
Reduced-Order Shape
Optimization Using Offset

Surfaces in Blender

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Medieninformatik und Visual Computing

eingereicht von

Lukas Gersthofer
Matrikelnummer 01325669

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer

Mitwirkung: Univ.Ass. Dipl.-Mediensys.wiss. Dr.techn. Przemyslaw Musialski

Wien, 21. Februar 2018
Lukas Gersthofer Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at





Reduced-Order Shape
Optimization Using Offset

Surfaces in Blender

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Media Informatics and Visual Computing

by

Lukas Gersthofer
Registration Number 01325669

to the Faculty of Informatics

at the TU Wien

Advisor: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer

Assistance: Univ.Ass. Dipl.-Mediensys.wiss. Dr.techn. Przemyslaw Musialski

Vienna, 21st February, 2018
Lukas Gersthofer Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at





Erklärung zur Verfassung der
Arbeit

Lukas Gersthofer
Vienna

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 21. Februar 2018
Lukas Gersthofer

v





Danksagung

Mein Dank geht an Przemyslaw Musialski, der mir die Möglichkeit eröffnet hat, solch ein
modernes Thema im Rahmen einer Bachelorarbeit zu behandeln. Im Weiteren möchte
ich Christian Hafner für jegliche Fragen zur Implementierung und zum mathematischen
Hintergrund danken.
Schließlich gilt mein Dank auch meinen Eltern, ohne deren stetige Unterstützung es mir
nicht möglich gewesen wäre einen akademischen Abschluss in Angriff nehmen zu können.

vii





Acknowledgements

I would like to thank Przemyslaw Musialski for the opportunity to work on this thesis.
A special thank goes to Christian Hafner for supporting me with questions related to the
implementation and mathematical background.
At last I would like to thank my parents for their patience and steady support so that I
can realize my own potential.

ix





Kurzfassung

3D Modelle spielten bis vor kurzem nur eine wichtige Rolle in digitalen Welten. Doch
seit dem Aufkommen von 3D Druckern und anderen Fabrikationsmethoden werden diese
digitalen Modelle zunehmend in die physikalische Welt geholt. Vor allem die rasche
Entwicklung in den technischen Fähigkeiten dieser Geräte sowie die sinkenden Preise
beschleunigten diesen Trend. Ein großer Nachteil besteht jedoch darin, dass die digitalen
3D Modelle nicht dafür entwickelt wurden, in unserer Welt zu existieren. Die Einbeziehung
von physikalischen Eigenschaften wie Masse, Schwerpunkt oder Trägheitsmoment, die
wesentlich zum Verhalten der Objekte beitragen, wurden dabei vernachlässigt. Die
gedruckten Modelle weisen daher fast immer ein falsches physikalisches Verhalten auf. Die
Fähigkeit in einer gewissen Pose stehen, im Wasser schwimmen oder um eine bestimmte
Axe stabil rotieren zu können sind Beispiele für das physikalische Verhalten eines Objekts.
Nach und nach zog auch die Software nach und es wurden Verfahren entwickelt, um digitale
Modelle auf die Fabrikation vorzubereiten indem gewisse physikalische Eigenschaften
durch gezielte Optimierung des Volumens angepasst werden. Eine kürzlich präsentierte
Methode, auf dem diese Arbeit basiert, ist durch ihre Flexibilität und Schnelligkeit
dafür geeignet, um in modernen 3D Modellierungsprogrammen umgesetzt zu werden. Im
Zuge dieser Arbeit wurde dieses Verfahren als C/C++ Bibliothek implementiert und
anschließend in die freie Modellierungssoftware Blender als Modifier integriert. Diese
Integrierung soll einen einfachen Zugang zu einem Optimierungsverfahren von digitalen
Modellen für die Farbikation in deren üblichen Modellierungsumgebung gewährleisten.
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Abstract

The advance of 3D printers’ capabilities and their sinking costs led to a huge trend of
personal and commercial fabrication. But those advances were restricted to the hardware
side meaning that there was a lack of software to optimize the digital models before
printing. This was necessary because physical properties like mass, center of mass or
moments of inertia, were neglected in the design of digital 3D models. Those properties
play an important role in the behavior of a real-world object. Examples of an objects
behavior are the ability to stand in a specific pose, float in the water or stably rotate
around a certain axis.
In the last few years methods have been presented to optimize digital models by altering
specific regions of their volume in order to change their physical properties and therefore
to prepare them for printing. A recently presented method forms the basis of this thesis.
Due to its flexibility and performance it is well suited to be integrated into current 3D
modeling applications. The algorithm was implemented as a C/C++ library which can
be integrated in almost every application. Afterwards this library was integrated into
the open source 3D modeling application Blender as a modifier.
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CHAPTER 1
Introduction

Since the beginning of the field of computer graphics, digital models play a central
role in representing real-world objects in the digital space. Nowadays, these models are
still frequently used for simulation, rendering and visualization. With new 3D scanning
technology it is even possible to transfer objects from our real world to the digital one.
The field of digital or computational fabrication just started a few years ago to be a
hot topic as an area of research. New fabrication methods were developed and allowed
for increase in size and complexity of fabricated digital models at moderate costs. 3D
printers became very popular among researchers and 3D enthusiasts. The sinking costs
and improved precision of fabrication devices led to a new trend and a revolution of
digital fabrication [Ger12]. Personal usage of 3D printers rose due to affordable and
easily operable devices and publicly available blueprints of real-world objects [Mot11]. A
combination of high-resolution fabrication methods and optimization of digital models
led to a better design and a more efficient production of new gadgets, toys, and other
objects. It replaces long and costly trial-and-error processes.
Unfortunately, a major aspect of real-world objects has been neglected in the design of
their digital representations: physical properties. A common representation of digital
models in modeling and fabrication are polygonal (mostly triangular) meshes defined
by their surface. But those meshes only approximate the real surface up to a certain
degree and do not define any physical properties. One exception is the volume enclosed
by the surface. It appeared that many fabricated models cannot even stand in an upright
position. At that point it was clear that physical properties like mass, center of mass,
or moments of inertia, which define how objects behave in the real world, had been
neglected in the design of producible models.
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1. Introduction

To counter this issue, computer graphics researchers developed new methods and tools to
alter the physical properties of digital models interactively before fabrication. Although
FEM-based tools are also capable of dealing with physical properties of digital models,
these methods are considered as rather slow and complex in terms of usage and integration
into standard software.
Prévost et al. [PWLSH13] presented an approach to make arbitrary models stand in an
upright position or hang in suspension by optimizing their centers of mass. One year
later, the Disney researchers Bächer et al. [BWBSH14] developed a method to optimize
not only the center of mass but also the moments of inertia, allowing to create spinning
tops or yo-yos. The method developed by Musialski et al. [MAB+15] makes use of a
different volume representation and dimensionality reduction of the optimization problem,
resulting in more flexibility when it comes to defining global goals and better performance
due to its independence of object complexity. Therefore, the algorithm is suitable for inte-
gration into state-of-the-art 3D modeling software like Maya1, Blender2, etc. A follow-up
of the work of Bächer et al. [BWBSH14] was presented by Wang et al. [WW16], which
is capable of making objects float in a given position and be assembled of slices of plywood.

In this thesis the author presents the implementation of the above mentioned method
by Musialski et al. [MAB+15] as an open source library. In addition, the optimization
problem was reduced by projecting lower and upper bounds into the objective function
(see Section 3.3.2), and a different solver was integrated. The library is written in C/C++
and depends on several external libraries: Eigen3, libigl4, Spectra5, CGAL6 and NLopt7.
To make this work publicly available for designers and 3D enthusiasts, the implemented
algorithm was integrated into the open source 3D modeling software Blender as a modifier.
The library currently supports two target functions to optimize as they are: (1.) static
stability, (2.) rotational stability.

The following thesis is structured as follows: In Chapter 2 an overview of state-of-the-art
methods in this field is presented. Chapter 3 will give some background information about
how the algorithm works i.e. volume representation, performance increase, optimization,
etc. The gained knowledge is implemented and some insights into the code are given
in Chapter 4. Moreover, a more detailed description of the external libraries used will
be given. Chapter 5 will show some results of optimized 3D models as well as screen
shots of the actual algorithm integrated in Blender. At last there will be a conclusion
and outlook for future work.

1http://www.autodesk.com/products/maya/overview
2https://www.blender.org/
3http://eigen.tuxfamily.org/
4http://libigl.github.io/libigl/
5https://github.com/yixuan/spectra/
6https://www.cgal.org/
7http://ab-initio.mit.edu/wiki/index.php/NLopt
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CHAPTER 2
Related Work

As described in the introduction, there has been quite an advance in methods to op-
timize physical properties of digital models before fabrication. Here, just three major
publications, besides the one which forms the basic for this work, will be explained in
this chapter. They will be ordered chronologically by their publication date. A short
description of the methods basic idea should give an overview.

2.1 Make It Stand
One of the first works published in the field of optimizing shapes to fulfill an objective
after printing was presented by Prévost et al. [PWLSH13]. The method focuses on the
static stability or suspension of 3D models and is based on two main techniques: voxel
carving and linear blend skinning deformations. The idea is to modify the interior of
the mesh first and then deform its shape slightly while preserving its main appearance.
As illustrated in Figure 2.1 the optimization consists of alternating steps of carving and
deformation. First the mesh is voxelized and the voxel structure is stored in binary
variables α then the model is deformed with respect to its voxelized interior (fixed α
variables). After deforming the mesh it is discretized into voxels again but now with fixed
deformation handles H. This procedure repeats until the energy difference between itera-
tions vanishes or is lower than a given threshold. The energy of a mesh is defined by how
close the current physical properties (here the center of mass) is compared to the optimum.

To achieve static stability a plane is cut through the optimal center of mass c∗ (which
lies in the middle of the support polygon projected along the gravity direction) which is
perpendicular to the projection of the difference of optimal and current center of mass c0.
Voxels which lie in the half-space that contains c0 are left unchanged whereas voxels on
the other side are carved out to translate c0 in direction of c∗. To visually describe this
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2. Related Work

Figure 2.1: One iteration consists of voxelizing the input model, deforming it with the
fixed voxels α and voxelize it again with fixed deformation handles H © [PWLSH13].

Figure 2.2: Visualization of a voxel carving step (left). A carved model with deform
handles (right), empty areas are colored yellow © [PWLSH13].

method and its output see Figure 2.2. Models with multiple bases are also supported.
Therefore, a plane for each base is defined.

2.2 Spin-It
Fabricated spinning tops and yo-yos with arbitrary shapes are examples for the method
presented by Bächer et al. [BWBSH14]. Their goal was to optimize 3D models to stably
rotate around a given axis despite their asymmetric appearance. Therefore, a desired
rotation axis in addition to the input mesh must be provided by the user. The model is
then optimized such that the given axis is parallel to the main principal axis of inertia and
the center of mass is positioned on this axis. This is done by combining three different
methods: Hollowing (extends voxel carving by supporting a multi resolution voxelization),
cage-based deformations and dual-density optimization. Primarily hollowing is applied to
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2.3. Buoyancy Optimization.

Figure 2.3: Fill variables βk are displayed in green shades © [BWBSH14].

the model. For some complex models cage-based deformations are used too and for some
extraordinary cases it is possible to use two different materials with dissimilar densities.

The filling of a voxel vk is described by a binary fill variable βk. The optimization works
as follows (visually described in Figure 2.3):

1. Initialization. The octree is initialized to a mid-level refinement.

2. Optimization step. In this step the binary variables βk are optimized with a split-
and-merge approach. For that case the filling variables are treated as continuous
numbers in the interval [0, 1] and represent if a cell needs to be split or merged. Cells
with a value of 0 are kept filled and cells with value 1 are kept empty. Everything in
between 0 and 1 is either split into multiple subvoxels or merged with its neighbors
into one region.

3. Convergence. If all fill variables are binary and correspond to the cells at the
maximum resolution, the optimization is terminated.

2.3 Buoyancy Optimization.
The science of floating objects dates back to Archimedes and has been studied since then.
The principle of buoyancy is used for many applications in the field of computer graphics
like simulations and visualizations of realistic water and objects floating on it. In the
work of Wang et al. [WW16] an optimization approach is presented to float 3D models
on water, either totally or partially submerged. Similar to Make It Stand and Spin-It it
makes use of a voxel carving technique. To improve optimization speed and quality the
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2. Related Work

Figure 2.4: Optimized "Angry birds" model in simulation and fabricated with planar-pieces
design. © [WW16].

model is discretized with a multi-resolution voxelization method. In order to guarantee
that the model can be fabricated a minimal wall thickness is used to create an inner
offset surface.
Because of the limitation in size when fabricating models with a 3D printing device,
planar-pieces design can be used to first slice the object, print or cut out the slices
and then reassemble them. Wang and Whiting used slices of plywood to construct the
optimized models. An example is shown in Figure 2.4. Because plywood has a lower
density than water additional changes to the model’s mass are required. Two different
methods are supported: embedding prefabricated metal elements or a prototyped method
for high density material casting. The former one relies on the proper placement of metal
parts like bolts in specified regions to change the object’s mass distribution. Instead
of using prefabricated elements a prototyped method for high density material casting
is available. Therefore, materials with a high density e.g. concrete are casted into the
interior of the model.

6



CHAPTER 3
Methodology

This chapter will cover the basics to optimize a model according to the work presented
in [MAB+15]. A brief discussion about volume representation in spatial and frequency
domain is followed by the basic optimization problem. The order of this problem can
then be reduced by using a reduced manifold harmonic basis in order to speed up the
optimization. Additionally, a trick presented in [MHR+16] eases the process of optimiza-
tion by altering the objective function to remove lower and upper bounds.

3.1 Volume representation
A volume is intuitively represented as the inside of a closed 2-manifold surface embedded
in 3D (non-degenerated surface). To provide more flexibility, a second manifold surface
is introduced which does not penetrate the original one. The volume of a solid body is
then defined as the space enclosed by those two surfaces.
In the case of open manifolds, the volume is computed by limiting the volume to the
extent of the two surfaces. A discrete volume is therefore best represented by two
closed manifold meshes which do not penetrate each other. By using offset surfaces (see
Section 3.1.1), the number of input surfaces is reduced to one.
One advantage of this representation over a voxel based one used in most of the other
methods (see Chapter 2) is, that surfaces are generally smoother and depending on its
tessellation the volume computed can be more precise (assuming a uniform voxelization
or a multi-resolution voxelization with a limited number of subdivisions). The volume of
a closed manifold mesh can be exactly computed by a sum of signed tetrahedron volumes
described in Zhang et al. [ZC01].
Optimization of mass properties alters specific regions of the volume. Using a voxel based
approach, voxels are carved out of the full volume (see Chapter 2) and voxels left are
then ’filled’ with material in the fabrication process. In the case of offset surfaces, the

7



3. Methodology

Figure 3.1: Original surface S and inner offset surface S penetrate each other and create
a self intersection. To avoid this issue offset directions and limits are extracted of the
mean curvature skeleton. © [MAB+15]

volume enclosed by two surfaces is altered by changing the surfaces via their offsets. It is
possible to either use the original surface together with one offset surface or use both
offset surfaces (inner and outer). The latter one allows for a larger design space at the
cost of more computational effort and possible deformations of the visual appearance.

3.1.1 Offset surface

An offset or parallel surface is defined by displacement of every point of the original
surface by a specific amount (see [Mae99]). On discrete surfaces, like 3D meshes are, this
is defined as the displacement of every vertex along a given direction (for example the
normal vector) as seen in the equation below:

x′i = xi + δvi , (3.1)

where xi is the position of vertex i, vi is the offset direction and δ is the amount of
displacement. In the following, offset and displacement are used as synonyms.
Of course, the surface may be displaced in both directions: towards the inside and the
outside. This requires a basic definition of inside and outside. In the following, the
original surface is defined as S, the inner offset surface as S and the outer one as S.
The offset direction generally points outwards such that the inner surface is obtained
by displacing the surface along the negative offset direction and the outer one along the
positive direction.
However, offset surfaces have a major disadvantage: self-intersections. By offsetting
vertices of a concave surface (or surface patch) along their normal vector the surfaces
might penetrate each other and create self-intersections. This is illustrated on the left
side in Figure 3.1. Therefore, offset directions and amount of displacement have to be
chosen such that no self-intersections occur. This issue is tackled in the following section.

8



3.1. Volume representation

3.1.2 Mean curvature skeletons

A skeleton extracted from the original shape can be used to estimate the maximum
amount of displacement in a specific offset vector for every vertex. The offset directions
vi for a given vertex xi are defined as follows:

vi = xi − xcorri , (3.2)

where xcorri describes the corresponding vertex positioned on the skeleton. Afterwards,
the maximum displacement along an offset direction is defined as its length.
Basically, any method to extract the skeleton from the shape can be used, but mean
curvature skeletons presented by Tagliasacchi et al. [TAOZ12] are less sensitive to surface
detail and hence provide a solid approximation of the shapes skeleton even for high
frequency surfaces. An example of an extracted skeleton is shown in Figure 3.1 on the
right side.
These skeletons are extracted after several applications of constrained Laplacian smoothing
of a remeshed input shape. After every iteration a so called meso-skeleton is formed
which finally converges to a curve skeleton (see Figure 3.2).

Figure 3.2: Intermediate meso-skeleton on the left side produced by the mean curvature
skeleton approach which finally converges to the curve skeleton on the right. © [TAOZ12]
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3. Methodology

3.2 Manifold harmonics
The Fourier Transform is a popular tool to switch between a space or time domain and a
frequency domain. Usually, this holds for signals but can also be extended to 3D shapes
[VL08]. Manifold harmonics describe the basic vibration modes across a 3D shape, where
low frequent vibration modes correspond to the basic shape and high frequency ones
express the surface details. Those vibration modes are extracted as the eigenfunctions
of the Laplace-Beltrami operator applied to the given surface. In the discrete case this
reduces to computing the eigenvectors of the discrete Laplace-Beltrami operator (matrix)
which is defined as follows:

Li,j =


ωi,j if(i, j) ∈ E∑
k∈N(i)−ωi,k if (i = j)

0 otherwise
, (3.3)

where E is the set of edges and N(i) the set of vertices in the one-ring neighborhood.
ωi,j describes a weight function based on geometric properties.
Possibilities for ωi,j include the uniform weight function (ωi,j = 1) and more sophisticated
ones which encapsulate information of the surrounding geometry and achieve better
approximation of the Laplacian such as contangent weights proposed by Pinkall and
Poltier [PP93] in Equation (3.4).

ωi,j = 1
2(cotφli,j + cotφri,j) , (3.4)

where φli,j and φri,j are the angles opposite to edge (i, j) in the incident triangles on the
left or right side respectively.
The resulting matrix L is symmetric positive semi-definite and its eigenvectors γi and
eigenvalues λi are defined as:

Lγi = λiγi . (3.5)

Instead of computing all eigenvectors of this large sparse matrix, only the k first ones
corresponding to the lowest eigenvalues are computed hence they approximate the overall
shape. This task is solved best using the Implicitly Restarted Arnoldi Method or in
the case of a symmetric matrix Implicitly Restarted Lanczos Method1. Unfortunately,
those methods perform better at the other end of the spectrum thus solving for large
eigenvalues. However, by exploiting the shift-and-invert mode any eigenvectors close to a
given point can be computed.

Finally, the k first eigenvectors corresponding to the lowest frequencies are put together
to a rectangular matrix to form the so called manifold harmonic basis (short MHB):

Hk = [γ1γ2...γk] . (3.6)
1http://www.caam.rice.edu/software/ARPACK/

10
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3.2. Manifold harmonics

Figure 3.3: Shape of a dragon reconstructed with a different amount of eigenvectors. The
more eigenvectors the MHB contains, the more details (high frequencies) are preserved.
© [VL08]

This basis is then used to transform a mesh into the frequency domain where it is
represented as a linear combination of the first k basis functions and its frequency
coefficients α as:

δ = Hkα . (3.7)

The reconstruction is done by solving the linear system above for the α vector given dis-
placements δ. A shape reconstructed with different numbers of eigenvectors is illustrated
in Figure 3.3. Using a MHB including all eigenvectors of the discrete Laplace-Beltrami
operator would lead to a perfect reconstruction (no error) of the original shape.
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3. Methodology

3.3 Non-linear optimization
Minimization of energy terms, so called objective functions, leads to achieving the best
possible solution in the given solution space. The objective function measures, how much
the physical properties (see Section 3.3.3) of a current configuration differ from the opti-
mum. To minimize this term, the optimization variables—in this case the displacements
of the offset surface—are altered, considering dynamic constraints and static bounds.
Gradient-based optimization routines offer faster convergence at the cost of finding only
local minima. Since the algorithm should perform fast and any valid, near-optimal
solution is acceptable, gradient-based methods are prefered.
Based on offset surface representation and assuming that offset directions are already de-
termined (see Section 3.1.2) the optimization problem only depends on the offset values δi:

Min
δ
f(δ) s.t. gi(δ) ≤ 0 or gi(δ) = 0 and δl ≤ δ ≤ δu , (3.8)

where f is the objective function which is minimized with respect to changes of the set
of displacements δ. The functions gi define hard equality or inequality constraints and δu
and δl are lower and upper bounds for displacements. These bounds are further described
in Section 3.3.2.
Usually, objective function f and constraints gi are of non-linear form and of high
dimensionality due to the displacements’ dependence on the number of vertices. This
makes the problem expensive to solve, but fortunately the dimensionality of the problem
formulation can be drastically reduced.

3.3.1 Dimensionality reduction by using a manifold harmonic basis

With the previously mentioned manifold harmonic basis Hk, a given mesh with n vertices
can be reduced to a representation consisting of k frequency coefficients αk. Hence, the
offset δi along the displacement direction vi of the offset surface can also be expressed as
a linear combination of the MHB’s eigenvectors:

xi = xi +
k∑
j=1

αjγi,jvi . (3.9)

So instead of finding n displacements δi, the problem reduces to finding the k unknown
coefficients αi:

Min
α
f(α) s.t. gi(α) ≤ 0 or gi(α) = 0 and δl ≤ Hkα ≤ δu . (3.10)

Notable here is, that k � n and the new representation in the frequency domain does not
depend on the number of vertices anymore. It turned out that around 36 eigenvectors
are sufficient to approximate most shapes adequately [MAB+15].

12



3.3. Non-linear optimization

3.3.2 Lower and upper bounds

As mentioned in Section 3.1.1, displacing the surface too much might lead to self-
intersections. Therefore, displacements are limited by lower and upper bounds in the
optimization process. For the inner offset surface a practical upper bound δu per vertex
is given by the length of its unnormalized offset vector seen in Equation (3.2). Because
fabrication devices such as 3D printers are often limited by a fabrication resolution it
is not possible to fabricate objects thinner than this resolution. Also it might happen
that the object is too thin in specific regions making it unable to bear its own weight.
To compensate these issues, a lower bound for the inner displacements is defined as δl.
If deformations of the visual appearance should be small or negligible, then the outer
offsets also needs to be restricted. Again, a minimum wall thickness can be ensured
by setting a lower bound δl. Upper bounds for the outer displacements δu are only
constrained by the size of printable objects and are therefore not as critical.
The complexity of problems with hard constraints solved by Newton-based solvers often
lead to long convergence times or undesirable results which lie outside of the possible
solution space due to violation of given hard constraints. To reduce the number of con-
straints, the lower and upper bounds are encoded into the objective function [MHR+16].
Instead of having the optimization in the form stated in Equation (3.8) the new problem
is now given as:

Min
δ
f(ϕ(δ)) s.t. gi(ϕ(δ)) ≤ 0 or gi(ϕ(δ)) = 0 , (3.11)

where ϕ is a function projecting the lower and upper bounds into the objective function
and is defined as:

ϕ(δ) = δu − δl
π

arctan (δ − o) + o

o = δu − δl
2 .

(3.12)

To apply dimensionality reduction in combination with bound encoding the original
displacements have to be projected first and then transformed to the frequency coefficients
which leads to the final optimization definition:

Min
δ
f(Γk(ϕ(δ))) s.t. gi(Γk(ϕ(δ))) ≤ 0 or gi(Γk(ϕ(δ))) = 0 , (3.13)

where Γk projects the offsets using the reduced MHB and yields the frequency coefficient
vector α.

13



3. Methodology

3.3.3 Physical properties

When it comes to designing the real-world behavior of digital models, a basic understand-
ing of some physical properties is necessary. Therefore, the following sections will deal
mainly with the physical properties of real-world objects and how they are computed.
However, in this work only mass properties are considered including volume, mass and
the first two moments of mass. With this knowledge, objective functions and constraints
are derived which are described in Section 3.3.4.

Volume and mass

For objects consisting of only one material (uniform density), volume and mass are
linearly related. For analytically defined surface in 3D, its volume is computed as a triple
integral over the parameter domain.

Of course, analytically computing a volume integral over a discrete surface is not possible,
but by applying the divergence theorem, the volume integral can be reduced to a surface
integral. The analytical computation of surface integrals over triangulated surfaces is
well defined and can therefore be given in discrete form as:

V = 1
6
∑
i∈I

((vi2 − vi1)× (vi3 − vi1)) · (vi1 + vi2 + vi3) , (3.14)

with vix describing the x-th vertex position of the i-th triangle and I as the index set of
faces.

To now obtain the mass of an object, the density function is integrated over its volume
[Dem15]:

M =
∫
V

ρ(~x) d~x =
∫∫∫
V

ρ(x, y, z) dx dy dz (3.15)

For homogeneous objects—density does not vary across the volume—this integral is
simplified to a multiplication of density and volume:

M = ρ

∫
V

d~x = ρV (3.16)

which leads to a final formula to compute the mass of a triangulated mesh:

M = ρ

6
∑
i∈I

((vi2 − vi1)× (vi3 − vi1)) · (vi1 + vi2 + vi3) (3.17)
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3.3. Non-linear optimization

Center of mass/gravity

The center of mass is defined as the unique point in a solid object, where the weighted
relative position of the mass sums to zero. In other words it is the average position of
all parts of the system, weighted according to their masses. Analogously, the center of
gravity is the average position where gravity cancels out. Sometimes center of gravity is
used as a synonym which is true while being in a uniform gravity field. For simplicity,
physicists often tend to assume a uniform gravity field on earth, therefore center of mass
and center of gravity describe the same point.
The center of mass is computed by utilizing the first moments of mass:

M~x =
∫
V

~xρ(~x) d~x . (3.18)

The actual center of mass c is then given by:

c =
(
Mx

M
,
My

M
,
Mz

M

)
. (3.19)

Applying the divergence theorem helps to express the volume integral as a surface integral
again utilizing the assumption of uniform density. The surface integral is then discretized
and stated below [PWLSH13]:

c = ρ

24M
∑
i∈I

((vi2 − vi1)× (vi3 − vi1)) ? g(vi1, vi2, vi3)

g(v1, v2, v3) = v1 ? v1 + v1 ? v2 + v2 ? v2 + v2 ? v3 + v3 ? v3 + v3 ? v1

(3.20)

where the ? operator defines the component-wise product.
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3. Methodology

Moment of inertia

Figure 3.4: Principal axes of ro-
tation with corresponding mo-
ments. © [BWBSH14]

Moment of inertia is a measure of an ob-
ject’s resistance to change in rotation direc-
tion. Moment of Inertia has the same rela-
tionship to angular acceleration as mass has
to linear acceleration. As depicted in fig. 3.4
on the right, a body has three principal axes
of inertia and their origin is the center of
mass c. Every principal axis has a corre-
sponding moment Ix. A rotation around one
of the principal axes is considered to be sta-
ble if the moments of the other two axes are
equal.

For continuous bodies, the moments are derived as the second moment of mass:

I~x =
∫
V

~x2ρ(~x) d~x . (3.21)

The tensor of inertia is used to compute the total angular momentum L about all three
principal axes as: 

Lx

Ly

Lz

 =


Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz



ωx

ωy

ωz

 , (3.22)

where the 3x3 matrix forms the tensor of inertia I and ω is the angular velocity vector. It
is also worth noting that I is a real symmetric matrix. The elements of I are calculated
as follows:

Ixx =
∫
V

(y2 + z2) dm

Iyy =
∫
V

(x2 + z2) dm

Izz =
∫
V

(x2 + y2) dm

Ixy = Iyx =
∫
V

xy dm

Ixz = Izx =
∫
V

xz dm

Iyz = Izy =
∫
V

yz dm

(3.23)

with dm = ρ(x, y, z) d~x. Ixx is called the moment of inertia about the x-axis, Ixy the xy
product of inertia and the others follow accordingly.
Again, using the divergence theorem these volume integrals are reduced to surface integrals
which lead to a discrete solution. For exact computation of second order mass moments,
refer to Bächer et al. [BW+14+].
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3.3. Non-linear optimization

3.3.4 Global goals

Global goals define the physical behavior of an object during and after the optimization.
Global goals encompass objective functions and possibly multiple constraints. The
objective functions are specified as at least C1 continuous non-linear functions (C1

continuity is needed for gradient-based methods which should be preferably used here).
The optimization process minimizes the given objective function with respect to multiple
equality and inequality constraints as well as lower and upper bounds. Equality and
inequality constraints may be linear or non-linear. Lower and upper bounds are projected
into the objective function as described in Section 3.3.2.
In the original paper [MAB+15], such objectives are heavily related to mass properties.
This set of global goals encompasses:

• static stability,

• static stability under storage,

• monostatic stability,

• rotational stability,

• specific volume and buoyancy.

However, in this work only static and rotational stability are tackled, hence the others
follow the same scheme and can be easily integrated as well.

Static Stability

Figure 3.5: Toy T. rex optimized
to stand stably on his tiny feet.
© [PWLSH13]

A statically stable object remains in a given posi-
tion once placed. In the picture to the right a toy
T. rex is shown, which balances his big body on his
tiny feet. The static stability is expressed as the
deviation between the center of mass c projected
along the gravitational axis and the centroid of the
area touching the ground called contact area. If
the object has multiple contact ares, those regions
are joined together by their convex hull. To en-
sure static stability, the projection of c has to lie
in the contact area. This is achieved by placing
the centroid of the contact area in the origin and
minimizing the distance between the center of mass
and the origin in the xy-plane and reducing its height to make it even more stable. The
objective function finally is:

f(α) = c2
x + c2

y + cz . (3.24)
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3. Methodology

Additionally, the position has to be constrained to the contact area which is defined as
the largest inscribing circle of the contact area (g1). Of course, the center of mass has to
be above the ground (g2):

g1(α) = (cx + cy)2 − (r − ε)2 ≤ 0
g2(α) = cz > 0 .

(3.25)

Rotational Stability

Figure 3.6: Elephant spinning
top made by Bächer et al.
© [BWBSH14]

For rotational stability, the axis an object spins
about is of important role. The rotation is con-
sidered stable, if it spins about the smallest or
largest principal axis [GPS02]. For spinning tops
for example as seen in the right picture, the desired
rotational axis has to coincide with the smallest or
largest principal axis. First, the object is placed
such the rotation axis coincides with the z-axis (up-
axis). Then the goal is to adjust the principal axis
to align with the rotation axis.
The according objective function is defined as:

f(α) = mcz +
(
Ia
Izz

)2
+
(
Ib
Izz

)2
(3.26)

where {Ia, Ib} is obtained as the eigenvalues of the 2x2 upper-left part of the inertia
tensor leading to

{Ia, Ib} = 1
2

(
Ixx + Iyy ±

√
I2
xx + 4I2

xy − 2IxxIyy + I2
yy

)
. (3.27)

The constraints are defined as:

g1(α) = {cx, cy} = 0
g2(α) = {Ixz, Iyz} = 0
g3(α) = cz > 0

, (3.28)

where the first constraints (g1) ensures, that the center of mass lies on the rotation axis.
The terms Ixz and Iyz have to vanish (g2), otherwise they would influence the rotational
behavior. And, of course, the center of mass has to be again above the ground (g3).
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CHAPTER 4
Implementation

The practical part of this thesis included an implementation of the described method
as a C/C++ library, which was then integrated into the open source modeling software
Blender1.

Note: Modifiers in Blender are plugins written in C and therefore directly compiled into
the binaries. These modifiers process a mesh and can be chained, but for this task it was
enough to write a single modifier which takes the optimization parameters and then acts
on the input mesh. Because Blender is an open source project, everyone can contribute.
Originally, it was planned to publish this modifier in order to make it available to people
interested in computational fabrication. Unfortunately, the modifier won’t make it into
the public release builds due to external library dependencies. Although Blender already
supports some of the used libraries, it would be too much overhead to support multiple
external libraries for only one modifier. Instead, the modified Blender version is now
kept as an in-house solution.

In the following sections only the implementation of the library will be explained, since
the explanation of the integration of a library is not part of this work.

1https://www.blender.org/
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4. Implementation

The library itself maps the processes described in Chapter 3. The basic algorithm is
given in the following pseudocode:

1 compute mesh skeleton (mcf-skeleton)
2 compute displacement field ~d = Vs − Vm,

where Vm is the set of mesh vertices and Vs is the set of skeleton vertices
3 compute maximum inner offsets dmaxi = ||~d||
4 compute cotangent Laplacian Matrix L for input mesh
5 compute k first eigenvectors γi corresponding to low eigenvalues λi of L
6 compute manifold harmonic basis Γk = [γ1 γ2 ... γk],

where γi is the eigenvector corresponding to eigenvalue λi
7 minimize objective function f given additional constraints ci

In the following sections, the implementation of these steps are explained in detail.

4.1 Linear algebra and mesh precessing
Eigen2 was the first choice in terms of linear algebra libraries. This is not only due to its
simplicity and high performance, but mainly because some other libraries build on top
of it. One of those libraries is libigl3 which eases geometry processing. For instance, it
supports computing the Laplacian matrix L with cotangent weights.

4.2 Mean curvature skeleton
The computation of mean curvature skeletons is implemented in the well-known geometry
processing library CGAL. Hence, implementation details have to be extracted from the
CGAL documentation4 or the original paper of Tagliasacchi et al. [TAOZ12].
After extracting a skeleton from the input mesh, the displacement vector field is computed
as the difference between the mesh vertices and the corresponding skeleton vertices. The
length of all displacement vectors yields the maximum amount of inner displacement per
vertex. The remaining parameters, such as maximum outer displacement and minimum
displacements (wall thickness), are provided by the user.

2http://eigen.tuxfamily.org
3http://libigl.github.io/libigl/
4https://doc.cgal.org/latest/Surface_mesh_skeletonization/index.html
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4.3. Eigendecomposition of Laplacian L

4.3 Eigendecomposition of Laplacian L

ARPACK5, a Fortran77 library, is designed to solve large-scale eigenvalue problems.
Fortunately, while implementing, an open source project called Spectra6 was released.
This header-only project provides many algorithms implemented in the ARPACK library.
A major advantage is, that it is built on top of Eigen.
The most important functionality is to compute the first k eigenvectors corresponding to
the lowest eigenvalues of a sparse matrix. Applied to L, this yields the harmonic basis
vectors which are then assembled to a matrix to form the manifold harmonic basis Hk.

4.4 Minimizing the objective function
All objective functions and many constraints are formulated in a non-linear way which
makes the optimization process more complex and time consuming. Fortunately, all
objective functions are at least C1 continuous, hence gradient-based methods can be
applied to find local minima. In particular, sequential least squares quadratic program-
ming (SLSQP) proposed by Dieter Kraft [Kra88] perfectly suits the requirements because
besides nonlinear functions it supports nonlinear inequality and equality constraints
as well as lower and upper bounds. However, because bounds are not interpreted as
hard constraints but rather are appended to the least-squares problem, this routine
always led to results violating constraints. After further investigation it turned out, that
projecting the bounds into the objective function (see Section 3.3.2) was enough to avoid
constraint violations. The library NLopt7 developed by Steven G. Johnson [Joh08] aims
at non-linear optimization. It provides various methods for local and global optimization.
A full list of all included algorithms can be obtained from the webpage8. Furthermore, it
supports the SLSQP routine and was therefore used for the optimization process.

4.5 Limitations
Computation runtime of mean curvature skeletons scales directly with the complexity
of the geometry. Objects with a high number of vertices—beginning at around 10.000
vertices—take more time for computing their mean curvature skeleton than for going
through the whole process of optimization. Therefore, this is considered as a performance
bottleneck of this implementation.
Another issue with more complex objects is the part of minimizing the objective function.
Unfortunately, the above mentioned solver runs out of memory when dealing with more
complex objects. The amount of necessary allocations of memory during evaluation of
the objective function is considered as too high for the optimization routine for larger
meshes—again the threshold starts about 10.000 vertices.

5http://www.caam.rice.edu/software/ARPACK/
6https://spectralib.org/
7https://nlopt.readthedocs.io
8https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/
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CHAPTER 5
Results

The result of this work is split into two parts: functionality and interaction. While in
the first part the focus lies on accuracy and performance of the underlying algorithm,
the second part mainly deals with the integration and interaction in Blender.

5.1 Functionality
Two example shapes were optimized using the implemented Blender plugin: a box
standing on one of its corners and a spinning top in form of a tilted ellipsoid. The input
shapes are described and illustrated in the following sections. To compare the obtained
results to the original implementation, the same shapes were optimized with the same
parameters and are visualized side by side. Optimization and deformation was applied
to the inner offset surface, such that the original surface represents the outer surface and
therefore maintains its appearance.

5.1.1 Optimized shapes

Box: The box model shown in Figure 5.1 was optimized to stand stably on its beveled
corner. To do so, the inner shape was compressed near this corner in order to lower
the center of mass and move the projected center of mass inside the ground polygon.
The deformed inner surface after optimization is illustrated in Figure 5.3. In addition, a
cut-through visualization is given in Figure 5.5.

Ellipsoid: The second optimized model is visualized in Figure 5.2. It consists of a
slightly tilted ellipsoid and a vertical stick representing the rotation axis. After optimizing
according to the rotational stability objective, the remaining mass inside the ellipsoid
is clumped near the rotation axis. The results are shown in Figure 5.4. In addition, a
cut-through visualization is given in Figure 5.6.
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5. Results

Figure 5.1: Box shape shown from two different viewpoints. Additionally, the tessellation
is shown on the right side.
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5.1. Functionality

Figure 5.2: Ellipsoid shape shown from two different viewpoints. Additionally, the
tessellation is shown on the right side.
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5. Results

(a) (b)

Figure 5.3: Inner surface of the box model after static stability optimization from two
different viewpoints. Left side (a) was generated by the implementation of this work.
Right side (b) was optimized by the reference implementation.
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5.1. Functionality

(a) (b)

Figure 5.4: Inner surface of the ellipsoid model after rotational stability optimization
from two different viewpoints. Left side (a) was generated by the implementation of this
work. Right side (b) was optimized by the reference implementation.
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5. Results

(a) (b)

Figure 5.5: Cut-through visualization of both surfaces of the box model. Volume enclosed
by the two surfaces is filled with material in the later fabrication process. Left side (a)
was generated by the implementation of this work. Right side (b) was optimized by the
reference implementation.

(a) (b)

Figure 5.6: Cut-through visualization of both surfaces of the ellipsoid model. Volume
enclosed by the two surfaces is filled with material in the later fabrication process. Left
side (a) was generated by the implementation of this work. Right side (b) was optimized
by the reference implementation.
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5.1. Functionality

Criteria
Shape Box Ellipsoid

Reference This work Reference This work
Skeleton 3216ms 3216ms 320ms 320ms
Harmonic basis 597ms 315ms 31ms 25ms
Optimization 4402ms 3510ms 1512ms 63ms
Matrix operations 830ms 37ms 136ms 15ms

Total 9045ms 7078ms 1999ms 423ms

Objective value 4.8302 4.7506 15.9203 13.7436

Table 5.1: Performance results of box model (6129 vertices) optimized according to
static stability objective (left) and results of ellipsoid model (750 vertices) according to
rotational stability objective (right). All numbers are averaged over 5 runs.

5.1.2 Performance and accuracy

The comparison between reference and this implementation shows two major differences:

1. Stronger deformation of inner surface near critical regions

2. Differences in runtime and resulting objective value

According to the resulting inner surfaces illustrated in Figure 5.3 and Figure 5.4, the
differences in deformation between both implementations are easily visible. The imple-
mentation proposed in this thesis tends to make bigger changes near critical regions
instead of an overall shape deformation as seen in the reference implementation. This is
caused by the projection of lower and upper bounds into the objective function. Involving
the arc tangent gradient into the optimization leads to bigger steps near obviously feasible
regions and allows for better exploitation of regions close to the actual bound limits. This
results in a slightly better result in terms of objective value and an overall performance
boost (see Table 5.1). Furthermore, the total runtime and the runtimes of each task are
smaller than in the reference implementation. One exception is the computation of mean
curvature skeletons, where both implementations rely on the same library. Although the
reference implementation is based on MATLAB and therefore highly parallelized, the
optimized C/C++ code was faster in terms of matrix operations. Regarding computation
of the manifold harmonic basis and non-linear optimization, one has to mention that
MATLAB does not rely on a single solving routine when optimizing, instead it uses a
bunch of different solvers, each better suited for a different situation and then chooses
whichever fits the best in the current situation. This implies more overhead during
computation time and a longer ramp up time and is therefore outperformed by a single
predefined solving routine.
All tests were performed on an AMD FX-8320 with 8GB DDR3 1600 MHz.
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5. Results

Figure 5.7: The list of modifiers in Blender split into 4 categories.

5.2 Integration and interaction

Figure 5.8: Input layout
for the Blender modifier
Massproperties.

Modifiers in Blender are programs compiled into the binaries
which either alter the appearance of a mesh or generate
additional geometry. Each object owns a modifier stack,
where multiple modifiers can be executed on top of each
other. The list of modifiers in Blender is split into multiple
categories: modify, generate, deform and simulate. Since
the algorithm generates an offset surface, it is available
in the generate section as shown in Figure 5.7. The name
Massproperties suits the description of the modifie, because it
manipulates the interior of the mesh to change its properties
of mass. Data is provided via a custom layout of input
controls written in Python. In Figure 5.8, the required
input data of the algorithm is depicted. A description of the
different input fields is stated in Table 5.2. After hitting the
Apply-Button, the modifier invokes the optimization routine
and stalls the user interface. This might take a few moments
(see Section 5.1.2) and after returning the offset surface is
added to the scene. Currently the interface only allows
for optimizing the shape by displacing the inner surface,
although the implemented algorithm is capable of changing
the outer or both offset surfaces.
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5.2. Integration and interaction

Input field Description
Global goal Type of objective function. Possible values are Stand

(static stability) and Spin (rotational stability)
Basis k Number of basis vectors used to represent the mani-

fold harmonic basis
Radius x Radius of the contact area on x-axis
Radius y Radius of the contact area on y-axis
Inner lower bound Minimum offset for inner surface to ensure minimal

wall thickness.
Inner upper bound Maximum offset for inner surface to avoid self inter-

sections. Factor is multiplied by computed upper
bounds (see Section 3.3.2)

Outer lower bound Minimum offset for outer surface to ensure minimal
wall thickness

Outer upper bound Maximum offset for outer surface to ensure maximal
wall thickness

Opt. weight 1 Additional weight to minimize volume in objective
function

Opt. weight 2 Additional weight to lower center of mass and penal-
ize positions outside of the projected contact area in
objective function

Opt. weight 3 Additional weight to minimize moments of inertia in
objective function

Opt. weight 4 Currently unused weight
Opt. weight 5 Additional weight for constraints
Opt. weight 6 Additional weight to penalize outer displacements

Table 5.2: Input fields of the Blender modifier Massproperties.
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CHAPTER 6
Conclusion

In this work a novel method for optimizing the physical properties of a 3D object before
fabrication presented by Musialski et al. [MAB+15] was implemented as a C/C++ library.
A further improvement presented in the work [MHR+16] extends the original algorithm
and was integrated into the library. Eventually, the library was included in the open
source modeling software Blender.
While implementing the algorithm in C/C++, two main problems occurred, which took
a long time to solve. Computing just a small number of eigenvectors corresponding
to the largest eigenvalues from a sparse matrix was only supported by a subroutine
implemented in a Fortran77 library called ARPACK. Luckily, this issue could be solved
after a few weeks because the header-only C++ library Spectra was released on Github,
which implemented exactly the needed routine. The second problem was concerning the
optimization. NLopt was the only open source C/C++ library supporting non-linear
objective functions, equality/inequality constraints and lower and upper bounds. Unfor-
tunately, because of too many constraints, the solution always ended up in an invalid
configuration and therefore violated the constraints. After integrating the lower and
upper bound projection, it finally led to promising results.
Regarding results, the offset surfaces generated by this implementation are quite similar
to the original ones presented by the authors. However, the method shown in this work
leads to bigger changes to the inner surface near critical regions instead of a more uniform
deformation in order to further minimize the objective function.
Integrating support for more objective functions as discussed in the original paper or im-
proving the Blender modifier by creating a more intuitive user interface are considerations
for future work.
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