graphics Forum (Proceedings of Eurographics),
29(2):429–438, 2010.

[15] D. S. Goodsell. Inside a living cell. Trends in Biochemical Sciences,
16:203–206, 1991. doi: 10.1016/0968-0004(91)90083-8

[16] S. Greuter, J. Parker, N. Stewart, and G. Leach. Real-time procedural
generation of ‘pseudo infinite’ cities. In Proceedings of the 1st Interna-
tional Conference on Computer Graphics and Interactive Techniques in
Australasia and South East Asia, GRAPHITE ’03, pp. 87–ff. ACM, New
York, NY, USA, 2003. doi: 10.1145/604471.604490

[17] S. Grottel, M. Krone, C. Müller, G. Reina, and T. Ertl. MegaMol – a
prototyping framework for particle-based visualization. Visualization and
Computer Graphics, IEEE Transactions on, 21(2):201–214, 2015. doi: 10.
1109/TVCG.2014.2350479

[18] G. Gruenert, B. Ibrahim, T. Lenser, M. Lohel, T. Hinze, and P. Dittrich.
Rule-based spatial modeling with diffusing, geometrically constrained
molecules. BMC Bioinformatics, 11(1):307, 2010. doi: 10.1186/1471
-2105-11-307

[19] J. Halton. On the efficiency of certain quasi-random sequences of points in
evaluating multi-dimensional integrals. Numerische Mathematik, 2:84–90,
1960.

[20] R. Hoetzlein. Fast fixed-radius nearest neighbors: interactive million-
particle fluids. In GPU Technology Conference, p. 18, 2014.

[21] S. Hornus, B. Lévy, D. Lariviére, and E. Fourmentin. Easy DNA modeling
and more with GraphiteLifeExplorer. PLoS ONE, 8(1):1–12, 01 2013. doi:
10.1371/journal.pone.0053609

[22] W. Im, J. Liang, A. Olson, H.-X. Zhou, S. Vajda, and I. A. Vakser. Chal-

lenges in structural approaches to cell modeling. Journal of Molecular
Biology, 428(15):2943–2964, 2016. doi: 10.1016/j.jmb.2016.05.024

[23] S. Jo, J. B. Lim, J. B. Klauda, and W. Im. CHARMM-GUI membrane
builder for mixed bilayers and its application to yeast membranes. Bio-
physical Journal, 97(1):50–58, 2009. doi: 10.1016/j.bpj.2009.04.013

[24] G. T. Johnson, L. Autin, M. Al-Alusi, D. S. Goodsell, M. F. Sanner,
and A. J. Olson. cellPACK: a virtual mesoscope to model and visualize
structural systems biology. Nature methods, 12(1):85–91, 2015.

[25] G. T. Johnson, L. Autin, D. S. Goodsell, M. F. Sanner, and A. J. Olson.
ePMV embeds molecular modeling into professional animation software
environments. Structure, 19(3):293–303, 2011.

[26] G. T. Johnson, D. S. Goodsell, L. Autin, S. Forli, M. F. Sanner, and A. J.
Olson. 3D molecular models of whole HIV-1 virions generated with
cellPACK. Faraday Discussions, 169:23–44, 2014.

[27] G. T. Johnson and S. Hertig. A guide to the visual analysis and commu-
nication of biomolecular structural data. Nature Reviews Molecular Cell
Biology, 15(10):690–698, 10 2014.

[28] I. Kolesár, J. Parulek, I. Viola, S. Bruckner, A.-K. Stavrum, and H. Hauser.
Interactively illustrating polymerization using three-level model fusion.
BMC Bioinformatics, 15(1):345, 2014. doi: 10.1186/1471-2105-15-345

[29] B. Kozlı́ková, M. Krone, M. Falk, N. Lindow, M. Baaden, D. Baum,
I. Viola, J. Parulek, and H.-C. Hege. Visualization of biomolecular struc-
tures: State of the art revisited. Computer Graphics Forum, 2016. doi: 10.
1111/cgf.13072

[30] L. Krecklau, J. Born, and L. Kobbelt. View-dependent realtime rendering
of procedural facades with high geometric detail. Computer Graphics
Forum, 32(2pt4):479–488, 2013. doi: 10.1111/cgf.12068

[31] M. A. Lomize, A. L. Lomize, I. D. Pogozheva, and H. I. Mosberg. OPM:
orientations of proteins in membranes database. Bioinformatics, 22(5):623–
625, 2006.

[32] A. Lu, D. S. Ebert, W. Qiao, M. Kraus, and B. Mora. Volume illustration
using Wang Cubes. ACM Transactions on Graphics, 26(2):11, 2007. doi:
10.1145/1243980.1243985

[33] Z. Lv, A. Tek, F. Da Silva, C. Empereur-mot, M. Chavent, and M. Baaden.
Game on, science - how video game technology may help biologists tackle
visualization challenges. PLoS ONE, 8(3):e57990, 2013.

[34] L. Martı́nez, R. Andrade, E. G. Birgin, and J. M. Martı́nez. PACKMOL:
A package for building initial configurations for molecular dynamics
simulations. Journal of Computational Chemistry, 30(13):2157–2164,
2009. doi: 10.1002/jcc.21224

[35] S. R. McGuffee and A. H. Elcock. Diffusion, crowding & protein stability
in a dynamic molecular model of the bacterial cytoplasm. PLOS Compu-
tational Biology, 6(3):1–18, 2010. doi: 10.1371/journal.pcbi.1000694

[36] M. L. Muzic, L. Autin, J. Parulek, and I. Viola. cellVIEW: a tool for
illustrative and multi-scale rendering of large biomolecular datasets. In
Eurographics Workshop on Visual Computing for Biology and Medicine,
pp. 61–70. EG Digital Library, The Eurographics Association, 2015.

[37] F. Neyret and M.-P. Cani. Pattern-based texturing revisited. In Proceedings
of the 26th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’99, pp. 235–242. ACM Press/Addison-Wesley
Publishing Co., New York, NY, USA, 1999. doi: 10.1145/311535.311561

[38] T. Reddy and M. S. Sansom. Computational virology: From the inside
out. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1858(7, Part
B):1610–1618, 2016. doi: 10.1016/j.bbamem.2016.02.007

[39] M. Schwarz and H.-P. Seidel. Fast parallel surface and solid voxelization
on GPUs. ACM Transactions on Graphics, 29(6):179:1–179:10, 2010. doi:
10.1145/1882261.1866201

[40] D. Sirohi, Z. Chen, L. Sun, T. Klose, T. C. Pierson, M. G. Rossmann, and
R. J. Kuhn. The 3.8 Å resolution cryo-EM structure of Zika virus. Science,
352(6284):467–470, 2016. doi: 10.1126/science.aaf5316

[41] M. Steinberger, M. Kenzel, B. Kainz, P. Wonka, and D. Schmalstieg. On-
the-fly generation and rendering of infinite cities on the GPU. Computer
Graphics Forum, 33(2):105–114, 2014. doi: 10.1111/cgf.12315

[42] M. Tarini, K. Hormann, P. Cignoni, and C. Montani. Polycube-maps. ACM
Transactions on Graphics, 23(3):853–860, 2004. doi: 10.1145/1015706.
1015810

[43] A. Vendeville, D. Lariviére, and E. Fourmentin. An inventory of the bac-
terial macromolecular components and their spatial organization. FEMS
Microbiology Reviews, 35(2):395–414, 2011. doi: 10.1111/j.1574-6976.
2010.00254.x

[44] S. M. Waldon, P. M. Thompson, P. J. Hahn, and R. M. Taylor. SketchBio:
a scientist’s 3D interface for molecular modeling and animation. BMC
Bioinformatics, 15(1):334, 2014. doi: 10.1186/1471-2105-15-334



[45] T. Waltemate, B. Sommer, and M. Botsch. Membrane Mapping: Com-
bining Mesoscopic and Molecular Cell Visualization. In Eurographics
Workshop on Visual Computing for Biology and Medicine. The Eurograph-
ics Association, 2014. doi: 10.2312/vcbm.20141187

[46] H. Wang. Proving theorems by pattern recognition-II. Bell Labs Technical
Journal, 40(1):1–41, 1961.

[47] B. G. Wilhelm, S. Mandad, S. Truckenbrodt, K. Kröhnert, C. Schäfer,
B. Rammner, S. J. Koo, G. A. Claßen, M. Krauss, V. Haucke, H. Urlaub,
and S. O. Rizzoli. Composition of isolated synaptic boutons reveals the
amounts of vesicle trafficking proteins. Science, 344(6187):1023–1028,
2014. doi: 10.1126/science.1252884

[48] A. Willmott. Fast object distribution. In SIGGRAPH sketches, p. 80, 2007.
[49] P. Wonka, M. Wimmer, F. Sillion, and W. Ribarsky. Instant architecture.

ACM Transactions on Graphics, 22(3):669–677, 2003. doi: 10.1145/
882262.882324


