
Kontakt: szabo@vrvis.at

Masterstudium:
Visual Computing

Diplomarbeitspräsentation

Attila Szabo

A Composable and Reusable
Photogrammetric Reconstruction

Library Technische Universität Wien
Institute of Visual Computing & Human-Centered Technology

Computer Graphics Research Division
Betreuer: Prof. Dr.Dr.h.c. Werner Purgathofer

Dr. Dipl. Ing. Maierhofer Stefan

Photogrammetry
Photogrammetry means taking measurements in photographs. Enough images from di�e-
rent viewpoints allow recovery of 3D structure. Thanks to digital photography and the inter-
net, photos are abundantly and cheaply available. Accordingly, photogrammetry applica-
tions can exhibit enormous variety.
Existing software is often either closed source or tailored toward speci�c use cases, making it
di�cult to reason about algorithmic details or make structural modi�cations. In this diploma
thesis, we present a library for creating photogrammetry pipelines through function compo-
sition, emphasising modularity and clean design to support rapid scienti�c experimentation.

Image Features
Features describe objects in
an image. Di�erent features
work well for di�erent things:
Points, lines, rectangles, etc.

We identify the
same feature in
two images.
Features must
look and move
similarly across
viewpoints.

Pose Recovery

Functions ...

Interest Points

Photogrammetry in Google Maps

Matching Features

type Feature<'a> =
{
 spatial : 'a
 descriptor : byte[]
}

type PointFeature = Feature<Vec2> val match : list<Feature> -> list<Feature> -> list<Feature * Feature>

Feature Matching

Obtain the camera motion
between two photos
through matching features.

Repeat iteratively to create
a Photo Network.

Global optimisation recti�es
cumulative measurement errors.

Every component is implemented as pure function.
val motion : list<Feature * Feature> -> Trafo

let createPhotoNetwork =
 List.fold (fun left network ->
 let right = network.Head
 let newCam =
 left.transformed motion match left right
 newCam :: network
) []

val bundleAdjust : PhotoNetwork -> PhotoNetwork

Sequential computation through function composition.

let extractFeaturesFast files =
 Array.Parallel.map extractFeatures

let myPhotogrammetryPipeline files =
 files
 |> Array.map readImages
 |> extractFeaturesFast
 |> createPhotoNetwork
 |> bundleAdjust
 |> render

 λ »

A pure functional implementation facilitates reasoning about behaviour.
Immutable data structures promote structural changes, such as recursion
or parallelisation.
Statically enforced conventions ease changing implementations, increasing
code reusability.
Code at https://github.com/aardvark-platform/aardvark.mondo

... and Composition

Conclusions

DIN A0 (841 x 1189 mm)
Header: 190 x 815 mm, Rahmen 3 pt
Abstand zum Oberen und Unteren Rand: 12,7 mm
Logos: 52 x 195,5 mm

Um mit dieser Vorlage weiter zu arbeiten, bitte die
grünen Elemente löschen!

Masse:

