EAKULTAT Diplomarbeitsprasentation
FUR INFORMATIK

Faculty of Informatics

A Composable and Reusable
Photogrammetric Reconstruction

Masterstudium: L - b Technische Universitat Wien
Visual Comoputin i ral'y Institute of Visual Computing & Human-Centered Technology
P 9 Computer Graphics Research Division

Attila Szabo Betreuer: Prof. Dr.Dr.h.c. Werner Purgathofer

Dr. Dipl. Ing. Maierhofer Stefan

Photogrammetry »

Photogrammetry means taking measurements in photographs. Enough images from diffe-
rent viewpoints allow recovery of 3D structure. Thanks to digital photography and the inter-
net, photos are abundantly and cheaply available. Accordingly, photogrammetry applica-
tions can exhibit enormous variety.

Existing software is often either closed source or tailored toward specific use cases, making it
difficult to reason about algorithmic details or make structural modifications. In this diploma
thesis, we present a library for creating photogrammetry pipelines through function compo-
sition, emphasising modularity and clean design to support rapid scientific experimentation.

Image Features

Features describe objects in
an image. Different features
work well for different things:
Points, lines, rectangles, etc.

We identify the
same feature in
two images.

Features must
=y T o e _ | . look and move
type Feature<'a> = — L4 Tha 0 PO —— e i . .

spatial : 'a

descriptor : byte[] 'l ._ = _'m: | * = VIEWpOIﬂtS.
} g B = — | E—, R Matching Features

LeE PRLEFEELNE = FEEEUneciiezs val match : list<Feature> -> list<Feature> -> list<Feature * Feature>

P R ver <
Oo5e hecove y @g L Global optimisation rectifies
Obtain the camera motion C - cumulative measurement errors.
between two photos 2 L1

through matching features.

\ G
Cid C,

Repeat iteratively to create

w a Photo Network.

Functions and Composition

Every component is implemented as pure function. Sequential computation through function composition.

val motion : list<Feature * Feature> -> Trafo
let extractFeaturesFast files =

Array.Parallel.map extractFeatures

let createPhotoNetwork =
List.fold (fun left network -> let myPhotogrammetryPipeline files =
let right = network.Head files
let newCam = > Array.map readImages
left.transformed motion match left right > extractFeaturesFast
newCam :: network > createPhotoNetwork
) [] > bundleAdjust

> render
val bundleAdjust : PhotoNetwork -> PhotoNetwork

Conclusions

A pure functional implementation facilitates reasoning about behaviour.

Immutable data structures promote structural changes, such as recursion
or parallelisation.

Statically enforced conventions ease changing implementations, increasing
code reusability.
Code athttps://github.com/aardvark-platform/aardvark.mondo

Kontakt: szabo@vrvis.at

VIiVis EE BE B E B EEE EE B EEEE EEE l==l

