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Abstract

This thesis documents the full implementation of the method Virtual Ray Lights for
Rendering Scenes with Participating Media. As a basic understanding of the foundations
of rendering and related approaches is necessary to understand this complex method,
these foundations are discussed first. There, the rendering equation and the physical
behaviour of light is described. Additionally, rendering approaches like Recursive Ray
Tracing and Photon Mapping that do not consider participating media, as well as methods
like Volumetric Photon Mapping, Virtual Point Lights and Photon Beams, which are
able to render participating media, are evaluated.

For the discussion on Virtual Ray Lights, the evaluation takes place in three parts.
First, the method is discussed in general with a mathematical analysis. Afterwards,
implementation details are evaluated where pseudocode examples are provided. Lastly,
the rendered results of the implementation are evaluated thoroughly. These results are
also compared to provided images from various research papers.

The goal of this thesis is to provide an implementation of Virtual Ray Lights, as
well as providing the tools to implement this method in other projects. We provide the
well-documented source code for this project, with the scene settings to recreate the
examples.
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Kurzfassung

Diese Arbeit dokumentiert eine komplette Implementierung der Methode Virtual
Ray Lights for Rendering Scenes with Participating Media. Um ein Grundverständnis für
einige notwendige Prinzipien der Bildsynthese (Rendering) zu schaffen, werden zu allererst
die wichtigsten Bereiche beschrieben, die für komplexere Methoden notwendig sind. In
diesem Schritt werden auch die bekannte Rendering-Gleichung und einige physikalische
Eigenschaften von Licht besprochen. Außerdem werden einige Methoden wie Recursive
Ray Tracing und Photon Mapping untersucht, welche Partikelwolken noch nicht beachten.
Im folgenden Schritt werden dann Methoden wie Volumetric Photon Mapping, Virtual
Point Lights und Photon Beams diskutiert, welche in der Lage sind, Partikelwolken in
die Berechnungen einzubeziehen.

Die Diskussion von Virtual Ray Lights wird in drei Teile aufgeteilt. Im ersten Ab-
schnitt wird diese Methode allgemein besprochen, gemeinsam mit einer mathematischen
Analyse. Anschließend werden Details zur Implementierung diskutiert sowie einige Code-
beispiele aufbereitet. Im dritten Teil werden die Ergebnisse dieses Verfahrens analysiert
und mit den Ergebnissen aus anderen wissenschaftlichen Arbeiten verglichen.

Das Ziel dieser Arbeit ist es eine Implementierung von Virtual Ray Lights zur
Verfügung zu stellen sowie es zu ermöglichen, diese Methode in andere Projekte zu
implementieren. Der gut dokumentierte Quellcode dieses Projekts wird gemeinsam mit
den Beispielszenen zur Verfügung gestellt.
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CHAPTER 1
Introduction

T he field of rendering in computer graphics is, as computer science in general, a
relatively new field that developed in the last decades. In these years, many

important approaches were developed to create progressively better representations
of real-world phenomena. The focus of this thesis is to evaluate and document the
implementation of one of these methods, Virtual Ray Lights (VRL) for Rendering Scenes
with Participating Media [NNDJ12b]. As this method is closely related to Photon
Mapping, the first chapters of the thesis discuss foundations and similar methods, up to
the explanation of Photon Mapping itself. The second part focuses on rendering methods
for participating media, with a detailed discussion and evaluation of Virtual Ray Lights.

As a preparation of the evaluation of this method and the corresponding docu-
mentation of the implementation, a few principles must be discussed that are necessary
for understanding the concept of this method and similar methods. In Chapter 2 the
foundations for rendering, like the rendering equation, global illumination and the physical
behaviour of light are discussed. Within this chapter, properties like the bidirectional
reflectance distribution function, reflections and refractions are explained. These details
are necessary to create methods that simulate the physical properties of the real world.

The discussed properties can then already be implemented into a well-known
rendering method, Recursive Ray Tracing. The implementation of this approach is
documented in Chapter 3. This chapter is of importance, as many complex methods use
a similar framework, and it is therefore a good idea to separate the general functionality
of most rendering methods from complex, implementation-specific functionality that is
specific for each approach. The documentation in this chapter contains explanations for
the construction of a camera ray, tracing that ray through the scene and the interaction
with a few simplified materials. The figures in this chapter will show the first rendered
results. They can already provide an understanding on how hard it is to create realistic
results, as these results are not close to convincing simulations of the real world.
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1. Introduction

The next chapter presents an important rendering method that not only improves
the results immensely, but which was also expanded through many approaches that are
discussed later on. This method is called Photon Mapping (PM), and as Virtual Ray
Lights is one of the methods that expand Photon Mapping, the thorough evaluation
of this method is necessary and is provided in Chapter 4. This two-pass approach is
evaluated with a mathematical analysis, as well as code examples and figures. The
shortcomings are discussed and approaches to get rid of them are discussed in Section
4.2 and 4.3.

Up to this point, to simplify the explanations and examples, participating media are
not considered. Therefore, a thorough evaluation of different properties of participating
media, as well as a mathematical analysis of these properties is provided in Chapter 5, to
explain the knowledge necessary for the discussion on related rendering methods. Many
of the equations of this chapter are needed in the implementation details of Virtual Ray
Lights later. For readers that do not have experience with these topics, it is therefore
advisable to make oneself familiar with the mentioned terms in this chapter. The last
section of this chapter (Section 5.6) explains how the tracing of photons can be expanded
to participating media, as the approaches that are explained in the following chapters
rely on it.

As the foundation for the rendering of participating media was built in Chapter
5, Chapter 6 discusses different techniques that can render participating media. This
chapter is the related work to Virtual Ray Lights, as it describes many methods that
expand Photon Mapping into participating media. There are two types of algorithms for
this task. The first type are algorithms that trace photons through the scene and evaluate
them. Some examples of these algorithms are Volumetric Photon Mapping [JCKS02],
the Beam Radiance Estimate [JZJ08] and Photon Beams [JNSJ11]. The second type
create virtual lights at the position of the traced photons. Virtual Point Lights [Kel97]
and Virtual Beam Lights [NNDJ12a] belong to this type of algorithms and are discussed
in this chapter along other methods. This second type is especially important, as Virtual
Ray Lights belongs to this type as it expands Virtual Point Lights.

The following chapter is solely focused on the explanation of Virtual Ray Lights.
Chapter 7 therefore explains the methodology of this method first, followed by a de-
tailed discussion of the equations for volume-to-surface and volume-to-volume radiance.
Furthermore, the importance sampling techniques that are used and developed for this
method are provided with much mathematical depth. Additionally, Appendix A provides
a simple introduction to importance sampling, as the techniques that were developed for
Virtual Ray Lights are quite advanced. Readers that are not experienced in the topic
of importance sampling are therefore advised to read this appendix first to be able to
evaluate these complex importance sampling functions of this chapter properly.

2



The documentation of the implementation of Virtual Ray Lights into an educational
path tracer [ZF18b] is provided in Chapter 8. Although the examples are only provided
with pseudocode, the functions and custom data structures are explained thoroughly in
this chapter. It is therefore possible to implemented Virtual Ray Lights by using this
chapter as a guide. Some simplifications that are made in the pseudocode examples in
this chapter can be reread in previous chapters, which is mentioned on a case-by-case
basis. Especially the functions for importance sampling are kept rather similar to the
original implementation, as they provide the most difficulty. To understand this chapter
properly, it is necessary to have read the previous chapter, as many of the explanations
and naming is based primarily on the explanations of that chapter.

In Chapter 9, the resulting images that were created with the implementation of
this method are compared and analysed. There are different example scenes for which
many tests are provided. Theses scenes entail point lights in infinite media, as well as
Cornell box scenes. An example for a Cornell box scene that was rendered with this
implementation can be seen in Figure 1.1. This small example shows the convergence
of the scene with isotropic media (middle) and anisotropic media (left and right). For
all scenes, tests with a low sample count are provided to compare the early convergence.
Furthermore, examples that were created in equal time are provided as well as fully
converged results. Not for all examples fully converged results can be provided, as
some methods are highly unlikely to converge. For the statistical evaluation of the
convergence, the root-mean-square error and the peak signal-to-noise ratio are provided
for the evaluation. For some specific scenes, further specialized tests and examples are
provided. Additional to all these tests, recreations of figures that are provided in Virtual
Ray Lights [NNDJ12b] and Joint Importance Sampling [GKH+13] are provided to show
comparisons of the results. Although the recreation cannot be exactly equal, as some
scene properties are not known, it is the goal to show similar convergence of the same
sample count as well as similar properties that were highlighted for these figures.

The last chapter (Chapter 10) will provide a conclusion of this thesis. The main
focus will be on the implementation of Virtual Ray Lights and the results that are
provided.

In summary, this thesis provides:

• a thorough introduction to light transport and global illumination,

• detailed descriptions and analysis of multiple fundamental rendering techniques,

• a full implementation of Virtual Ray Lights with a detailed mathematical derivation
(Equations 7.21 - 7.26) of the advanced joint distribution sampling, which was
absent from the original paper,

• an analysis of the results of our implementation,

• the source code for the implementation in two versions (a command line program
and an integration into an educational path tracing framework).

3



1. Introduction

Anisotropic (H-G, g = -0.45) Isotropic (H-G, g = 0.45) Anisotropic (H-G, g = +0.45)

Figure 1.1: A Cornell box scene with three types of participating media. On the left,
backwards scattering media (H-G, g = -0.45), in the middle, isotropic media and on
the right, forward scattering media (H-G, g = 0.45). All scene are rendered with the
implementation of VRL.
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CHAPTER 2
Light Transport

A good basic knowledge of the key concepts of light transport is necessary to un-
derstand the complex approaches that follow. In this chapter, the mathematical

foundations that are crucial for the realistic representation of light transport are explained
in Section 2.1. The results that are the outcome of implementing a realistic lighting model
are compared to a simpler model, that does not include all these complex calculations
(Section 2.2). Furthermore, the behaviour of light when interacting with a surface is
discussed in different cases in Section 2.3. This leads to a basic understanding of the
necessary theory. The approaches, that are explained in the following chapters, build on
the theorems and equations that are discussed in this chapter. It is therefore vital to
understand the basics of rendering and slowly build a foundation to understand complex
theories. Most of the knowledge for the following theory is provided in multiple excellent
lectures [ZF18a, Mar12], books [PH10] and theses [Jar08, Nov14].

2.1 The Rendering Equation
There are different ways to calculate the transport of light in a scene. The key

concept, for approaches that want to simulate the realistic behaviour of light, is the
Rendering Equation [Kaj86, ICG86]. In comparison to other representation of the
behaviour of light, the rendering equation is physically correct. The result is called Global
Illumination [Dor95], which is a key in creating the realistic looks of renderings.

The rendering equation was introduced by James Kajiya [Kaj86] and David Immel
et al. [ICG86] in 1986 and is still, beyond a doubt, one of the most important equation
in computer graphics. The rendering equation can be written as

Lo(x, ~ω) = Le(x, ~ω) +
∫

Ω
Li(x, ~ω′)fr(x, ~ω, ~ω′) cos θ d~ω′, (2.1)

with all terms of this equation being explained in Table 2.1.

5



2. Light Transport

Symbol Description
Lo(x, ~ω) the exiting radiance at point x in the direction ~ω
Le(x, ~ω) the emitted radiance at point x in the direction ~ω∫

Ω ... d~ω the sum of the incoming radiance from all directions ~ω′
Li(x, ~ω′) the incoming radiance at the point x from the direction ~ω′
fr(x, ~ω, ~ω′) the BRDF

Table 2.1: The terms of the rendering equation.

Unfortunately, the integral
∫

Ω ... d~ω is not solvable in a closed form. The exiting
radiance Lo(x, ~ω) at a point x in the direction ~ω depends on the incoming radiance
Li(x, ~ω′) of all other directions ~ω′ to this point x. The incoming radiance Li(x, ~ω′) also
depends on x, which therefore makes it not solvable.

This leads to the interesting fact, that approximations of this equations must
be made to receive results. There are many methods that approximate the rendering
equation, with each of them having different advantages and disadvantages. Some
of the most important approaches are Recursive Ray Tracing [Gla89, Whi79], Path
Tracing [LW93], Metropolis Light Transport [VG97] and Photon Mapping [Jen01]. An
introduction into Ray Tracing is given in Chapter 3. Although this version of Ray Tracing
does not approximate global illumination, it is important to understand the concept, as
it is used in a majority of all other approaches. Photon Mapping is explained in detail in
Chapter 4, as it provided the foundation of multiple algorithms that are discussed in the
following chapters.

An important group of algorithms tries to solve this problem with Monte Carlo
integration. This process approximates an integral with an estimator, the Monte Carlo
estimator. The approximation convergence to the actual solution by evaluating the
estimator with many samples. This Monte Carlo estimator of the integral F (x) of a
function f(x) can be denoted as

F (x) ≈ 1
N

i=1∑
N

f(x)
pdf(x) , (2.2)

where N is the number of samples, f(x) the result of the function with the current
sample x and pdf(x) the probability of choosing this sample. A complete introduction in
Monte Carlo sampling and importance sampling is provided in Appendix A. Along many
others, Virtual Ray Lights is a method that relies on this technique for convergence and
is therefore called a Monte Carlo method.

6



2.2. Global Illumination

2.2 Global Illumination

To show the improvements, that global illumination brings to the overall realistic
appearance of a rendered scene, an image that was created by only using the Recursive
Ray Tracing algorithm from Chapter 3 is compared to a scene, that used the Photon
Mapping approach from Chapter 4. In Figure 2.1 a scene that was raytraced is shown

Recursive Whitted-Style Ray Tracing Photon Mapping

Figure 2.1: A comparison of a scene that was rendered with Recursive Whitted-Style Ray
Tracing [Whi79] to a scene that was rendered with Photon Mapping. Source: [JCKS02]

in the left image and a scene that was rendered using Photon Mapping is shown on the
right. There are many differences in these images that lead to a much more realistic
appearance of the image to the right.

The reason for this realistic appearance is, that light bounces around in a scene,
which can be simulated with Photon Mapping. How light bounces in a scene, and the
differences in behaviour, that are caused by different materials, are explained in Section
2.3.

Just from a visual comparison, one difference that is immediately visible is the
bright light disturbance on the floor and on the wall. This phenomenon is called caustics.
Caustics are created, when many light rays are reflected or refracted in to a specific region.
They can often be seen when light travels through glass or water. The mathematical
theory behind reflections and refractions can be seen in the following sections.

Another discrepancy between these images is that a color transfer from areas that
are close to each other can be seen in the image to the right. Especially on the floor
and the ceiling, the colors from the adjacent walls can be seen. This phenomenon is
also the reason, why the image to the right is overall brighter than the image to the
left. There are multiple names for these appearances like radiosity, color bleeding and
indirect illumination. In the next chapters, this effect is only called indirect illumination,
to prevent misunderstandings.

7



2. Light Transport

2.3 Light Behaviour
As mentioned in the previous sections, the behaviour of light, when interaction

with different kinds of materials and media is an important factor, when it comes to the
realistic representation of objects in renderings. As discussed in Section 2.1, illumination
is not just the direct contribution of light on a point, but also the incoming radiance from
other points. An easy example would be a room on a sunny day. Even though the sun
does not illuminate the whole room directly, the room is still bright. In the real world
there is rarely ever a place that is completely dark. This is contributed to the fact that
light bounces after its first intersection, which produces indirect illumination and caustics.
The behaviour of light, when interacting with a surface is discussed in this section, but
light can also be affected by participating media, which is discussed in Chapter 5.

The first thing to discuss is in what direction light can be reflected in a scene. In
Figure 2.2 a comparison between basic materials is shown. To the left the behaviour of
light on a completely diffuse surface is shown. In this case light scatters in all direction
of a hemisphere that is oriented to the surface normal of the interaction point. The case
in the middle shows a completely specular surface. This material is a perfect mirror
and reflects light in a direction that can easily be specified. How this direction can be
calculated can be seen in Section 2.3.2. The last case is a combination of the methods
mentioned above, which is much more realistic, as in nature a perfectly diffuse surface
only exists in theory.

Diffuse Specular Glossy

Figure 2.2: The different distributions of light rays when interacting with various surface
types.

2.3.1 Bidirectional Reflectance Distribution Function

Different materials have different properties. These properties can be defines with
a bidirectional reflectance distribution function (BRDF) [Nic65]. The mathematical
notation of the BRDF is

fr(x, ~ω, ~ω′), (2.3)

where fr is the probability of an outgoing direction ~ω′ for an incoming direction ~ω at a
point x. This distribution function is a powerful tool when it comes to rendering realistic
light behaviours, as even very specific materials can be defined by it.

8



2.3. Light Behaviour

Although the BRDF provides a certain degree of freedom when defining a material,
it must have the following properties:

• Helmholtz-Reciprocity: The ray direction can be reversed.

fr(x, ~ω, ~ω′) = fr(x, ~ω′, ~ω)

• Positivity: The probability of an exiting direction cannot be negative.

fr(x, ~ω, ~ω′) ≥ 0

• Energy Conservation: A material, that does not emit light, cannot have a higher
exiting energy, than incoming energy.∫

Ω
fr(x, ~ω, ~ω′) cos θ d~ω ≤ 1

The energy conversation property displays another important issue. While the energy of
an exiting ray cannot be greater than the energy of an incoming ray, it can be less than
the original energy. This means that a part of the energy can also be absorbed. If this
would not be the case, everything would be as bright as the light source.

There many different types of BRDFs [PJH16] and countless different implementa-
tions. One of the most important, but also one of the simplest ones is the Lambertian
BRDF. A Lambertian surface corresponds to the behaviour of light in Figure 2.2 (left)
and is therefore simulating a perfectly diffuse surface. Although this behaviour is not
possible in a real-world scenario, it is a suitable approximation for highly diffuse surfaces
at a low performance cost. It is also possible to separate the BRDFs into a diffuse and a
specular component. This approach is taken in the Cook-Torrance Model [CT82]. The
idea of separating the BRDF into a diffuse part and a specular part is nowadays used in
a variety of models.

The behaviour of light when entering an object or medium is called a refraction.
To be able to define what happens with refracted rays, the BTDF was introduced. It
is an additional help to define the behaviour of light when passing through a medium.
Additional information on the behaviour of light in participating media is provided in
Chapter 5.

2.3.2 Specular Reflection

The calculation of a perfect specular reflection direction is simple. It was already
introduced in ancient Greek [Hea21]. The calculation is

r = d− 2(d · n)n, (2.4)

where d is the direction of the incoming ray, while n is the surface normal, which must
be normalized in advance. An illustration of a specular reflection is shown in Figure 2.3
(left).

9



2. Light Transport

n1

n2

θ θrefl

Reflection

n1

n2

θ θrefl

θrefr

Refraction

Figure 2.3: The behaviour of light when hitting a specular object and a refractive object.
The light ray is traveling in a vacuum (n1 = 1). The refractive object has the refractive
index of a diamond (n2 = 2.4).

2.3.3 Refraction

To calculate the direction and the probability of the refraction ray, a few basic
principles must be explained. In Figure 2.3 (right) a light ray is shown, that is split into
two. A part of the ray is reflected in a specular direction and another part of the ray is
refracted. This happens, because different media have different refractive indices. The
index of refraction indicates the difference in light speed in a medium. The speed of light
is approximately 3 · 108 meters per seconds in a vacuum. The index of refraction in a
vacuum is therefore 1. Water has an index of refraction of 1.333, which means that light
travels 1.333 times slower in water than in a vacuum.

The indices of refraction of an entering and an exiting medium are needed to
calculate the probability of a reflection in contrast to a refraction. This probability can be
calculated with the Fresnel equation [Hec87]. The Fresnel equation has been formulated
as

Rs(θ) =

∣∣∣∣∣∣
n1 cos θ − n2

√
1− (n1

n2
sin θ)2

n1 cos θ + n2
√

1− (n1
n2

sin θ)2

∣∣∣∣∣∣
2

. (2.5)
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2.3. Light Behaviour

This equation is expensive to compute, as there are square roots involved. There-
fore, it is in most cases suitable to approximate the Fresnel equation with the Schlick
approximation [Sch94] which is

R(θ) = R0 + (1−R0)(1− cos θ)5, (2.6)

with
R0 =

(
n1 − n2
n1 + n2

)2
. (2.7)

In both of these equations, the angle θ of the incoming direction is used, as well as the
refrative indices of the entering medium n1 as well as the refractive index of the exiting
medium n2.

The most common case in computer graphics is, that one of the media (the entering
or exiting) is air which has a refractive index of 1.000293 at 0◦C [Hec87]. This makes it
possible to further approximate the Fresnel equation by substituting the refractive index
of air with the refractive index of a vacuum, which is 1.

The last thing that is needed, is the actual direction of the refraction. It is possible
to calculate the angle of a refraction with Snell’s Law [Hen01] and use this angle to
calculate the direction of the ray. Transforming the equation for Snell’s law,

sin θrefl
sin θrefr

= n2
n1
, (2.8)

makes it possible to calculate both angles, just with the indices of refraction.
An important phenomenon, that can be seen when a light ray traverses from a

medium with a higher refractive index to a medium with a lower refractive index is
shown in Figure 2.4 (right). This behaviour of light is called total inner reflection. This
phenomenon only occurs, when the angle of the incident light is greater than a critical
angle θc. The critical angle can be calculated with

θc = sin−1
(
n2
n1

)
(2.9)

and can be seen in the middle of this figure.
The practical implementation of all formulae above into a recursive ray tracer can

be seen in the next chapter.
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2. Light Transport

n1

n2

θ

θrefr

Refraction

n1

n2

θc

Critical Angle

n1

n2

θ θrefl

Total Internal Reflection

Figure 2.4: A light ray traveling from water (n2 = 1.333) to air (n1 = 1).
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CHAPTER 3
Recursive Ray Tracing

T he first Ray Tracing algorithm was introduced in 1968 by Arthur Appel [App68]. It
is an important algorithm that is the basis for many rendering frameworks that rely

on it. Nowadays, there are many different implementation and different advancements
that add different functionalities. One of these advancements is Recursive Ray Tracing
(RRT) [Whi79], which includes the computation of objects that are see-through and
the computation of shadows. This section focusses on RRT, as it contains important
components that are used later for methods that trace rays in a similar fashion.

Many of the ideas and equations of the previous chapter are implemented in
pseudocode. This pseudocode shows a detailed description of how Ray Tracing works, as
just a written description would not be sufficient as an explanation. This pseudocode
does not have the intent to be as efficient as possible, but should just be an educational
tool in understanding the principle. It would therefore be necessary, to make appropriate
changes, when implementing this algorithm with the intent to get an optimal performance.
These necessary procedures for a performance enhancement are not in the scope of this
thesis and are therefore not discussed.

To make the notation of all variables clear, directions are denoted with a vector above
them, i.e., ~x. Directions are assumed to be normalized automatically on initialization
and to store the original length within their structure.

3.1 Pseudocode

The main intent of the Ray Tracing algorithm, as it is for all rendering algorithms,
is to compute a color value for every pixel. This is where the pseudocode starts with
Algorithm 3.1. As can be seen from this pseudocode snippet, there is no scene setup.
This part is not included into this explanation, as it can fundamentally vary for different
implementations.

13



3. Recursive Ray Tracing

Algorithm 3.1: RayTracing()
1 for every pixel do
2 ~d = ComputeCameraRayDirection(ppixel)
3 color = Trace(o, ~d, 0)
4 end

This algorithm starts with the main function which computes a color c for every
pixel ppixel. A loop that iterates through every pixel first computes a direction ~d which
determines the camera ray which consist of the position o of the camera and the direction
~d. Afterwards, it calls the Trace-function to compute the pixel color.

Algorithm 3.2: ComputeCameraRayDirection(ppixel)
1 fovx = π/4
2 fovy = (h/w) · fovx
3 ~d.x = (2 · ppixel.x− w)/w · tan(fovx)
4 ~d.x = (2 · ppixel.y − h)/h · tan(fovy)
5 ~d.z = −1
6 return ~d

The ComputeCameraRayDirection-function (Algorithm 3.2) takes the pixel
coordinates ppixel in the image plane as input parameters and outputs a direction ~d. The
first computation that is made in this function is the computation of the field of view in
the horizontal and vertical direction. Then the position of the pixel on the image plane
gets computed in Lines 3 and 4. The image plane is one unit away from the camera
origin, which is why the direction in the z-axis is −1.

The Trace-function in Algorithm 3.3 describes the heart of the Ray Tracing
algorithm. It is therefore explained in detail as it is the key concept that should be
understood when learning about Ray Tracing. The input parameters for this function
are the origin o of a ray, its direction ~d and a depth parameter which is a simple counter
value. This method has function calls in it, in which it can call itself, therefore it is called
a recursive function.

The first step in this algorithm is the intersection of the objects in the scene with the
ray (Algorithm 3.4). If the ray does not intersect with an object in the scene, it returns.
In most cases a color value for a background would be returned here. Alternatively, an
environment map could be used for a look-up. In the case that an intersection event
occurred, the hit point phit is computed. The computation is shown in Line 3 and is a
simple vector operation. Additionally, the object on which the intersection occurs, is
saved. This can be done differently and can vary for different implementation as the
scene setup may be different.
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3.1. Pseudocode

Algorithm 3.3: Trace(o, ~d,depth)
1 intersection = IntersectScene(o, ~d)
2 if no intersection then return

3 phit = o+ ~d · intersection.dist
4 obj = intersection.obj
5 if depth ≤ threshold then
6 if obj is specular then
7 ~drefl = SpecularDirection(~d, obj.~n)
8 return Trace(phit, ~drefl,depth +1)
9 end

10 if obj is refractive then
11 ~drefl = SpecularDirection(~d, obj.~n)
12 colorrefl = Trace(phit, ~drefl,depth +1)

13 ~drefr = RefractiveDirection(~d, obj.~n, obj.refri)
14 colorrefr = Trace(phit, ~drefr,depth +1)

15 prob = FresnelTerm(~d, obj.~n, refri)
16 return (1− prob) · colorrefl + prob · colorrefr
17 end
18 end
19 ~s = plight − phit
20 intersections = IntersectScene(phit, ~s)
21 if intersections or
22 intersections.dist > ~s.length then
23 return obj.color · light.intensity
24 else
25 return obj.color
26 end
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3. Recursive Ray Tracing

In Line 5 the depth value makes its first occurrence. As this is a recursive function,
the depth values indications, at which depth of the recursion the algorithm is currently
on. It is necessary to keep track of the depth, as it may be possible that there is an
infinite number of recursions and that is not possible to compute. This can be prevented
by keeping track of the depth and aborting the algorithm, if the recursion gets deeper
than a specified threshold. It should be considered that a higher depth value can lead to
a performance decrease, that may not be acceptable, as the increase in quality of the
results could be minimal after a certain threshold. While just checking if the depth value
is above a threshold is a straightforward approach, there are also approaches that handle
this situation superior. One of these approaches is Russian Roulette [WJZ95] which is
used in most implementations, as it is still simple to use and provides statistical correct
results. In this implementation, after a predefined threshold, the object is considered as
a diffuse object and therefore returns a color without a further recursion.

The next step it to separate the type of object that was intersected with the ray.
For a simplification an object can only be diffuse, specular or refractive, but not multiple
types at once. This means that an object can only have the perfect properties, that
only exist theoretically. The theory for this was already discussed in Section 2.3. The
case in which the object is specular is the simplest one. First, the reflection direction
is computed which is described in Algorithm 3.5. In the second step a recursion of the
Trace-function is performed. As an input for this function, the previously computed hit
point phit, the reflection direction ~drefl and an increase value are provided. The results of
this recursion are returned directly as a result of this function. To imagine the process,
it is sufficient to imagine a perfect mirror. When a camera ray hits this mirror, it does
not show any property of the mirror itself, but just the reflection that can be seen in the
mirror. This reflection is computed with the recursive call of the Trace-function.

For the case of a refractive object, the first part is similar to the specular case.
Again, the reflection direction ~drefl gets computed, but this time the color of the recursive
trace function is saved to a temporary value. Afterwards, the refractive direction ~drefr
is computed (Algorithm 3.6). Like in the specular case, the previously computed hit
point phit, the refractive direction ~drefl and the increased depth value are the input for
the recursive Trace-function. The return value of this function is saved to another value
as it is needed later.

The theory of refractive objects was discussed in Section 2.3.3. Line 15 computes
the Fresnel Term 3.7 which is the probability of a reflection. This probability is used to
linearly interpolate the colors for the reflection direction and the refraction direction that
were previously computed. In contrast to the specular case, there is not one recursion,
but two recursions. This can decrease the performance of the algorithm rapidly and it
is therefore important to adjust the depth value accordingly when rendering refractive
objects.
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3.1. Pseudocode

In this implementation, the computation of shadows is added. First, a shadow ray
is computed by creating a ray that starts at the hit point and ends at the position of the
light plight (Line 19). Afterwards, the scene is intersected with the shadow ray. This is a
simple addition to the framework, with a performance cost, that is not insignificant due
to the intersection routine.

At the end of the algorithm, in Line 21, the computation of the color of a diffuse
object starts. With the information of the shadow computation, it now must be deter-
mined, if the ray is in the shadow or is illuminated by the light. In the case that there is
no intersection with a scene object or the distance to the nearest intersected object is
greater than to the light, this point is not in a shadow. The color of the object is now
multiplied with the intensity of the light and the result is returned. If the object is in
the shadow, only the color of the object is returned, without the increase of the intensity
of the light.

Algorithm 3.4: IntersectScene(o, ~d)
1 for every obj in the scene do
2 obj .Intersect(o, ~d)
3 end
4 return the closest intersection or ∞

The computation of if a ray intersects an object in a scene, is one of the components,
from which the performance suffers the most. Therefore, in modern rendering engines,
different acceleration structures are used to increase the performance. The basic principle,
as shown in Algorithm 3.4, is that for every object in the scene, the nearest intersection,
if there is one, is computed. For the whole scene, the closest intersection of all objects is
returned, as it is, in this simple case, the only relevant one. It is important to note, that
intersection that are in the other direction of the ray should be discarded, as they are
behind the point of interest. Furthermore, the distance of the nearest intersection should
always be greater than zero to avoid an intersection with the point from which the ray is
cast.

Algorithm 3.5: SpecularDirection(~d, ~n)
1 ~d = ~d− 2 · (~n · ~d) · ~n
2 return ~d

The computation of the reflection direction was already explained in Section 2.3.2.
There is no difference from the actual theory to this implementation in Algorithm 3.5.

17



3. Recursive Ray Tracing

Algorithm 3.6: RefractiveDirection(~d, ~n, refri)
1 refriin = refri
2 refriout = 1
3 cos θ1 = ~d · ~n
4 if cos θ1 > 0 then
5 ~n = −~n
6 Swap(refriin , refriout)
7 else
8 cos θ1 = − cos θ1
9 end

10 refrratio = refriout / refriin
11 cos θ2 = 1− refr2

ratio ·(1− cos θ1
2)

12 if cos θ2 < 0 then return
13 ~d = ~d · refrratio +~n · (refrratio · cos θ1 −

√
cos θ2)

14 return ~d

To compute the refraction direction (Algorithm 3.5), a few topics that were previ-
ously discussed in Section 2.3.3 must be considered. First, in this implementation, there
is never a refractive interaction, where one of the media is not air. One of the two media
is always air, while the other one is defined by the object properties. For the computation
of Snell’s law, it is necessary to determine which of those two media is the entering and
which is the exiting one. Therefore, the angle between the ray direction and the surface
normal is made according to the results. This is shown in Lines 4 to 9, where the starting
point would be in the medium, if the angle is greater than zero.

With these changes the ratio refrratio of the refractive indices refri can be computed,
as well as the second angle. A visual example of this phenomenon can be seen in Figure
2.3. After computing both angles, and with the ratio of the refractive indices available,
the direction of the refraction can be computed. This can be seen in Line 13.

Algorithm 3.7: FresnelTerm(~d, ~n, refri)
1 cos θ = ~d · ~n
2 R0 = (1− refri)/(1 + refri)
3 return R2

0 + (1−R2
0) · (1− cos θ)5

The Fresnel term can be computed as it was explained in Equation 2.5. Instead of
implementing the complex Fresnel equation, the Schlick approximation is chosen as a
suitable replacement. As is shown in Algorithm 3.7, the implementation does not differ
from the mathematical theory that was discussed before.
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3.2. Results

3.2 Results

Figure 3.1: The result of rendering a scene with RRT.

In Figure 3.1 the result of RRT can be seen. In this Cornell box, the left most
sphere has a completely diffuse surface. The sphere in the middle has a perfect specular
surface and the sphere to the right is a refractive object. This refractive sphere has a
refraction index of 1.5. The shadows are visible and a light source that is in the middle,
top half of the image illuminates the scene.

3.2.1 The depth value

The depth value has a great impact on the outcome of the image. A comparison
of the scene with different depth values can be seen in Figure 3.2. The first image
shows a scene with a depth value of 1. This does not affect the walls and the diffuse
sphere, as there is not additional recursion needed to compute these values. The specular
and refractive sphere are both displayed as diffuse spheres, as it is the way that it is
implemented in this case. There can be different fallback methods, for when the depth
value has been reached and a specular or refractive object has been hit.

The different depth values lead to different results in the other images. In the
second image the depth value is 2, therefore the specular surface can already produce a
reflection. A depth value of 3 generates the first results of the refractive sphere, as is
shown in the corresponding figure. The last image of Figure 3.2 shows the results of an
image with a depth of 4. Not only can a part of the red wall be seen in the refractive
sphere, but there is also a difference in the reflection of the refractive sphere in the
specular sphere.
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3. Recursive Ray Tracing

Depth 1 Depth 2

Depth 3 Depth 4

Figure 3.2: The result of rendering a scene with RRT and different depth values.

To further evaluate different depth values, a different scene setting was chosen in
Figure 3.3. In this case, four specular spheres are positioned in an equal distance around
a white diffuse sphere in the middle. The specular spheres have the diffuse color green
as a fallback when a predefined depth value is reached. While this would certainly not
be a good choice in a scene that tries to approximate a real-life scenario, it is a good
tool to evaluate this case. The first image shows what happens at a depth value of 1.
All spheres are displayed as diffuse surfaces, as there are no further traces possible. In
next image, at a depth value of 2, the first reflections of the white sphere are already
visible. The reflections of the other specular spheres are in their diffuse color, green. This
trend continues in the next images. In the final image the depth value is increased to 100
and the diffuse color of the specular surface is not visible anymore. The pattern, that
emerged from repeatedly reflecting the white sphere is a fractal [Man77]. Fractals are an
interesting field in science and some can be generated with Ray Tracing [HSK89], as can
be seen in this example.
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3.2. Results

Depth 1 Depth 2 Depth4

Depth 6 Depth 10 Depth 100

Figure 3.3: The generation of fractals by rendering a scene with RRT and different depth
values.
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CHAPTER 4
Photon Mapping

A fter the examination of Ray Tracing, it is possible to evaluate Photon Mapping
(PM). This chapter discusses the theory behind PM in detail, as well as the visual

improvements that are created by it. The main focus is on the photon tracing and the
photon gathering steps. Furthermore, there are descriptions of the extensions PPM and
SPPM which are explained in Sections 4.2 and 4.3, respectively.

Photon Mapping is an extension of the previously explained Ray Tracing algorithm.
It has the same possibilities as Ray Tracing, but extends them to make the rendering
of global illumination effects possible, which make it that much more powerful. Global
illumination and its influence on the realistic representation of a scene was already covered
in Section 2.2 and is therefore not discussed further.

4.1 Photon Mapping - The Original Approach
The idea for PM is based on the physical concept of a photon, a particle of light.

The name originates from the fact that these photons are traced throughout the scene
and are stored in a photon map, which is used for the calculation of the illumination.
This approach was developed from 1993 to 1994 by Henrik Wann Jensen in his PhD thesis
[Jen96b] and was first published in 1995 [Jen96a]. During the time of development, there
were general issues in rendering, that no algorithm could solve yet. The main problems
besides indirect illumination and caustics, which were already discussed in Section 2.2,
was the transportation of light from a specular surface to a diffuse surface and again to a
specular surface. This kind of light path is called SDS-path and can, for example, be
seen as the light patterns at the floor of a swimming pool. SDS-paths are difficult to
compute as the probability that a ray takes exactly the desired path is marginally small.
A person without a general knowledge of computer graphics can often not describe the
issues, but scenes that were rendered with algorithms that do not feature these effect,
often seem unrealistic to a high percentage of viewers.
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4. Photon Mapping

This was and still is a major issue in computer graphics, as the computation
of global illumination is expensive. PM was one of the first algorithms to solve this
problem efficiently. Nowadays, PMg is a well-known approach in computer graphics and
is documented well [Jen01, JCKS02] for extensive studies.

4.1.1 Methodology

The PM approach consists of two passes. The first pass consists solely of the
construction of the photon map, while the second part estimates the illumination with
the previously traced photons with Ray Tracing.

The definition of a photon can vary for different implementations, but it must
contain at least elements described in Table 4.1.

Symbol Description
p the position of the photon
power the power of the photon for all color channels
~d the incident direction of the photon

Table 4.1: The structure of the Photon data type.

An illustration of photons in a scene is shown in Figure 4.1. The black dots are
the photon positions from which the incident direction of the photon is displayed. For
visualization purposes, the distance of the incident direction vector was adjusted by the
average power of the photon to give a better understanding of the behaviour of a photon.

x

y

z

Figure 4.1: A visualization of photons with the incident direction vector which is scaled
by the average power of the photon.
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4.1. Photon Mapping - The Original Approach

4.1.1.1 First Pass - Photon Map Creation

Algorithm 4.1: FillPhotonMap()
1 for every light in the scene do
2 for the amount of photons for this light do
3 p = ComputePhotonStartingPoint(light)
4 ~d = ComputePhotonStartingDirection(light)
5 power = light.power /(amountof photons forthis light)
6 TracePhoton(o, ~d,power, 0)
7 end
8 end

For the creation of the photon map, a predefined number of photons must be traced
through the scene. Algorithm 4.1 describes the journey of a photon through the scene.
The path of every photon begins at a light source. If there are multiple light sources, the
number of photons can be split up. Brighter light sources should cast more photons than
dimmer light sources. This should be considered when defining the overall number of
photons, so that even from dimmer light source, a large enough number of photons is
cast. The starting position of the photon must be computed according to the type of
light. In the trivial case of a point light source, the position of the light source is the
position from which the photon is traced.

The starting direction of the photon that is traced through the scene depends on
the type of light. Again, for the trivial case of a point light source, the position can be
computed as random direction from the light source. In the case, that there is not much
geometry in the scene, this behaviour would lead to the tracing of many photons that
would never hit an object. Therefore, projection maps can be introduced to pre-filter the
possible directions of the photons in a way that they are hitting something. The starting
power of the photon is the power of the light divided by the number of photons that are
traced from this light. This means that if we combine all the power of the photons that
are traced from one light source, the result is the original power of the light source.

The TracePhoton-function (Algorithm 4.2) is very similar to the trace function of
a Ray Tracing algorithm. Therefore, some parts just reference the algorithm from Chapter
3 to avoid redundancy. Again, to keep things simple, there are only three different types
of objects. An object can either be completely diffuse, specular or refractive.

The important changes start at Line 2, where the storing of the photons begins.
At this point in the algorithm, the object is either completely diffuse or the depth values
prohibits the photon from further tracing, which means that the current object is viewed
as a completely diffuse object at this depth level. Photons that hit a specular surface or
a refractive object are just redirected into a different direction, but nothing is stored to
the photon map at this point. At a diffuse surface, the reflection probability is computed
first by finding the maximum of the different color channels from the object.
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4. Photon Mapping

Algorithm 4.2: TracePhoton(o, ~d,power, depth)
1 Algorithm 3.3 Lines 1 - 18
2 prob = max(obj.color.r, obj.color.g, obj.color.b)
3 power = power ·(obj.color / prob)
4 StorePhoton(Photon(phit, ~d,power))
5 if power > ξ then
6 ~d = DiffuseDirection(obj.~n)
7 TracePhoton(phit, ~d, power,depth +1)
8 end

This means the decision, of if a diffuse reflection should occur, is solely based on
the maximum energy at a point. With the probability of reflection, it is possible to
compute the power of the photon at the current point. With these values the photon can
be stored into the photon map.

In the last step, the power of the photon determines if it is traced further. Therefore,
the power is compared to a random value ξ ∈ [0, 1). If the power is greater than ξ,
the photon is traced again. The direction at this diffuse intersection is computed by
determining a sample on a hemisphere, which is directed into the direction of the normal
at the current position. This is equivalent to a Lambertian BRDF.

The storage of the individual photon is an important factor for the overall per-
formance of the renderer. For the second pass, the photon map is traversed many
times, therefore an efficient data structure is necessary. In most cases, balanced kd-trees
[Ben75] are used. These trees guarantee a worst-case performance of O(logN). After all
photons are stored inside this data structure, the kd-tree must be balanced to allow this
performance.

Another important addition, that is made in most frameworks, is to store the
caustic photons into a separate map. A caustic photon must have hit at least one specular
surface or refractive object, before hitting a diffuse surface. Caustics are an important
factor in the representation of realistic lighting and consist often out of very fine details.
It is therefore, in many cases, necessary to increase the number of photons for the caustic
photon map, to be able to approximate these lighting patterns in an efficient way.

4.1.1.2 Second Pass - Ray Tracing

To understand, how the photons behave in a scene, every photon of the photon
map can be displayed as a point, with its power as the color of this point. The results
of this process is shown in Figure 4.2 (right) with the ray traced scene on the left. The
contribution of the color of the walls to the surrounding area is the reason, the final
rendering has indirect illumination in it. Another important factor are the photons that
approximate the caustics from the sphere in the foreground.
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4.1. Photon Mapping - The Original Approach

Ray Tracing Photon Map

Figure 4.2: Visualization of how photons are distributed in the scene. On the left the ray
traced scene and on the right the photons that are stored in the photon map. Source:
[JCKS02]

In the second pass, the first steps are very similar to the Ray Tracing example from
Chapter 3. The differences are only in the Trace-function, therefore only this algorithm
is evaluated in Algorithm 4.3. Even the beginning of this function is identical to the
previous Trace-functions, only afterwards, important changes are necessary.

Algorithm 4.3: Trace(o, ~d,depth)
1 Algorithm 3.3 Lines 1 - 18
2 photons = SearchForPhotons(phit)
3 for every photon in photons do
4 color = color +(obj.color · photon.power)
5 end
6 color = color /(πr2)
7 return color

The first thing to do is to search for photons that are in the area of the hit point.
There are different methods on how this can be implemented. In the general case, a
sphere is expanded from the hit point, until enough photons are inside the sphere. This
process can be seen in Figure 4.3 where a sphere is expanded until four photons are inside
of it. In the first step (blue, inner sphere) no photons are inside the sphere, therefore it
must be expanded further, which results in in the larger sphere (green). It is possible to
use other shapes than a sphere, but this is only practical in specific use cases.
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4. Photon Mapping

This step is the performance bottle neck of the algorithm, which makes it that
much more important, that the data structure, that is going to be used for the storing of
photons, is as efficient as possible. The SearchForPhotons-function is not discussed
further, as it is heavily reliant on the data structure that is used. The radius term r that
is used at Line 6 is the radius of the final sphere that surrounds the correct number of
photons.

x

y

z

Figure 4.3: To search for a specific number of photons (int this case four) around a point.
The sphere is expanded until enough photons are in enclosed by it. In the first step (blue,
inner sphere) no photons are found within the area. The sphere is therefore expanded
(green, outer sphere) to find four photons inside of it.

After gathering the specified number of photons, the radiance at this point must
be calculated with

Lr(x, ~ω) ≈ 1
πr2

N∑
p=1

fr(x, ~ωp, ~ω)∆Φp(x, ~ωp). (4.1)

The radiance Lr at a point x into a direction ~ω is the sum of the BRDF fr at this point
x which is multiplied by the power of every photon ∆Φp that is selected before. This
whole term is than divided by the square of the radius of the sphere r and by π.

This computation can be seen in the Algorithm 4.3 at Lines 3 - 6. In this simple
case the BRDF is just the diffuse color of this object.

As can be seen with the code segments that are specified above, PM can use a lot
of the structure of Ray Tracing. Therefore, the PM technique is in most cases a possible
extension to an existing Ray Tracing framework, without having to sacrifice much of
the underlying structure of the original algorithm. The Trace-functions of both passes
can be combined into one, that just depend on an additional boolean value that can be
provided as an input. This boolean value can separate the different code segments and
can specify which pass is active at the time.
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Recursive Whitted-Style Ray Tracing PM

Figure 4.4: The comparison of a scene that was rendered with Recursive Whitted-Style
Ray Tracing to a scene that was rendered with PM. Source: [JCKS02]

4.1.2 Discussion

A comparison of a scene that uses PM compared to a scene that uses Recursive
Whitted-Style Ray Tracing is shown in Figure 4.4. The noticeable differences are the
illumination changes and the caustics, which both add a realistic appeal to the scene.
These are also the advantages of the algorithm, as caustics and indirect illumination
progress are visible in a sufficient quality even at a lower number of photons. Previews,
and lower quality images that are still displaying global illumination, can therefore be
rendered in a quick and efficient way. Another advantage is that shadows do not have
to be computed in an additional step, as this is a side benefit of all global illumination
techniques. This effect can be seen in Figure 4.2 (right) where the photons are displayed
directly as points and the areas with a lower density of photons will be darker in the
final image.

PM is a biased and only theoretically consistent approach. For an infinite number
of photons, PM would be consistent, but this can never be the case. This is one of
the shortcomings of PM, as there is always an error that can never be eliminated. The
conclusion of this is, that it is better to have as many photons as possible. Having as
many photons as possible leads to another problem, as storing that many photons means
that the memory consumption increases, too. The storage of a photon can be minimalized
to a certain degree, but at some point, storing a number of photons that is that big leads
to memory problems that have to be addressed.

The usage of a photon map that holds a large number of photons, naturally lead
to an increase in rendering time. While the overall increase in rendering time must be
accepted, if a high quality must be achieved, it is drawback, that no temporary results
can be viewed. This means that if an error occurs at an early stage of the rendering
progress, this error cannot be detected until the whole image is finished. Even with the
mentioned short comings, PM is still a respected method in computer graphics.
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4. Photon Mapping

4.2 Progressive Photon Mapping
The next step in the evolution of PM is Progressive Photon Mapping (PPM)

[HOJ08]. This approach tries to eliminate some of the disadvantages that are problematic
when using the original approach. The main idea is to progressively add photons that
decrease the error over time. Therefore, it is also made possible to create images even
while rendering.

4.2.1 Methodology

PPM is a multi-pass approach, compared to the original PM method, which is just
a two-pass approach. The first change is doing the Ray Tracing first and multiple photon
tracing passes later. The first pass only stores the hit points into a data structure, so that
characteristics of them can be adjusted after every pass. The other passes progressively
add photons to the previously stored hit points. Therefore, this multi-pass approach can
be explained by just evaluating two passes, where the second pass is repeated multiple
times. The important adaptions are made at the end of every photon tracing pass, where
the radius and flux must be corrected, while adding more photons to every hit point.

4.2.1.1 First Pass - Ray Tracing

The first pass is very similar to the original Ray Tracing implementation. There is
only one key difference in the algorithm. Instead of computing a color when hitting a
diffuse surface, this hit point is stored into a data structure. In this data structure, the
values of Table 4.2 are stored for every hit point.

Symbol Description
p the position of the hit point
~n the surface normal at this position
~d the incident direction of the ray
ppixel the x and y position on the image plane
r the current radius at this point
n the current number of accumulated photons at this point
τ the current reflected flux at this point

Table 4.2: The structure of the HitPoint data type.

The values in this data structure, that are important for the progressive updates of
the radiance, are the radius r, the number of photons n and the flux τ . As in the original
PM approach, the photons are gathered at a point, by evaluating a sphere, and gathering
the photons inside of it. With an increasing number of photons, that are added after
every photon tracing pass, this radius must be adjusted over time. The same principles
hold for the number of photons, that are gathered for this point and the accumulated
flux. The correction of theses variable during the rendering process is discussed in the
next section.
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4.2.1.2 Multiple Passes - Photon Tracing

The photon tracing pass can be executed for just one time or multiple times. It
traces photons through the scene exactly as described in the original PM approach. The
number of photons that are traced in this pass are in most cases separated into equal
parts of the desired number of photons that should be in the final image. Either for every
photon individually while tracing, or for all photons collectively at the end of the pass,
for every hit point in the scene the photon is evaluated if it is in the current radius. After
temporarily adding all photons, a few adjustments must be made. These adjustments
are discussed for every pass and not for every individual photon.

Radius Correction

The radius in which each hit point is searching for photons is a predefined value,
that depends on the scene and the resolution of the image. While adding multiple passes,
the radius should decrease, as more and more photons are added to this hit point. The
first step is to calculate the corrected radius r̂ with the help of other values that must be
calculated. The data structure that is being used for the storing of hit points has also
the ability to store the current radius r and the number of photons n, which is useful for
this calculation.

The new local density estimation

d̂ = n+m

πr2 , (4.2)

can simply be calculated by adding the new number of photons m, to the number of
photons that were already added in previous passes n. The radius r stills stays the same
for the calculation of the density, as the density is to be assumed constant within the
radius.

The new number of photons n̂ can be calculated in two ways, which are needed
to get the adjusted radius. The first way to calculate n̂ is by simply rearranging the
equation of the local density estimation to n̂ = πr̂2d̂. In this case, the calculation already
considers the adjusted radius r̂. Another way to calculate n̂ is to add only the number of
photons to n that should be in the final calculation. This can be done by introducing
a new variable α ∈ (0, 1) which is predefined. α determined the number of photons
that are added to n at every pass. The calculation of n̂ with α is n̂ = n + αm. The
previously discussed equations can now be combined and rearranged to calculate the
corrected radius r̂ where

πr̂2d̂ = n+ αm, (4.3)

which can be written as
r̂2n+m

r2 = n+ αm, (4.4)

that can be reformulated as

r̂ = r

√
n+ αm

n+m
. (4.5)
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Flux Correction

The correction of the flux at a point can simply be seen as adding the combined
flux τm of all photons that are added in this pass to the flux τn the is received before this
pass. The flux of a number of photons can be calculated by the sum of photon power
Φ which has been multiplied by the BRDF fr. This is the same equation as for the
calculation of the radiance in the original PM algorithm (Equation 4.1).

The flux τm of the photons that are added in this pass could just be added to the
flux τn that was received before this pass if the radius would stay constant. By adjusting
the radius, the flux has to be adjusted, too. The corrected flux τn̂ can be calculated with

τn̂ = (τn + τm)πr̂
2

πr2 , (4.6)

where

r̂ = r

√
n+ αm

n+m
. (4.7)

This can also be written as
τn̂ = (τn + τm)n+ αm

n+m
. (4.8)

Radiance Evaluation

The evaluation of the radiance can be done after every pass. This means, that
updates of the rendering process can be provided progressively. The radiance L at a hit
point can be evaluated with

L = 1
πr2

τ

k
. (4.9)

The equation only needs the radius r and the flux τ that are stored with each hit point
for this calculation. The value k is the number of photons that are emitted throughout
the whole rendering process. By dividing the flux τ through this amount k the flux is
normalized. This is necessary, because the power of the photons cannot be divided by
the number of photons at the beginning, as progressive updates would not be possible
anymore.

4.2.2 Discussion

PPM is in many ways an improvement to the original PM algorithm: By being a
consistent algorithm, not only in the theoretical sense, PPM can produce more detailed
results. A comparison is shown in Figure 4.5, where the light pattern on the wall is
more detailed in the image that uses PPM (right), compared to the image that uses PM
(left). This can also be contributed to the fact, that PPM can avoid using big amounts
of memory for its computations, by splitting the photon tracing passes. Not only can the
end results therefore be computed with amounts of photons that are not possible with
PM due to memory restrictions, PPM is also able to produce progressive update while
rendering.

32



4.2. Progressive Photon Mapping

This can be practical to detect errors early in the rendering process or being able
to abort it when being satisfied with the results after an earlier photon tracing pass and
not having to wait for the final image.

Although PPM is an improvement to the original Photon Mapping algorithm, it
still produces artifacts in specific cases. Theses artifacts can be eliminated by using
SPPM instead, which is briefly discussed in the next section.

An implementation of this method that was created during the process of this
theses is provided in Appendix B.

PM PPM

Figure 4.5: The comparison of a scene that was rendered with PM to a scene that was
rendered with PPM. The scene that was rendered with PM has light patterns on the wall
that were unintentionally blurred and which remain sharp for PPM. Source: [HOJ08]
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4.3 Stochastic Progressive Photon Mapping
Stochastic Progressive Photon Mapping (SPPM) [HJ09] is an extension to PPM.

The theory behind PPM has a flaw, that can create artefacts in some cases, which SPPM
provides the solution for. In PPM, the evaluation of the radiance is correct for every
point, which is in most cases enough to create visually correct results. In some cases, the
correct evaluation of the radiance at a point is not enough, as the correct evaluation of
the radiance for a whole region is needed. Some of these cases may be for anti-aliasing or
depth of field, and in general for all effects of Distributed Ray Tracing [CPC84].

SPPM solves this problem by reformulating the PPM algorithm. After every photon
tracing pass, the photons are not added to the exact hit point, but to a point that is
chosen randomly within a region of the hit point by Distributed Ray Tracing. This is the
only change to the algorithm. Even with this change, the algorithm still stays consistent.
The advantages of PPM compared to PM are still available as before, while increasing
the quality in most scenes.

Compared to PPM, SPPM reduces the noise in difficult settings significantly.
Especially on objects, where the variations of the photon contributions can be significant,
SPPM produces marginally better results. In Figure 4.6, a comparison of PPM (left)
and SPPM (right) can be seen. The glossy floor in this Cornell box is marginally less
noisy in the scene that uses SPPM within the same rendering time.

PPM SPPM

Figure 4.6: The comparison of a scene that was rendered with PPM to a scene that was
rendered with SPPM. The scene that was rendered with PPM has a lot of noise on the
glossy floor. Source: [HJ09]
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CHAPTER 5
Participating Media

B efore it is possible to evaluate rendering methods that compute the behaviour of
light in a medium, it is important to know which properties define media. This

chapter covers the basics of participating media. The theory in this chapter includes
the evaluation of the properties of a medium 5.1 for emission, absorption, out-scattering
and in-scattering and how these effects can be evaluated in applications. Furthermore,
the differences between homogeneous and heterogeneous media, as well as single and
multiple scattering are explained. The observations that are made in this chapter apply
to homogeneous media if not mentioned otherwise. In the end of this chapter, the
application of these theories to the tracing and scattering of photons is discussed in a
general form.

5.1 Participating Media Properties

The main properties of a medium are separated into four different areas. These
areas are emission, absorption, out-scattering and in-scattering. All of these properties
are defined for one unit that is used in the scene. A visual representation of these
properties is shown in Figure 5.1.

Emission Absorption Out-Scattering In-Scattering

Figure 5.1: The four properties of participating media.
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5. Participating Media

5.1.1 Emission

The emissive property defines the amount of light that is emitted by the participating
media per unit and is defined by ε(x), the emittance of light at a point x. In most cases
this property is not used, as there are not many media that emit light. In the following
chapters, this property is in most cases ignored, as the algorithms for the computation of
participating media focus on media that does not emit light. One example of a medium
that emits light is fire.

5.1.2 Absorption

How much light a participating media absorbs, can be expressed with the absorption
property. This property is defined with the absorption coefficient σa(x). If the absorption
coefficient has a value of 0.5 that means that fifty percent of the light is lost after the
light travels the length of one unit distance.

5.1.3 Out-Scattering

The property of out-scattering defines how much light scatters into other directions
and does not continue the path of the light ray. This property is also called the scattering
coefficient σs(x).

The absorption coefficient σa(x) and the scattering coefficient σs(x) can be combined
to the extinction coefficient σt(x) = σa(x) + σs(x). This simplification can be made, as
both coefficient represent a loss of power of the light either because of absorption or
because of scattering into other direction. For the calculation of the power of the light
ray after a certain distance, this still means that both of these properties act the same.
The calculation of the loss of light over a distance t can be done with the transmission
function

Tr(x, xt) = e−tσt(x). (5.1)

Some of the most important properties of the transmission are, that the results of the
calculation always have to be in the interval [0, 1]. Furthermore, the transmission from a
point to itself is always 1.

5.1.4 In-Scattering

The last of these four properties is the amount of light that is added to the power
of the light from other directions. This property is called in-scattering and is very closely
related to the out-scattering property. While a certain amount of energy is lost due to
out-scattering at the current point, the light that is scattered at other points is added to
the current position.

36



5.1. Participating Media Properties

5.1.4.1 Phase Functions

The distribution of in-scattering from different directions can be evaluated with
phase functions. The mathematical notation of a phase functions is

p(x, ~ω, ~ω′), (5.2)

which describes the distribution of the scattering of light at a point x for an incoming
direction ~ω′ into a direction ~ω. Phase functions have two important properties:

1. Helmholtz-Reciprocity: The ray direction can be reversed. This property can also
be seen for the BRDF.

p(x, ~ω, ~ω′) = p(x, ~ω′, ~ω)

2. Normalization: Over all directions of a sphere, the phase function always has an
integral of 1. ∫

4π
p(x, ~ω, ~ω′) d~ω′ = 1

The most important phase functions are evaluated in the following paragraphs.

Backward (g < 0) Isotropic (g = 0) Forward (g > 0)

Figure 5.2: The possibilities of scattering in a participating media.

Isotropic Phase Function

The easiest case is, that light scatters into this position from all directions evenly.
In this case it is called isotropic scattering and can be evaluated with an isotropic phase
function which is always

p(x, ~ω, ~ω′) = 1
4π . (5.3)

The isotropic phase function is therefore a constant and a visual representation of it can
be seen in Figure 5.2 (middle).
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5. Participating Media

Henyey-Greenstein Phase Function

The Henyey-Greenstein Phase Function [HG41] is one of the most well-known phase
functions. Compared to the isotropic case, the distribution of the scattering may not be
even. In anisotropic scattering events, the main distinction is made between forward and
backward scattering. Both of these scattering behaviours is shown in Figure 5.2 (left and
right).

The Henyey-Greenstein phase function approaches this behaviour with the intro-
duction of a variable g ∈ [−1, 1]. A g-value smaller than 0 defines backward scattering,
while a g-value greater tahn 0 defines forward scattering. The Henyey-Greenstein phase
function can be calculated with

p(θ) = 1
4π

1− g2

(1 + g2 − 2g cos θ)1.5 . (5.4)

Not only can this phase function be used in the anisotropic case, but for a g-value of 0 it
results in 1

4π , the result of the isotropic phase function.
This phase function is used in the implementation of the Virtual Ray Lights

implementation in Chapter 7.

Schlick Phase Function

The Henyey-Greenstein phase function would be ideal if it were not for the high
computation time that is needed due to the power of 1.5 in the denominator of the second
multiplicand. Therefore the Schlick Phase Function [BSS93] is needed to still get the
advantages of the Henyey-Greenstein phase function without having to calculate the
power of 1.5 of a term.

For the Schlick phase function the additional value k is introduced. The k-value
can be calculated with

k = 1.55g − 0.55g3, (5.5)
where the g-value that was introduced for the Henyey-Greenstein phase function is
remapped. The properties of the g-value for the definition of backward scattering and
forward scattering still hold true. Although this simplification of the Henyey-Greenstein
phase function may provide acceptable results in some cases, it does not provide good
approximations in anisotropic media.

The calculation of the Schlick phase function can be done with

p(θ) = 1
4π

1− k2

(1 + k cos θ)2 . (5.6)

Other Phase Functions

There are many different phase functions. Some of the most important phase
functions are the Legendre Polynomials [AA92], the Mie-Debye Phase Function [FW59],
the Rayleigh Phase Function [Buc95] and the δ-Two-Term Approximation [JWW76].
The explanation of these phase functions is not in the scope of this thesis.
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5.2. Radiative Transfer Equation

5.2 Radiative Transfer Equation

After evaluation of the four main properties of participating media, it is possible to
formulate an equation to combine these attributes. This equation is called the Radiative
Transfer Equation [Cha13] and can be calculated with

(~ω · ∇)L(x, ~ω) = −σa(x)L(x, ~ω)︸ ︷︷ ︸
absorption

−σs(x)L(x, ~ω)︸ ︷︷ ︸
out-scattering

+ ε(x)︸︷︷︸
emission

+σs(x)
∫

4π
p(x, ~ω, ~ω′)L(x, ~ω′)d~ω′︸ ︷︷ ︸

in-scattering

.
(5.7)

The radiative transfer equation calculates the change in the power of light at a point x
and a direction ~ω. The first and the second term of the equation is the amount of light
that is subtracted from the overall amount due to absorption σa(x) and out-scattering
σs(x) at this point x. These two properties can be combined to the extinction coefficient
σt(x), as it is mentioned before. The third term adds the emission ε(x) at this point
x. The fourth and final term adds the amount of in-scattered light. All directions are
evaluated and the light from every direction L(x, ~ω′) is multiplied with the phase function
p(x, ~ω, ~ω′). The result of the integral over the sphere is then multiplied with the scattering
coefficient σs(x) at this point.

5.3 Volume Rendering Equation

The radiative transfer equation only evaluates the power of the light at a point. To
calculate the power of a light ray after it has traveled through a participating medium
the Volume Rendering Equation [DCH88] is needed, which can be seen here:

L(x, ~ω) =
∫ s

0
Tr(x, xt)︸ ︷︷ ︸
extinction

σs(xt)
∫

4π
p(x, ~ω, ~ω′)L(xt, ~ω′)d~ω′dt︸ ︷︷ ︸

in-scattering

+Tr(x, xs)︸ ︷︷ ︸
extinction

L(xs, ~ω) (5.8)

In this equation the distance t is the distance the ray has traveled to reach the point
xt = xs + t~ω. The ray itself has a distance of s and has its starting point in xs. This
means that the integral from s to 0 evaluates the ray over its entire distance. The light
that is extinct over the entire distance of the ray is calculated with Tr(x, xs), therefore,
at every evaluation step in the integral from s to 0, the amount of light that is extinct
up to this point Tr(x, xt) has to be added again. The term for the in-scattered light is
exactly the same as before.

As with the original rendering equation, the volume rendering equation cannot be
solved in a closed form. The volume rendering equation is even more complex than the
rendering equation. For every point in a medium the radiance depends on the radiance of
all other points in the medium, as well as the surface radiance of all points in the scene.
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This leads to the interesting fact that the volume rendering equation is hard and
costly to solve. Therefore, many different approaches have been developed to solve this
equation as efficiently as possible. A few of these approaches are discussed in Chapter 6.

5.4 Homogeneous and Heterogeneous Media

In the previous sections one important simplification is made. The media that is
evaluated has always constant properties, that do not change inside the medium. This
means that the media that are evaluated until now are all assumed to be homogeneous.
In the real world there are not only homogeneous media, but also heterogeneous media.
In a heterogeneous medium the properties of the previously discussed attributes can
change. For example, this means the absorption coefficient of a heterogeneous medium
is not a constant for all points in a medium, like it is in the homogeneous case, but
it is different for every point in the medium. This statement is not only true for the
absorption, but also for the emission, in-scattering and out-scattering. A comparison of
homogeneous and heterogeneous media is shown in Figure 5.3.

Homogeneous Media Heterogeneous Media

Figure 5.3: A comparison of homogeneous and heterogeneous participating media. Source:
[Jar08]

This change in properties for heterogeneous media must be accounted for in many
ways. The transmission, for example, cannot be simply evaluated as in the homogeneous
case. For heterogeneous media, ray marching or a similar technique must be performed
to evaluate the absorption and out-scattering properties at different step sizes, to make
it possible to approximate the transmission. The problems that heterogeneous media
incorporate are not only limited to transmission, but also to many other areas.
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5.5 Single and Multiple Scattering
The properties for single and multiple scattering are an important factor, because

the results can be more realistic, but the performance can decrease for multiple scattering
events. The term single scattering means, that when light reaches a point in the medium,
there were no other scattering events in the medium. The light ray may come from a
light or a surface, but not a scattering event that was created due to the medium. As
can be expected, multiple scattering means, that there have been previous scattering
events inside the medium before the light reaches this point. A visual comparison of
these tow terms can be seen in Figure 5.4.

Single Scattering Multiple Scattering

Figure 5.4: A visual comparison of single and multiple scattering.

Single and multiple scattering can produce very different results: While multiple
scattering produces more realistic results, it is also a lot slower in computation. It is
important to note, that the amount of multiple scattering has to be restricted. Even
when changing from single scattering to tow scattering events, the number of samples
needed for convergence increases marginally. Therefore, a threshold after which no more
scattering events can occur must be chosen carefully.

5.6 Photon Scattering
For scenes with participating media, the algorithm for the tracing of photons must

be adapted accordingly. The core of the algorithm as it is described in Section 4.1 stays
the same, only a few adaptions in the TracePhoton-function must be made. As can be
seen in Algorithm 5.1, the computations for the starting position, the staring direction
and the power of the photon stay the same. Although it is not mentioned here specifically,
the data structure for a photon and the storing of these data does not have to be adapted
in any form or way. These structures can be used exactly as they are described in Section
4.1.

The important changes start at the beginning of the TracePhoton-function
(Algorithm 5.2). The important change in this function is, that scattering event can
also occur at any position within the participating medium and not only at surfaces.
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5. Participating Media

Algorithm 5.1: FillPhotonMap()
1 for every light in the scene do
2 for the amount of photons for this light do
3 p = ComputePhotonStartingPoint(light)
4 ~d = ComputePhotonStartingDirection(light)
5 power = light.power /(amount of photons for this light)
6 TracePhoton(o, ~d,power, 0)
7 end
8 end

For simplification purposes, the medium is assumed to be in the whole scene, as the
distinction that have to be made otherwise are simple, but decrease the readability.

Algorithm 5.2: TracePhoton(o, ~d,power, depth)
1 distff = − ln(ξ/σt)
2 intersection = IntersectScene(o, ~d)
3 if intersection.dist ≤ distff then
4 if no intersection then return
5 Algorithm 3.3 Lines 3 - 18
6 Algorithm 4.2 Lines 2 - 8
7 else
8 prob = σa/σt
9 if ξ < prob then return

10 pscatter = o+ ~d · distff
11 pdfscatter = exp(−σt · distff)
12 power = power ·(Transmission(distff)/ pdfscatter)
13 ~d = ComputeScatteringDirection(pscatter, ~d)
14 TracePhoton(pscatter, ~d, power,depth +1)
15 end

To determine the position of a scattering event in a participating medium, the
transmission function has to be reformulated to generate a distance for a uniform random
value. This reformulation can be done with

d = − ln
(
ξ

σt

)
, (5.9)

where the distance d is the length that a ray travels in a medium dependent on the
uniform random value ξ ∈ [0, 1) and the extinction coefficient σt. The corresponding
PDF can be easily evaluated with

pdf = e−σt d. (5.10)
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An introduction into importance sampling which includes explanations for PDFs can be
found in Appendix A.

The implementation of this algorithm is shown in the first line of the TracePhoton-
function. The important distinction that must be made is, if a scattering event in the
medium occurs before the ray would hit a surface. If there is no scattering event in the
participating medium before the ray reaches a surface, the algorithm equals exactly the
prior version. If a scattering event occurs before the ray hits a surface, a part of the
volume rendering equation must be evaluated.

An evaluation has to be made if the ray should be absorbed at this point or scattered
into another direction. The probability of an absorption can be calculated by σa

σt
. If

the decision is made to continue, the point of the scattering event and the PDF for the
distance, that was already mentioned before, has to be computed. The power of the
photon must be adjusted by the transmission that affected the photon on the way to this
point and the PDF.

The new direction of the ray depends on the scattering properties of the medium.
For an isotropic medium, the distribution is even, so a new scattering direction can be
sampled over a sphere. In an anisotropic medium, the direction must be evaluated by
sampling the phase function at this point. With the direction of the ray, the photon can
be traced further trough the scene until the depth value reaches the predefined threshold.
The depth value can influence the performance even more than in a scene without
participating media. Therefore, the choice could be made to create different depth values
and thresholds for participating media scattering events and surface scattering events.
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CHAPTER 6
Volumetric Photon & Virtual

Light Techniques

T he rendering of participating media is a task that many approaches try to solve
efficiently. Approaches that use photon tracing provide some of the most promising

results, therefore these algorithms are discussed in detail. The basis for this is a solid
understanding of the rendering equation and volume rendering equation which were
discussed in the previous chapter.

The first method that is evaluated in this thesis is Volumetric Photon Mapping
(VPM) [JC98]. This method is a simple extension of Photon Mapping that serves as the
base for most of the approaches that follow. Compared to PM, VPM is able to trace
photons trough participating media and store the positions of the photons inside the
media. Apart from that change, VPM is very similar to PM. An important extension
of VPM is the Beam Radiance Estimate (BRE) by Jarosz et al. [JZJ08]. The BRE
gathers photons along a beam. This means the noise and the speed of convergence can
be significantly reduced.

Another method to use photon tracing is to create light sources at the positions
that were traced. This method is called Virtual Point Lights (VPL) [Kel97] as it creates
point light sources at the positions that would be photons. The illumination is calculated
for every point light independently and the results are combined for the final image. Due
to singularities that occur because of the intensity of the light sources, Virtual Spherical
Lights (VSL) [HKWB09] are created. These spherical lights blur the point lights over an
area to distribute the intensities of the point lights more evenly.
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The next development of these algorithms is not to evaluate photons just at a
single point, but over a beam [Nov14, NGHJ18]. Jarosz et al. [JNSJ11] introduce the
concept of photon beams that use information that was gathered during the photon
tracing process already, but was discarded until now. This means that the density of the
data increases with this representation of photons as beams. Furthermore, Jarosz et al.
classify nine different radiance estimators. These estimators include different techniques
that were already created at that time and different options of using photon beams. The
close connection between these nine different estimators is of major importance for the
research that followed. Progressive Photon Beams (PPB) [JNT+11] improve this method
by making it possible to render photon beams progressively by adjusting the radius of
the photon beam at every pass. Although PPB provides great results in many scenarios,
some other methods are superior in different scene settings. Unifying Points, Beams
and Paths (UPBP) [KGH+14] creates a multiple importance sampling (MIS) strategy
to combine different radiance estimators with an unbiased path integral estimator like
Bidirectional Path Tracing (BPT) to achieve the best results in the least amount of time.

As photons can be turned into point lights, the same principle can be applied
to photon beams. Virtual Ray Lights (VRL) [NNDJ12b] create a light ray that is
geometrically similar to a photon beam, but has the same properties as a point light over
its length. For the calculation of the radiance along a camera ray, single points along the
light ray are sampled and evaluated. This can be seen as evaluating the contribution
of one point light to the camera ray. As there are still singularities visible due to the
intensities of the light rays, Virtual Beam Lights (VBL) were introduced by Novák et al.
[NNDJ12a]. VBL extend VRL in the same way that VSL extend VPL, by blurring the
light ray over an area to distribute the radiance.

As in the progression of most of these methods, the increase in dimensionality
has been an important factor, Bitterli and Jarosz [BJ17] introduce photon planes and
volumes. In their work, they prove that the representation of photons as beams instead
of points decreases the variance of the results, and that the representation of photons in
an even higher dimensionality further reduces the variance.
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6.1 Volumetric Photon Mapping

6.1.1 Original Approach

Although, the introduction to PM focuses only on scenes without participating
media, the algorithm can easily be adapted [JC98, JCKS02] and is called Volumetric
Photon Mapping (VPM). How photons can be traced in a scene with participating media
was already discussed. The photon gathering process is harder than in PM, as the
photons are not only stored on surfaces, but also within the medium. An efficient data
structure, like a balanced kd-tree, is necessary to reduce the gathering time to a minimum.
Additional to these changes, the radiance estimation must be adapted to participating
media. The in-scattered light Li for photons that are stored in a participating media is
calculated with

Li(x, ~ω) =
∫

Ω4π
fs(θ)L(x, ~ω′) d~ω′

≈ 1
σs(x)4

3πr
3

N∑
i=1

fs(θi)∆Φi(x, ~ωi).
(6.1)

The extinction and emission properties are already taken care of. The power of the
photon at a position in the medium is already adjusted by these properties, which makes
the evaluation on the in-scattered light the only thing that must be calculated. The
radiance estimation for photons on surfaces, which is shown in Equation 4.1, must be
adapted by the scattering coefficient σs(x) and the fact that the evaluation must take
place within a sphere and not a disc. The whole term 4

3πr
3 is the volume of the sphere,

compared to the term πr2 which is the area of the disc.
Only one further adaptation is necessary to make the rendering of participating

media within a PM framework possible. The rays that were previously cast from the
camera must now be evaluated at step sizes to gather the radiance of the medium. This
process is called ray marching and can be expressed as

L(x, ~ω) ≈ Tr(x, xs)L(xs, ~ω) +
(
S−1∑
t=0

Tr(x, xt)σs(xt)Li(xt, ~ω)∆t
)
. (6.2)

In this equation Tr(x, xs) is the transmission for the entire ray which adjusts only the
radiance from a surface point L(xs, ~ω). The sum that is added to this radiance is the
sum of all the sample points x0, ..., xs which is again adjusted by the transmission to this
point Tr(x, xt) and in this case also the scattering coefficient at this point σs(xt). The
step size that is taken between the sample points is expressed as ∆t. The in-scattered
radiance into these sample points Li(xt, ~ω) as explained in Equation 6.1 is the most
expensive part of this calculation.

The disadvantages of the PM algorithm still exist for this variant. There are
multiple other shortcomings due to ray marching that are discussed in the next sections
as different algorithms try to solve them.
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6.1.2 The Beam Radiance Estimate

The previously discussed approach for VPM has a few flaws that can mainly
be contributed to ray marching. The step size in ray marching is very important,
since step sizes that are too large lead to noise and a step size that is too small leads
to performance increases. The Beam Radiance Estimate (BRE) [JZJ08] solves these
problems by reformulating the photon gathering technique. With ray marching, the
photons are gathered at multiple steps, in contrast to the BRE, where photons are
gathered over a ray. This can be expressed with

L(x, ~ω) =
∫ s

0
Tr(x, xt)σs(xt)Li(xt~ω) dt. (6.3)

Not only solves this the problem of choosing an appropriate step size, it additionally
solves the problem of gathering photons more than once. In ray marching, it is possible
that the sampled regions overlap and include the same photons multiple times.

As the gathering of photons over a ray, as mentioned in Equation 6.3, is not
realistically possible as the probability of a photon lying directly on a ray is zero, the ray
must be expanded to a beam, which can be done with

L(x, ~ω) =
∫
R

∫ 2π

0

∫
R

∫
Ω4π

K(t, θ, r)Tr(x, x′)σs(x′)

fs(θ′)L(x′, ~ωt) d~ωt dr dθ dt.
(6.4)

This equation may seem very complex at first, but can be easily explained, as the
description of a point by its cylindrical coordinates t, θ, r around the ray is the reason for
the increased number of variables. The most important change is made by adding the
smooth kernel K(t, θ, r). With this addition bias is introduced.

To be able to compute this equation it can be reformulated to

1
N

N∑
i=1

K(ti, θi, ri)Tr(x, xi)σs(xi)fs(θi)αi. (6.5)

This is simply an approximation of Equation 6.4. The new parameter αi is the weight of
the point xi = (ti, θi, ri).

Additionally, the size of the volume which is surrounding the ray can be fixed or
adaptive. The adaptiveness of the beam volume is essential to produce the correct results
in some scenes.

The advantages of the BRE are noticeable in the speed of the convergence and the
noise of the results. A comparison can be seen in Figure 6.1. On the left is the reference
of this scene, in the middle the scene that was rendered with VPM and on the right the
scene which was rendered with the BRE technique. Both versions were rendered within
the same render time. The images produces by the BRE are noise-free, while the images
that were created with the VPM still have a significant amount of noise in them.
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Reference 02:38:57 VPM 00:04:21 BRE 00:04:15

Figure 6.1: A comparison of VPM and the BRE to a reference solution. The reference
solution was rendered with VPM and a small step size. The render time is provided in
hours:minutes:seconds. Source: [JZJ08]

6.2 Virtual Point Lights

6.2.1 Original Approach

A similar method to PM was introduced in 1997 by Alexander Keller [Kel97].
Compared to PM, in the tracing pass, a point light is created instead of a photon. This
method can be explained as rendering the scene with just one of the point lights at a
time. The sum of these images is the final result of the computation. The radiance at a
point can therefore be calculated with

L(x, ~ω) ≈ Le(x, ~ω) +
N∑
i=1

V (xi)G(xi)Li(xi, ~ωi). (6.6)

The term Le(x, ~ω) represents the radiance that reaches this point from a non-virtual
light source. Added to this is the sum of all point lights that are not occluded. The
terms V (x) and G(x) are the visibility and geometric terms at a point x that define the
occlusion of this point light. The in-scattered radiance can be calculated with

Li(x, ~ω) ≈ Φfs(θp)fs(θu)Tr(w)
w2 . (6.7)

The term Φ is the power of the light source, which has to be adjusted by the phase
function fs(θp) at this point to get the intensity. The other phase function at the location
xu represents the scattering at the position of evaluation. The term w is the distance of
the point light at xu from the position of evaluation. Therefore, Tr(w) is the transmission
along this distance.
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Figure 6.2: A scene rendered with VPL. The singularities in the medium can be seen as
there are not enough point lights to illuminate the scene evenly. Source: [NNDJ12b]

Some of the disadvantages of VPL have a noticeable effect on the outcome of some
scenes. Due to the nature of this method, local singularities with a high intensity can
occur, as the distance ω can get arbitrarily small. These singularities are shown in Figure
6.2. Additionally, hard shadows can be displayed at places where there should not be
any. These issue can be resolved by either clamping or blurring, as described in the next
section.

6.2.2 Virtual Spherical Lights

The singularities that occur when rendering with VPL must be accounted for.
These spikes in illumination are caused by the sampling of specific positions of the point
light. Therefore, an idea to solve this problem is to not evaluate single points, but spheres
instead [HKWB09]. This means that the single point light is blurred into spherical light.
A visual comparison of these ideas is shown in Figure 6.3.

VPL VSL

Figure 6.3: A visual comparison of the ideas behind VPL and VSL.
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All points within a sphere, share the same properties that the origin of the sphere,
the actual point light, has. This means that, even for the calculation of normals, the
BRDF and phase functions, only the information from the original point light is used.

The size of the sphere depends on the density of the point lights that were created.
In the impossible case that an infinite number of point lights is created, the radius of
the spherical lights converges to zero. It is therefore a consistent algorithm, in the same
sense that PM is a consistent algorithm. This approach is only consistent with an infinite
number of spherical lights. This means that consistency can only be achieved in theory.
Another disadvantage is, that this approach is biased due to blurring.

6.2.3 Iterative Importance Sampling of Virtual Point Lights

There are multiple additions to the VPL algorithm which focus on the distribution of
the point lights by importance sampling [WBS03], [SIMP06], [SIP07]. One of the simpler,
but effective ideas was introduced in 2010 by Georgiev et al. [GS10]. This approach makes
use of the fact that the initial tracing of the point lights is computationally inexpensive.
This preprocessing step is extended with just little overhead.

The main problem with the distribution of the point lights in the original approach,
is that most of the created point lights only have no or just a very low contribution to
the overall scene. Therefore, the calculation of the illumination of these point lights does
not add much additional information, while still using viable rendering time. This make
it sufficient to extend the tracing step of this approach to just sample the point lights
that are vital for the computation of the scene.

The best way to distribute the point lights would be to sample them according
to their contribution to every pixel that is computed individually. As this would defeat
the efficiency of computational coherence, the image is seen as a just one pixel and the
contribution of the point lights to this one-pixel image is used in the computation of the
sampling probability. The importance of a point light can simply be estimated by the
total image contribution. This makes it possible to calculate a probability of acceptance
for a point light.

6.3 Photon Beams

6.3.1 Original Approach

One of the main contributions that led to the development of many of the approaches
that follow, was made by Jarosz et al. [JNSJ11]. In this work, the connection between
multiple approaches that already existed at the time is made. Furthermore, a new data
representation which is called photon beam is introduced.

Previous to this approach, photons were only stored as points. Although, this
makes them relatively easy to evaluate, a lot of information is lost, that was already
available during tracing. The idea is now to use beams instead of points to store the
information that is gathered during the tracing step.
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Query Data Blur Possibilities
Point Point 3D
Beam Point 3D, 2D
Point Beam 3D, 2D
Beam Beam 3D, 2D1, 2D2, 1D

Table 6.1: The summary of different radiance estimates. Four different groups can be
distinguished, where there are different blur possibilities for every one of these groups.

With the additional information that is stored within the beams, the density of the
data in the scene is higher. This means that in areas where data was sparse previously,
the beams produce additional information sources. This phenomenon can be seen in
Figure 6.4, where the original VPM approach does not produce photons inside the sphere
radius. In contrast, with the new Photon Beams (PB) method, there are two beams in
the area that can be used as information sources. The number of traces does not change,
while this approach still increases the density of the data in the scene.

VPM PB

Figure 6.4: A visual comparison of the ideas behind VPM and PB.

Another contribution of Jarosz et al. is to summarize different representations into
nine different radiance estimates (Table 6.1). Some of these radiance estimates have
already been developed in publications, but this is the first time they are connected
methodologically. The first row in Table 6.1 shows the radiance estimate for a point
query and point data with a 3D blur. This is exactly the description of VPM as it was
discussed previously.

For a beam query and point data, there are two blurring possibilities. The method
for a 2D blur was already evaluated as it describes the BRE. The radiance estimator
that blurs in 3D would also be possible. For the next group, the beam representation
of photons is used. The group of estimators that use beam data, can be separated into
estimators that evaluate the radiance at a point, or at a beam. For estimators that only
evaluate the radiance at a point, a 3D blur can be seen as the evaluation of a sphere
around this point. For a 2D blur, the same principle is applied with a disk.
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The last group consists of radiance estimators for photon beams that evaluate the
radiance at a beam segment. The version with a 3D blur is only of theoretical relevance, as
it involves the integral of a 3D convolution which is hard to solve for different conditions.
The versions with a 2D or 1D blur are far more practical. As is shown in Table 6.1,
there are two versions of a 2D blur. Both of these versions are very similar. The first 2D
blur evaluates the photon beam as continuous for the in-scattered radiance at a point.
Therefore, the integral over these points leads to the final radiance estimate. In contrast
to that, the second 2D blur starts with the BRE for different points on the photon beam.
The 1D blur is a simplification of both of these approaches. In this case the power of the
photon beam is blurred into only one direction which depends on the direction of the
camera ray and the photon beam.

The mathematical formulation of the approach with a 1D blur can be done with

Lm(x, ~w, r) ≈ Φkr(u)σs(xw)Tr(w)Tr(v)fs(~w · ~v)
sin(~w,~v) , (6.8)

where the term kr is the 1D blur kernel that is centered on the ray. In this equation, u,
v and w are the scalars along the three axes to the point closest to the camera ray.

The results of rendering with PB can be seen in Figure 6.5 which is a recreation of
the lighthouse scene from Jarosz et al. [JZJ08]. The approach that is used in the right
image is the radiance estimate for a beam query and a photon beam with a 1D blur. The
image in the middle is rendered with the BRE and the image to the left is the reference
solution. The PB method shows clear improvements with the same tracing steps and
similar render time. Compared to the reference solution, there is still some low frequency
noise visible.

6.3.2 Progressive Photon Beams

The PB approach that was introduced by Jarosz et al. [JNSJ11] shares a few
disadvantages with the original PM approach and some related methods. The main
problem is, that it needs an infinite amount of beams to be unbiased. For an infinite
amount of beams the blur kernel gets infinitely small which therefore eliminates the bias.
This means that an error is introduced by the blur kernels that must be eliminated.

Progressive Photon Beams (PPB) [JNT+11] solves these problems with the im-
plementation of PB into a progressive framework as it is used for Progressive Photon
Mapping (PPM). This algorithm starts from the beam x beam variant with a 1D blur.
For the convergence of an algorithm with progressive updates, the average variance and
the expected value (bias) must converge to zero for an infinite number of passes. This
can be achieved for this method by adjusting the radius of the blur kernel appropriately.
There are two different properties for the size of the blur radius: One is the global scaling
factor and the other one a minimum and maximum value for every pass. The convergence
can be achieved by creating a specific ratio of the radius between passes.

53



6. Volumetric Photon & Virtual Light Techniques

Reference

BRE 00:00:31

PB BxB 1D 00:00:25

Figure 6.5: A comparison of BRE and the PB in the beam x beam version and a 1D blur,
to a reference solution. The render time is provided in hours:minutes:seconds. Source:
[JNSJ11]

This ratio and the calculation of the radius to achieve this ratio is done with
Ri+1
Ri

= Var[εi]
Var[εi+1] = i+ α

i+ 1 . (6.9)

The variance Var[ε] of the error at a pass εi has to be evaluated with the variance of the
next pass i+ 1. This equals the inverted ratio of the radius of the next pass Ri+1 to the
radius of this pass Ri. To evaluate this for convergence, these ratios must be equal to
the term i+α

i+1 which includes the user defined variable α ∈ [0, 1]. The actual radius can
be derived from

Ri =
(
i−1∏
k=1

k + α

k

)
1
i
. (6.10)

With this radius adjustment per pass, the bias vanishes for an infinite number of passes,
too. Therefore, the properties for a progressive algorithm are satisfied. The value α, that
can be defined by the user, influences how much the radius changes after every pass. The
higher this value is, the smaller is the reduction of the radius per pass.
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VPM BRE

PB BPT

Figure 6.6: A comparison of UPBP, VPM, BRE, PB and BPT. The images for VPM,
BRE, PB and BPT are weighted by their contribution to the overall scene. Source:
[KGH+14]
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6.3.3 Unifying Points, Beams and Paths

There are many approaches explained by Jarosz et al. [JNSJ11] in their summary
of the nine radiance estimates. Although it is suggested to use the beam x beam approach
with a 1D blur, this may not be the best approach for every scenario. As discussed in
Unifying Points, Beams and Paths (UPBP) [KGH+14, Vév15], the suggested approach
to use the beam x beam 1D blurring radiance estimator may not be the best choice.
In dense media, beams actually lead to results that are more noisy than results from
photons that were evaluated as points. Conversely, photons that are evaluated as points
produce noisier results in thin media, compared to beams.

UPBP chooses from three different radiance estimators, for which a MIS strategy is
created to combine these estimators with an unbiased path integral estimators like BPT .
This strategy evaluates the efficiency of every estimator and chooses an appropriate one.
These three radiance estimators are the point x point estimator with a 3D blur (VPM),
the beam x point estimator with a 2D blur (BRE) and the beam x beam estimator with
a 1D blur (PB). The results of each of theses estimators, and the combination of them
with UPBP is shown in Figure 6.6.

6.4 Virtual Ray and Beam Lights

6.4.1 Virtual Ray Lights

The contributions that were made to not just consider the point locations of photons,
but an entire beam, lead to Virtual Ray Lights (VRL) [NNDJ12b]. This approach is
discussed in detail in the next chapters, but a short explanation is provided here for
completeness of the evaluation of the approaches. This approach combines the beam
estimations with VPL. This means that this time, instead of photon beams, simple light
rays are created, that act similar to the point lights of the VPL approach. A comparison
of VRL and VPL can be seen in Figure 6.7.

VPL VRL

Figure 6.7: A visual comparison of the ideas behind VPL and VRL.
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One of the disadvantages of the VPL method is that singularities are created, as
the single point light creates a high intensity over a small area. By distributing the
energy along a light ray, the singularities can be significantly reduced. The radiance at a
point can be calculated with

L(x, ~ω) = Tr(s)Ls(xs, ~ω) + Lm(x, ~ω). (6.11)

The calculation of the surface radiance Ls and the radiance from the medium Lm can be
achieved with

Ls ≈ Φ
∫ t

0

σs(v)fs(θv)frTr(wu(v))Tr(v)Vu(v)
wu(v)2 dv, (6.12)

and
Lm ≈ Φ

∫ s

0

∫ t

0

σs(u)σs(v)fs(θu)fs(θv)Tr(u)Tr(v)Tr(w)V
w(u, v)2 dv du, (6.13)

respectively.
A visual explanation of the terms in these equations is shown in Figure 6.8.
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Figure 6.8: A visualization of the terms of Equation 6.13. The green ray is the camera
ray that has the length s. The orange ray is the light ray with the length t. In this case,
the contribution of the point light at the position v on the light ray is evaluated for the
position u on the camera ray.

Another contribution of Novák et al. is a product importance sampling technique
to integrate over the camera and light ray. This makes it possible to handle difficult
cases, i.e., anisotropic media, robustly. The importance sampling can be viewed as
first sampling a point on the light ray and calculating the contribution of this point to
the camera ray. The chosen points can be interpreted as point lights. Therefore, this
technique works as a final gather over the light ray. Another great benefit from VRL is
that it is an unbiased method. This means that the rendering with progressive updates
can be trivially implemented.
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VPL PPB VRL

Figure 6.9: A comparison of VPL, PPB and VRL. All of these images were created
within the same render time (600 seconds). Source: [NNDJ12b]

Although, VRL creates images with significantly less noise than VPL, other ap-
proaches are still superior in specific areas: The creation of volume caustics is better
created with PPB and surface caustics are better implemented with PPM. For volume to
volume and volume to surface events VRL outperforms these approaches. A comparison
between VPL, PPB and VRL is shown in Figure 6.9. All of these images were created
in 600 seconds. As can be seen in this figure, the image with VRL has a lot less noise
compared to VPL and additionally produces acceptable results faster than PPB.

6.4.2 Virtual Beam Lights

VRL already reduce the occurrences of singularities significantly, but some singular-
ities are still visible. This is due to the fact that intensities along a light ray are still very
bright compared to the surrounding area. This property is especially visible at glossy
surfaces and the contribution from a volume to a surface. In these cases, only a single
integral is used for the computation which takes away the element of the final gathering
that is possible for volume to volume events. A way to solve this problem is to blur the
light ray into a light beam [NNDJ12a]. The expansion from a light ray to a light beam
is very similar to the expansion from a point light to a spherical light. In both cases the
data structure to gather the data from is expanded to eliminate occurring singularities.
As with the conversion from point light to spherical light, the expansion from light ray to
light beam introduces bias. The progressiveness of this method can still be maintained,
as the radius of the beam can be reduced for passes as it has been explained for PPB.
In some cases the introduction of bias may be an acceptable trade off, as VBL produce
acceptable images significantly faster than VRL.

A comparison of VRL and VBL can be seen in Figure 6.10. The singularities that
occur on the glossy surfaces of the image that was created with VRL vanish in the image
that was created with VBL. Furthermore, the beams of light that are clearly visible when
rendering with VRL are not visible anymore in VBL due to blurring.
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VRL VBL

Figure 6.10: A comparison of VRL and VBL. Both of these images were created within
the same render time (186 seconds for volume to volume events, 363 seconds for volume
to surface events). Source: [NNDJ12a]

6.4.3 Joint Importance Sampling

Similar to the case of VPL, Georgiev et al. [GKH+13] propose a method the
improves the scattering of the light in a scene for light paths, which is called Joint
Importance Sampling (JIS). The idea is that previous methods scatter the light according
to local scattering events without taking into account the global view of the path. This
leads to significant variance which can be reduced with this new approach.

One contribution is the formulation of multiple techniques as a general method
with different connection strategies. It is therefore possible to show the advancements
of this technique on various approaches, as the sampling of longer subpaths has been
suboptimal in most cases. Furthermore, especially the results in anisotropic media are
improved tremendously. As this is a highly complex technique, a further evaluation is
omitted due to the scope of this thesis.

6.5 Higher-Dimensional Photon Representations
The progression of most of the approaches has been to increase the dimension

of the data to be able to avoid singularities and noise. Therefore, photon points are
expanded to beams. There is also an idea to create higher dimensional data [BJ17] such
as photon planes and volumes. Although the increase in dimension for the representations
of the photon data does not always lead to an improvement of the results. In cases
where beams are already superior to points, the further increase in dimensionality further
increases these advantages. A comparison of different representations with different
dimensionalities is shown in Figure 6.11. As the dimensionality of the representation
increases, the variance reduces. Especially, the changes from photon beams to photon
planes are significant.

59



6. Volumetric Photon & Virtual Light Techniques

PB PP PV

Figure 6.11: A comparison of photon beams, photon planes and photon volumes. All of
these images were created within the same render time. Source: [BJ17]
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CHAPTER 7
Virtual Ray Lights

M any approaches that were developed prior to Virtual Ray Lights (VRL) [NNDJ12b]
lead to the development of this method. As the Beam Radiance Estimate ad-

vanced the gathering of photons at points, to gathering them along a line, the Progressive
Photon Beams extend the photon data to beam data. Therefore, radiance estimators
for beam queries and beam data were created. VRL extends these principles into the
context of virtual lights.

Virtual Point Lights had been developed years ago and some of the issues that
were surfaced were still not solved properly. As the VPL create point lights with high
intensities, these point lights lead to singularities, that must be handled. One way of
doing this, is by blurring the point light to create a spherical light. Unfortunately, this
process introduces bias. As this unsatisfactory situation had to be solved, Novák et al.
[NNDJ12b] decided to solve this problem by developing Virtual Ray Lights.

7.1 Methodology
The representation of the light data is one of the main changes in VRL compared

to VPL. As can be seen in Figure 7.1, the entire path segments are stored compared to
just the point data. Therefore, the data is distributed more evenly and the singularities
can be eliminated inside the medium.

The radiance at a point can be calculated with

L(x, ~ω) = Tr(s)Ls(xs, ~ω) + Lm(x, ~ω). (7.1)

The terms Ls and Lm in Equation 7.1 are the terms for the surface radiance and the
radiance from the medium. The calculation of these terms is shown in Equation 7.2 and
Equation 7.3, respectively.
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VPL VRL

Figure 7.1: A visual comparison of the ideas behind VPL and VRL.

The surface radiance

Ls ≈ Φ
∫ t

0

σs(v)fs(θv)frTr(wu(v))Tr(v)Vu(v)
wu(v)2 dv, (7.2)

is an integral over the light ray, as the camera ray only has to be evaluated at its end
point. This equation consists out of the following variables of Table 7.1.

Symbol Description
v a sampled point on the light ray
θv the angle of the light ray and the direction from v to the surface point
Φ the power of the light ray
σs(v) the scattering coefficient at the position v
fs(θv) the phase function of the angle θv
fr the BRDF at the surface point
Tr(wu(v)) the transmission from the point v to the surface point
Tr(v) the transmission from the start of the light ray to the point v
Vu(v) the binary visibility from the point on the surface to the point v

1
wu(v)2 the inverse squared distance from the point v to the surface point

Table 7.1: The terms of the equation for the surface radiance.

The medium radiance

Lm ≈ Φ
∫ s

0

∫ t

0

σs(u)σs(v)fs(θu)fs(θv)Tr(u)Tr(v)Tr(w)V
w(u, v)2 dv du, (7.3)

is a double integral over the light ray and the camera ray, as in this situation, the camera
ray has to be evaluated over its entire length. This equation consists out of the terms
described in Table 7.2.

A visual explanation of the terms in these equations can be seen in Figure 7.2. The
only terminology that is not explained yet are the symbol h which is the closest distance
between both rays and the symbols vh and uh which are the closest points along each
ray.
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Symbol Description
v a sampled point on the light ray
u a sampled point on the camera ray
θv the angle of the light ray and the direction from v to u
θu the angle of the camera ray and the direction from v to u
Φ the power of the light ray
σs(u) the scattering coefficient at the position of the point u
σs(v) the scattering coefficient at the position of the point v
fs(θu) the phase function of the angle θu
fs(θv) the phase function of the angle θv
Tr(u) the transmission from the start of the camera ray to the point u
Tr(v) the transmission from the start of the light ray to the point v
Tr(w) the transmission between the point v to the point u
V the binary visibility from the point v to the point u

1
w(u,v)2 the inverse squared distance from the point v to the point u

Table 7.2: The terms of the equation for the radiance from the medium.
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Figure 7.2: A visualization of the terms of Equation 7.3. The green ray is the camera
ray that has the length s. The orange ray is the light ray with the length t. In this case,
the contribution of the point light at the position v on the light ray is evaluated for the
position u on the camera ray.
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7.2 Algorithm
The basic concept for this method is to incorporate a process similar to photon

tracing, as was discussed in Section 4.1. In this case, the data is stored as a ray, therefore
the name Virtual Ray Lights, which are, for simplification, just called light rays in this
thesis. For a camera ray, all contributions of all light rays that have been created have to
be evaluated. Therefore, a pair of the camera ray and one light ray is formed, for which
either the volume-to-surface contribution is evaluated, as was described in Equation 7.2
or the volume-to-volume contribution is computed, as was discussed with Equation 7.3.
As these equations are not solvable in a closed form, an approach with a Monte Carlo
integration has to be taken for the computation. A basic introduction into Monte Carlo
intergration and importance sampling is included in Appendix A where these terms are
explained with simple examples.

As for the volume-to-surface contribution only a single integral has to be solved,
whereas for the volume-to-volume contribution, a double integral has to be solved, the
volume-to-volume contribution is harder to compute. Therefore, a closer look will be
taken into the approach for the volume-to-volume contribution, as the approach for the
volume-to-surface contribution can be derived from it.

Appendix A already explains how to convert an integral into a Monte Carlo
estimator in a simple case. In this more challenging case with a double integral, the
procedure is similar. The integrand

g(u, v) = Φσs(u)σs(v)fs(θu)fs(θv)Tr(u)Tr(v)Tr(w)V
w(u, v)2 (7.4)

of Equation 7.3 will now be simply called g(u, v). This change in notation is in the
interest of brevity.

In the unbiased Monte Carlo estimator

Lm ≈
1
N

N∑
i=1

g(ui, vi)
pdf(ui, vi)

, (7.5)

N denotes the number of samples, whereas the term ui and vi stand for the samples
that are chosen along the camera ray and the light ray, respectively. As it is a double
integral, two samples have to be chosen for the evaluation. The term pdf(ui, vi) is the
probability of choosing theses two samples. Novák et al. therefore explain their sampling
along a 2D-domain which is created by the two sampling distributions. The distribution
of samples inside this 2D-domain is of major importance to the convergence, as graphical
explanation will show in the next section and as the results in Chapter 9 will make clear.
Simple approaches like uniform sampling and exponential sampling will, in most cases,
not converge in a reasonable amount of time. Therefore, more complex methods for
importance sampling have to be chosen.
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In the volume-to-surface case, the behaviour can be simplified. As there is only
one integral to evaluate, only a sample along the light ray has to be chosen. The PDF is
therefore just the probability of choosing that sample and not a joint probability. As
in the volume-to-volume case, the Monte Carlo estimator can be constructed with the
integrand of the corresponding formula (Equation 7.2). The importance sampling method
that are described in the following chapter can be used for the volume-to-volume as
well as the volume-to-surface contribution by just adjusting the input to the sampling
functions.

7.3 Importance Sampling Techniques

The techniques that are introduced for importance sampling are separated into
a simple technique that works well in isotropic media and an advanced technique that
works well in anisotropic media. Therefore, first the isotropic case will be discussed, to
be able to expand this method for the anisotropic case.

7.3.1 Isotropic Sampling

In the isotropic case, the most variation is caused by the inverse squared distance
term. Therefore the PDF

pdf(ui, vi) ∝
1

w(u, v) (7.6)

has to be proportional to this term.
A sampling method that solved this problem effectively was already introduced

by Kulla et al. [KF11]. In their method, the position on a ray is sample according to
the position of a point light. The method can be seen as taking steps along the angle,
therefore, this method is often called equi-angular sampling. A visualization of this
method is shown in Figure 7.3.

h

θ1
θM

θ

tM |
t1|

t|

Figure 7.3: A visualization of the importance sampling by Kulla et al. [KF11]. The PDF
of this technique is proportional to the inverse squared distance.
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7. Virtual Ray Lights

For this method, the closest point to the point light along the ray has to be found.
With this point, the distances along the ray must be changed, as this point serves now as
the new origin. Note that the distance t1 and tM can now be negative.

The PDF for a distance t can be calculated with

pdf(t) = h

(θM − θ1)(h2 + t2) , (7.7)

where h is the distance of the closest point on the ray to the point light and θ1 and
θM are the angles to the start and end of the ray, respectively. The naming of these
variables was changed in this evaluation compared to the original implementation to be
consistent within this chapter and the next approach. The naming results from taking
M samples along the angle which are distributed between the start θ1 and the end θM in
the advanced approach of the following section.

To get a sampled distance along this ray, the inverse transform sampling method

cdf−1(ξ) = h tan ((1− ξ)θ1 + ξθM )) (7.8)

is used. The term ξ has to be a random number in the interval [0, 1) which will be
remapped to the desired distribution pdf(t) with this function.

The conversion from a distance along a ray to an angle is

θx = tan−1
(
x

h

)
, (7.9)

whereas the inverse function is
x = h tan(θx). (7.10)

As the equi-angular sampling is not suited for lights other than point lights, the
position on larger lights, like a light ray, has to be sampled to determine the whole
influence of the light on the ray. By distributing these samples uniformly along the light
ray, the samples are not distributed according to the distance to the camera ray and are
therefore not ideally matched to the target distribution. The visualization from Novák et
al. where the samples are distributed in the 2D domain this way can be seen in Figure
7.4 (left).

To improve the sampling of the position on the light ray, Novák et al. construct a
joint distribution for both the light ray and the camera ray. In this joint distribution,
the light ray is first sampled using a marginal PDF. This sample is then used for the
conditional PDF along the camera ray. With this technique, the variation along the
whole 2D domain can be accounted for.

For the marginal PDF along the light ray, the points with the closest distance to
the other rays, uh and vh, as well as the distance between those points, h, has to be
determined. With these values, a similar change in parameter, as with the equi-angular
sampling can be applied. The distances to the samples u and v are now denoted as û
and v̂ where û = u− uh and v̂ = v − vh.
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0
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s

Uniform & Equi-Angular Sampling

0

t

s

Joint Distribution Sampling

Figure 7.4: A comparison between choosing a uniformly distributed sample on the light
ray and an equi-angular sample on the camera ray (left), to choosing these samples with
a joint distribution (right). Source: [NNDJ12b]

The same change along the light ray has to be applied to v0 and v1, the start and
end points of the light ray. The marginal PDF for the light ray can then be calculated
with

pdf(v̂, v̂0, v̂1) =
∫ û0
û1
w(û, v̂, h, θ)−2dû∫ v̂0

v̂1

∫ û0
û1
w(û, v̂, h, θ)−2 dû dv̂

. (7.11)

The denominator of this equation serves just for the normalization of the PDF. With the
help of the law of cosines, the term w(û, v̂, h, θ)−2 can be written as h2 +û2 + v̂2−2ûv̂ cos θ
where cos θ is created by the angle of the camera ray and the light ray. As there is
currently no analytic solution for this equation, simplifications must be made. In this
simplification, the camera ray is assumed to be infinite. With this the PDF can be solved
as

pdf(v̂, v̂0, v̂1) = sin(θ)√
h2 + v̂2 sin2(θ)(A(v̂1)−A(v̂0))

. (7.12)

In this equation, the term A is used as A(x) = sinh−1 (x
h sin(θ)

)
. The CDF of Equation

7.12 is obtained via integration

cdf(v̂, v̂0, v̂1) = A(v̂0)−A(v̂)
A(v̂0)−A(v̂1) . (7.13)

Finally, for the CDF-1, the CDF has to be inverted, which results in

cdf−1(ξ, v̂0, v̂1) = h sinh((1− ξ)A(v̂0) + ξA(v̂1))
sin(θ) . (7.14)
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7. Virtual Ray Lights

With Equation 7.14, which needs a random number ξ ∈ [0, 1) as input, a point on the
light ray can be sampled with this inverse transform sampling. This point can be seen as
a point light on the light ray.

In the second step of this sampling method, a point on the camera ray has to be
sampled according to the sampled position on the light ray with a conditional PDF.
In the simple joint distribution, the conditional part is identical to the equi-angular
sampling method. The results is shown in Figure 7.4 (right). Figure 7.4 therefore shows
the difference between sampling the light ray uniformly (left) and sampling it with a
specialized method that takes the camera ray into account (right). As is shown in this
visualization, the samples match the target distribution better with the joint distribution
approach. Chapter 9 provides a comparison of these two approaches with rendered results
to show the difference in convergence. This approach for a joint distribution sampling is
from now on mentioned as the simple joint distribution approach, as the next section
advances this approach.

7.3.2 Anisotropic Sampling

0

t

s

Equi-Angular Sampling of Camera Ray

0

t

s

Advanced Angular Sampling of Camera Ray

Figure 7.5: A comparison between the simple joint distribution (left), to the advanced
approach (right). Source: [NNDJ12b]
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For anisotropic media, the inverse squared distance is not the only term to consider
for the PDF: The phase functions along the light ray and camera ray have a large influence
on the variance. In Figure 7.5, the approach for a simple joint distribution can be seen
to the left. This approach does not consider the phase functions and can therefore not
account for the variance. The PDF that is now needed has to be proportional to the
inverse squared distance, as in the isotropic case, but also to the product of both phase
functions

pdf(ui, vi) ∝
fs(ui)fs(vi)
w(u, v) . (7.15)

For the construction of the conditional PDF in the advanced case, the equi-angular
sampling is taken as a base for the following calculations. As the equi-angular sampling
can be seen as taking uniformly distributed steps along the angle, this advanced approach
can be seen as taking the steps with a distribution proportional to the product of the
phase functions. As this sampling approach works in the angular domain, the distance
does not need to be considered while evaluating the phase functions. As is shown in
Figure 7.6 (bottom), the product of the phase functions has to be calculated along the
arc that is spanned by the projection of the camera ray onto the point that was sampled
with the marginal PDF. Figure 7.6 (top) shows the unit sphere around the sampled point,
as well as the projection of the camera ray onto the arc.

In Figure 7.6 (bottom left), the isotropic case is shown. Here, the result of the
phase function at all points is constant. Compared to this, the anisotropic case, which
can be seen in Figure 7.6 (bottom right), is a lot more complex, as the result of both
phase functions, the one along the light ray and the one along the camera ray, varies for
different positions. This variation is the main reason, why the sampling of the simple
joint distribution does not lead to a sufficient result in the anisotropic case.

An illustration of the product of the phase functions along the arc in two different
cases is shown in Figure 7.7. As can be seen in these examples, the green line, which is
the result of the phase function along the camera ray, is always monotonic. Therefore,
the main variation comes from the result of the phase function along the light ray. Figure
7.7 shows in both cases the peak θpeak at which the result of the phase function along
the light ray (orange line) reaches its highest point. The peak does not have to be in this
interval, but for illustration purposes this is the case in both of these examples. As the
phase functions cannot be calculated along the whole arc, samples have to be distributed
to create a piecewise function which approximates the product of both phase functions.
The samples taken can be seen as the blue points and the reconstructed function as the
dotted black line connecting them.
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θ1

θM θpeak

vi

Angular Domain around vi

fs(θv)
vi

fs(θu) fs(θu)fs(θu)

θpeak

Isotropic Case

vi

fs(θv)
fs(θu)

fs(θu) fs(θu)fs(θu)

θpeak

Anisotropic Case

Figure 7.6: An illustration of the spherical domain around vi as well as the arc that is
generated by the projection of the camera ray (green) onto the sphere (top). Furthermore,
the projection of the light ray into the angular domain can be seen in the same figure.
The figures on the bottom show the isotropic (left) and anisotropic (right) cases. In the
isotropic case, the product of the phase functions at θpeak is equal to result at all other
angles.
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θpeak θpeak

Figure 7.7: Two examples of the product of the phase functions (blue). The green line is
the phase function along the camera ray and the orange line the phase function along
the light ray.

7.3.2.1 Distribution of Samples Along the Arc

As is shown in Figure 7.7, especially in the example at the top, sampling the
position of the peak is of major importance to faithfully reconstruct the function. The
peak is mainly determined by the direction of the light ray. Therefore, the angle along the
spherical arc can be calculated by the projection of the light ray onto the arc. A visual
example of this is shown in Figure 7.6 (top) where the light ray (orange) is projected
(dashed orange) onto the arc (blue). For this calculation, the directions ~a and ~b, are the
directions to the start and the end of the camera ray. The normal of the plane that can
be constructed from ~a and ~b is noted as ~c = norm(~a×~b).

The projection of the light direction ~d onto the plane that is formed by ~a and ~b can
be calculated with

~e = norm((~c× ~d)× ~c). (7.16)

If the peak lies on the arc, ~e must lie between ~a and ~b. If this is not the case, the negative
peak might lie between these directions. To get the direction to the negative peak, ~e has
to be inverted.

Before distributing the samples along the ray, the directions are change into angles.
Uniformly to the equi-angular sampling, the point with the closest distance is used as
the new center. The angles are measured from the direction of the sample along the light
ray to the closest point on the camera ray. Figure 7.6 (top) shows that the angle to the
origin of the camera ray is called θ1, whereas the angle to the end of the ray is called θM .
The M stands for the number of samples that are about to be distributed along the arc.
The angle θpeak is given if the peak or the negative peak lies within the arc.
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7. Virtual Ray Lights

For the distribution of samples along the arc, there are now two cases to consider,
which both can be handled similarly. In the first case, neither the peak, nor the negative
peak, lie on the arc. In this case the samples are distributed with a cosine-warped uniform
spacing. The angle for the sample with the index j ∈ [1,M ] can be determined with

θj = θM − θ1
2

(
1− cos

(
π(j − 1)
M

))
. (7.17)

This equation distributes the samples closer to the boundary of the interval, as more
variance is expected there.

For the second case, where the peak lies on the arc, first, the index of the sample
with the peak has to be determined. The index

jpeak =
⌊
θpeak − θ1
θM − θ1

M − 0.5
⌋

(7.18)

determines the index of the peak. The samples are then distributed as in the previous
case, but within the two intervals [θ1, θpeak] and [θpeak, θM ]. After this procedure, there
are M θ distributed along the arc, where one θ lies on the peak, if the peak is on the arc.
With the results of the phase functions at these positions, the phase functions along the
arc can be reconstructed with a piecewise linear function.

7.3.2.2 Construction of the PDF for the Product of the Phase Functions

To construct the PDF of the product of the phase functions along the arc, the
results of the phase functions at the sampled positions have to be calculated. In this case,
θu is the angle between the camera ray and the direction from the sampled position on
the light ray to the sampled position along the arc. With θu the phase function along the
camera ray fs(θu) can be calculated. Uniformly, θv is the angle between the direction of
the light ray and the direction from the sampled position on the light ray to the sampled
position along the arc, which can be used to calculate the phase function fs(θv). The
product of both phase functions at a sampled angle θj on the arc is from now on called
fuv(θj). At this point, all variables necessary for the construction of the piecewise PDF
of the product of the phase functions are available.

It should be noted that the mathematical derivation of the PDF, the CDF and its
inverse are contributions of this thesis that were derived from descriptions of Novák et al.
from the original paper.
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As this PDF is a piecewise linear function, the well-known slope-intercept form is
used for each segment. The slope-intercept form is denoted as y = kx+ d where k is the
slope of the line and d is the coordinate where the line crosses the y-axis. In our case, x
is the θ and y is the product of the phase functions with this θ, fuv(θ). The value for kj
can be calculated with

kj = fuv(θj+1)− fuv(θj)
θj+1 − θj

, (7.19)

whereas dj can be calculated with

dj = fuv(θj+1)− kjθj+1 = fuv(θj)− kjθj , (7.20)

for a segment with the θj at the start and θj+1 at the end of the segment. Naturally,
there is one segment less, than there are θ distributed along the arc, as one segment is
always enclosed by two θ.

Repeating this procedure for every segment yields the piecewise linear PDF p̃dffuv(θ)
for the product of the phase functions

p̃dffuv(θ) =



k1θ + d1, θ ∈ [θ1, θ2]

k2θ + d2, θ ∈ (θ2, θ3]

...

kNθ + dN , θ ∈ (θN , θM ]

. (7.21)

It is important to note, that p̃dffuv(θ) is not normalized.
For the normalization of p̃dffuv(θ) the CDF of it, c̃dffuv(θ), is needed. The calcula-

tion of this piecewise quadratic function can be done with

c̃dffuv(θ) =



∫ θ2

θ1
k1θ + d1 dθ, θ ∈ [θ1, θ2]

c̃dffuv(θ2) +
∫ θ3

θ2
k2θ + d2 dθ, θ ∈ (θ2, θ3]

...
...

c̃dffuv(θN ) +
∫ θM

θN

kNθ + dN dθ, θ ∈ (θN , θM ]

. (7.22)
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The CDF is just the integration over the PDF. One of the integrals at an index j is∫ θj+1

θj

kjθ + dj dθ =
(
kj
2 θ

2
j+1 + djθj+1

)
−
(
kj
2 θ

2
j + djθj

)
. (7.23)

The normalization of the p̃dffuv(θ) can be achieved by dividing it by the c̃dffuv(θ) over
the interval [θ1, θM ]. The c̃dffuv(θ) over this interval is from now on called c̃dffuv . The
normalized p̃dffuv(θ), pdffuv(θ), can therefore be created with

pdffuv(θ) =



c̃df
−1
fuv(k1θ + d1), θ ∈ [θ1, θ2]

c̃df
−1
fuv(k2θ + d2), θ ∈ (θ2, θ3]

...
...

c̃df
−1
fuv(kNθ + dN ), θ ∈ (θN , θM ]

. (7.24)

The corresponding CDF is

cdffuv(θ) =



c̃df
−1
fuv

∫ θ2

θ1
k1θ + d1 dθ, θ ∈ [θ1, θ2]

cdffuv(θ2) + c̃df
−1
fuv

∫ θ3

θ2
k2θ + d2 dθ, θ ∈ (θ2, θ3]

...
...

cdffuv(θN ) + c̃df
−1
fuv

∫ θM

θN

kNθ + dN dθ, θ ∈ (θN , θM ]

. (7.25)
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The last thing to do, is to inverse this CDF, to get the CDF-1 for the inverse
transform sampling. For the piecewise CDF-1 of cdffuv(θ), cdf−1

fuv
(ξ), there are two cases

to consider per segment. In the first case, the kj with the current index j is 0, whereas
in the second case, kj is not equal to 0. For this procedure, the piecewise function

cdf−1
fuv

(ξ) =



(
θ1d1 + ξc̃dffuv − c̃dffuv(θ1)

)
d−1

1 ,

k1 = 0, ξ ∈ [cdffuv(θ1), cdffuv(θ2)](√
k1(θ2

1k1 + 2ξc̃dffuv − 2c̃dffuv(θ1)) + 2θ1d1k1 + d2
1 − d1

)
k−1

1 ,

k1 6= 0, ξ ∈ [cdffuv(θ1), cdffuv(θ2)](
θ2d2 + ξc̃dffuv − c̃dffuv(θ2)

)
d−1

2 ,

k2 = 0, ξ ∈ [cdffuv(θ2), cdffuv(θ3)](√
k2(θ2

2k2 + 2ξc̃dffuv − 2c̃dffuv(θ2)) + 2θ2d2k2 + d2
2 − d2

)
k−1

2 ,

k2 6= 0, ξ ∈ [cdffuv(θ2), cdffuv(θ3)]

...(
θNdN + ξc̃dffuv − c̃dffuv(θN )

)
d−1
N ,

kN = 0, ξ ∈ [cdffuv(θN ), cdffuv(θM )](√
kN (θ2

NkN + 2ξc̃dffuv − 2c̃dffuv(θN )) + 2θNdNkN + d2
N − dN

)
k−1
N ,

kN 6= 0, ξ ∈ [cdffuv(θN ), cdffuv(θM )]

,

(7.26)

takes a value ξ as input, which has to be in the interval [0, 1). This function can produce
an angle θ along the arc with a distribution according to pdffuv(θ). As the sampled
angle is now generated, the last step is to combine the PDF of the product of the phase
functions, with the PDF of the inverse squared distance.
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7.3.2.3 Creation of the final PDF

For the final PDF, the PDF for the product of the phase functions, pdffuv(θ), as
well as the PDF for the inverse squared distance is needed. As explained for the simple
joint distribution, the PDF for the inverse squared distance is given by the equi-angular
approach. The combination of both PDFs is

p̃df(θ) = pdffuv(θ) pdfw−2(θ). (7.27)

As this p̃df(θ) is not normalized yet, it has to be integrated to get the corresponding
c̃df(θ)

c̃df(θ) = c̃dffuv(θ)
c̃dffuv(θM − θ1)

= cdffuv(θ)
θM − θ1

(7.28)

and then be divided by it. By dividing the p̃df(θ) through the c̃df(θ), a normalized PDF,
pdf(θ), is created

pdf(θ) =
p̃dffuv(θ)h
h2 + t2

. (7.29)

As can be seen from Equation7.29, for the pdf(θ), the p̃dffuv(θ) can be used, as the
normalization term for the product of the phase functions drops out in the normalization
step of the combination of both PDFs. Similarly, the term θM − θ1 in the denominator
drops out for the PDF for the inverse squared distance. The results of sampling with
this technique in the 2D domain is shown in Figure 7.5 (right). Compared to Figure 7.5
(left), the samples that are generated match the distribution of the underlying function
marginally better. Therefore, the convergence is a lot faster, as can be seen by many
examples in Chapter 9.

7.4 Discussion
Virtual Ray Lights is an unbiased method for volumetric lighting that improves

previous virtual light methods light VPL in most cases. For the estimation of volume-
to-volume radiance, VRL improves the convergence and the occurrence of singularities
marginally, as can be seen in Figure 7.8 (right). This is the case as the media is sampled
more densely with a ray, than with a single point. This leads to a clear improvement in
the order and amount of singularities.

For the volume-to-surface radiance, this property of VRL is diminished, as when a
light ray hits a surface, at the point of intersection, the energy of the ray is compressed
into a small area. Although the order of the singularities is reduces compared to VPL,
the amount of the singularities is not. This effect can be seen in Figure 7.8 (left).
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In general, VRL provide great results for the volume-to-volume contribution and
improve the volume-to-surface contribution. As the importance sampling is suited for
isotropic and anisotropic media, this method yields rapid convergence, even with highly
anisotropic media (Henyey-Greenstein g = ±0.95). While other techniques work well in
isotropic media, the case of anisotropic media is often not evaluated as thoroughly as it
is done for VRL.

For a visual comparison, Chapter 9 compares results with different scene settings,
anisotropy and number of samples. In these results, the advantages and disadvantages of
VRL are shown. Especially, the different importance sampling techniques are compared
to other, simpler, importance sampling techniques. This shows the vast improvements
that these techniques bring.

VPL VPL

VRL VRL

Figure 7.8: A comparison of the results from VPL and VRL. For both scenes, the same
amount of virtual lights was used. The surface radiance (left) shows intensities of higher
order for VPL. In the case of radiance from the medium (right), the singularities for VRL
are barely visible compared VPL. Source: [NNDJ12b]
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CHAPTER 8
Virtual Ray Lights -

Implementation

F or the implementation of this method an educational path tracer [ZF18b] was used
as a basis, although a lot of changes and additions were made to the existing

framework. Appendix B provides some additional information on the framework, credits
to other contributions and availability.

This chapter is separated into four parts. In the first part, the general principle
for the implementation is discussed. The second part describes the changes to the
Trace-function which is now used for the tracing of light and camera rays. The following
parts describes the implementation of the formulae for the volume-to-volume and the
volume-to-surface contribution which were discussed in the previous chapter. In the last
part, the implementation of the sampling functions that were described previously are
explained in detail.

The notation for the pseudocode in this chapter is shown in Table 8.1. In the
interest of simplicity, the medium is assumed to be infinite and homogeneous as including
these properties would decrease the readability while providing no implementation-specific
information. Furthermore, there is only one light considered for the aforementioned
reason.

Notation Description
~d a normalized direction, with its original length stored
s̄ a segment
xl a variable associated with a light ray
xc a variable associated with a camera ray

Table 8.1: Notation of various variables for code examples.
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8. Virtual Ray Lights - Implementation

8.1 General Principle

To understand the general principle, it is necessary to understand that this is a
progressive method. Therefore, for the convergence, it does not matter if 100 samples
per pixel are used and for each sample the contribution of one light ray is computed, or
if for one sample per pixel the contribution of 100 light rays is computed.

Furthermore, the tracing of photons, which was already explained in Chapter 6, is
now expanded to store entire segments. Therefore, for the following code examples, a
few changes compared to the code examples from previous chapters are made. First, the
new primitive Segment is introduced. This structure looks as described in Table 8.2.

Name Description
o the origin
e the end
~d the normalized direction
dist the distance
power for a light ray, the power at the origin

Table 8.2: The structure of the Segment data type.

A segment is a fixed length ray with an origin and an end point defined. The
direction is stored as a unit vector. For computational advantages, the distance is
computed once and stored within the structure. This structure is used for light and
camera rays. For light rays, the power at the origin of the ray can be stored, for a camera
ray, this property is disregarded. As is shown in Table 8.1, the notation for a segment in
the code examples is x̄, where x is the name of the segment. When a segment is initiated,
only the origin and direction have to be provided, all other values can be empty which is
denoted with the symbol ∅.

Algorithm 8.1: MainVRL()
1 for every sample do
2 for the number of light rays per sample do
3 s̄l = Segment(pl, ∅, ~dl, ∅, powerl)
4 TraceFromLight(s̄l, 0)
5 end
6 for every pixel do
7 ~dc = ComputeCameraRayDirection(ppixel)
8 s̄c = Segment(pc, ∅, ~dc, ∅, ∅)
9 color = TraceFromCamera(s̄c, 0)

10 end
11 end
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8.2. The Tracing Functions

In the MainVRL-function (Algorithm 8.1) of this approach there are two passes
for every sample. First, for the amount of light rays that is specified to be traced per
sample, a new light ray is created and traced through the scene. As can be seen in Line
3, the position, direction and power of the light are given for the construction of a light
ray. In practice, these values will change depending on the type of light. The spots for
the end of the ray and the distance are left empty, as these values have to be determined
while tracing the light ray through the scene. The newly created light rays are stored
into a list which contains all current light rays.

The second loop, loops through all pixels to determine the color of the pixel. As in
previous examples, the direction of the camera ray is created with the ComputeCamer-
aRayDirection-function which was already explained in Chapter 3. The only thing
that changes within this loop is the storing of the camera ray as a Segment. This is
only done for continuity purposes.

8.2 The Tracing Functions

In the Main-function, there are two tracing functions. One for tracing the light ray
(TraceFromLight) and one for tracing the camera ray (TraceFromCamera). While
these tracing functions are discussed separately in this chapter, it is useful to unify these
functions, as they share a lot of the same properties and decisions to be made. Especially
when considering boundary and intersection decision for the medium, it is helpful to just
use the same logic in one function, as opposed to two.

8.2.1 The TraceFromLight-Function

The function to trace a ray of light through the scene can be seen in Algorithm
8.2. As an input this function take a segment s̄l that represents a light ray and a depth
value. At the start, the current depth value is compared to the maximum number
of bounces to assure an early return if that number is reached. Following this, the
free-flight distance distff is computed and the scene is intercepted. If an objected is
intercepted, the hit point phit is computed. This point is stored as the endpoint of the
current segment and the distance to this point is stored as the distance of the segment.
As the segment is now complete, it can be stored with the other light rays with the
StoreLightSegment-function. This function will not be explained further, as this is
an implementation-specific function.

The next step is to evaluate the direction of reflection from the current hit point.
The cases for the diffuse, specular and refractive objects are simplified compared to
Chapter 3, as the computation of most of these values is equivalent. In the diffuse case,
the power of the segment has to be adjusted by the color of the current object, which
has to be divided by the probability of reflection. Furthermore, the transmission from
the origin of the segment to the hit point has to be computed. The formula for the
Transmission-function is shown in Section 5.1.3. Implementation details are omitted
from this documentation due to the simplicity of the formula.
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Algorithm 8.2: TraceFromLight(s̄l, depth)
1 if depth ≥ bounces then return
2 distff = − ln(ξ/σt)
3 intersection = IntersectScene(s̄l)
4 if intersection then
5 phit = s̄l.o+ s̄l.~d · intersection.dist
6 s̄l.e = phit
7 s̄l.dist = intersection.dist
8 StoreLightSegment(s̄l)
9 obj = intersection.obj

10 if obj is diffuse then
11 ~d = DiffuseDirection(s̄l.~d, obj.~n)
12 probrefl = max(obj.color.r, obj.color.g, obj.color.b)
13 power = s̄l.power ·(obj.color / probrefl)
14 power = power ·Transmission(s̄l.dist)
15 s̄lnew = Segment(phit, ∅, ~d, ∅,power)
16 TraceFromLight(s̄lnew ,depth +1)
17 end
18 if obj is specular or obj is refractive then
19 ~d = Direction(s̄l.~d, obj.~n)
20 power = s̄l.power ·Transmission(s̄l.dist)
21 s̄lnew = Segment(phit, ∅, ~d, ∅,power)
22 TraceFromLight(s̄lnew ,depth +1)
23 end
24 else
25 s̄l.e = s̄l.o · ∞
26 s̄l.dist =∞
27 StoreLightSegment(s̄l)
28 end
29 if intersection.dist > distff then
30 pscatter = s̄l.o+ s̄l.~d · distff
31 s̄l.e = pscatter
32 s̄l.dist = distff

33 if σs/σt < ξ then return
34 ~d = SampleHenyeyGreenstein(s̄l.~d)
35 power = s̄l.power ·Transmission(s̄l.dist)
36 s̄lnew = Segment(pscatter, ∅, ~d, ∅,power)
37 TraceFromLight(s̄lnew ,depth +1)
38 end
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The final power at the current position is computed by the product of these term.
With theses values, a new segment s̄lnew can be created that starts at the current hit
point into a direction that is chosen by the diffuse reflection and the power that was
computed. This segment is then traced further through the scene. For specular and
refractive objects, the computation of the values for a new segment is similar. The only
difference is that the power does not have to be adjusted by the current surface color
as these object are considered to be without a diffuse component. Other than that, the
direction for a reflection is determined depending on the properties of the current object
and the segment is further traced through the scene.

In the case that there is no intersection with any objects, the segment is continued
to the end of the scene boundaries. In Algorithm 8.2 the scene boundaries are denoted as
the distance ∞. Following this process, the segment is stored with the other segments.

A scattering event exists, if the free-flight distance distff is shorter than the distance
to the nearest intersection. In the case of a scattering event, the point of this event is
computed and the current segment is adjusted accordingly. Although this segment is now
complete, it is not stored with the other segments, as the contribution of this segment is
already included with the previous computations. With the comparison of the term σs/σt
to a random value ξ ∈ [0, 1), the possibility of the scattering event is determined. If it is
determined that a scattering event occurs, the process of creating a new segment and
tracing this segment is similar to previous cases. The only difference is that the direction
~d of the new segment has to be determined by sampling the Henyey-Greenstein phase
function with the current direction (SampleHenyeyGreenstein). As this procedure is
well documented, it is exempt from this documentation.

Note that there is a difference in the behaviour of the scattering compared to other
methods. As can be seen in Figure 7.1, compared to other methods that sample light
scattering inside a medium, the light rays continue their path after a scattering event.
This results in a more densely sampled media.

8.2.2 The TraceFromCamera-Function

The tracing of the camera segment can be seen in the TraceFromCamera-
function in Algorithm 8.3. This function takes as input the current camera segment s̄c, a
reference to a color value and a depth value. At the start of the function a comparison
of the depth value with a threshold determines if an early exit is necessary. This is the
simplest way of implementing a maximum depth. Other, more sophisticated, options are
mentioned in Section 3.2.1.

The function is then separated into two parts, one part at which an intersection
with an object occurs, and the other part where no intersection happen. In the case
of an intersection, first the hit point is computed and the current segment is adjusted
according. With this complete segment, the radiance of the medium up to the hit point
can be computed with the RadianceMedium-function, which will be discussed in the
next section. After the computed color is added to the current color, the case-separation
between diffuse objects and specular or refractive objects is made.
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Algorithm 8.3: TraceFromCamera(s̄c, color,depth)
1 if depth ≥ threshold then return
2 if intersection then
3 phit = s̄c.o+ s̄c.~d · intersection.dist
4 s̄c.e = phit
5 s̄c.dist = intersection.dist
6 color = color +RadianceMedium(s̄c)
7 obj = intersection.obj
8 if obj is diffuse then
9 color = color +RadianceSurface(s̄c, obj.color, obj.~n)

10 end
11 if obj is specular or obj is refractive then
12 ~d = Direction(s̄c.~d, obj.~n)
13 s̄cnew = Segment(phit, ∅, ~d, ∅, ∅)
14 TraceFromCamera(s̄cnew , temp, depth +1)
15 color = color + temp ·Transmission(s̄c.dist)
16 end
17 else
18 s̄c.e = s̄c.o · ∞
19 s̄c.dist =∞
20 color = color +RadianceMedium(s̄c)
21 end

In the case of a diffuse object, the radiance at the hit point can be computed with
the RadianceSurface-function, which will be discussed in the next section as well. In
the case of a specular or refractive object, the direction of the reflection is computed and
a new segment is used to gather the radiance along the continued path. The temporary
color that is computed with this process has to adjusted by the transmission from the
origin of the segment up to the current hit point.

In the simplest case, no intersection with the segment is computed. In this case,
the segment is extended to the scene boundaries, which are denoted with the distance ∞
in this code example. The radiance from the medium is then computed for this segment.
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8.3 Radiance Estimation
The estimation of the radiance is separated into two cases. The first case handles

the contribution of light rays to a camera segment and is computed in the Radi-
anceMedium-function. This is the volume-to-volume contribution, as it was previously
called. The volume-to-surface contribution is handled in the second case. There, the
contribution of light rays to a specific point on a surface is computed. This is done in
the RadianceSurface-function.

8.3.1 The RadianceMedium-Function

Algorithm 8.4: RadianceMedium(s̄c)
1 for every light ray that is stored do
2 s̄l = the light segment at the current loop iteration
3 [cpc, cpl] = ClosestPointsOnSegments(s̄c, s̄l)
4 [samplel, pdf l] = GetLightRaySample(s̄c, s̄l, cpc, cpl)
5 cpc = ClosestPointOnSegment(s̄c, samplel)
6 if g = 0 then
7 [samplec, pdfc] = SimpleJointDistribution(s̄c, samplel, cpc)
8 else
9 [samplec, pdfc] = AdvancedJointDistribution(s̄c, s̄l, samplel, cpc)

10 end
11 ~d = samplel− samplec
12 intersection = IntersectScene(samplec, ~d)
13 if intersection.dist < ~d.length then continue

14 fsc = PhaseFunctionHG(s̄c.~d, ~d)
15 fsl = PhaseFunctionHG(s̄l.~d, ~d)
16 transc = Transmission(samplec−s̄c.o)
17 transl = Transmission(samplel−s̄l.o)
18 trans = Transmission(~d.length)

19 integrand = (s̄l.power ·σs · σs · fsc · fsl · transc · transl · trans)/~d.length2

20 color = color +(integrand /(pdfc · pdf l))
21 end
22 return color / (number of light rays)
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The code example for the volume-to-volume contribution is shown in Algorithm 8.4,
which describes the RadianceMedium-function. This function only needs the current
camera segment s̄c as an input. Other values, like all current light rays or medium
properties, are assumed to be global for simplification purposes. This function loops
through all light rays and computes the contribution of each light ray to the camera
segment. The current light ray inside the loop body is denoted as the segment s̄l.

In a first step, the closest points on both segments to the other segment have to be
computed. As this is mainly a geometrical task, the function ClosestPointsOnSeg-
ments disregarded from this documentation, but can be viewed in the provided source
code. The points that are created from this function are cpc, which is the closest point
on the camera segment s̄c to the light segment s̄l and cpl, which is the closest point on
the camera segment s̄l to the light segment s̄c.

With the points cpc and cpl and the segments s̄c and s̄l it is possible to create
the sample on the light segment. This can be done by giving all these variables to the
GetLightRaySample-function. This function, which will be explained in the next
section, creates a sample samplel on the light segment and the corresponding PDF pdf l
for this sample. With this sample, the closest point on the camera segment to this sample
can be computed with the function ClosestPointOnSegment. The computed point is
stored in the variable cpc. Similar to the ClosestPointsOnSegments-function, the
ClosestPointOnSegment function is a geometrical task, that is well documented and
therefore not regarded in this documentation.

For the next part, the code example shows the ideal choice for the sampling function
of the camera sample samplec. In the isotropic case (Henyey-Greenstein, g = 0), the
function SimpleJointDistribution is chosen, which corresponds to the equi-angular
sampling method, that was explained in the previous chapter. In the anisotropic case, the
AdvancedJointDistribution-function is used, which implements the sampling for the
advanced joint distribution, described in the previous chapters, as well. Both sampling
methods, which are explained in the following section, provide a sample samplec along
the camera segment and a PDF pdfc corresponding to that sample. For educational
and comparison purposes, in the implementation that is used to create the results of
the following chapter, the sampling function can be chosen manually. The choice can
be made between uniform, exponential, simple joint distribution and advanced joint
distribution importance sampling. For this example code this is disregarded and only
the ideal method is used.

The sampling is now complete, as the samples samplel and samplec are created.
The following part computes the properties necessary to put everything into Equation 7.3.
By intersecting the scene with the ray that is created by these two samples, the possibility
that something is inbetween the samples is evaluated. If this is the case, the current
light segment is not considered and the loop progresses with the next light segment. If
there is nothing blocking the connection between the samples, the phase functions for
the direction of the camera segment and the light segment are computed.
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The formula for the PhaseFunctionHG-function is provided in Section 5.1.4. Due
to the basic nature of this formula, implementation details are omitted. The transmission
is computed for three parts, one for the origin of the camera segment to the sample on
the camera segment, once from the origin of the light segment to the sample on the light
segment and once between the samples. This computation can be done by providing the
sum of these distances as an input to the transmission function, as these examples are
considering only homogeneous media, but is separated for educational purposes to clearly
show the different variables involved.

For the final integrand (see Equation 7.4 for an explanation of this terminology),
the terms for the power of the light segment, the σs at the position of both samples,
the results of the phase functions and transmission are multiplied and divided by the
squared distance. Due to this being an example for homogeneous media only, the σs at
the positions of the samples is the same. For the final contribution of this light segment,
the integrand has to be divided by the product of the PDF pdf l of the light sample
samplel and the PDF pdfc of the camera sample samplec.

After the loop is finished and all contributions of the light segments are summed
up, the final result is divided by the number of segments that were evaluated in the loop
to compute the final color that is returned.

8.3.2 The RadianceSurface-Function

The computation of the volume-to-surface contribution is similar to the volume-
to-volume contribution and can be seen in Algorithm 8.5. This function needs the
camera segment s̄c as well as the color and normal of the object at the end of the
camera segment as an input. In contrast to the RadianceMedium-function, the camera
segment is not sampled, as the contribution of all light segments to the end position of
the camera segment is computed. Therefore the functions SimpleJointDistribution
and AdvancedJointDistribution are now used on the light segment to get a sample
samplel. The process is exactly the same, only the camera segment and the light segment,
as well as all corresponding variables, are switched for the input into these functions.
Instead of providing a sampled position, as in the volume-to-volume case, the end of the
camera segment s̄c.e is provided.

The sample samplel and the PDF pdf l that are generated can now be used to
generated to necessary values of Equation 7.2. For these computations the end of the
camera segment s̄c.e serves as the second point of evaluation. As in the previous case,
the connection between these points is evaluated for intersection, to possibly discard
this light segment. The terms for the formula are mostly the same, only instead of the
second phase function, the cosine-weigthed BRDF frc is computed at the end of the
camera segment. Here, the color and the normal of the object at the end of the camera
segment are needed for this computation. The transmission is evaluated for the distance
between the origin of the light segment and the sample on the light segment, as well as
the distance between the light sample and the end of the camera segment.
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Algorithm 8.5: RadianceSurface(s̄c, obj.color, obj.~n)
1 for every light ray that is stored do
2 s̄l = the light ray at the current loop iteration
3 cpl = ClosestPointOnSegment(s̄l, s̄c.e)
4 if g = 0 then
5 [samplel, pdf l] = SimpleJointDistribution(s̄l, s̄c.e, cpl)
6 else
7 [samplel, pdf l] = AdvancedJointDistribution(s̄l, s̄c, s̄c.e, cpl)
8 end
9 ~d = samplel−s̄c.e

10 intersection = IntersectScene(s̄c.e, ~d)
11 if intersection.dist < ~d.length then continue

12 frc = obj.color ·(obj.~n · ~d)
13 fsl = PhaseFunctionHG(s̄l.~d, ~d)
14 transl = Transmission(samplel−s̄l.o)
15 trans = Transmission(~d.length)

16 integrand = (s̄l.power ·σs · frc · fsl · transl · trans)/~d.length2

17 color = color +(integrand /pdf l)
18 end
19 return color / (number of light rays)

The integrand is then constructed by the product of the power of the light segment,
the σs at the position of the light sample, the cosine-weighted BRDF, the result of the
phase function and the transmission which are divided by the squared distance. This
integrand is then divided by the PDF pdf l of the sample samplel on the light segment.
As in the previous function, the final sum of the contribution of all light segments is
divided by the number of all light segments that are evaluated. This final value is then
returned as the result of this function.

8.4 The Sampling Functions

The three sampling functions that are used in the algorithms above are already part
of the discussion of the previous chapter. The formulae that are explained in detail there
are provided implementation examples for in this section. First, the function to create a
sample on the light ray is explained, afterwards the functions for creating samples for
the simple and advanced joint distribution techniques are evaluated.
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Algorithm 8.6: GetLightRaySample(s̄c, s̄l, cpc, cpl)
1 distl = (s̄l.o− cpl).length
2 distcp = (cpc− cpl).length
3 θ = cos−1(s̄c.~d · s̄l.~d)

4 start = sinh−1(−distl /distcp · sin(θ))
5 end = sinh−1((s̄l.dist−distl)/ distcp · sin(θ))
6 dist = distcp · sinh((1− ξ) · start +ξ · end)/ sin(θ)

7 sample = cpl +s̄l.~d · dist
8 pdf = sin(θ)/((end− start) · sqrt(dist2

cp + dist2 · sin2(θ)))
9 return [sample,pdf]

8.4.1 The GetLightRaySample-Function

The functions that creates a sample on the light segment by a distribution corre-
sponding to a marginal PDF in the joint distribution that was described in Section 7.3,
is implemented into the function GetLightRaySample which is shown in Algorithm
8.6. This functions takes two segments, a camera segment s̄c and a light segment s̄l, as
well as two points, the closest point on the camera segment cpc and the closest point on
the light segment cpl as input.

The first thing to do is to create the distance distl from the origin of the light
segment to the closest point on it and the distance distcp between the closest points
which is the shortest distance between the segments. In the original formula distcp is
denoted as h. The angle θ is given by the angle of both segment directions.

For the next variable a slight change of naming was applied, compared to the
Equation 7.12. The variable start is the term A(v̂0) and the variable end is equivalently
the term A(v̂1) of this equation. The CDF-1 (Equation 7.14) is computed in the next line,
where the distance dist is the distance from the closest point cpl on the light segment
to the sampled position. The sampled position sample can therefore be computed by a
simple vector operation. The corresponding PDF can be computed by inserting all terms
into the Equation 7.12. The created sample and the corresponding PDF are returned as
the result of this function.
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8.4.2 The SimpleJointDistribution-Function

Algorithm 8.7: SimpleJointDistribution(s̄, p, cp)
1 dists = (s̄.o− cp).length
2 distcp = (cp−p).length
3 start = tan−1(−dists /distcp)
4 end = tan−1((s̄.dist−dists)/ distcp)
5 dist = distcp · tan((1− ξ) · start +ξ · end)

6 sample = cp +s̄.~d · dist
7 pdf = distcp /((end− start) · (dist2

cp + dist2))
8 return [sample,pdf]

The function for creating a sample along a segment in the simple joint distribution
case is called SimpleJointDistribution and is shown in Algorithm 8.7. This is the
equi-angular sampling that was discussed in Section 7.3.1 and provides the conditional
PDF in the joint distribution. In the volume-to-volume contribution case, it is used to
create a sample on the camera segment according to the sampled position on the light
segment. In the volume-to-surface contribution case, it is used to create a sample on the
light segment according to the end position of the camera segment and is therefore not
part of a joint distribution, as there is only one distribution in the volume-to-surface case.
This function takes a segment s̄ on which the sample should be generated as well as the
point p, which is the point of interest for the creation of the PDF which is proportional
to the inverse-squared distance. Furthermore, the closest point cp on the segment to the
given point p is given.

In the first part, similar to the GetLightRaySample-function, the distance dists
between the origin of the segment and the closest point and the distance distcp between
the closest point and the point of interest are computed. The start and end variables
are corresponding to the terms θ1 and θM of Equation 7.7. In the next line, the CDF-1

(Equation 7.8) can already be computed with the generated values to compute the
distance dist. As in the previous case, this distance is the distance from the closest point
on the segment to the sampled position. The PDF can be computed by Equation 7.8
and this can be implemented without any changes. This function returns the sampled
position sample and the corresponding PDF pdf.
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8.4.3 The AdvancedJointDistribution-Function

Algorithm 8.8: AdvancedJointDistribution(s̄, p, ~d, cp)
1 dists = (s̄c.o− cp).length
2 distcp = (cp−p).length
3 ~a = s̄.o− p
4 ~b = s̄.e− p
5 ~c = ~a×~b
6 θ1 = tan−1(−dists /distcp)
7 θM = tan−1((s̄.dist−dists)/distcp)

8 CreateSamplesOnArc(θ1, θM ,~a,~b,~c, ~d, s̄.~d)
9 cdf = ConstructPdfCdf()

10 ξ̂ = ξ · cdf
11 for all piecewise segments do
12 linear = the current piecewise linear function
13 if cdfcomb < ξ̂ and ξ̂ < cdfcomb + linear.cdf then
14 if linear .k = 0 then
15 θs = (linear.θo · linear.d+ ξ̂ − cdfcomb)/ linear.d
16 pdffuv = linear.d/ cdf
17 else
18 temp = linear.k · (linear.θ2

o · linear.k + 2 · ξ̂ − 2 · cdfcomb)+
19 2 · linear.θo · linear.d · linear.k + linear.d2

20 θs = (sqrt(temp)− linear.d)/ linear.k
21 pdffuv = (linear.k · θs + linear.d)/ cdf
22 end
23 break
24 end
25 cdfcomb = cdfcomb + linear.cdf
26 end
27 dist = distcp · tan(θs)

28 sample = cp +s̄.~d · dist
29 pdf = pdffuv ·(distcp /(dist2

cp + dist2))
30 return [sample,pdf]

As can already be assumed from the corresponding mathematical analysis of Section
7.3.2, the sampling function that is important for the advanced joint distribution increases
the complexity of implementation. It is therefore important to know that Chapter 7,
especially Section 7.3.2, is crucial for the understanding of the following implementation
details.

91



8. Virtual Ray Lights - Implementation

The implementation of this AdvancedJointDistribution-function is provided
in Algorithm 8.8. The function is the conditional part of the joint distribution, but can,
equivalently to the simple version, also be used as a standalone sampling function in the
volume-to-surface contribution case. The function needs a segment s̄ as input as well
as an interest point p and the closest point cp to this interest point on the segment, all
equal to the simple case. Additionally, for the evaluation of the phase function at the
interest point, an additional direction ~d is needed. This direction is according to direction
of the segment that the interest point is taken from.

At the beginning, as in the previous cases, the distance dists from the origin of the
segment to the closest point, as well as the distance distcp between the closest point and
the interest point is computed. Afterwards, a few directions for the computation of the
peak along the arc are created. The direction ~a from the interest point to the start of
the segment, the direction ~b from the interest point to the end of the segment as well as
the cross product ~c between these directions is created. Additionally, the angle from the
closest point to the origin of the segment θ1 and the angle from the closest point to the
end of the segment θM are created. At this point, all necessary values are available to
distribute the samples on the spherical arc with the CreateSamplesOnArc-function
which is explained later on. The sampled θ are stored together with the product of the
phase functions for the direction that can be derived from this angle.

The next step creates the piecewise linear non-normalized PDF and the correspond-
ing CDF. The implementation of the ConstructPdfCdf-function can again be seen in
Section 8.4.5. The linear piecewise function is stored as multiple instances of the data
structure LinearFunction, where one of them describes one interval of the piecewise
linear function. The notation for this type of structure can be seen in Table 8.3. This
type has the boundaries θo and θe saved, as well as the values at these boundaries fso and
fse . Furthermore, the slope-intercept form of this functions is computed with the slope k
and the y-intercept d. Finally, the computed definite integral of this function is stored in
the variable cdf. Before evaluating the CDF-1, the random variable ξ ∈ [0, 1) is multiplied

Name Description
θo, θe the interval boundaries
fso , fse the product of the phase functions at the interval boundaries
k the slope of the function
d the y-intercept of the function
cdf the computed definite integral of this function

Table 8.3: The structure of the LinearFunction data type.

with the CDF of the non-normalized PDF. The newly created ξ̂ can then be used to find
the corresponding interval of the piecewise linear non-normalized PDF. If the correct
interval was reached, the linear function in that interval is used for the computation of
the sampled angle θs and the corresponding PDF pdffuv , which is proportional to the
product of the phase functions.
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There are two cases when it comes to evaluating these variables. In the first case,
the slope linear.k is zero, which make the linear function in this interval constant. The
angle θs and the PDF pdffuv can be computed the following way: If the phase function is
isotropic, the whole piecewise linear PDF is constant. In the second case, the computation
of the angle θs and the PDF pdffuv is increases in complexity, but Equation 7.26 can be
followed for the implementation.

After creating a sampled angle θs, the distance dist from the closest point is
computed. With this step, the actual sample can be created in the next step. The
sampled PDF pdffuv is then multiplied by an adapted PDF for the inverse-squared
distance to get a normalized PDF pdf. This functions then returns the sample and the
PDF as a result of the computation.

8.4.4 The CreateSamplesOnArc-Function

Algorithm 8.9: CreateSamplesOnArc(θ1, θM ,~a,~b,~c, ~d1, ~d2)
1 ~e = (~c× ~d2)× ~c
2 θpeak = cos−1(~a · ~e)
3 if θpeak /∈ [θ1, θM ] then
4 ~e = −~e
5 θpeak = cos−1(~a · ~e)
6 end
7 if θpeak ∈ [θ1, θM ] then
8 jpeak = floor((θpeak − θ1)/(θM − θ1) ·M − 0.5)
9 for j < jpeak do

10 θj = (θpeak − θ1)/2 · (1− cos((π · (j − 1))/(jpeak − 1)))
11 fuvj = PhaseFunctionHG(~d1, θj) ·PhaseFunctionHG(~d2, θj)
12 SaveArcSample(θj , fuvj )
13 end
14 for j > jpeak and j < M do
15 θj = (θM − θpeak)/2 · (1− cos((π · (j − jpeak))/(M − jpeak)))
16 fuvj = PhaseFunctionHG(~d1, θj) ·PhaseFunctionHG(~d2, θj)
17 SaveArcSample(θj , fuvj )
18 end
19 else
20 for j < M do
21 θj = (θM − θ1)/2 · (1− cos((π · (j − 1))/M))
22 fuvj = PhaseFunctionHG(~d1, θj) ·PhaseFunctionHG(~d2, θj)
23 SaveArcSample(θj , fuvj )
24 end
25 end
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The CreateSamplesOnArc-function is necessary to distribute the samples along
the spherical arc, as was described in Section 7.3.2.1. An example code of this function
can be seen in Algorithm 8.9. The main principle for this function is to first find a
possible peak location. If no peak location is found to be inside the interval [θ1, θM ], the
samples are distributed with a cosine-warped uniform spacing along the whole intervals
[θ1, θM ]. If the peak falls into the interval [θ1, θM ], the samples are distributed into
the two subintervals [θ1, θpeak] and [θpeak, θM ] with an adapted cosine-warped uniform
spacing. In addition, this function also calculates the product of the phase functions of
the directions at these sampled positions with the two directions given. This function
needs as input the angle from the closest point to the origin of the segment θ1 and the
angle from the closest point to the end of the segment θM . Additionally the direction
~a to the origin of the segment, the direction ~b to the end of the segment, their cross
product ~c of these directions, the direction ~d1 of the segment as well as the direction ~d2
of the other segment, which the interest point belongs to, are needed.

In the first step the angle θpeak for the possible peak is computed. If this angle is
not in the interval [θ1, θM ], the direction is reversed. For the computation of the previous
mentioned cases, the first one, where θpeak is in the interval [θ1, θM ], is computed first.
At the start, the index of the peak is determined, so the number of samples can be split
up. The first loop distributes the samples that have a smaller index than jpeak inside
the interval [θ1, θpeak]. For each of those samples the phase functions are evaluated with
the PhaseFunctionHG-function and the product is stored. For simplicity, only the
angle itself is given as an argument, as the direction can be constructed by rotating the
direction towards the closest point with the angle θj with the direction ~c as the normal
of the plane on which the rotation happens.

The pair of the angle θ and the product of the phase functions fuvj is stored with
the function SaveArcSample. As this function is depending on implementation details,
it is omitted from this documentation. The only thing that is done in this function is
storing the pair into a data structure.

8.4.5 The ConstructPdfCdf-Function

The function ConstructPdfCdf of Algorithm 8.10 construct the piecewise linear
function intervals and computes the definite integral of every interval. This function
loops through the intervals and constructs the slope-intercept form, as well as computing
the definite integral and storing all values in the data structure LinearFunction. The
combined definite integral of all intervals is returned as the result.
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8.4. The Sampling Functions

Algorithm 8.10: ConstructPdfCdf()
1 for j < M do
2 k = (fuvj+1 − fuvj )/(θj+1 − θj)
3 d = fuvj+1 − k · θj+1
4 end = (k · θ2

j+1)/2 + d · θj+1
5 start = (k · θ2

j )/2 + d · θj
6 cdf = end− start
7 SaveLinearFunction(θj , θj+1, fuvj , fuvj+1 , k, d, cdf)
8 cdfcomb = cdfcomb + cdf
9 end

10 return cdfcomb
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CHAPTER 9
Virtual Ray Lights - Results &

Comparisons

This chapter presents the results of the implementation that was described in the
previous chapter. Comparisons are made between the simple and the advanced joint
distribution. Furthermore, comparison of reconstructions of figures to the original figures
from publications are made. Although our reconstructions are only of approximate nature,
the general behaviour and convergence of this implementation can be illustrated with
it. The test and performance comparisons were made on an Intel Core i7-4770 CPU @
3.4GHz with 16GB RAM running parallelized over all cores, with all results having a
resolution of 512x512. A performance comparison to the original method is not possible
as this method was implemented on a CPU-GPU framework where the sampling is done
on the GPU, whereas our implementation was implemented in a CPU-only framework.

The first test case is a Cornell box with two cubes inside of it. In the second case,
the light is only cast into one direction in an infinite medium. Similarly, in the following
case, the light is cast into 10 specific directions. Another test case distributes the light
uniformly in all directions. Finally, some results are compared to figures from other
scientific papers to show similarities. For the different tests, the settings are always given
in a table at the start of the section. In this table, the participating media is categorized
as a tuple of the absorption coefficient σa and the scattering coefficient σs. In the general
case, no additional bounces of the light are allowed. For some specific results, render
times are provided in the format hh:mm:ss.
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9. Virtual Ray Lights - Results & Comparisons

In most tests, there are four settings for importance sampling, uniform, exponential,
joint-simple and joint-advanced. For the uniform tests the samples on the light ray were
chosen uniformly, as well as the samples on the camera ray. The same principle was
applied for the exponential sampling. For the joint-simple tests the samples are chosen
with the simple joint distribution described in Chapter 7. The advanced technique that
works well specifically for anisotropic media that was described in that chapter is denoted
as joint-advanced. The difference in computing times for isotropic tests compared to
anisotropic test while providing the same settings on everything else stems from the
implementation of the Henyey-Greenstein phase function, as in the isotropic case, no
computation of the function is needed.

The creation of converged references with a simpler method, i.e., VPT, was not
possible due to the maintaining singularities along light rays even after over 24 hours of
rendering. Therefore, the convergence of this implementation was assured by making a
visual comparison to ensure that the methods converge to the the same results. For a
further conviction of the convergence, parts of the results without visible singularities
were compared statistically and reassured the correct convergence of this implementation.
The references that can be seen in the following examples are therefore the results of the
advanced sampling technique.

98



9.1. Cornell Box

9.1 Cornell Box

Scene, Light & Medium Settings
Light Position (0, 1.9, -3)
Light Intensity 50 000
Medium (σa, σs) 0.1, 0.01

Converged Results

Sampling Method
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Reference uniform exponential joint-simple joint-advanced

g
=

-0
.9

01:04:41 01:10:59 01:24:51 03:36:27

g
=

0.
0

01:03:40 01:08:58 01:23:29 02:48:44

g
=

0.
9

01:02:47 01:11:01 01:28:36 03:29:05

Table 9.1: Comparison of the Cornell box scene with 100 samples per pixel and 1 000
light rays per sample.

99



9. Virtual Ray Lights - Results & Comparisons

Table 9.1 shows the results of a Cornell box scene that was inspired by the scene
that can be seen in the original paper with 100 samples per pixel and 1 000 light rays
per sample. The starting position of a light ray is chosen randomly in the area of the 4
rectangles on the ceiling. The direction for all light rays is the same. The illumination of
the surface is solely due to the contribution of the radiance from the media to the surface.
In general, an approach like PPM would be suitable for this task as it would fit into the
framework well. As can be seen in this comparison, for both, the uniform, as well as the
exponential sampling, singularities are clearly visible along the light rays. The simple, as
well as the advanced joint importance sampling provide results without any noticeable
artefacts and seem to be fully converged. Values for the RMSE and PSNR are shown in
Table 9.2.

simple/advanced
HG
-0.9
0.0
0.9

RMSE PSNR
0.3124 58.2380
0.2369 56.6988
0.4207 55.6516

Table 9.2: Comparison of the RMSE and PSNR of Table 9.1.
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9.1. Cornell Box

Convergence Comparison

The convergence of the results with 1 sample, 10 samples and 100 samples is
shown in Table 9.3, Table 9.4 and Table 9.5, respectively. There are some interesting
observations that can be made from these results. First of all, the clear advantage in
convergence of the advanced joint distribution technique can be seen. The results for
both volume-to-volume contribution as well as volume-to-surface contribution appear
more converged than the corresponding results with other techniques. Interestingly, while
the simple joint distribution method shows some improvement in the volume-to-volume
contribution, it is clearly the worst in the volume-to-surface contribution when anisotropic
media is involved.
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Table 9.3: Comparison of the Cornell box scene with 1 sample per pixel and 1 light ray
per sample.
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9. Virtual Ray Lights - Results & Comparisons

Sampling Method
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Table 9.4: Comparison of the Cornell box scene with 10 samples per pixel and 1 light ray
per sample.
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9.1. Cornell Box

Sampling Method
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Table 9.5: Comparison of the Cornell box scene with 100 samples per pixel and 1 light
ray per sample.
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9. Virtual Ray Lights - Results & Comparisons

Equal Time Comparison

The comparison for the results after 1 minute can be seen in Table 9.6. As is shown
in these results, the noise in the advance joint distribution case is almost gone. For the
simple joint distribution, the volume-to-surface contribution in anisotropic media is clearly
an issue, although in the volume-to-volume case, there are clear benefits over the uniform
and exponential methods. For the uniform and exponential sampling, singularities are
clearly visible along the light rays.
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g
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g
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0.
0

1040 Samples 941 Samples 828 Samples 506 Samples

g
=

0.
9

1020 Samples 925 Samples 813 Samples 419 Samples

Table 9.6: Comparison of the Cornell box scene which was rendered for 60 seconds.
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9.1. Cornell Box

A Word on Progressiveness

As this is a progressive method, it is possible to adjust the number of samples
and light ray, and as long as the product of both is the same, the result will be as
well. As can be seen in the leftmost column, there is a difference in anti-aliasing, as the
anti-aliasing is implemented as a beneficial side effect into the rendering process. It is
therefore advisable to still use at least enough samples to achieve the aliasing. While the
performance increases with fewer samples per pixel and more light ray per sample, as
there are fewer intersections to test, the memory footprint increases as well as more light
rays have to be stored at once.
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9. Virtual Ray Lights - Results & Comparisons

Samples Per Pixels / Light Rays Per Sample

H
en
ye
y-
G
re
en

st
ei
n
ph

as
e
fu
nc

tio
n

100/1 10/10 1/100
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00:00:14 00:00:12 00:00:11
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00:00:11 00:00:09 00:00:09

g
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0.
9

00:00:14 00:00:12 00:00:11

Table 9.7: Comparison of the Cornell box scene. The number of samples and light rays
vary, but their product always stays 100. This equivalence of the product of light rays
and samples has been addressed in Section 8.1.
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9.1. Cornell Box

Bounce Progression

For the progression of light rays through the scene Table 9.8 shows how the results
look along the way. On the top, the number of light rays can be seen, whereas on the
bottom, the rendering time is displayed. It should be noted that the rendering timings are
not to be compared to the other results as there is a computational overhead, especially
at the start, when exporting theses images.

1 light ray 2 light rays 3 light rays 4 light rays 5 light rays

00:00:00 00:00:00 00:00:00 00:00:01 00:00:01

10 light rays 25 light rays 50 light rays 75 light rays 100 light rays

00:00:03 00:00:08 00:00:16 00:00:24 00:00:33

500 light rays 1000 light rays 3000 light rays 5000 light rays 10000 light rays

00:01:48 00:03:22 00:09:53 00:16:09 00:31:47

Table 9.8: Comparison of the Cornell box scene. This figure shows the progression of the
bounces with an increasing number of light rays.
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9. Virtual Ray Lights - Results & Comparisons

Bounces

The Cornell box with a different number of bounces for the light rays can be seen in
Table 9.9, Table 9.10 and Table 9.11. All results are rendered with 100 samples per pixel
and 10 light rays per sample. Table 9.9 shows the full result, whereas Table 9.10 shows
just the volume-to-surface contribution and Table 9.11 shows just the volume-to-volume
contribution. All images are rendered with the advanced joint distribution technique. As
is shown here, significant artifacts can occur with multiple bounces in anisotropic media,
as the data of the light rays is not as closely bundled anymore. This is also true for the
volume-to-surface contribution, even though less visible, in the isotropic case, as the hit
points of the light rays are clearly visible on the surfaces.
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00:02:05 00:04:18 00:06:50 00:10:04 00:12:44

g
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0

00:01:39 00:03:25 00:05:19 00:08:06 00:09:51

g
=

0.
9

00:02:05 00:04:15 00:06:50 00:09:46 00:12:38

Table 9.9: Comparison of the Cornell box scene. This figure shows the progression of the
renderings with a different number of bounces.
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9.1. Cornell Box

Bounces
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1 bounce 2 bounces 3 bounces 4 bounces 5 bounces
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00:01:10 00:02:25 00:03:45 00:05:15 00:06:55

g
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0

00:00:58 00:01:59 00:03:04 00:04:17 00:05:46

g
=

0.
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00:01:11 00:02:25 00:03:47 00:05:17 00:07:30

Table 9.10: Comparison of the Cornell box scene. This figure shows the progression of
the renderings with a different number of bounces with volume-to-volume radiance only.
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9. Virtual Ray Lights - Results & Comparisons

Bounces
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g
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00:00:55 00:01:49 00:03:04 00:04:06 00:05:07

g
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0

00:00:43 00:01:24 00:02:10 00:02:55 00:03:51

g
=

0.
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00:00:56 00:01:53 00:02:47 00:03:57 00:05:04

Table 9.11: Comparison of the Cornell box scene. This figure shows the progression of
the renderings with a different number of bounces with volume-to-surface radiance only.
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9.2. Point Light (bidirectional, 1 light ray)

9.2 Point Light (bidirectional, 1 light ray)

Scene, Light & Medium Settings
Light Position (0, 0, -2)
Light Intensity 250
Medium (σa, σs) 0.1, 0.25

Converged Results

Sampling Method
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Reference uniform exponential joint-simple joint-advanced

g
=

-0
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00:34:00 00:33:55 00:39:17 01:09:21

g
=

0.
0

00:33:22 00:33:07 00:38:39 00:58:47

g
=

0.
9

00:34:05 00:33:49 00:39:22 01:08:49

Table 9.12: Comparison of a scene with a point light (bidirectional, 1 light ray) with 50
000 sample per pixel and 1 light rays per sample.
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9. Virtual Ray Lights - Results & Comparisons

The tests in Table 9.12 show a point light which casts one light ray into a specific
direction. This is where this implementation can show its full potential. After 50 000
samples, the uniform case is not even close to a convergence and the exponential case
still has significant noise in it. Both joint distributions converge to the reference solution
within 50 000 samples. Table 9.13 shows the RMSE and PSNR which are similar to the
results of the Cornell box tests.

simple/advanced
HG
-0.9
0.0
0.9

RMSE PSNR
0.4075 55.9273
0.5491 53.3375
0.2589 59.8680

Table 9.13: Comparison of the RMSE and PSNR of Table 9.12.
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9.2. Point Light (bidirectional, 1 light ray)

Convergence Comparison

In Table 9.14, Table 9.15 and Table 9.16 the scene with 1 light ray is rendered with
1 sample, 10 samples and 100 samples per pixel. These results show where the algorithm
really shines: The convergence with the joint distribution sampling is reached rapidly,
and the improvement of the advanced joint distribution sampling can be seen clearly.
Even after just 100 samples, a lot of noise has already been reduced and the final result
can already be estimated.
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Table 9.14: Comparison of a scene with a point light (bidirectional, 1 light ray) with 1
sample per pixel and 1 light rays per sample.
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9. Virtual Ray Lights - Results & Comparisons

Sampling Method
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Table 9.15: Comparison of a scene with a point light (bidirectional, 1 light ray) with 10
sample per pixel and 1 light rays per sample.
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9.2. Point Light (bidirectional, 1 light ray)

Sampling Method
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Table 9.16: Comparison of a scene with a point light (bidirectional, 1 light ray) with 100
sample per pixel and 1 light rays per sample.
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9. Virtual Ray Lights - Results & Comparisons

Equal Time Comparison

For a comparison after 1 minute of rendering, Table 9.17 shows the results for all
test cases. As is shown in these images, the joint distribution outperforms the uniform
and exponential sampling by far. The advanced joint distribution has significantly less
noise compared to the simple version of it in the case of anisotropic media. As the original
method was implemented on a CPU-GPU setup, and these results are only from a CPU
version, the difference can be expected to be even larger by performing the sampling on
the GPU.
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1472 Samples 1475 Samples 1270 Samples 718 Samples

Table 9.17: Comparison of a scene with a point light (bidirectional, 1 light ray) which
was rendered for 60 seconds.
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9.3. Point Light (bidirectional, 10 light rays)

9.3 Point Light (bidirectional, 10 light rays)

Scene, Light & Medium Settings
Light Position (0, 0, -2)
Light Intensity 250
Medium (σa, σs) 0.1, 0.25

Converged Results

Sampling Method
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g
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00:34:05 00:33:49 00:39:22 01:08:49

Table 9.18: Comparison of a scene with a point light (bidirectional, 10 light rays) with
50 000 sample per pixel and 10 light rays per sample.
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9. Virtual Ray Lights - Results & Comparisons

Table 9.18 shows the results for the scene with a bidirectional point light with 10
light rays. The results allow similar conclusions as in the case with 1 light ray. The joint
distribution allows for convergence after 50 000 samples. The uniform sampling does
not seem to converge within a reasonable amount of time and the exponential sampling
still has some disturbing singularities along the rays. The comparison of the RMSE and
PSNR for these tests can be seen in Table 9.19.

simple/advanced
HG
-0.9
0.0
0.9

RMSE PSNR
0.9854 48.2581
0.3547 57.1330
0.5309 53.6301

Table 9.19: Comparison of the RMSE and PSNR of Table 9.18.
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9.3. Point Light (bidirectional, 10 light rays)

Convergence Comparison

In Table 9.20, Table 9.21 and Table 9.22 the scene with 10 light rays is rendered
with 1 sample, 10 samples and 100 samples per pixel. Again, the convergence of the joint
distribution is clearly in favor compared to the other distributions. In the case of 100
samples, some noise may appear for back-scattering (i.e., g<0) for the advanced joint
distribution. Although a bit disturbing, the overall results are clearly better than in the
simple joint distribution.
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Table 9.20: Comparison of a scene with a point light (bidirectional, 10 light rays) with 1
sample per pixel and 10 light rays per sample.
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9. Virtual Ray Lights - Results & Comparisons

Sampling Method
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Table 9.21: Comparison of a scene with a point light (bidirectional, 10 light rays) with
10 sample per pixel and 10 light rays per sample.
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9.3. Point Light (bidirectional, 10 light rays)

Sampling Method
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Table 9.22: Comparison of a scene with a point light (bidirectional, 10 light rays) with
100 sample per pixel and 10 light rays per sample.
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9. Virtual Ray Lights - Results & Comparisons

Equal Time Comparison

The comparison after 1 minute of render time is shown in Table 9.23. Again,
the results of the advanced joint distribution show the best results. As was previously
described, the difference may get even larger with an implementation of this method on
the GPU.
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Table 9.23: Comparison of a scene with a point light (bidirectional, 10 light rays) which
was rendered for 60 seconds.
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9.4. Point Light (unidirectional)

9.4 Point Light (unidirectional)

Scene, Light & Medium Settings
Light Position (0, 0, -2)
Light Intensity 100
Medium (σa, σs) 0.1, 0.25

Converged Results
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01:47:50 01:48:05 02:16:32 04:51:54

Table 9.24: Comparison of a scene with a point light (unidirectional) with 1 sample per
pixel and 1 000 000 light rays per sample.
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9. Virtual Ray Lights - Results & Comparisons

The tests in Table 9.24 show the results of a scene with a point light, where the
light rays are cast unidirectionally. Only one quarter was rendered and repeated for
the other quarters, as the other three quarters do not hold any additional information.
As is shown in this table, this test is difficult to converge, as the light ray are not a
good fit for unidirectional distribution. In this case, the benefits of the advanced joint
distribution is therefore even more noticeable, as after 1 million samples, it is the only
one that comes close to convergence. Table 9.25 shows the RMSE and the PSNR for
both joint distributions.

simple/advanced
HG
-0.9
0.0
0.9

RMSE PSNR
1.5214 44.4859
0.2171 54.4806
2.7353 39.3908

Table 9.25: Comparison of the RMSE and PSNR of Table 9.24.
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9.4. Point Light (unidirectional)

Convergence Comparison

As can be seen from Table 9.26, Table 9.27 and Table 9.28 where the same scene
has been rendered with 1 light ray, 10 light rays and 100 light rays, respectively, the light
rays are not a good choice for unidirectional distribution. The single ray segments are
still visible after many samples, therefore convergence is slow.
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Table 9.26: Comparison of a scene with a point light (unidirectional) with 1 sample per
pixel and 1 light ray per sample.
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9. Virtual Ray Lights - Results & Comparisons

Sampling Method
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Table 9.27: Comparison of a scene with a point light (unidirectional) with 1 sample per
pixel and 10 light rays per sample.
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9.4. Point Light (unidirectional)

Sampling Method
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Table 9.28: Comparison of a scene with a point light (unidirectional) with 1 sample per
pixel and 100 light rays per sample.
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9. Virtual Ray Lights - Results & Comparisons

9.5 Comparison to Virtual Ray Lights [NNDJ12b]

Cornell Box - Sampling Differences

This test shows the sampling improvements of the different techniques, a similar
test was made by Novák et al. in their paper. On the top, an isotropic medium is
rendered by sampling the light ray uniformly and the camera ray equi-angularly (left)
and by sampling with the simple joint distribution (right). On the bottom, the simple
joint distribution is compared to the advanced joint distribution in anisotropic media. As
can be seen from these images, with 100 samples per pixel and 10 light rays per sample,
the new approaches perform better compared to their predecessors.
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Table 9.29: Comparison of the Cornell box scene with different sampling strategies.
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9.5. Comparison to Virtual Ray Lights [NNDJ12b]

Sphere in Participating Media

Table 9.30 shows a sphere and the volume-to-surface contribution (top), as well
as the volume-to-volume contribution (bottom). The left column, contains images from
Novák et al. [NNDJ12b], whereas the right column shows our reconstruction of the scene.
Due to the limited information, our reconstruction is only vaguely similar, although the
issues mentioned for the original figures can clearly be seen. For the volume-to-surface
contribution, the hit points of the light rays, as well as there path along the surfaces
can clearly be seen. The volume-to-volume examples both show the convergence of the
results without any artefacts.

Reference [NNDJ12b] Our Reconstruction

Table 9.30: Comparison of the Virtual Ray Lights sphere in participating media scene
[NNDJ12b], to our reconstruction of that scene that was rendered with 100 samples and
100 light rays per sample.
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9. Virtual Ray Lights - Results & Comparisons

9.6 Comparison Joint Importance Sampling [GKH+13]
Point Light (bidirectional, 10 light rays)

As Georgiev et al. [GKH+13] provide a results with around 10 light rays, this scene
is chosen for a comparison. Some images that are discussed earlier are taken for the
comparison. The only change that was applied is a horizontal flip. As is shown in Table
9.31 for the simple joint distribution and in Table 9.32 for the advanced joint distribution,
the convergence behaves similarly in both cases in the examples provided with 4 samples
per pixel. Additionally, the converged cases are in agreement. Other differences can be
explained by different scene settings and color corrections.

Rendering Method
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Table 9.31: Comparison of the Virtual Ray Lights bidirectional point light scene
[GKH+13], to our reconstruction of that scene with the simple joint distribution sampling
method.
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9.6. Comparison Joint Importance Sampling [GKH+13]

Rendering Method
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Table 9.32: Comparison of the Virtual Ray Lights bidirectional point light scene
[GKH+13], to our reconstruction of that scene with the advanced joint distribution
sampling method.
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CHAPTER 10
Conclusion

T his thesis documents the full implementation of the unbiased progressive method,
Virtual Ray Lights for Rendering Scenes with Participating Media. Through the

process of this documentation, the starting chapters describe foundations and methods
that are of importance in the development of this approach. The analysis of different
approaches that use different types of photon tracing show the general trend of increasing
the dimensionality to improve the density of the data and the area of the estimators.

For Virtual Ray Lights, camera rays as well as light rays are evaluated to be able
to compute the volume-to-volume and the volume-to-surface contribution of the light. A
joint importance sampling technique is introduced to make it possible to sample from a
shared domain. A simple version already works well for isotropic media, but the variance
from anisotropic media cannot be accounted for. Therefore, Novák et al. developed
a new technique for anisotropic media to create a probability density function that is
proportional to the product of the phase functions, as well as the inverse-squared distance
like in the isotropic case. A detailed mathematical derivation of the probability density
function, the cumulative density function as well as its inverse, which was absent from
the original paper, is a contribution of this thesis, along with the documentation of all
functionality used in Virtual Ray Lights from a theoretical standpoint as well as an
implementation standpoint.

The implementation of Virtual Ray Lights performed well in our testing scenarios
and provided the expected results in all scenes. The method is an improvement for the
computation of the volume-to-volume contribution as singularities are greatly reduced
with a substantial increase in convergence speed. Many different tests are examined and
the comparison to similar results from other publications has proven to be successful.
As this implementation was done with educational purposes in mind, it can be followed
easily with the help of this thesis and the provided source material. Appendix B provides
information on how to access this material as well as further information on preexisting
frameworks and contributions.
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10. Conclusion

This thesis was designed to help bring an understanding from the ground up and
develop a knowledge on this topic in a theoretical and practical sense. The goal of
this thesis is to make it possible to implement Virtual Ray Lights into other projects.
Furthermore, a focus has been on providing an understanding of complex importance
sampling techniques and their usage in the field of rendering participating media.
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APPENDIX A
Monte Carlo Integration &

Importance Sampling

W hen a Monte Carlo method is used for rendering that means that an integral is
approximated using Monte Carlo integration. For this approach, first a Monte

Carlo estimator has to be constructed to be able to evaluate the integral. This part is
described first. The distribution of samples is a key to the performance and convergence
of this method. In most cases, a uniform distribution of samples is slow in convergence,
therefore, different techniques have been developed to improve sampling. While there are
simple improvements like exponential sampling, there are also far more sophisticated ones
like multiple importance sampling. This appendix will provide a simple introduction in
the terminology of Monte Carlo integration and importance sampling and will explain a
few simple methods with examples. The importance sampling methods that are relevant
for the implementation of VRL are discussed in Section 7.3.

A.1 Monte Carlo Integration

For Monte Carlo integration, the goal is to approximate the result of a given integral
as accurate and fast as possible. The evaluation of this integral can be done by the
sampled-mean version of the Monte Carlo integration. The method works as follows: For
a given function for which the integral is to be calculated in a defined interval, samples
are chosen within this interval to evaluate the function at this point. The result of the
evaluation is then adjusted by the probability that this sample is chosen. In the case
of a uniform distribution, this probability is constant for all samples the inverse of the
interval size. All of these results are summed up and divided by the amount of samples
that were generated.
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A. Monte Carlo Integration & Importance Sampling

1

π0

Figure A.1: The function e−x in the interval [0, π]. This function is used as an example
for the distribution of samples and is marked as blue. The green line is the PDF of the
uniform distribution in this interval.

This process can be described with

F (x) ≈ 1
N

i=1∑
N

f(x)
pdf(x) , (A.1)

where the term N of this equation stands for the number of samples, the function f(x)
is the function for which the integral should be approximated and the pdf(x) is the
probability of choosing this sample x.

A very simple example of an integral is

F (x) =
∫ π

0
e−x dx, (A.2)

which show the integral F (x) of the function f(x) = e−x in the interval x ∈ [0, π]. This
function is visualized in Figure A.1 as the blue line.

For the evaluation of this integral, uniform random samples are chosen and evaluated.
The probability of choosing a sample in the interval [0, π] uniformly is 1/π which can be
seen as the green line of Figure A.1. The process for the first sample is described in detail
to build a basic understanding of this principle. The following results are then shown in
Table A.1. The first randomly chosen number is 2.4719 and the result of f(2.4719) is
0.0844. This result is then divided by the probability 1/π and divided by the number of
samples, which is 1 in this case. The first result is therefore 0.2652.

In Table A.1, the results after various samples is shown. The actual result of the
integral is 0.9568 and as can be seen in the last row of this table, after 1 million samples,
the error of the evaluation has decreased to 0.0004.
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A.2. Importance Sampling

Samples Error Result
1 -0.6916 0.2652
10 0.2487 1.2055
100 -0.0014 0.9554
1000 0.0023 0.9591
10000 0.0022 0.9590
100000 -0.0020 0.9548
1000000 0.0004 0.9572

Table A.1: The error and convergence of the Monte Carlo integration of function e−x in
the interval [0, π] with the uniform sampling.

A.2 Importance Sampling
As sampling with a uniform distribution is, in most cases, suboptimal, other distri-

bution are used for importance sampling. For the understanding of these distributions,
a basic understanding of a few fundamental statistical properties are necessary. The
main terms for importance sampling are the probability density function (PDF) and the
cumulative density function (CDF).

A.2.1 Probability Density Function

The PDF is a function that describes, for every point in the sample space, the
relative likelihood for the sample being at the current position. It is often just described
as the density of a continuous random variable. To make this concept clearer, Figure A.2
shows an example of the linear PDF pdf(x) = x/2. In this example, at 0.5 the function
has a value of 0.25, which means that there is a 25% chance that a sample is chosen is at
that position.

1

20 0.5

0.25 sample

Figure A.2: An example of a linear PDF. The chosen sample at position 0.5 presents a
25% possibility that a sample at this position is chosen with this PDF.
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A. Monte Carlo Integration & Importance Sampling

An important property of the PDF is that it must be normalized which means that
its integral, the CDF must be exactly 1. That means that in many cases, the CDF must
be calculated to divide the PDF by it.

A.2.2 Cumulative Density Function

The CDF is the integral of the PDF. Therefore, it describes the area under the
PDF and must always be exactly 1. The CDF to the PDF of the previous figure is shown
in Figure A.3 as the orange line. The importance of the CDF comes mainly through
its inversion. As the non-inverted CDF creates values in the interval [0, 1) with the
input of a value in the sample interval, the inverted CDF, denoted as CDF-1, creates
values in sample interval with the input of a value in the interval [0, 1). By acquiring
samples through the CDF-1, the samples are distributed by the corresponding PDF.
This method of generating random variables in a desired distribution is called inverse
transform sampling or Smirnov transform.

1

20

Figure A.3: The PDF of Figure A.2 as a green line with the corresponding CDF marked
in orange.

With the knowledge gained in this section, the previous example of the integral
of the function f(x) = e−x can now be expanded to be sampled with a more fitting
distribution of samples. As can be seen in Figure A.4 as the blue line, the function is
bigger at the start then at the end, it would therefore make sense to focus on the start of
the function more than on the end. Therefore, the function 1

(x+1)2 is normalized in this
interval, to create a

pdf(x) = π + 1
π · (x+ 1)2 , (A.3)

with the corresponding
cdf(x) = − π + 1

π · (x+ 1) + π + 1
π

(A.4)

and
cdf(ξ)−1 = π · ξ

−π · ξ + π + 1 . (A.5)

This PDF is the green line of Figure A.4.
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A.2. Importance Sampling

1

π0

Figure A.4: The function e−x in blue with a PDF as the green line, which fits the
distribution better than a uniform distribution.

Samples Error Result
1 0.1051 1.0619
10 -0.0215 0.9353
100 -0.0035 0.9533
1000 -0.0004 0.9564
10000 -0.0001 0.9566
100000 0.0000 0.9567
1000000 0.0000 0.9567

Table A.2: The error and convergence of the Monte Carlo integration of function e−x in
the interval [0, π] with the sampling of Equation A.3 which is visualized in Figure A.4.

The results for this evaluation with various sample numbers is shown in Table A.2.
As can be derived from theses results, the convergence is faster than in the uniform
sampled case, as the sampling distribution matches the function better. Even though this
function is relatively evenly distributed, there are many cases where most of the target
interval is not of major importance for the evaluation. Just expanding this example to a
larger interval would decrease the performance of the uniform sampling marginally.
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A. Monte Carlo Integration & Importance Sampling

A.3 Importance Sampling in Rendering
To put all of this theory into the context of rendering, this example shows how

sampling can be used for a light ray in a participating medium. In Figure A.5, a light ray
can be seen. The light fades as more distance is traveled and this ray contributes less and
less as the power of the light ray is affected by the transmission. When calculating an
integral along this ray, it would therefore be advisable to use a PDF that is proportional
to this property. The figure shows a linear PDF (green) and the actual underlying
function (blue, flipped horizontally). As is shown in this illustration, a linear PDF would
still take many samples at positions that are not relevant in this scenario.

Figure A.5: A light ray in a participating media. An example of a linear PDF at the top
(green) and the actual underlying function at the bottom (blue, flipped horizontally).
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APPENDIX B
Source Material

The source material is available in two versions. The first version is a command
line program that contains solely the implementation of Virtual Ray Lights. The second
version is the implementation of Virtual Ray Lights, as well as Progressive Photon
Mapping, into the educational path tracer Smallpaint by Károly Zsolnai-Fehér [ZF18b].
For Smallpaint, a user interface that provides progressive updates was created in the
process of this thesis. The first option provides better adaptability as where the second
option provides the better usability.

B.1 Command Line Program
The source code for the implementation of Virtual Ray Lights in a command line

program is provided as a Microsoft Visual Studio 2017 solution. Before building, the
option for OpenMP has to be set under Project -> Properties -> C/C++ ->
Language -> Open MP Support. The project can then be built and the program
VirtualRayLight.exe, that is either in the Debug or Release folder, can be moved
anywhere.

The program can also be created without Microsoft Visual Studio with the command
g++ vrl.cpp -O3 -std=gnu++0x -fopenmp -static-libgcc
-static-libstdc++.

Multiple arguments can be provided as input to this program. A full list of
commands can be seen with the command VirtualRayLights.exe -h.
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B. Source Material

B.2 Smallpaint
The source code for the the educational path tracer Smallpaint [ZF18b], which

contains the implementations of Progressive Photon Mapping and Virtual Ray Lights,
is provided as a Qt solution. The binaries for Windows and Linux are provided in the
folders binary_win32 and binary_linux. The Windows implementation works as
long as Microsoft Visual Studio or Qt is installed on the system. When rebuilding this
project, the instructions to do so are provided in the README.txt file.

The first contribution to Smallpaint is the user interface which makes progressive
updates possible, as well as providing an improved usability. Furthermore, additions to
the approaches can be made by following the guide HOWTOAddYourOwnRenderer.txt.

The second contribution is the implementation of Progressive Photon Mapping
which was mentioned in Section 4.2. For this implementation, the source code by Toshiya
Hachisuka was adapted to fit into the framework.

The third and main contribution of this thesis is the implementation of Virtual
Ray Lights into this framework, which was discussed in the previous sections. As can be
seen from Figure B.1, many properties can be adjusted. For the importance sampling,
all options that were discussed in the previous chapters are available. Furthermore, all
test scene can be selected from a menu and the settings are adjusted accordingly when
doing so. Therefore, all examples that are provided can be recreated.

Figure B.1: A screenshot of the user interface of Smallpaint [ZF18b]. In this example
the implementation of Virtual Ray Lights can be seen.
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