
Game Optimization and Steam Publishing for Swarmlake (2018)

Dominique Grieshofer∗

TU WIEN

Figure 1: 10,000 enemies approaching the player in Swarmlake

Abstract

Video games are complex pieces of software which require a certain
amount of prototyping and iteration to create the intended experi-
ence. They are also real-time applications and need to be perfor-
mant to run at the desired speed.

Most software architecture is about creating more flexible code and
therefore making fewer assumptions which allow for faster proto-
typing and iteration time. However, optimizing is all about making
assumptions and knowing limitations to be able to improve effi-
ciency.

Since optimal optimization is usually more natural to guarantee af-
ter making a well-designed game than vice versa, keeping the code
flexible until the end is a valid compromise. Knowing game opti-
mization patterns beforehand can be useful to make sure only the
least amount of code needs to be rewritten at the end of a game’s
development cycle.

Successfully selling a product such as a video game also requires
marketing and distribution. One of the most influential platform to
distribute computer games on PC is Steam. Knowing more about
the target platform a game releases on can make it more likely to
make the optimal decisions in that process.

This article aims to take a look at game optimization as well as

∗e-mail: d.grieshofer@gmail.com

Steam integration and publishing in the context of the commercially
released game Swarmlake, which is shown in figure 1.

Keywords: C++, OpenGL, CPU, GPU, game engine, optimiza-
tion, Steam

1 Introduction

Swarmlake started as a university subject task of creating a 3D
game from the ground up including a custom-made engine. The
development team already had experience with shipping commer-
cial games using commercial engines and were motivated to make
an equally well-received game.

Without prior experience, the custom-made engine would unlikely
be able to compete in aspects such as rendering, tools pipeline, and
other technology. The chosen strategy to achieve the goal was to try
to make a commercial game not easily possible with commercial
game engines.

Since those engines need to be generic and flexible to facilitate
a wide variety of different game types, they come at the cost of
performance. Therefore the team concentrated on creating a game
that required much optimization such as featuring more than 10,000
concurrent enemies, which later became the unique selling point of
Swarmlake.

On a technical level, the engine needed to run as fast as possible
with the least amount of input-delay to create the intended experi-
ence. The game also had to look modern without being too taxing
on low-end hardware to be able to sell it to the most amount of
potential users.

Both of these points required careful optimization on the CPU and
GPU, which can be beneficial for other games as well. Since
Swarmlake needs to run on as many machines as possible, it was
decided to use the GPU exclusively for processing graphics, and
spend most of the game calculations and optimization effort on the
CPU, which is reflected in the length of that section in this article.

All results were measured on an Intel Core i5-4570 and a Nvidia
GTX 1050 at the enemy engine limit of 20,000 enemies. Finally, to
be able to sell the game it needed to be distributed, and Steam was
chosen as the platform to do this.

Costumers on Steam expect specific functionality from their games
such as having a Steam overlay, achievements and more provided
through the Steamworks SDK integration. Correctly marketing a
game has also never been more critical due to Steam being an al-
most entirely open platform by now.

Therefore research into the Steam platform was conducted, which
should also be of interest to other game developers.

2 Engine Architecture

2.1 Game Loop

Video games are interactive media that come in many different
shapes and designs. One software architecture almost exclusively
used by almost all games is the so-called game loop.

The idea behind this pattern is to achieve a constant game time
which is independent of user input and processing speed. Earlier
games were sometimes explicitly programmed to work for a partic-
ular machine such as early video game consoles, meaning that the
game would run at entirely different speeds on any other hardware
[Nystrom 2014].

Nowadays it has become essential to make the game run consis-
tently across a wide variety of hardware. The first adventure game,
Colossal Cave Adventure, which can be seen in figure 2, was en-
tirely based around text and waited for the player input in the game
loop [Pearson 2017].

Most modern games nowadays need to keep running even without
user input. Even in turn-based games, the audio needs to keep play-
ing, and visuals such as animation need to move all the time.

From a technical point of view, the game loop consists of the fol-
lowing in this order:

1. An infinite loop

2. Processing player input

3. Simulating the world

4. Rendering the results on the screen

Figure 2: Colossal cave adventure [Pearson 2017]

Each loop iteration the state of the world advances based on the
game time, which can be equal to real-time or scaled to real-time
for effects such as slow motion.

The infinite loop is usually only terminated when closing the run-
ning game and deinitializing the application. Since a frame is usu-
ally rendered in each game loop iteration, it also means that in the
context of a game, the number of frames per seconds being dis-
played correlates to the number of game loop cycles executed in
real-time seconds.

Having an unlocked framerate means that the game loop cycles as
quickly as it possibly can, which is mostly only dictated by hard-
ware limitations. However, having an unlocked framerate and re-
quiring the GPU to display frames as quickly as possible can lead
to coil whine.

Coil whine is an unintended noise caused by an electronic compo-
nent which is vibrating due to power running through an electrical
cable. The component in question is usually regulating the power
such as a transformer or inductor.

Coil whine is usually not audible by humans due to the specific fre-
quency and low volume and happens in almost all electrical devices.
However, high-powered components in modern PCs such as pow-
erful graphics cards can cause these high-pitched noises to become
noticeable [Crider 2017].

It is possible and also desirable to lock the framerate to a maximum
intended amount to reduce coil whine and also power consumption.
Locking the framerate is done by spinning in a loop at the start of
the frame and essentially actively waiting to hit the desired frame-
time.

Another option can be to call a sleep function instead of spinning
and let the operating system wake up the program just before reach-
ing the intended time. Unfortunately, the sleep time is hard to con-
trol as the exact return time is usually not guaranteed based on the
operating system’s scheduling and can even cause the game to be
late for the next frame.

Displaying frames on screen disregarding the monitor’s refresh rate
can also lead to other artifacts such as screen tearing, which is dis-
played in figure 3, and happens when the monitor tries to display
two frames at the same time. One often used solution is to enable
vertical synchronization, which tells the graphics driver to wait dis-
playing the next frame until the previous image is fully displayed.

On Windows Vista or 7 using the Aero theme and on Windows 8 or
higher, vertical synchronization is enabled by default [StudioCoast
2018].

Figure 3: Screen tearing artifact, which can be seen by the displace-
ment in the center of the image [StudioCoast 2018]

Swarmlake runs by default in windowed mode, with position and
dimensions set so that the content fully fits the display size, to opt
into the automatic screen tearing prevention of Windows’s DWM
(Desktop Window Manager) compositor.

Due to the DWM compositor copying the window’s content after
drawing and composition itself happening with vertical synchro-
nization, the game still processes simulation and input as quickly as
possible without producing any screen tearing artifacts [Draxinger
2015]. This solution allows users to instantly switch between pro-
grams but also reduces performance marginally due to having to
share more resources with the operating system and other applica-
tions instead of when running in exclusive fullscreen mode.

The framerate achieved by a game depends on the work required for
each frame and the underlying platform the software is running on.
The amount of work needed furthermore depends on the complexity
and quantity of all combined tasks.

The speed of the platform is being dictated by elements such as:

• CPU speed

• CPU core count

• GPU speed

• Operating system’s scheduler

In order to ensure a consistent game simulation, the passage of time
is used to control the rate of gameplay with the following possible
strategies:

2.1.1 Fixed Timestep

The fixed timestep is the most straightforward and theoretically
ideal strategy to handle timestepping if the display refresh rate
matches the game loop’s delta time with vertical synchronization
turned on, and the simulation takes less than the real-time of one
frame.

Unfortunately, as mentioned before this cannot reasonably be en-
sured on the wide variety of today’s hardware and would cause the
game to speed up or slow down depending on the time it takes to
simulate the frame.

2.1.2 Variable Timestep

To fix the issue of the fixed timestep, one valid solution would be
to choose the timestep based on the elapsed real-time since the last

Figure 4: Variable timestep event flow [Nystrom 2014]

frame, which can be seen in figure 4. The game loop’s delta time
would then equal the current time subtracted by the time of the last
loop’s iteration.

On slow computers, this would then result in a reduced framerate
while taking more significant steps in the simulation. On faster
hardware, the game loop could cycle more often during the same
real-time resulting in a smoother simulation with smaller iterative
steps in-between.

The downside of tying the simulation to the framerate is that it be-
comes non-deterministic. That means that if the user performs the
same inputs on subsequent plays, the game would no longer pro-
duce the same output, which can be especially problematic for mul-
tiplayer games and makes implementing replays a more complex
task.

Furthermore, having extreme delta time values can cause physics to
break at certain points, especially at high delta times. Rendering,
on the other hand, is not affected by a variable time step since it
happens after the world simulation and the displayed frame shows
the current snapshot of time [Witters 2009].

For Swarmlake the variable timestep was the chosen strategy since
it is the approach that results in the smallest amount of input la-
tency. Having a non-deterministic simulation as well as no easy
way to implement replays was only deemed secondary to that as
it was decided early on that the former is more likely to affect the
perceived fun of the game than the latter.

2.1.3 Semi-Fixed Timestep

Figure 5: Semi-fixed timestep event flow [Nystrom 2014]

The semi-fixed timestep subdivides the game loop’s timestep into
fixed intervals which the physics simulation is known to be able to
work with, followed by a final simulation step which is smaller than
the fixed interval to consume the remaining time.

This is done in the update game loop, as seen in figure 5, and is
a direct solution to having high delta time values by making the
simulation behave well and stable in those cases.

The downside of subdividing is that it can cause the simulation to
increasingly fall behind if it requires more real-time to simulate all

subdivisions than the simulated amount of game-time. Solutions
to this are leaving enough headroom or clamping the maximum
number of steps to a particular count, which results in slower game
speed in those cases.

2.1.4 Free the Physics

The so-called free-the-physics approach decouples the simulation
and the rendering of frames to achieve a deterministic simulation.
Similar to the semi-fixed timestep the delta time is subdivided into
fixed intervals but the remaining time is no longer processed at the
end and instead added to the delta time of next game loop iteration
[Fiedler 2004].

The downside of ignoring the remaining delta time is that it can
cause subtle visual stuttering, as explained in figure 6, which could
be fixed by interpolating between the previous and the current
physics state based on the remaining time. However, this inter-
polation is relatively complicated to achieve since two states of the
world need to be stored at all times, and it can also cause a visual
latency of up to one simulated frame [Stolk 2016].

Figure 6: Free the physics game loop timeline showing the need to
interpolate [Nystrom 2014]

2.2 Window/Input Handling

Making a cross-platform video game can be challenging when in-
teracting with specific operating system implementations such as
window handling and input handling. Luckily, various libraries ex-
ist which can be used to handle that burden, which includes SDL2
and GLFW.

While Swarmlake initially integrated the latter due to various bug
reports on specific hardware, it became apparent that using the most
stable and battle-tested library in the form of SDL2 was a better
choice.

SDL2 is currently de facto standard library for low-level input and
window handling, having spent 15 years in open-source develop-
ment. It is officially supported by Valve, makes context manage-
ment easy for GLES, Direct3D as well as OpenGL and supports
operating systems such as:

• Windows

• Linux

• macOS

• Android

• iOS

• Raspberry Pi

The library abstracts away all OS events, supports relative mouse
mode, which is especially useful for first-person games, uses an
event loop to poll events and has a game controller API that ef-
fectively simulates all input devices as Xbox controllers, which
are dominantly used by PC gamers as shown by figure 7 [Gordon
2014].

Figure 7: Controller ownership on Steam highlighting the usage of
Xbox controllers on PC [Valve 2018a]

3 CPU Optimization

3.1 Data Locality

Many video games are written in C++ due to being able to handle
memory explicitly and being able to write efficient and fast code
if needed. The development of C++ can be summarized into the
following milestones:

• 1979: Start of development

• 1983: Named C++

• 1985: First commercial release

• 1989: Release of v2.0 with additions such as multiple inheri-
tance and abstract classes

• 1998: Standardized

Since the first inception of C++, various things have changed such
as the CPU and also the memory becoming faster. However, while
the speed of the former increased nearly exponentially, the latter
only grew linearly, resulting in a noticeable processing and memory
speed gap as shown by figure 8.

The relative memory access speed changed from about one CPU
cycle in 1980 to 400+ cycles in 2009. Object-oriented program-
ming, which is heavily used today, encapsulates code and data,
which is non-ideal to get the best performance on modern hardware
[Albrecht 2009].

Figure 8: Historical processing speed and memory speed develop-
ment [Albrecht 2009]

Data-oriented design was first coined in 2009 and is about arranging
data optimally for the CPU to use caching to be able to transform
data efficiently [Llopis 2009]. Whenever the CPU needs to grab

a byte, it also fetches the contiguous memory around it, which is
named cache line.

If the next needed byte is in that cache line, which is a so-called
cache hit, it results in faster performance than needing to fetch the
next byte block from memory. The opposite result is called a cache
miss and causes a CPU stall since it cannot continue processing the
next instruction until receiving the needing data [Meyers 2013].

The idea of data-oriented design is that organizing data affects
speed, which can be as dramatic as a 50 times performance increase
in extreme cases depending on the used hardware [Nystrom 2014].
Therefore, processing should try to get contiguous data by increas-
ing data locality.

Writing flexible code requires abstraction and in C++ that refers
to interfaces or virtual method calls, which both accesses objects
through pointers. Pointers involve hopping across memory, as
shown in figure 9, which is called pointer chasing and can cause
cache misses.

Figure 9: Pointer chasing [Nystrom 2014]

Getting rid of indirection operators (->) is usually an excellent in-
dicator to reduce pointer chasing. Much like in other optimization
patterns, improving cache locality means sacrificing flexible code
abstractions, which should be carefully evaluated before making
this tradeoff.

As mentioned before, having an array of game object pointers can
cause cache misses since the performance depends on the mem-
ory layout. Furthermore, the memory usually gets increasingly
fragmented due to frequent allocation and freeing of game objects
needed in most games.

Improving data locality usually includes moving game object data,
as shown in figure 10, into contiguous arrays, like displayed in fig-
ure 11, to then be able to traverse these game objects each frame
quickly. This does not mean that the traditional game object enti-
ties need to be removed as they can still exist pointing into those
arrays but they would need to be updated whenever game objects
are added or removed.

Another option would be to have handles to game objects which
are then looked up in an index table to find the correct game object.
Additionally, the array of game objects should be sorted by their
active state to get rid of branches and prevent branch prediction
fails from happening.

This is done by removing game objects that become inactive and
adding game objects when becoming active. When adding a simple
counter variable to track the size of the active elements, the con-
tainer could also double as an object pool where all inactive objects
are simply located after the last active one.

Figure 10: Object-oriented call sequence [Llopis 2009]

Figure 11: Data-oriented call sequence [Llopis 2009]

It should be noted that the process of removing an element of a
vector with N elements can result in O(N) runtime complexity due
to having to move all data behind it which can be sped up. That
is done by swapping with the last active one and using pop back
results in a constant O(1).

The side effect of using this approach is that it changes the order
of the objects due to swapping, which fortunately is usually not an
issue for games. When optimizing for cache locality, the amount or
size of data should also be taken into account.

Having smaller data means that more information can fit into one
cache line which further improves performance. In some cases, it
can be useful to fold multiple variables into a single one such as
using a bitmask instead of multiple bool values.

Additionally, the data could also be split into multiple arrays if
part of it is only needed rarely, such as information that is only
needed on construction, deconstruction or only at longer time inter-
vals instead of at every frame. In real-world scenarios, data splitting
should be done carefully since it can result in time-intensive opti-
mization without tangible gains.

As mentioned before, specific code architecture which increases
flexibility can be problematic with a data-oriented design such as
polymorphism. Solutions to this include merely avoiding subclass-

ing and making separate arrays for each game object type, which
has the further advantage of not needing to rely on dynamic dis-
patch improving the performance slightly more.

Data-oriented design usually means that processing becomes a
global scope instead of a local one, on the other hand, it also re-
sults in often simpler code. Additionally, it is also more natural to
parallelize that code by merely working on equally sized chunks of
the data arrays in each thread, which also avoids the costly CPU
cache synchronization of multiple threads requesting bytes in the
same cache line [Sharp 1980].

For Swarmlake, rewriting the engine using a data-oriented design
approach was tested multiple times but early results indicated an
equal or lower performance, because much optimization had al-
ready been done using an object-oriented pattern. While isolated
tests of iterating over 100,000 objects resulted in an approximate
100% speedup, they were in the order of microseconds, leading to
believe that this is not a performance bottleneck in Swarmlake.

3.2 Object Pooling

Figure 12: Object pooling comparison [Placzek 2016]

The idea of object pooling is to reuse objects from a so-called
pool instead of individually allocating or deallocating objects when
needed or no longer needed to improve performance, as is explained
in figure 12. By falling back to the already allocated data, memory
fragmentation can also be avoided.

Fragmentation causes the free memory to be scattered across RAM,
reducing the availability of contiguous regions needed for more sig-

nificant allocations. Reducing or avoiding this from happening fur-
ther improves cache locality.

Performance gains can especially be noticed on memory-limited
hardware such as:

• Embedded systems

• Video game consoles

• Mobile phones

Typically, each object pool contains a collection of reusable objects,
and one game object pool is used for each type of game object.

By reusing objects, some care needs to be taken to clear or fully
reinitialize them since they can still contain state from the last time
they were active. When resorting to doing this manually, it is easy
to forget clearing one variable on reuse, which was also the cause
of minor bugs caught during the development of Swarmlake.

When the game or level is being initialized, the pool can be filled
with objects which are later retrieved as needed. Complementary
to that, if an object becomes inactive it can be added into the object
pool again to be able to reuse it.

Adding and removing objects from the pool can also be replaced by
using a state to flag if the object is in use depending on the specific
needs. Various strategies deal with having all objects in use which
are the following:

3.2.1 Avoid running out of objects

This strategy is about pre-allocating enough elements in the pool so
that it never runs out of needed objects. For essential gameplay ele-
ments like enemies or items, this is a valid and often used approach.
Ideally, the pool should be as small as possible to reduce memory
and improve data locality.

The drawback is that it could result in requiring to reserve much
memory depending on how varied the gameplay elements are in
the game. Therefore it might be useful not to use a fixed pool size
for all game objects and tune them based on the specific levels or
scenarios.

For Swarmlake this was the chosen strategy for gameplay elements
such as enemies and projectiles.

3.2.2 Prevent creating new objects

Not creating new objects when the pool runs out and doing nothing
can be useful to avoid framespikes by preventing having too many
objects active at once. For example, when a big explosion happens
in Swarmlake, the concurrent audio and visual effect amounts are
limited by the pool to level performance.

3.2.3 Remove less important objects

While more complicated to implement and taxing to run than the
other strategies, removing less critical objects is useful mainly for
sound effects where it would be more noticeable if a new sound
does not play than the existing quietest one stops playing.

Additionally, the audio mix also benefits from more clarity if fewer
sounds are playing at once, which was the chosen solution for the
sound effects in Swarmlake.

3.2.4 Increase pool size

While causing unwanted memory allocations increasing, the pool
size might sometimes be necessary depending on the type of game,

for example when featuring a big and varied open world. It should
be noted that the pool could later also be reduced in size again if
those additional objects are no longer needed.

3.3 Branch Prediction

On a modern CPU, a single instruction can take several clock cycles
to be executed, therefore instructions are pipelined to keep the CPU
busy and work more efficiently. If possible, the next instruction will
start before the previous one finishes.

This means that guessing the next executed instructions is neces-
sary, which is relatively simple for straight-line code. For control
flow, guessing becomes more difficult and is based on the previous
check results.

Whenever a branch prediction fails, the pipeline needs to be flushed,
and the instruction will have to start over. The performance impact
of this varies, but avoiding flow control in hot code can be faster.

In Swarmlake branches within the update loop about state changes
were replaced with variables if possible. For example, instead of
increasing or decreasing the size of an object based on a state, we
simply store the intended positive or negative increment in a vari-
able when the state changes and apply it to the current size each
frame.

Additionally, timers were implemented for time-based states, which
are then calling events once instead of checking a condition each
frame. Sorting timers by their time also allows checking the next
upcoming ones globally, which further improves performance.

3.4 C++ STL Containers

Figure 13: List, vector, deque and pre-initialized vector fill back
performance [Wicht 2012]

C++ allows programmers to use the STL (Standard Template Li-
brary) to have access to certain generic containers such as:

• std::vector

• std::list

• std::deque

A C++ vector is a contiguous dynamic array which can increase in
size if needed. Since reallocating more space and moving the data
can be expensive, it can be faster to reserve the maximum needed
capacity beforehand [Pozo 1997].

Figure 14: Deque, list and vector sort performance [Wicht 2012]

When iterating over many objects each frame a vector, an array or
similar implementations are usually the most performant solution
due to the contiguous memory they provide.

As mentioned before, the downside of removing elements in the
middle can be avoided by using the swap and pop idiom, making
them ideal for games unlike the deque or linked list as highlighted
by figure 13 and figure 14, which is also why they were used for all
collections in Swarmlake.

3.5 Multi-Threaded Engine

Since today’s CPUs provide multiple cores to improve the maxi-
mum possible processing speed, it is required to implement a multi-
threaded engine to make use of all resources.

If possible mutexes, locks and other synchronization mechanisms
should be avoided to prevent possible required wait time. There
exist two different strategies:

3.5.1 Functional Decomposition

Figure 15: Function decomposition graph [Orion Granatir 2010]

Functional decomposition, as seen in figure 15, involves splitting
the work by function such as AI, physics, audio, and renderer. Un-
fortunately, this does not scale well and would not be future proof
if CPU core count increases.

3.5.2 Data Decomposition

Instead, parallelizing the data, as in figure 16, is a more effective so-
lution, which is done by iterating over all objects in parallel while
only allowing to mutate its local state but not the global state which
can only be read from. Afterwards, there can be another loop exe-
cuted on a single thread which then allows the objects to mutate the
global state if necessary [Orion Granatir 2010].

Figure 16: Data decomposition visualization [Binstock 2011]

The underlying implementation usually creates jobs to update game
objects which are being executed in a thread pool. This pool spawns
a thread for each physical or logical CPU core which waits for new
jobs to process [Akhter and Roberts 2006].

In Swarmlake there is one thread spawned for each logical CPU
core which works on jobs that process equally sized game object
chunks based on the thread count. These jobs consist of simulating
as much data of the objects as possible without changing global
state, which includes calculating collisions, position, rotation and
the render matrix.

Afterwards, all game objects are processed sequentially in the main
thread to update global state such as updating the new positions in
the spatial grid and starting timers if necessary. Then, the render
matrices are collected in a separate array and sorted, which is done
in a separate job for each game object batch to prepare rendering
the frame.

Finally, the commands are sent to the GPU in the main thread to
have the least amount of visual latency.

3.6 Spatial Partitioning

Many modern games need to use collision so that the player can
interact with the environment. Checking N objects for a collision
by the player is a task with O(N) runtime complexity, and if ob-
jects themselves need to collide with all other objects as well, this
increases to O(N2) when using a brute-force approach.

This expensive task can be improved by using spatial partition-
ing, which is about organizing and efficiently retrieving objects by
their spatial location. With this paradigm, only nearby objects are
checked for their collision, which speeds up the process.

Spatial partitioning is more effective the more concurrent objects
are required due to the exponential nature described above. Other
game systems such as audio can also benefit from having fast access
to spatial information.

The active game object list used by most games is usually not sorted
by their distance, which means that another container needs to be

added to store the information. In that case, this performance strat-
egy is - similar to others - a tradeoff between a bigger required
memory size for more speed.

Another idea would be to only store the objects in the partitions
instead of an active game object list, but having the requirement
of iterating over empty partitions would reduce the data locality
and might therefore not be ideal. It should be noted that the spatial
data also needs to be reorganized whenever objects within it change
location [Lefebvre and Hoppe 2006].

For maximum efficiency, the partitions should be balanced by hav-
ing approximately the same amount of objects within them. The
following strategies exist to accomplish this:

3.6.1 Hierarchical Partitioning

Figure 17: Hierarchical partitioning using a quadtree [Nystrom
2014]

As mentioned before, it is more efficient to avoid empty space,
which is done by hierarchical partitioning implementations [Eitz
and Lixu 2007]. Examples include a k-d tree or Quadtree, which is
visualized in figure 17.

3.6.2 Flat Partitioning

Figure 18: Spatial partitioning in 3D using a fixed grid [Jr 2016]

A flat spatial partitioning is both more straightforward to implement
and understand than a hierarchical one and examples include a fixed
grid, as displayed in figure 18. Additionally, the memory usage is
constant since the partitions can be fixed at the start of the game or
level.

Updating the positions of each object can be more performant as
well since there are not multiple layers that could be affected. For

Swarmlake, this strategy was used since the game level is small and
densely packed with objects having little empty space.

Collision and enemy avoidance is the most expensive system in the
game, which requires about 4.4ms (68%) of approximately 6.5ms
frame-time and as such, tweaking the grid dimensions, the bucket
dimensions and the bucket array size allowed for significant im-
provements.

3.7 C++ Low-Level Optimization

Aside from the previously mentioned more significant optimiza-
tion methods, there are many more small tweaks possible to speed
up computation some more. Since games usually operate with a
known range of possible player interaction, many calculations can
be precomputed by using static tables or arrays.

The compiler can also help improve performance, for example, try-
ing to inline smaller functions to prevent unnecessary function calls.
Similarly, trivializing structs by removing manual constructors and
destructors [Fernandes 2011] can allow the compiler to optimize the
code even more, for example by reducing the runtime complexity
of clearing a vector from O(N) to O(1) [Cato 2013].

Additionally, using the ”fast floating-point operations” compiler
optimization can help speed up mathematical equations at the cost
of precision, which is also the default compiler option used by Xbox
games [Hogg 2015]. In the case of Swarmlake, this resulted in
about a 1ms frame-time speedup without any visual noticeable dif-
ferences.

Using constant references for complex data objects such as strings
when only reading and not assigning data can save on copy instruc-
tions [Chopanza 2014]. Using global variables instead of a single-
ton or references is also sometimes done for efficiency at the cost
of code maintainability.

Using a math library that can call SIMD instructions which are used
by most CPUs used today such as SSE can be beneficial [Tian et al.
2012]. More manual math simplifications can be to not calculat-
ing the square root where applicable, for example by comparing
squared distances instead of actual distances.

More game-specific optimization can also be to avoid work as much
as possible, such as not calculating inverse matrices for correct
shadows for non-uniformly scaled objects by merely only using
uniformly scaled ones. Likewise reducing excessive state checks
at the cost of code maintainability might be possible, but this could
also evolve into a significant time investment for little to no gain.

Exception handling and RAII (Resource Acquisition is Initializa-
tion) can be disabled in the compiler as it is usually unnecessary
for games. Finally, if using a thread pool with jobs implemented as
std::function, it might be useful to reduce their allocations by us-
ing template parameters, wrapping them in a lambda, using stack
allocation or using std::ref() and std::cref() [Wolfe 2015].

4 GPU Optimization

4.1 View Frustum Culling

To be able to render a frame, usually a virtual camera is used which
visualizes the world. With a perspective projection, the position of
the camera represents the tip of the visible pyramid, which is further
truncated by the near and far clipping planes, as seen in figure 19.

Those planes are required due to needing to represent depth within
a finite amount of values in the depth buffer. The goal of view
frustum culling is to identify all objects that are wholly or partially

inside the view frustum and cull away everything else, as displayed
in figure 20.

Figure 19: View frustum visualization of a camera [Lighthouse3d
2011]

Due to how the visibility is being determined in the described
method, the occlusion of objects is not taken into account. That
means that objects within the view could still be rendered even
when being wholly occluded by other visible objects in the front.

Figure 20: Top and side view of view-frustum culling [Light-
house3d 2011]

Since some time is required to calculate the visibility of all objects,
this optimization should only be used when the visible part of the
world is a small enough fraction of the whole world, that the per-
formance gains outweigh the costs [Akenine-Moller et al. 2008].

At first, the frustum volume information is being calculated when-
ever the camera changes, which equals to every frame in many
games. Afterwards, each object in the world is tested against this
updated view frustum volume.

The geometric frustum culling approach extracts the six planes of
the view frustum volume boundary. The normal of each plane
points towards the inside to be able to calculate the point distance
using a dot product. To test if a point is inside the view the distance
needs to be positive for all planes.

Doing this check is expensive for each vertex. Therefore, it is sug-
gested to instead check with bounding volumes such as spheres or
boxes. To test for spheres instead of points the distance needs to be
bigger or equal the bounding volume radius for all planes [Coorg
and Teller 1997].

In Swarmlake view frustum culling was implemented using this ap-
proach with bounding spheres due to its simplicity. Additionally,
the near and far planes are not calculated and checked since the
former does not clip away significantly more after the other sides
are checked and the latter not being needed as all objects in this

specific game are within the far clipping plane of the camera. This
optimization reduced the total render-time by about 1.2ms in aver-
age cases.

4.2 Instanced Rendering

To be able to render objects on the screen, the CPU needs to pass
data to the GPU using API calls. Sending the data for drawing an
object is called a draw call, which is a resource-intensive task that
causes additional performance overhead on the CPU and can cause
a bottleneck, as can be seen in figure 21.

Figure 21: Visualization of a CPU that bottlenecks the GPU [Jukić
2015]

Instanced rendering uses a single draw call for all instances of the
same model instead of dispatching multiple expensive draw calls
while changing uniform variables for each object, as is visualized
in figure 22. A single occurrence of a model within this drawn batch
is a called an instance.

All of those instances use the same vertex data but have different
world transformations, causing instanced rendering to be more ef-
ficient. In OpenGL, this is implemented by storing the instanced
array vertex attribute in a vertex buffer object and configuring the
attribute pointer to use this attribute in the shader [Wright Jr et al.
2010].

Figure 22: A single draw call highlighted in white using instanced
rendering in Swarmlake

Additionally, the vertex attribute divisor can tell the GPU to auto-
matically update the vertex attribute for each instance itself, and
the render call is then being issued using separate instanced ver-
sions of the draw function [Shreiner et al. 2009]. The downside of
this method is that all objects need to be static models and that they
can only be individually animated in the shader [Fan et al. 2015].

In Swarmlake, instanced rendering was used for all objects that
have multiple occurrences in the world, which made it possible to
render ten thousands of enemies, thousands of collectibles and hun-
dreds of projectiles each frame with little overhead. However, for
performance reasons, the vertex count of all models also needed to

be as low as possible due to the large number of objects, as seen in
figure 23.

Figure 23: Wireframe of a single draw call in Swarmlake showing
the small number of polygons and vertices

Finally, performance can be further improved by reducing GPU
commands such as unnecessary state changes and queries for ex-
ample by caching OpenGL states manually instead of requesting
the current value.

4.3 Depth Sorting

Most of today’s GPUs support early depth testing, which allows
the hardware to run depth tests before the fragment shader is exe-
cuted. If it is clear that a pixel is behind an already written, one this
fragment will be discarded, which speeds up the process [Khronos
2018a].

The idea of a front-to-back renderer is to draw objects in the front
first to reduce overdraw. This can be implemented by sorting all
models or model instances that need to be rendered ascending by
their distance to the camera before sending them to the GPU, as
seen in figure 24.

Additionally, overdraw can be further reduced by using less trans-
parent and more opaque shaders, which is especially important on
systems such as consoles and mobile phones. In Swarmlake, all
batches are ordered by their expected distance for example by ren-
dering the gun first and the skybox last.

Figure 24: Early depth test result of a draw call in Swarmlake with
red being discarded pixels

In case of enemies, where this cannot be predicted, sorting the
batches by the used model vertex count resulted in a frame-time per-
formance speedup of about 0.7ms. Additionally, instances within

those batches such as each enemy or projectile are also sorted by
their calculated distance to the camera and all used shaders are com-
pletely opaque.

This allowed early depth testing to be effective, which resulted in
a noticeable performance speedup. Finally, relying on the depth
buffer can allow to not having to clear the color buffer, which fur-
ther increases the render speed slightly [Paul 1997].

4.4 Bloom Downsampling

Figure 25: Bloom with a single Gaussian filter on the left compared
to bloom with five Gaussian filter iterations and combined with a
dirt texture on the right [Mittring 2012]

Many modern games use a subtle and wide bloom in their post pro-
cess pipeline, as shown in figure 25, which has become an expected
effect by players today. Implementing this with a single Gaussian
blur filter can be expensive since the kernel size would need to be
relatively large.

A more elegant solution is to approximate a big kernel size, as seen
in figure 26, by doing the following:

1. Downsample image by 50%

2. Extract bright parts with a high-pass filter based on the lumi-
nance

3. Blur using a horizontal-pass followed by a vertical-pass Gaus-
sian blur filter

4. Repeat multiple times in a loop

Finally, all downsampled images are additively blended on the
source image to get the final look. In Swarmlake this technique
reduced the total render-time by about 2ms. Further optimization
includes reducing the initial bloom source image resolution before
downsampling.

Figure 26: Bloom distribution when being downsampled five times
[Mittring 2012]

Another option would be to remove the high-pass filter by squar-
ing and then normalizing the color result in the shader that addi-
tively blends the results together. The downside of this is that it can
change the bloom colors from the source color, which results in a
more stylized look.

In Swarmlake, the initial bloom image is 25% the size of the source
image which is being downsampled to 12.5% and 6.25% in the re-
spective iteration of a total of three loops without using a high-pass
filter.

4.5 Shader Low-Level Optimization

Shaders are being compiled by the graphics drivers before sending
the data to the GPU. While the compiler can perform certain speed
improvements, it cannot change operation semantics and therefore
cannot replace manual optimization.

Low-level shader optimization requires deep GPU understanding
and may highly depend on the hardware architecture. In some cases
using a single MAD instruction instead of an ADD and MUL in-
struction by changing the formula can result in a speedup. This
optimization cannot always be done by the compiler as it can result
in unsafe code [Persson 2013].

Negations and ABS instructions are also usually free on input and
SAT instruction free on output. That means that in the case of GLSL
which is the shading language used by OpenGL it can be beneficial
to use a clamp() function with 0.0 as minimum and 1.0 as maximum
value instead of either a maximum() or minimum() function with
equivalent barriers.

Figure 27: Shader evaluation-order optimization using brackets
[Persson 2013]

Scalar and vector operations can be separated as well, as shown in
figure 27, for example by using brackets to break up multiplication
dependency chains in order to improve performance. Additionally,
functions such as rcp(), rsqrt() and sqrt() which map to hardware
can be faster than for example using normalize() [Persson 2014].

In some cases using constants where possible, unrolling loops man-
ually and getting rid of branches using functions such as step() can
also result in a speedup [Khronos 2014].

5 Steam

5.1 History

Valve was founded in 1998 by Gabe Newell, and Mike Harrington
and initially made best-selling game franchises such as Half-Life,
Counter-Strike, Left 4 Dead, Team Fortress and Portal. However,
the company faced a problematic business model for PC games
such as video game piracy, the console gaming competition, and
selling games physically without the ability to update and add ser-
vices or extra content [Marshall-Nagy 2014].

Therefore, as a possible solution Steam was launched in 2003 by
Valve as a digital distribution platform to buy the company’s games
and have online gaming functionality. Additionally, it came with
authentication and unobtrusive DRM (Digital Rights Management)
functionality, which removed the ability to trade used games [Dunn
2013].

Figure 28: Half-Life 2 launch on Steam [Sayer 2016]

That was a significant risk for Valve since users were expected to
dislike having less freedom with their bought software. Therefore,
the company’s highly anticipated game Half-Life 2 was launched
exclusively on Steam to help make the platform more widely used,
as shown in figure 28 [Wingfield 2012].

Figure 29: First third-party game Ragdoll Kung Fu distributed on
Steam [Sayer 2016]

In 2005 games from other developers and publishers such as Rag-
doll Kung Fu were added onto Steam, as seen in figure 29, which
marked the transition to an online store for all PC games. Continu-
ously more features were added such as:

• Cloud saves

• Achievements

• Gamer profiles

• Community groups

• Support for macOS and Linux

Valve is especially active in supporting Linux due to the introduc-
tion of the Windows App Store starting in Windows 8, which could
be seen as a threat to the company.

Their effort includes initiatives such as building Linux Steam ma-
chines [Wilde 2018], adding support for shader pre-caching for
OpenGL- and Vulkan-based games [Valve 2017d] and adding sup-
port to play Windows-exclusive games on Linux using a modifica-
tion of Wine called Proton [Valve 2018b].

Due to being the first to market and Valve’s continued work, Steam
has cemented itself at the forefront of online gaming distribution
even with an increasing amount of competitors such as EA’s Origin
or GOG.

5.2 Greenlight

Steam is a global digital distribution platform for PC games fea-
turing many third-party developers and publishers. In the past, a
small team at Valve decided which games would be allowed onto
this store.

As the community interest increased in requesting more titles that
the team would not have necessarily picked they became unsure
about their own judgment and introduced a new way for games to
be added.

Steam Greenlight was introduced on August 30, 2012, so that the
community could help decide if a game should be published on
Steam, as displayed in figure 30. There, developers or publishers
would post information and media about their product and users
could rate with a thumbs up or thumbs down depending on their
interest [Valve 2012b].

Figure 30: Steam Greenlight Portal [DellaFave 2014]

These potential buyers were able to leave feedback in the form of
comments and forum discussions. That allowed developers and
publishers also to gain exposure and connect with their possible
future customers.

Steam Greenlight substantially lowered the barrier for developers
to release games on Steam. On the first day alone more than 600
games were submitted with a total of over 2.3M user votes.

Therefore, one week after introducing this new process a one-time
submission fee of 100$ was added due to concerns about discover-
ability and fraudulent or gag listings. This fee entirely went to the

charitable organization Child’s Play and needed to be paid by the
developer or publisher for each product [Valve 2012c].

On September 11, 2012, the first ten games successfully made it
through Greenlight based on the community votes and Valve’s fi-
nal decisions. Out of those, the first publicly released game was
McPixel on September 26, 2012 [Valve 2012a].

To create a product listing on Steam Greenlight, as shown in fig-
ure 31, the following was needed:

• A valid Steam account

• Filling out the submission form

• A box art image

• One Youtube video and at least four screenshots

• A description of the product

Figure 31: Steam Greenlight page of a successfully accepted game
[DellaFave 2014]

This listing needed to rank under the top currently votable games in
order to be looked at by Valve, who made the final decision. With
about 1,500 games being eligible at any time in 2013 Valve usually
accepted batches of 100 games or products, per month.

The top 50 of those games had a 60:40 ratio of thumbs up to thumbs
down votes, but only thumbs up votes were counted towards the
rank. Therefore driving traffic and attention towards the Steam
Greenlight page using the developer’s social following or Kick-
starter campaign was suggested [DellaFave 2014].

The graphical and overall presentation of the Steam Greenlight
page such as the trailer, a clear USP (unique selling point) and a
concise elevator pitch was important since users could not try the
proposed games.

Steam Greenlight was active for five years during which more than
90M votes were recorded by at least 10M players. 63M players
played games released through this process and over 100 of those
titles made over $1M each [Valve 2017b].

Many of the games released through Steam Greenlight were un-
likely to be published on the earlier heavily curated store.

5.3 Steam Direct

To make the process of getting a game on Steam as accessible and
transparent as possible Valve introduced Steam Direct on June 13,
2017, which replaced Steam Greenlight [Valve 2018g]. The idea
behind this system is that neither the platform’s company nor the
community has a say in which types of games are allowed onto the
store.

While Valve distances itself from the created and sold content in
general, everything is allowed onto the store except for illegal or
trolling content [Valve 2018n] such as:

• Incorrectly labeled or age-gated adult content

• Defamatory statements

• Infringing content

• Content showing child exploitation

• Malware

• Viruses

• Fraudulent content

The requirements of Steam Direct include digital paperwork such
as a company name and address as well as contact, bank, and tax
information. Similar to Steam Greenlight a $100 fee per application
is still required but the payee will be able to recoup it after at least
$1,000 revenue [Valve 2018c].

After getting access to the Steamworks page, the developer can up-
load the build of the game and set up the store page. This submis-
sion is then being reviewed to check if the configuration is correct
and to make sure that it does not include illegal content.

Additionally, the store page of the game needs to be visible for at
least two weeks before release to make it possible for the commu-
nity to report possible issues. Finally, there is also a 30-day wait
duration between signing up for Steam Direct and being able to re-
lease the title.

Figure 32: New games on Steam being released each month [Galy-
onkin 2018]

Steam Direct resulted in more games than ever released on Steam,
with 7,696 in 2017, which is 39% of all of the available 21,406
games, as displayed in figure 32 [Galyonkin 2018]. With this new
process, about 180 games per week are released, which is a no-
ticeable increase of the approximately 70 games per week during
Steam Greenlight, as shown in figure 33.

However, the latter turned out to be more disruptive as only about
five games were released per week before Steam Greenlight which
was an increase by a factor of 14 [McAloon 2018]. With the release
of Steam Direct the documentation of it as well as Steamworks and
its SDK was reworked and is now publicly available.

Figure 33: Weekly game releases with Steam Direct [McAloon
2018]

It should also be noted that most of these released games are in-
die titles, but the time Steam users spend playing indie titles is not
keeping up, as visualized in figure 34, making creating successful
indie games increasingly challenging.

Figure 34: Total playtime of indie games on Steam compared to
number of released titles [Galyonkin 2018]

5.4 Steamworks SDK

The Steamworks development SDK allows game developers to im-
plement features expected by players on Steam, such as the Steam
overlay, which is used to keep interacting with Steam, chat, browse
the store and see leaderboard rankings and achievements being un-
locked [Valve 2018l].

The SDK supports C++ Visual Studio 2008 or higher on Windows
and GCC 4.6 or higher as well as Clang 3.0 or higher on macOS
and Linux. It was used by Swarmlake to add support for the Steam
overlay, achievements, and leaderboards.

5.4.1 Overlay

The initialization of Steam within the game and its overlay is done
through the SteamAPI Init() function. Afterwards, games can use a
license check to see if the user is authenticated on the platform and
owns the game by calling the SteamAPI RestartAppIfNecessary()
function which alternatively can also be added by an external DRM
wrapper.

After the game has successfully launched, most code interactions
happen through asynchronous events due to requiring networking to

fetch or send information from or to the Steam servers. To receive
callbacks to these events the game should bind custom functions to
them when initiating an asynchronous query.

Those functions are then being activated if a result was received
by calling the SteamAPI RunCallbacks() function with a recom-
mended interval of at least ten times per second. Finally, when
closing the game, the resources should be released by calling the
SteamAPI Shutdown() function [Valve 2018l].

5.4.2 Achievements

Achievements provide additional value for players by ideally giving
them optional and challenging tasks to increase the playtime. The
configuration of their ids, images, names, and descriptions is being
done through the Steamworks App Admin backend, as shown in
figure 35.

To be able to fetch and cache the state of all achievements from
the server, the game needs to call the RequestCurrentStats() func-
tion and bind to the OnUserStatsReceived() callback to receive the
requested response. Afterwards, each achievement can be further
queried for their unlocked state locally by using the GetAchieve-
ment() method.

On the other hand, unlocking achievements is done through the Se-
tAchievement() function followed by calling StoreStats() with the
respective OnUserStatsStored() callback to send the request to the
server [Valve 2018m].

Figure 35: Steam achievements configuration on Steam App Admin
backend [Valve 2018m]

Achievements in Swarmlake were used to give multiple subgoals
towards reaching the final goal of getting a score of 10,000, which
can be seen in figure 36. Additionally, each achievement contains
an image of the alphabet to allow users to spell words on their
achievements showcase within their game profile.

The method of using desirable achievements was also employed
in an extreme form by many so-called fake games, which awarded
players with thousands of achievements in some cases by merely
idling in the game to quickly increase the user’s achievement count.

Figure 36: Swarmlake achievements publicly visible on the com-
munity page

Due to Valve’s continued effort, those fake games were later
stopped from being easily profitable. That was done by employing
a limit of 100 achievements, all achievements will no longer con-
tribute towards the player’s global achievement count and achieve-
ments cannot be shown on the profile until the game reaches a spe-
cific undisclosed confidence metric [Valve 2018d].

5.4.3 Leaderboard

Similar to achievements, leaderboards provide more value to play-
ers by allowing them to compete against friends or each other glob-
ally in games that have a scoring mechanic.

Figure 37: Steam leaderboards configuration on Steam App Admin
backend [Valve 2018i]

The configuration on the Steamworks App Admin backend is about
setting up a leaderboard with an id, a name, if it should be visible
on the Steam community page as well as primary display and sort
settings, as is shown in figure 37.

First, the leaderboard handle needs to be received from the server
to be able to further work with a leaderboard in the game. This
is done through the FindLeaderboard() function and the respective
OnLeaderboardFound() callback.

Afterwards, leaderboard entries can be downloaded and cached
with the DownloadLeaderboardEntries() method by providing the
handle and the result will be returned using the OnLeaderboard-
ScoresDownloaded() callback.

To further parse and get the state of those downloaded entries, the
GetDownloadedLeaderboardEntry() function is used with the pa-
rameter of the entry index.

Finally, to upload a new or updated entry, the game needs to call the
UploadLeaderboardScore() method by providing the leaderboard
handle and the upload result can be checked in the OnLeaderboard-
ScoreUploaded() callback [Valve 2018i].

In Swarmlake, a single leaderboard is used, as seen in figure 38,
which is also being shown in the game to motivate players to im-
prove their highscore. Additionally, it allows the player to measure
their own skill at the game compared to others and provide an addi-
tional challenge after reaching the final required achievement score
of 10,000.

Figure 38: Swarmlake leaderboard publicly visible on the commu-
nity page

It should be noted that there is little to no security from this Steam
service to make sure that the scores are authentic. Management of
the leaderboard is also limited with the only option, to edit or delete
single entries or reset the whole leaderboard.

Since players cannot be banned from a leaderboard, different
workarounds exist such as creating a new manually managed
leaderboard which contains all banned players that is checked by
the game initially. However, it might also be possible for attackers
to upload scores even without using the game, which would circum-
vent that method.

Furthermore, cheating is hard to prevent in an offline single-player
game since attackers can add a debugger or otherwise hack the
game to do what they want. One possible strategy is to allow user
verification by uploading a watchable replay along with the score if
the game supports that.

Due to technological limitations, in Swarmlake only a simple non-
disclosed solution was used to prevent the easiest of memory hacks
from working with standard tools such as Cheat Engine without
further knowledge of the game’s internal handling.

5.4.4 Cloud Saves

Figure 39: Steam auto-cloud configuration on Steam App Admin
backend [Valve 2018f]

Cloud saves allow to store saved game data such as progress on the
Steam servers so that players will be able to keep their save data
across different hardware or when removing the local storage.

The configuration of this service is done in the Steamworks App
Admin backend where the developer can set the byte quota per user
and the number of files allowed, as displayed in figure 39.

Steam cloud can be integrated using the Steamworks API or by
using auto-cloud, which tells the Steam client to synchronize the

specified files after termination automatically.

That is done based on the configuration of a base directory path and
file patterns with optional wildcards which should exclude machine
specific configuration like video settings [Valve 2018f].

5.4.5 Trading Cards

Figure 40: Steam Trading Card Booster Packs [Valve 2018k]

Steam Trading Cards, as seen in figure 40, were added in 2013
so that players can collect virtual cards to show off their favorite
games. They are tradable with other players using real money,
which allowed them to create their own ecosystem [Valve 2013].

Steam Trading Cards are being awarded automatically after a cer-
tain amount of playtime after the developer has set them up in the
Steamworks App Admin backend and once they are approved by
Valve [Valve 2018k].

They include the following:

• Five to 15 trading cards in 1920x1080 and 206x184

• Five to ten emoticons in 18x18 and 54x54

• Five badges in 80x80

• One foil badge in 80x80

• Three to ten profile backgrounds in 1920x1080

Trading cards add extra value for users as well as developers which
implement them, but similar to achievements those virtual cards
also attracted abuse by fake games.

Therefore, Steam Trading Cards are now only approved by Valve
after reaching the non-disclosed confidence metric related to the
performance of how well the game is doing [Valve 2017a].

5.5 Marketing

It was estimated that Steam made a total of about $4.3B revenue
with approximately 291M active users in 2017 [Bailey 2018b].
Valve’s digital game distribution service is influential for the PC
gaming market and accounts for at least 18% revenue of this gam-
ing platform, which excludes all in-game purchases such as DLC
(downloadable content) [Bailey 2018a].

The games sold on Steam are hit-driven, since 50% of all earned
revenue of the platform came from the top 100 (0.5%) titles. Those
games require about $22M earned yearly revenue to get into the top
20 which has been relatively unchanged from 2016.

The median owners for indie games, on the other hand, went down
from approximately 5,000 overall to about 1,500 for games released
in 2017. Similarly, median prices of indie games have decreased
from $3.99 overall to about $2.99 for released games in 2017.

Most of this could be due to the increased amount of games that
were released with the Steam Direct launch in the middle of 2017.
That could be inferred due to the marginally higher gross revenue

of $160,000 that was required in 2017 to reach the top 2,000 games
compared to the $150,000 gross revenue the year before [Galyonkin
2018].

Figure 41: Revenue by max price excluding the outlier game
PlayerUnknown’s Battlegrounds [Galyonkin 2018]

The approximate normal distribution of Steam game prices is
around $9.99, as shown in figure 41, where many indie games are
located. However, the amount of revenue by titles earned at that
price range is only 11.16% compared to $19.99 with about 19.56%
and $59.99 with 18.49%.

Swarmlake was sold at $0.99, whose price category is responsi-
ble for about 0.72% global revenue and later at $2.99, whose price
range translates to about 0.83% of all revenue for Steam games.
That also shows that cheap games do not sell as well as people
are gravitating towards more expensive titles with a possibly higher
perceived quality.

Figure 42: New users on Steam per year [Galyonkin 2018]

Steam has a steadily growing user base with more and more new
players joining every year, which is displayed in figure 42. About
63,000 new users have joined in 2017, which equals to approxi-
mately 22% of all players.

Figure 43: Median games per users owned on Steam [Galyonkin
2018]

However, new players are buying fewer games, which results in
a shrinking count of median games per user owned, as shown in
figure 43.

The top 10 countries buying the most amount of indie games are
the following:

1. USA

2. China

3. Russia

4. Germany

5. UK

6. France

7. Canada

8. Brazil

9. Poland

10. Australia

That could mean that spending time or money into localizing the
game might be worthwhile to find the biggest audience. On the
other hand, the top 10 countries spending the most amount of
money on indie games are different due to the special regional pric-
ing of markets like China and Russia:

1. USA

2. Germany

3. UK

4. France

5. Canada

6. Australia

7. Poland

8. Russia

9. China

10. Brazil

Furthermore, Steam also features discounts displayed on the store,
which helps boost the visibility of participating titles. The platform
has at least two big yearly sales as well, which are the Steam Winter
Sale and Steam Summer Sale.

Figure 44: Playtime of Steam games [Galyonkin 2016]

The former is usually more prominent than the latter and made
about $270M in the winter of 2016, which is twice as much as the

sale in the summer of the same year [Galyonkin 2016]. The rea-
son for this could be that people have more time to play during the
winter sale, as can be seen in figure 44.

Figure 45: Steam game sales by discount [Galyonkin 2016]

As of 2017, indie games sell in average 21,000 copies over their
lifetime with the average price of $8.72, which was discounted in
average to about $4.63 during the Steam Summer Sale 2016 [Galy-
onkin 2017]. Additionally, out of all usual discounts, the most lu-
crative are at 75%, 66%, and 50%, as displayed in figure 45.

Discounting games on Steam is an often used and great tool to grow
a title’s audience and increase its lifetime. The following types of
discounts exist on the platform:

• Launch discount: Lasts for seven days and can be up to 40%
off of the normal price

• Weeklong Deal: Lasts for seven days starting on Monday 10
AM Pacific time where any title can take part and is featured
in a capsule on the store

• Custom discount: Can be fully customized

• Daily Deal: Lasts for 48 hours and is curated by Valve

• Weekend Deal: Lasts for four days starting on Thursday 10
AM Pacific time and is curated by Valve

• Midweek Madness: Lasts for three days starting on Tuesday
10 AM Pacific time and is curated by Valve

• Seasonal sales: Special holiday sales such as Winter Sale or
Summer Sale where any game can take part and which are
generating much activity on the platform

Self-serve discounts can be created and managed in the Steamworks
page, and for curated promotions, Valve will contact the developers
or publishers themselves. Additionally, the following rules exist to
prevent developers or publishers from creating discounts too often
and protecting the value of their games:

1. Custom discounts need to be spaced apart by at least two
months

2. Custom discounts can only be submitted after two months of
release

3. Seasonal discounts can only be joined after 30 days of release
or 30 days of the end of the launch discount

While discounting is a powerful tool, it also needs to be carefully
handled not to ruin longterm sales and revenue. Valve suggests to
stairstep and ease into the discount percentage over time by first
reducing the price by 33%, which is followed by 50%, 66% and
75% over the course of a year.

Additionally, scheduling content updates of the game to discounts
can further increase player interest as it sends the message that the
developer is committed to improving the game at a the time where
the title has increased visibility [Valve 2018h]. For Swarmlake,
participating in the Steam holiday sales as well as weeklong sales
has been essential to raising the awareness and discoverability of
the game.

Figure 46: Press game review scores and player count correlation
[Galyonkin 2015]

Good reviews from the press, as well as user reviews, usually cor-
relate with good sales, as displayed in figure 46. Nonetheless, bad
reviews are likely still better than silence, which emphasizes the
need to invest in PR and marketing.

This is further demonstrated by successful games on Steam usually
having press coverage for a sizable time before release. To stand
out from the crowd, it is a useful strategy to try to find the right
niche for the game [Galyonkin 2015].

Therefore, games should also be treated as a unique marketing
problem to create the best possible PR strategy for. It is also un-
likely for titles to be the best they can be on launch day so that day
should instead be treated as the starting line instead of the finishing
line, with additional community feedback shaping the final versions
[Valve 2018j].

6 Conclusion

Video games are complex real-time applications which require
many iterations during development and need to be performant on
release. Understanding and choosing the correct game loop for the
title is an essential first task when designing the game engine.

Afterwards, when thinking about and architecting for data locality,
it is possible to create a game that can handle a massive amount
of objects on the CPU. Instanced rendering has a similar goal to
handle rendering those amounts of objects on the GPU by reducing
draw calls.

Most games also require creating and destroying game objects on
the fly, which can be efficiently implemented using object pooling.
Designing a multi-threaded game engine with data decomposition
can benefit interactive software today and in the future by being
able to handle different hardware.

Expensive tasks such as collision detection, which requires about
4.4ms (68%) of approximately 6.5ms frame-time in Swarmlake,
can also be improved using spatial partitioning. More low-level
CPU optimization strategies exist and should be done at the end of
the development cycle, such as using the ”fast floating-point oper-
ations” compiler option which resulted in about a 1ms frame-time
speedup.

Sorting objects and object batches by their distance to effectively
use early depth testing of modern GPUs can also speed up ren-

dering. For enemies in Swarmlake, where distance cannot be pre-
dicted, sorting the batches by the used model vertex count resulted
in a frame-time performance speedup of about 0.7ms.

Displaying only objects within the view frustum of the camera can
result in a speedup, which in Swarmlake reduced the total render-
time by about 1.2ms in average cases. It is also suggested to opti-
mize shaders and approximate effects such as using downsampling
to get a wide bloom, which reduced the total render-time by about
2ms in the game.

Finally, selling a product such as a video game requires marketing
and distribution, with the latter usually being done through Steam
if it is a PC game. Integrating the SDK into the game, as well as
understanding the history of Steam including Steam Greenlight and
current systems such as Steam Direct and sales can be beneficial to
developing and marketing the title on the platform correctly.

6.1 Successes

Due to the optimization strategies explained in this article, it was
possible to create a unique experience of fighting more than 10,000
enemies at once in Swarmlake.

Additionally, the choice of using a low-poly art style as well as
cheap and fast post processing effects such as HDR, tonemapping,
bloom, vignette, chromatic aberration, grain and anti-aliasing al-
lowed for a modern visual presentation, as seen in figure 47 and
figure 48. This was done to attract potential customers while han-
dling the needed amount of objects.

Figure 47: Swarmlake first color pass render without any post pro-
cessing effects

Figure 48: Swarmlake final pass render with all post processing
effects

Swarmlake has received continued updates for at least half a year
after release based on player feedback, which allowed the game to
get increasingly better and reach the overwhelmingly positive user
review label on Steam. This means that the title has gotten more
than 500 user reviews of which at least 95% are positive, which
should help the game to gain further visibility and awareness in the
long run.

Swarmlake was developed over the course of two and a half years
almost exclusively by a single developer, with $550 extra cost for
the soundtrack, font and sound effects. As of September 30, 2018,
the game sold 21,757 units and grossed at $14,192 in revenue,
which still includes VAT (value-added tax), taxes, refunds and the
revenue cut for Steam.

6.2 Pitfalls

It was clear from the beginning that Swarmlake could not be cre-
ated as intended without careful optimization. Therefore the devel-
opment team tried to optimize as early and as much as possible,
which made it difficult to iterate and make the game fun and also
very time intensive to finish the project.

The unique selling point of Swarmlake also might have been incor-
rectly communicated based on initial player feedback and the low
amount of sales despite overwhelmingly positive reviews. In addi-
tion to that and due to no time or money being available to market
the game it was released at the lowest possible price of $0.99 on
Steam, which could have further resulted in a low perceived value.

Half a year after the release of Swarmlake, the overwhelmingly pos-
itive user rating label was received. Since the game was more pol-
ished at that point, the price was increased to the intended amount
of $2.99, which however resulted in currently noticeably reduced
revenue and fewer units sold, as shown in figure 49.

It is unclear if this is just a short-term effect, but it is suggested to
sell a game at the intended price point from the start [Galyonkin
2015].

Figure 49: Relative Swarmlake units sold. A: Release at $0.99
and 20% discount, B: Weeklong sale at 40% discount, C: Steam
Summer Sale at 50% discount, D: Weeklong sale at 50% discount,
E: Overwhelmingly positive user review label received, F: Price
increased to $2.99

References

AKENINE-MOLLER, T., HAINES, E., AND HOFFMAN, N. 2008.
Real-Time Rendering, 3rd ed. A. K. Peters, Ltd., Natick, MA,
USA.

AKHTER, S., AND ROBERTS, J. 2006. Multi-core programming,
vol. 33. Intel press Hillsboro.

ALBRECHT, T., 2009. Pitfalls of object oriented programming.
https://github.com/Michaelangel007/game_dev_pdfs/
blob/master/c++/Pitfalls_of_Object_Oriented_
Programming_GCAP_09.pdf. [Accessed: 12-October-2018].

BAILEY, D., 2018. Pc game sales numbers market share 2017.
https://www.pcgamesn.com/pc-game-sales-numbers-
market-share-2017. [Accessed: 12-October-2018].

BAILEY, D., 2018. Steam revenue 2017. https://
www.pcgamesn.com/steam-revenue-2017. [Accessed: 12-
October-2018].

BINSTOCK, A., 2011. Data decomposition: Sharing the love and
the data. https://software.intel.com/en-us/articles/
data-decomposition-sharing-the-love-and-the-
data. [Accessed: 12-October-2018].

CALVIN, 2018. Shadow mapping. http://www.opengl-
tutorial.org/intermediate-tutorials/tutorial-16-
shadow-mapping/. [Accessed: 12-October-2018].

CATO, V., 2013. C++ fastest way to clear or erase a vector.
https://stackoverflow.com/questions/16420357/c-
fastest-way-to-clear-or-erase-a-vector#16420529.
[Accessed: 12-October-2018].

CHIANG, O., 2011. The master of online may-
hem. https://www.forbes.com/forbes/2011/0228/
technology-gabe-newell-videogames-valve-online-
mayhem.html#34d43b6d3ac0. [Accessed: 12-October-2018].

CHOPANZA, J., 2014. Want speed? don’t (always) pass by
value. https://juanchopanzacpp.wordpress.com/2014/
05/11/want-speed-dont-always-pass-by-value/. [Ac-
cessed: 12-October-2018].

CLANG, 2018. Performance inefficient vector opera-
tion. http://releases.llvm.org/6.0.1/tools/clang/
tools/extra/docs/clang-tidy/checks/performance-
inefficient-vector-operation.html. [Accessed: 12-
October-2018].

COORG, S., AND TELLER, S. 1997. Real-time occlusion culling
for models with large occluders. In Proceedings of the 1997
symposium on Interactive 3D graphics, ACM, 83–ff.

CRIDER, M., 2017. What is coil whine, and can i get rid of it
on my pc? https://www.howtogeek.com/297166/what-
is-coil-whine-and-can-i-get-rid-of-it-on-my-pc/.
[Accessed: 12-October-2018].

DE VRIES, J., 2018. Opengl instancing. https://
learnopengl.com/Advanced-OpenGL/Instancing. [Ac-
cessed: 12-October-2018].

DELLAFAVE, R., 2014. Tips for getting greenlit on steam
greenlight. https://gamedevelopment.tutsplus.com/
articles/tips-for-getting-greenlit-on-steam-
greenlight--gamedev-13938. [Accessed: 12-October-
2018].

DRAXINGER, W., 2015. Opengl tearing with fullscreen native
resolution. https://stackoverflow.com/questions/
30293074/opengl-tearing-with-fullscreen-native-
resolution#30300615. [Accessed: 12-October-2018].

https://github.com/Michaelangel007/game_dev_pdfs/blob/master/c++/Pitfalls_of_Object_Oriented_Programming_GCAP_09.pdf
https://github.com/Michaelangel007/game_dev_pdfs/blob/master/c++/Pitfalls_of_Object_Oriented_Programming_GCAP_09.pdf
https://github.com/Michaelangel007/game_dev_pdfs/blob/master/c++/Pitfalls_of_Object_Oriented_Programming_GCAP_09.pdf
https://www.pcgamesn.com/pc-game-sales-numbers-market-share-2017
https://www.pcgamesn.com/pc-game-sales-numbers-market-share-2017
https://www.pcgamesn.com/steam-revenue-2017
https://www.pcgamesn.com/steam-revenue-2017
https://software.intel.com/en-us/articles/data-decomposition-sharing-the-love-and-the-data
https://software.intel.com/en-us/articles/data-decomposition-sharing-the-love-and-the-data
https://software.intel.com/en-us/articles/data-decomposition-sharing-the-love-and-the-data
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-16-shadow-mapping/
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-16-shadow-mapping/
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-16-shadow-mapping/
https://stackoverflow.com/questions/16420357/c-fastest-way-to-clear-or-erase-a-vector#16420529
https://stackoverflow.com/questions/16420357/c-fastest-way-to-clear-or-erase-a-vector#16420529
https://www.forbes.com/forbes/2011/0228/technology-gabe-newell-videogames-valve-online-mayhem.html#34d43b6d3ac0
https://www.forbes.com/forbes/2011/0228/technology-gabe-newell-videogames-valve-online-mayhem.html#34d43b6d3ac0
https://www.forbes.com/forbes/2011/0228/technology-gabe-newell-videogames-valve-online-mayhem.html#34d43b6d3ac0
https://juanchopanzacpp.wordpress.com/2014/05/11/want-speed-dont-always-pass-by-value/
https://juanchopanzacpp.wordpress.com/2014/05/11/want-speed-dont-always-pass-by-value/
http://releases.llvm.org/6.0.1/tools/clang/tools/extra/docs/clang-tidy/checks/performance-inefficient-vector-operation.html
http://releases.llvm.org/6.0.1/tools/clang/tools/extra/docs/clang-tidy/checks/performance-inefficient-vector-operation.html
http://releases.llvm.org/6.0.1/tools/clang/tools/extra/docs/clang-tidy/checks/performance-inefficient-vector-operation.html
https://www.howtogeek.com/297166/what-is-coil-whine-and-can-i-get-rid-of-it-on-my-pc/
https://www.howtogeek.com/297166/what-is-coil-whine-and-can-i-get-rid-of-it-on-my-pc/
https://learnopengl.com/Advanced-OpenGL/Instancing
https://learnopengl.com/Advanced-OpenGL/Instancing
https://gamedevelopment.tutsplus.com/articles/tips-for-getting-greenlit-on-steam-greenlight--gamedev-13938
https://gamedevelopment.tutsplus.com/articles/tips-for-getting-greenlit-on-steam-greenlight--gamedev-13938
https://gamedevelopment.tutsplus.com/articles/tips-for-getting-greenlit-on-steam-greenlight--gamedev-13938
https://stackoverflow.com/questions/30293074/opengl-tearing-with-fullscreen-native-resolution#30300615
https://stackoverflow.com/questions/30293074/opengl-tearing-with-fullscreen-native-resolution#30300615
https://stackoverflow.com/questions/30293074/opengl-tearing-with-fullscreen-native-resolution#30300615

DUNN, J., 2013. Full steam ahead: The history of valve. https://
www.gamesradar.com/history-of-valve/. [Accessed: 12-
October-2018].

EITZ, M., AND LIXU, G. 2007. Hierarchical spatial hashing for
real-time collision detection. In null, IEEE, 61–70.

FABIAN, R. 2013. Data-Oriented Design. June.

FAN, Z., LI, H., HILLESLAND, K., AND SHENG, B. 2015. Simu-
lation and rendering for millions of grass blades. In Proceedings
of the 19th symposium on interactive 3D graphics and games,
ACM, 55–60.

FERNANDES, R. M., 2011. What are aggregates and pods and
how/why are they special? https://stackoverflow.com/
questions/4178175/what-are-aggregates-and-pods-
and-how-why-are-they-special#7189821. [Accessed:
12-October-2018].

FIEDLER, G., 2004. Fix your timestep! https:
//gafferongames.com/post/fix_your_timestep/. [Ac-
cessed: 12-October-2018].

GALYONKIN, S., 2015. Some things you should know about
steam. https://galyonk.in/some-things-you-should-
know-about-steam-5eaffcf33218. [Accessed: 12-October-
2018].

GALYONKIN, S., 2016. About steam winter sale. https://
galyonk.in/about-steam-winter-sale-76a75abe152a.
[Accessed: 12-October-2018].

GALYONKIN, S., 2017. The indie games are too damn
cheap. https://galyonk.in/the-indie-games-are-too-
damn-cheap-11b8652fad16. [Accessed: 12-October-2018].

GALYONKIN, S., 2018. Steam in 2017. https://galyonk.in/
steam-in-2017-129c0e6be260. [Accessed: 12-October-
2018].

GORDON, R. C., 2014. Game development with sdl 2.0.
http://media.steampowered.com/apps/steamdevdays/
slides/sdl2.pdf. [Accessed: 12-October-2018].

HOGG, J., 2015. Do you prefer fast or precise? https:
//blogs.msdn.microsoft.com/vcblog/2015/10/19/do-
you-prefer-fast-or-precise/. [Accessed: 12-October-
2018].

JR, C., 2016. Spatial hashing in c++. http://www.sgh1.net/
posts/spatial-hashing-1.md. [Accessed: 12-October-
2018].

JUKIĆ, T., 2015. Draw calls in a nutshell. https:
//medium.com/@toncijukic/draw-calls-in-a-
nutshell-597330a85381. [Accessed: 12-October-2018].

KHRONOS, 2014. Glsl step. https://www.khronos.org/
registry/OpenGL-Refpages/gl4/html/step.xhtml. [Ac-
cessed: 12-October-2018].

KHRONOS, 2018. Depth test. https://www.khronos.org/
opengl/wiki/Depth_Test. [Accessed: 12-October-2018].

KHRONOS, 2018. Swap interval. https://www.khronos.org/
opengl/wiki/Swap_Interval. [Accessed: 12-October-
2018].

LEFEBVRE, S., AND HOPPE, H. 2006. Perfect spatial hashing. In
ACM Transactions on Graphics (TOG), vol. 25, ACM, 579–588.

LIGHTHOUSE3D, 2011. View frustum culling. http:
//www.lighthouse3d.com/tutorials/view-frustum-
culling/. [Accessed: 12-October-2018].

LLOPIS, N. 2009. Data-oriented design (or why you might
be shooting yourself in the foot with oop). Game Developer
(September), 43–45.

MARSHALL-NAGY, D., 2014. Case study: The dynamic his-
tory of valve. from game developer to console manufac-
turer. http://www.adaptivecycle.nl/images/Mini_case_
study_Valve.pdf. [Accessed: 12-October-2018].

MCALOON, A., 2018. Steam direct sees 180 game releases
per week, over twice as many as greenlight did. https://
www.giantbomb.com/steam-greenlight/3015-7583/. [Ac-
cessed: 12-October-2018].

MEIRI, E., 2018. Instanced rendering. http:
//ogldev.atspace.co.uk/www/tutorial33/
tutorial33.html. [Accessed: 12-October-2018].

MEYERS, S., 2013. Cpu caches and why you care.

MITTRING, M., 2012. The technology behind the unreal engine 4
elemental demo.

NYSTROM, B. 2014. Game Programming Patterns. Genever Ben-
ning, November.

ORION GRANATIR, O. R., 2010. Don’t dread threads. https://
slideplayer.com/slide/6665648/. [Accessed: 12-October-
2018].

PAUL, B., 1997. Opengl performance optimization.
http://www.inf.pucrs.br/flash/tcg/aulas/opt/
opengl_perf_opt.html#Clearing. [Accessed: 12-October-
2018].

PEARSON, J., 2017. The first text adventure game ever is finally
open source. https://motherboard.vice.com/en_us/
article/ywmyn5/the-first-text-adventure-game-
ever-is-finally-open-source. [Accessed: 12-October-
2018].

PERSSON, E., 2013. Low-level thinking in high-level shading
languages. http://www.humus.name/Articles/Persson_
LowLevelThinking.pdf. [Accessed: 12-October-2018].

PERSSON, E., 2014. Low-level shader optimization for next-gen
and dx11. http://www.humus.name/Articles/Persson_
LowlevelShaderOptimization.pdf. [Accessed: 12-October-
2018].

PLACZEK, M., 2016. Object pooling in unity. https:
//www.raywenderlich.com/847-object-pooling-in-
unity. [Accessed: 12-October-2018].

POZO, R. 1997. Template numerical toolkit for linear algebra:
High performance programming with c++ and the standard tem-
plate library. The International Journal of Supercomputer Appli-
cations and High Performance Computing 11, 3, 251–263.

SAYER, M., 2016. The 13-year evolution of steam. https:
//www.pcgamer.com/steam-versions/. [Accessed: 12-
October-2018].

SHARP, J. A. 1980. Data oriented program design. ACM SIGPLAN
Notices 15, 9, 44–57.

SHREINER, D., GROUP, B. T. K. O. A. W., ET AL. 2009. OpenGL
programming guide: the official guide to learning OpenGL, ver-
sions 3.0 and 3.1. Pearson Education.

https://www.gamesradar.com/history-of-valve/
https://www.gamesradar.com/history-of-valve/
https://stackoverflow.com/questions/4178175/what-are-aggregates-and-pods-and-how-why-are-they-special#7189821
https://stackoverflow.com/questions/4178175/what-are-aggregates-and-pods-and-how-why-are-they-special#7189821
https://stackoverflow.com/questions/4178175/what-are-aggregates-and-pods-and-how-why-are-they-special#7189821
https://gafferongames.com/post/fix_your_timestep/
https://gafferongames.com/post/fix_your_timestep/
https://galyonk.in/some-things-you-should-know-about-steam-5eaffcf33218
https://galyonk.in/some-things-you-should-know-about-steam-5eaffcf33218
https://galyonk.in/about-steam-winter-sale-76a75abe152a
https://galyonk.in/about-steam-winter-sale-76a75abe152a
https://galyonk.in/the-indie-games-are-too-damn-cheap-11b8652fad16
https://galyonk.in/the-indie-games-are-too-damn-cheap-11b8652fad16
https://galyonk.in/steam-in-2017-129c0e6be260
https://galyonk.in/steam-in-2017-129c0e6be260
http://media.steampowered.com/apps/steamdevdays/slides/sdl2.pdf
http://media.steampowered.com/apps/steamdevdays/slides/sdl2.pdf
https://blogs.msdn.microsoft.com/vcblog/2015/10/19/do-you-prefer-fast-or-precise/
https://blogs.msdn.microsoft.com/vcblog/2015/10/19/do-you-prefer-fast-or-precise/
https://blogs.msdn.microsoft.com/vcblog/2015/10/19/do-you-prefer-fast-or-precise/
http://www.sgh1.net/posts/spatial-hashing-1.md
http://www.sgh1.net/posts/spatial-hashing-1.md
https://medium.com/@toncijukic/draw-calls-in-a-nutshell-597330a85381
https://medium.com/@toncijukic/draw-calls-in-a-nutshell-597330a85381
https://medium.com/@toncijukic/draw-calls-in-a-nutshell-597330a85381
https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/step.xhtml
https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/step.xhtml
https://www.khronos.org/opengl/wiki/Depth_Test
https://www.khronos.org/opengl/wiki/Depth_Test
https://www.khronos.org/opengl/wiki/Swap_Interval
https://www.khronos.org/opengl/wiki/Swap_Interval
http://www.lighthouse3d.com/tutorials/view-frustum-culling/
http://www.lighthouse3d.com/tutorials/view-frustum-culling/
http://www.lighthouse3d.com/tutorials/view-frustum-culling/
http://www.adaptivecycle.nl/images/Mini_case_study_Valve.pdf
http://www.adaptivecycle.nl/images/Mini_case_study_Valve.pdf
https://www.giantbomb.com/steam-greenlight/3015-7583/
https://www.giantbomb.com/steam-greenlight/3015-7583/
http://ogldev.atspace.co.uk/www/tutorial33/tutorial33.html
http://ogldev.atspace.co.uk/www/tutorial33/tutorial33.html
http://ogldev.atspace.co.uk/www/tutorial33/tutorial33.html
https://slideplayer.com/slide/6665648/
https://slideplayer.com/slide/6665648/
http://www.inf.pucrs.br/flash/tcg/aulas/opt/opengl_perf_opt.html#Clearing
http://www.inf.pucrs.br/flash/tcg/aulas/opt/opengl_perf_opt.html#Clearing
https://motherboard.vice.com/en_us/article/ywmyn5/the-first-text-adventure-game-ever-is-finally-open-source
https://motherboard.vice.com/en_us/article/ywmyn5/the-first-text-adventure-game-ever-is-finally-open-source
https://motherboard.vice.com/en_us/article/ywmyn5/the-first-text-adventure-game-ever-is-finally-open-source
http://www.humus.name/Articles/Persson_LowLevelThinking.pdf
http://www.humus.name/Articles/Persson_LowLevelThinking.pdf
http://www.humus.name/Articles/Persson_LowlevelShaderOptimization.pdf
http://www.humus.name/Articles/Persson_LowlevelShaderOptimization.pdf
https://www.raywenderlich.com/847-object-pooling-in-unity
https://www.raywenderlich.com/847-object-pooling-in-unity
https://www.raywenderlich.com/847-object-pooling-in-unity
https://www.pcgamer.com/steam-versions/
https://www.pcgamer.com/steam-versions/

STOLK, B., 2016. Fixing your time step, the easy way with
the golden 4.16 ms. https://www.gamasutra.com/blogs/
BramStolk/20160408/269988/Fixing_your_time_step_
the_easy_way_with_the_golden_48537_ms.php. [Ac-
cessed: 12-October-2018].

STUDIOCOAST, 2018. Screen tearing. https://www.vmix.com/
knowledgebase/article.aspx/46/screen-tearing. [Ac-
cessed: 12-October-2018].

TIAN, X., SAITO, H., GIRKAR, M., PREIS, S., KOZHUKHOV,
S., CHERKASOV, A. G., NELSON, C., PANCHENKO, N., AND
GEVA, R. 2012. Compiling c/c++ simd extensions for func-
tion and loop vectorizaion on multicore-simd processors. IEEE
26th International Parallel and Distributed Processing Sympo-
sium Workshops and PhD Forum, 2349–2358.

VALVE, 2012. First titles get steam’s greenlight. https:
//store.steampowered.com/news/8839/. [Accessed: 12-
October-2018].

VALVE, 2012. Valve launches steam greenlight. https:
//store.steampowered.com/news/8761/. [Accessed: 12-
October-2018].

VALVE, 2012. What we’re doing about discoverability in
steam greenlight. https://steamcommunity.com/games/
765/announcements/detail/1317556891741839763. [Ac-
cessed: 12-October-2018].

VALVE, 2013. Steam trading cards released. https://
store.steampowered.com/news/10946/. [Accessed: 12-
October-2018].

VALVE, 2017. Changes to trading cards. https:
//steamcommunity.com/games/593110/announcements/
detail/1954971077935370845. [Accessed: 12-October-
2018].

VALVE, 2017. Closing greenlight, steam direct launches.
https://steamcommunity.com/games/593110/
announcements/detail/1265922321514182595. [Ac-
cessed: 12-October-2018].

VALVE, 2017. Evolving steam. https://
steamcommunity.com/games/593110/announcements/
detail/558846854614253751. [Accessed: 12-October-
2018].

VALVE, 2017. Steam client update released. https://
store.steampowered.com/news/35534/. [Accessed: 12-
October-2018].

VALVE, 2018. Controller gaming on pc. https:
//steamcommunity.com/games/593110/announcements/
detail/1712946892833213377. [Accessed: 12-October-
2018].

VALVE, 2018. Introducing a new version of steam
play. https://steamcommunity.com/games/221410/
announcements/detail/1696055855739350561. [Ac-
cessed: 12-October-2018].

VALVE, 2018. Joining the steamworks distribution program.
https://partner.steamgames.com/steamdirect. [Ac-
cessed: 12-October-2018].

VALVE, 2018. More changes addressing fake
games. https://steamcommunity.com/
groups/steamworks#announcements/detail/
3077529424431732424. [Accessed: 12-October-2018].

VALVE, 2018. Progress update. https://
steamcommunity.com/games/593110/announcements/
detail/1708442022337025126. [Accessed: 12-October-
2018].

VALVE, 2018. Steam cloud. https://
partner.steamgames.com/doc/features/cloud. [Ac-
cessed: 12-October-2018].

VALVE, 2018. Steam direct now available. https:
//steamcommunity.com/games/593110/announcements/
detail/1328973169870947116. [Accessed: 12-October-
2018].

VALVE, 2018. Steam discounting. https://
partner.steamgames.com/doc/marketing/discounts.
[Accessed: 12-October-2018].

VALVE, 2018. Steam leaderboards. https://
partner.steamgames.com/doc/features/leaderboards.
[Accessed: 12-October-2018].

VALVE, 2018. Steam marketing best practices.
https://partner.steamgames.com/doc/marketing/
bestpractices. [Accessed: 12-October-2018].

VALVE, 2018. Steam trading cards. https://
partner.steamgames.com/doc/marketing/tradingcards.
[Accessed: 12-October-2018].

VALVE, 2018. Steamworks api overview. https://
partner.steamgames.com/doc/sdk/api. [Accessed: 12-
October-2018].

VALVE, 2018. Step by step: Achievements. https://
partner.steamgames.com/doc/features/achievements/
ach_guide. [Accessed: 12-October-2018].

VALVE, 2018. Who gets to be on the steam store? https:
//steamcommunity.com/games/593110/announcements/
detail/1666776116200553082. [Accessed: 12-October-
2018].

WICHT, B., 2012. C++ benchmark – std::vector vs std::list
vs std::deque. https://baptiste-wicht.com/posts/2012/
12/cpp-benchmark-vector-list-deque.html. [Accessed:
12-October-2018].

WILDE, T., 2018. What happened to steam machines? https://
www.pcgamer.com/what-happened-to-steam-machines/.
[Accessed: 12-October-2018].

WINGFIELD, N., 2012. Game maker without a rule book.
https://www.nytimes.com/2012/09/09/technology/
valve-a-video-game-maker-with-few-rules.html.
[Accessed: 12-October-2018].

WITTERS, K., 2009. dewitters game loop. http:
//www.koonsolo.com/news/dewitters-gameloop/. [Ac-
cessed: 12-October-2018].

WOLFE, A., 2015. Avoiding the performance hazzards
of std::function. https://blog.demofox.org/2015/
02/25/avoiding-the-performance-hazzards-of-
stdfunction/. [Accessed: 12-October-2018].

WRIGHT JR, R. S., HAEMEL, N., SELLERS, G. M., AND
LIPCHAK, B. 2010. OpenGL SuperBible: comprehensive tu-
torial and reference. Pearson Education.

https://www.gamasutra.com/blogs/BramStolk/20160408/269988/Fixing_your_time_step_the_easy_way_with_the_golden_48537_ms.php
https://www.gamasutra.com/blogs/BramStolk/20160408/269988/Fixing_your_time_step_the_easy_way_with_the_golden_48537_ms.php
https://www.gamasutra.com/blogs/BramStolk/20160408/269988/Fixing_your_time_step_the_easy_way_with_the_golden_48537_ms.php
https://www.vmix.com/knowledgebase/article.aspx/46/screen-tearing
https://www.vmix.com/knowledgebase/article.aspx/46/screen-tearing
https://store.steampowered.com/news/8839/
https://store.steampowered.com/news/8839/
https://store.steampowered.com/news/8761/
https://store.steampowered.com/news/8761/
https://steamcommunity.com/games/765/announcements/detail/1317556891741839763
https://steamcommunity.com/games/765/announcements/detail/1317556891741839763
https://store.steampowered.com/news/10946/
https://store.steampowered.com/news/10946/
https://steamcommunity.com/games/593110/announcements/detail/1954971077935370845
https://steamcommunity.com/games/593110/announcements/detail/1954971077935370845
https://steamcommunity.com/games/593110/announcements/detail/1954971077935370845
https://steamcommunity.com/games/593110/announcements/detail/1265922321514182595
https://steamcommunity.com/games/593110/announcements/detail/1265922321514182595
https://steamcommunity.com/games/593110/announcements/detail/558846854614253751
https://steamcommunity.com/games/593110/announcements/detail/558846854614253751
https://steamcommunity.com/games/593110/announcements/detail/558846854614253751
https://store.steampowered.com/news/35534/
https://store.steampowered.com/news/35534/
https://steamcommunity.com/games/593110/announcements/detail/1712946892833213377
https://steamcommunity.com/games/593110/announcements/detail/1712946892833213377
https://steamcommunity.com/games/593110/announcements/detail/1712946892833213377
https://steamcommunity.com/games/221410/announcements/detail/1696055855739350561
https://steamcommunity.com/games/221410/announcements/detail/1696055855739350561
https://partner.steamgames.com/steamdirect
https://steamcommunity.com/groups/steamworks#announcements/detail/3077529424431732424
https://steamcommunity.com/groups/steamworks#announcements/detail/3077529424431732424
https://steamcommunity.com/groups/steamworks#announcements/detail/3077529424431732424
https://steamcommunity.com/games/593110/announcements/detail/1708442022337025126
https://steamcommunity.com/games/593110/announcements/detail/1708442022337025126
https://steamcommunity.com/games/593110/announcements/detail/1708442022337025126
https://partner.steamgames.com/doc/features/cloud
https://partner.steamgames.com/doc/features/cloud
https://steamcommunity.com/games/593110/announcements/detail/1328973169870947116
https://steamcommunity.com/games/593110/announcements/detail/1328973169870947116
https://steamcommunity.com/games/593110/announcements/detail/1328973169870947116
https://partner.steamgames.com/doc/marketing/discounts
https://partner.steamgames.com/doc/marketing/discounts
https://partner.steamgames.com/doc/features/leaderboards
https://partner.steamgames.com/doc/features/leaderboards
https://partner.steamgames.com/doc/marketing/bestpractices
https://partner.steamgames.com/doc/marketing/bestpractices
https://partner.steamgames.com/doc/marketing/tradingcards
https://partner.steamgames.com/doc/marketing/tradingcards
https://partner.steamgames.com/doc/sdk/api
https://partner.steamgames.com/doc/sdk/api
https://partner.steamgames.com/doc/features/achievements/ach_guide
https://partner.steamgames.com/doc/features/achievements/ach_guide
https://partner.steamgames.com/doc/features/achievements/ach_guide
https://steamcommunity.com/games/593110/announcements/detail/1666776116200553082
https://steamcommunity.com/games/593110/announcements/detail/1666776116200553082
https://steamcommunity.com/games/593110/announcements/detail/1666776116200553082
https://baptiste-wicht.com/posts/2012/12/cpp-benchmark-vector-list-deque.html
https://baptiste-wicht.com/posts/2012/12/cpp-benchmark-vector-list-deque.html
https://www.pcgamer.com/what-happened-to-steam-machines/
https://www.pcgamer.com/what-happened-to-steam-machines/
https://www.nytimes.com/2012/09/09/technology/valve-a-video-game-maker-with-few-rules.html
https://www.nytimes.com/2012/09/09/technology/valve-a-video-game-maker-with-few-rules.html
http://www.koonsolo.com/news/dewitters-gameloop/
http://www.koonsolo.com/news/dewitters-gameloop/
https://blog.demofox.org/2015/02/25/avoiding-the-performance-hazzards-of-stdfunction/
https://blog.demofox.org/2015/02/25/avoiding-the-performance-hazzards-of-stdfunction/
https://blog.demofox.org/2015/02/25/avoiding-the-performance-hazzards-of-stdfunction/

	Introduction
	Engine Architecture
	Game Loop
	Fixed Timestep
	Variable Timestep
	Semi-Fixed Timestep
	Free the Physics

	Window/Input Handling

	CPU Optimization
	Data Locality
	Object Pooling
	Avoid running out of objects
	Prevent creating new objects
	Remove less important objects
	Increase pool size

	Branch Prediction
	C++ STL Containers
	Multi-Threaded Engine
	Functional Decomposition
	Data Decomposition

	Spatial Partitioning
	Hierarchical Partitioning
	Flat Partitioning

	C++ Low-Level Optimization

	GPU Optimization
	View Frustum Culling
	Instanced Rendering
	Depth Sorting
	Bloom Downsampling
	Shader Low-Level Optimization

	Steam
	History
	Greenlight
	Steam Direct
	Steamworks SDK
	Overlay
	Achievements
	Leaderboard
	Cloud Saves
	Trading Cards

	Marketing

	Conclusion
	Successes
	Pitfalls

