

 ARStakeout
 AR Overlays for VIS with Vulkan

2

Juni - August 2018

Patrick Gantner (ganp)

patrick.gantner@leica-geosystems.com

Supervisor: Thomas Mörwald (moet)

thomas.moerwald@leica-geosystems.com

Leica Geosystems AG

Heerbrugg, Switzerland

mailto:patrick.gantner@leica-geosystems.com
mailto:thomas.moerwald@leica-geosystems.com

Leica Geosystems AG

Heinrich-Wild-Strasse

CH-9435 Heerbrugg

2018-23-02 Switzerland

Name: Patrick Gantner Phone +41 71 727 31 31

E-Mail: patrick.gantner@leica-geosystems.com ARStakeout_reviewed.docx www.leica-geosystems.com

Concept

Using the existing Visual Inertial System (VIS) for pose estimation, BIM (Building Information

Management) information is displayed using Augmented Reality technology. Specific use-

cases, for example, stakeout or CAD previews are implemented to demonstrate the

advantages of such overlays.

The focus of the implementation is on creating a correct representation of the physical camera

in the virtual scene and render objects on top of the incoming video stream of the device. For a

good AR experience the objects should be distorted according to the camera’s distortion

model and be occluded correctly with the environment.

1 Schemantic AR operation

A first prototype is implemented on an existing Leica platform with the use of Leica VIS library,

Vulkan and OpenCV. Initially, the target platform is a Windows PC running Windows 10 and

allowing offline (test data sets) workflows.

The focus of the first prototype is to demonstrate the usability and possible use-cases in

combination with current or future Leica devices. The prototype may also set up a basis for

workflows using VIS and AR.

4

4

Rendering Engine

The demo application is developed using the latest1 Vulkan SDK and MSVC140. The creation

of windows and input handling is done with the help of GLFW and for mathematical operations

the library GLM2 was used.

Features

• Multi-pass rendering
o each render-pass can be toggled at runtime

• Dynamic changes to the geometry
o adding and removing meshes
o movement
o status (highlighting selected object)

• Blinn & Phong shading with directional light

• GUI using ImGui3 with small adaptions to reuse Framebuffer

• Triple-Buffering

• Reloading of shaders during runtime to allow quick testing of shaders without
restarting the application & reloading the geometry

Architecture

The main class is handling the setup of the Vulkan instance and device and holding the main

loop. Render pass specific operations are done within the Shader pipeline module and an

interop class handles conversion of data from VIS to GLM and application structures. This

includes for example conversion of OpenCL matrices to GLM matrix types.

The main loop handles any changes done via the GUI and passes the required parameters

along to the corresponding submodules, queues all enabled render passes with correct

dependency settings in between them and finally presents the rendered image to the Window

surface.

The input from Leica VIS, point cloud, camera images and position information for these, is

combined with 3D objects placed by the user, ranging from simple primitives like cubes to

complex models loaded from .obj files, to create a realistic AR image.

1 Latest version at time of development is 1.1.77.0
2 “OpenGL Mathematics.”
3 “Ocornut/Imgui: Dear ImGui: Bloat-Free Immediate Mode Graphical User Interface for C++ with
Minimal Dependencies.”

 ARStakeout_reviewed.docx

Rendering

The application uses multiple command-buffers and pipelines with shared frame-buffer images

to render different parts of the scene.

The first operation is to load the camera image onto the framebuffer. This is done by bliting the

source image without a mask. A blit operation is an image combination method using a

boolean function for composition. In this case the OR function is used to overwrite the empty

destination framebuffer image with the source data.

The reason to use a blit here instead of a simple copy, is that the Vulkan function

‘vkCmdBlitImage(…)’ allows to specify the target region size, which will automatically stretch

or downscale the image to fit the framebuffer extent.

As second stage, the point cloud, provided by the device and accessed using Leica VIS, is

rendered into the depth buffer for correct occlusion. This stage does not write anything into the

framebuffer.

The main render pass is the drawing of AR-overlays. This stage loads the frame- and depth-

buffer with the values from the previous stages and draws its results on top of it. As the depth

information is present from the point cloud, objects will be correctly culled in the depth &

stencil stage of Vulkan’s fixed function pipeline.

Color rendering of the point cloud is skipped by default. While the main intention of the point

cloud is correct occlusion, this additional stage can be used to visually verify the position and

density of the point cloud in the current scene. If enabled the point cloud is rendered with white

color and an alpha value of 0.5 on top of the AR-Overlay output.

Finally, the UI elements created by ImGui4 are drawn on top of everything and the framebuffer

is presented on the application surface.

The dependencies are set-up in a way, that every one of the three main pipelines can be

enabled or disabled during runtime, while only the initial clear of the frame- and depth-buffer

images and rendering of the GUI overlay are required. The blit command is only executed if a

valid input image is provided.

Sharing the frame-buffer images between all of these pipelines allows direct use of the

previous stage’s results without having to copy the data around. The only downside is that the

4 “Ocornut/Imgui: Dear ImGui: Bloat-Free Immediate Mode Graphical User Interface for C++ with
Minimal Dependencies.”

6

6

stages that write to the color image cannot be executed in parallel. This is no issue for the

depth- and AR pass, as those must run sequentially, because the AR pass depends on the

depth information from the depth-pass.

AR-Overlay render pass

The diagram above shows the interaction between the application, Leica’s VIS library and the

AR-Pipeline. The application asks VIS to provide a Frame and use the Pose information to

update the Camera’s view matrix. The Frame image is sent to the first render-pass, which will

blit5 the content to the current frame-buffer image.

Changes the user made to the geometry via the UI are stored in the Dynamic Uniform Buffer,

which contains per object model matrices and state flags. The other shader parameters like

the view and projection matrices, light settings, etc. are stored in typical uniform buffers, that

are reused on every object.

The AR shader pipeline transforms the vertices into view space, distorts the subdivided

vertices in the tessellation evaluation stage and applies lighting and color in the fragment

stage. By default, the fragments are converted to grayscale as the input image from the device

is also grayscale. However, this can be changed in the UI.

The color output from the AR pipeline is stored in the framebuffer and passed to the next

pipeline.

5 “VkCmdBlitImage(3).”

 ARStakeout_reviewed.docx

Algorithmic

Virtual camera for input video
The virtual camera is a representation of the device camera providing the video stream with

updated translation and rotation for every frame with valid position information. The frames

and position information are provided by Leica VIS.

Having this representation of the moving camera allows objects placed relative to the

application’s world coordinate system to retain their position in regards to the camera image.

The point cloud’s coordinate system is used as the world system, which means that point

𝑝𝑊 = 𝑝𝑆 = (
0
0
0
)𝑇

𝑊 = 𝑤𝑜𝑟𝑙𝑑 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑠𝑦𝑠𝑡𝑒𝑚

𝑆 = 𝑠𝑒𝑛𝑠𝑜𝑟 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑠𝑦𝑠𝑡𝑒𝑚

is at the origin of the point cloud.

The image cameras are not the same as the sensor from which the point cloud is created.

Each has a positional and rotational offset relative to the device, which, together with the pose

(position and rotation) for a frame, is used to calculate the view matrix of the virtual camera

Position
𝑡𝐶
𝑊 = 𝑡𝑠

𝑊 + (𝑅𝑠 ∗ 𝑡𝑐
𝐷)

𝐷 = 𝑑𝑒𝑣𝑖𝑐𝑒 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑠𝑦𝑠𝑡𝑒𝑚
𝐶 = 𝑐𝑎𝑚𝑒𝑟𝑎

𝑆 = 𝑠𝑒𝑛𝑠𝑜𝑟
𝑡𝐶
𝑊 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑎𝑚𝑒𝑟𝑎 𝑖𝑛 𝑤𝑜𝑟𝑙𝑑 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠

𝑅𝑆 = 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑠𝑒𝑛𝑠𝑜𝑟

Rotation
The application is operating in the world coordinate system which equals the point cloud’s
coordinate system. However, camera poses are in the device coordinate system, which is
rotated in -90 degrees around the x-Axis in regards to the world coordinate system.

Therefore multiplying the Rotation matrix 𝑅𝐷𝑡𝑜𝑊, which describes a positive 90 degree rotation
around the x-Axis, to the camera’s local pose rotation matrix transforms the device local poses
to world coordinates. The resulting rotation matrix for the camera is

𝑅𝑉𝐶 = 𝑅𝑠 ∗ 𝑅𝐷𝑡𝑜𝑊 ∗ 𝑅𝑐
𝑅𝑉𝐶 = 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑐𝑎𝑚𝑒𝑟𝑎

View Matrix
Combining the translation and rotation from the previous calculations results in following view
matrix:

𝑉𝑖𝑒𝑤 = (

𝑅11 𝑅12 𝑅13 𝑡1
𝑅21 𝑅22 𝑅23 𝑡2
𝑅31 𝑅32 𝑅33 𝑡3
0 0 0 1

)

8

8

Perspective Projection
For correct perspective and projection, the virtual camera’s projection matrix has to be built
according to the intrinsic parameters from the camera calibration. The calibration data is
available from VIS and the projection matrix built by following formula, according to these
sources678

𝑃𝑟𝑜𝑗 =

(

𝑓𝑥
𝑤

0 (1 −
𝑝𝑥
𝑤
) 0

0
𝑓𝑦

ℎ
(
𝑝𝑦

ℎ
− 1) 0

0 0 −
𝑍𝑓 + 𝑍𝑛

𝑍𝑓 − 𝑍𝑛
−2 ∗ (

𝑍𝑓 ∗ 𝑍𝑛

𝑍𝑓 − 𝑍𝑛
)

0 0 −1 0)

𝑓 = 𝑓𝑜𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑝 = 𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 𝑝𝑜𝑖𝑛𝑡
𝑍𝑛 = 𝑛𝑒𝑎𝑟 𝑝𝑙𝑎𝑛𝑒 𝑍𝑓 = 𝑓𝑎𝑟 𝑝𝑙𝑎𝑛𝑒

𝑤 =
𝑤𝑖𝑑𝑡ℎ𝐼𝑚𝑎𝑔𝑒

2
 ℎ =

ℎ𝑒𝑖𝑔ℎ𝑡𝐼𝑚𝑎𝑔𝑒

2

Note:
As the Vulkan coordinate system has the y-axis pointing downwards, 𝑃𝑟𝑜𝑗11 is multiplied by -1.

Alternatively, the position emitted from the vertex shader could also have the y value inverted

with gl_Position.y *= -1.0;

6 “Camera Calibration and 3D Reconstruction — OpenCV 2.4.13.7 Documentation.”
7 “Guillaume Chereau Blog - OpenCV Camera to OpenGL Projection.”
8 “Calculating OpenGL Perspective Matrix from OpenCV Intrinsic Matrix.”

 ARStakeout_reviewed.docx

Distortion on the GPU

The camera used for this project has a heavy higher-order distortion. The distortion model is

based on the OpenCV camera calibration9 and implemented in the tessellation evaluation

shader.

The implementation is an adapted version of the distortion formula from OpenCV, translated to

GLSL code.

𝑝 = (
𝑥
𝑦
𝑧
)

𝑥′ =
𝑥

𝑧

𝑦′ =
𝑦

𝑧

𝑟2 = 𝑥′2 + 𝑦′2

𝑑𝑟𝑎𝑑𝑖𝑎𝑙 =

1 + (((((𝑘6 ∗ 𝑟
2 + 𝑘5) ∗ 𝑟

2 + 𝑘4) ∗ 𝑟
2 + 𝑘3) ∗ 𝑟

2 + 𝑘2) ∗ 𝑟
2 + 𝑘1) ∗ 𝑟

2

1 + ((𝑘3 ∗ 𝑟
2 + 𝑘2) ∗ 𝑟

2 + 𝑘1) ∗ 𝑟
2

𝑠𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙 = 1 + (((𝑡6 ∗ 𝑟
2 + 𝑡5) ∗ 𝑟

2 + 𝑡4) ∗ 𝑟
2 + 𝑡3) ∗ 𝑟

2

𝑑𝑥
𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙

= ((2 ∗ 𝑡1 ∗ 𝑥
′ ∗ 𝑦′ + 𝑡2 ∗ (𝑟

2 + 2 ∗ 𝑥′2)) ∗ 𝑠𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙) + 𝑠ℎ𝑒𝑎𝑟 ∗ 𝑥′ + 𝑠𝑘𝑒𝑤 ∗ 𝑦′

𝑑𝑦
𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙

= 𝑡1 ∗ (𝑟
2 + 2 ∗ 𝑦′2) + 2 ∗ 𝑡2 ∗ 𝑥

′ ∗ 𝑦′ ∗ 𝑠𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙

𝑥′′ = 𝑥′ ∗ 𝑑𝑟𝑎𝑑𝑖𝑎𝑙 + 𝑑𝑥
𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙

𝑦′′ = 𝑦′ ∗ 𝑑𝑟𝑎𝑑𝑖𝑎𝑙 + 𝑑𝑦
𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙

As the distortion is applied after z-division, but before viewport translation, the shader distorts

vertices after model-view transformation and applies a temporary z-division. Therefore, in the

shader x’ and y’ are multiplied with their original z-value after distortion and before

multiplication with the projection matrix.

The advantages of doing distortion in the tessellation shader vs. doing it in the vertex stage is

very well visible when objects with a low vertex count, for example a cube with only 8 vertices.

The edges of the object will always be straight, as the distortion is working on the vertex and

edges are generated afterwards. This problem is solved by using tessellation to subdivide

each triangle into more triangles (number depends on the selected tessellation level), which

means that in the case of an edge between v1 and v2 there now are v1,v2,…,vn vertices. The

edges between the individual vertices are still straight, but as the individual vertices from the

subdivision are distorted, the result gets closer to a curved edge with higher tessellation levels.

9 “Camera Calibration and 3D Reconstruction — OpenCV 2.4.13.7 Documentation.”

3 no distortion 2 distortion in tessellation shader

10

10

Removing artifacts by using undistortion mask

The higher order terms in the distortion model lead to a non-monotonic reprojection of 3D

points. This causes points that are actually outside the field-of-view to become visible in the

rendering. There are 2 checks implemented to prevent this from happening.

The first check is to make sure, that the point which should be distorted is a part of the visible

image. However, the camera image is also distorted and therefore a typical frustum check

does not provide good results but leads to objects that are close to the edges of the image

being cut away.

Since the standard pinhole reprojection is monotonic with respect to the undistorted image

plane, the visibility check must be done in undistorted coordinates. Therefore, we apply the

undistortion mask, which marks areas in the undistorted image that are not valid.

Aquisition of undistortion mask

To acquire an undistortion mask at first the input image from the sensor is undistorted

according to the cameras’ distortion model. The resulting undistortion mask is a variant of the

undistorted image where all pixels that contain image information of the distorted image are

mapped to 1 and the rest to 0.

By passing this as a sampler to the shader the algorithm for checking if vertices should be

distorted is quite trivial:

𝑣𝑒𝑟𝑡𝑐𝑙𝑖𝑝 = (𝑥, 𝑦, 𝑧, 𝑤) [-w, w]

𝑣𝑒𝑟𝑡𝑁𝐷𝐶 =
𝑣𝑒𝑟𝑡𝑥𝑦𝑧

𝑣𝑒𝑟𝑡𝑤
 [-1, 1]

𝑣𝑒𝑟𝑡𝑠𝑐𝑟𝑒𝑒𝑛 =
𝑣𝑒𝑟𝑡𝑥𝑦

𝑁𝐷𝐶

2
+
1

2
 [0, 1]

A simple texture lookup at 𝑣𝑒𝑟𝑡𝑠𝑐𝑟𝑒𝑒𝑛 in the red channel of the undistortion-mask sampler

results in a value >0 if it is part of the undistorted image. Vertices that are outside of the

undistortion-mask are set to 𝑣 = (2, 2, 2, 1) to cull them at the rasterization stage and save a bit

of computing time. There is also an implementation using the fragment shader operation

“discard” which tells the GPU to not draw the current fragment. However, this is more

computationally intense and also the operation seems to not be supported on Intel GPUs and

lead to a “Integer Division by Zero” exception in the Intel driver during pipeline initialization.

Distorted Input Image Undistorted input image resulting mask

 ARStakeout_reviewed.docx

Occlusion

An important trait of realistic AR is correct occlusion with the environment. This leads to the

perception of objects blending well into the scene.

The camera images are projections of the 3D world into the camera sensor plane, which leads

to a loss of depth information. However, the Leica device used for this project provides a 3D

point cloud along every axis. This point cloud can be used to reconstruct the 3D position of an

arbitrary image point and, more importantly, with small tricks it can provide a dense depth

buffer for occlusion culling using the GPU’s depth testing.

The point cloud can be interpreted as a 3D object, where each point of the cloud is treated as

a vertex and transformed with the current camera’s view and projection matrixes. As the point
cloud is centered around 𝑝 = (0,0,0), the model-matrix of this point-cloud object is always the

identity matrix.

The result is the depth information for the visible area of the camera with regards to the current

position and rotation.

The render-pass for AR overlays now has to load the depth-buffer and enable depth testing on

render-pass creation to allow the GPU to cull the rendered objects with the fixed function

depth-testing.

In the current version of the application, the point cloud provided by Leica VIS is not meshed.

Therefore it does not provide a dense depth buffer by default. To work around this the point

cloud shader is using an increased point size of 3.0 to approximate a dense mesh. This works

reasonably well for the scope of this early pre prototype and environments from half a meter to

around 10m.

However, for further development it is planned to generate a mesh from the point cloud to

accurately calculate the depth buffer for a wider range of environments.

5 without depth information from pointcloud 4 pointcloud rendered to Z-Buffer

12

12

Conclusion
The main goal of the project was reached, by developing a rendering framework for AR

applications using Vulkan with integration of Leica’s VIS to provide a camera stream with pose

information at camera rate (15 Hz).

It is possible to query the 3D position for arbitrary points in the image (with the help of the point

cloud information).

One of the main features of the framework is the virtual camera model built from physical

camera parameters (intrinsic and extrinsic), which will accurately follow the positional and

rotational changes of the real device. Moreover, the camera model performs correct projection

regarding the physical camera’s traits and the application specific settings such as clip

distance and resolution.

Distorting the objects with regards to the camera distortion parameters (intrinsic) at the

tessellation stage and the usage of depth information from the point cloud for occlusion culling

results in objects blending well into the camera image to a point where they are only barely

distinguishable.

Doing the distortion calculation on GPU is also very efficient compared to running it on the

CPU. (FPS drop on Intel iGPU < 1.5%).

While offering generally quite good results, the approach to use a point cloud for occlusion

culling is not perfect. Changes in the environment between point cloud generation and usage

in the application lead to occlusion artefacts, where objects can be falsely culled, because

there was an obstacle there before but moved away after, or objects are not occluded by

obstructions added to the scene later.

Rendering the full point cloud at every frame is also not very efficient, and for further

development should be converted to a triangulated mesh, preferably with view frustum culling

implemented.

 ARStakeout_reviewed.docx

“Calculating OpenGL Perspective Matrix from OpenCV Intrinsic Matrix.” Accessed August 30,
2018. http://kgeorge.github.io/2014/03/08/calculating-opengl-perspective-matrix-from-
opencv-intrinsic-matrix.

“Camera Calibration and 3D Reconstruction — OpenCV 2.4.13.7 Documentation.” Accessed
August 30, 2018.
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstr
uction.html.

“Guillaume Chereau Blog - OpenCV Camera to OpenGL Projection.” Accessed August 30,
2018. https://blog.noctua-software.com/opencv-opengl-projection-matrix.html.

“Ocornut/Imgui: Dear ImGui: Bloat-Free Immediate Mode Graphical User Interface for C++
with Minimal Dependencies.” Accessed August 30, 2018.
https://github.com/ocornut/imgui.

“OpenGL Mathematics.” Accessed September 27, 2018. https://glm.g-
truc.net/0.9.9/index.html.

“VkCmdBlitImage(3).” Accessed September 27, 2018.
https://www.khronos.org/registry/vulkan/specs/1.1-
extensions/man/html/vkCmdBlitImage.html.

