
Adaptively Clustered Reflective
Shadow Maps

MASTERARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Visual Computing

eingereicht von

Christoph Weinzierl-Heigl

Matrikelnummer 0625044

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao. Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer

Mitwirkung: Projektass. Dipl.-Ing. Reinhold Preiner

Wien, 24.08.2017

(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien

A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Adaptively Clustered Reflective
Shadow Maps

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Visual Computing

by

Christoph Weinzierl-Heigl

Registration Number 0625044

to the Faculty of Informatics

at the Vienna University of Technology

Advisor: Ao. Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer

Assistance: Projektass. Dipl.-Ing. Reinhold Preiner

Vienna, 24.08.2017

(Signature of Author) (Signature of Advisor)

Technische Universität Wien

A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Christoph Weinzierl-Heigl

Bernoullistraße 4/16/10, 1220 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-

ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit –

einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet im

Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-

lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Acknowledgements

“Big haul like that. Surprised you made it this far.”

I want to thank my girlfriend Sarah for her patience and for pushing me to continue to work

on my thesis. Additional thanks go to my friends and colleagues, Thomas, Lukas, Florian and

Markus who helped me by providing ideas, proofreading and pushing me to continue my work.

A big salute to my supervisor Reinhold – for his support, ideas and general awesomeness –

without whom this thesis would not have been possible.

“Thank you all”

iii

Kurzfassung

In dieser Diplomarbeit präsentieren wir eine Methode zur glaubhaften Approximierung von in-

direkter Beleuchtung – einem Teilgebiet der globalen Beleuchtung (engl.: global illumination,

abgk: GI) in der Computergraphik – welche in Echtzeit auf moderner Computerhardware berech-

net werden kann. Die längste Zeit war dieses Themenfeld den sogenannten „Offline Rendering“

Methoden vorbehalten, die meistens Strahlenverfolgung (engl.: ray-tracing) zur Grundlage ha-

ben und bei denen die Generierung eines einzelnen Bildes bis zu mehrere Stunden in Anspruch

nehmen kann. Diese Offline-Methoden sind großteils immer noch in der Filmbranche zur Erstel-

lung computeranimierter Filme in Verwendung und haben erst in jüngster Vergangenheit ihren

Vorstoß in die Welt der Echtzeitgraphik geschafft.

Im Vergleich zu den Offline-Methoden, wurde und wird in der Echtzeitgraphik jedoch haupt-

sächlich die sogenannte Rasterisierungsmethode (engl.: rasterization) angewandt, die auf stan-

dardisierter Hardware (Graphikkarten) und entsprechenden Software-Interfaces basiert. Erst dur-

ch das Aufkommen von echter, programmierbarer Graphikhardware in den ersten Jahren des 21.

Jahrhunderts, sowie der seither stetig zunehmenden Rechenkapazität wurde es vor etwa einem

Jahrzehnt möglich, das Thema der globalen Beleuchtung in der Echtzeitgraphik zu behandeln.

Seit dieser Zeit hat eine sehr aktive Forschungsgemeinschaft eine Vielzahl an Techniken zur

Approximierung von GI mittels rasterisierungsfreundlicher Methoden entwickelt.

Wir stellen eine weitere Variante vor, die als Evolutionsstufe einer Untermenge von Metho-

den die unter dem Begriff Instant Radiosity zusammengefasst werden können, betrachtet werden

kann. Bei diesen Methoden wird indirekte Beleuchtung durch weitere virtuelle Lichtquellen si-

muliert, die an den Schnittpunkten der Lichtstrahlen mit den reflektierenden Objekten platziert

werden. Unsere Methode namens Adaptively Clustered Reflective Shadow Maps verwendet ei-

ne neuartige, adaptive Gruppierung basierend auf dem k-Means Algorithmus um die Anzahl

an notwendigen virtuellen Lichtquellen zu reduzieren, ohne dabei die Bildqualität negativ zu

beeinträchtigen. Dazu wird unter anderem eine komplexere Technik zur Berechnung der indi-

rekten Schattenwürfe angewandt. Die zuvor erwähnte Gruppierungsmethode unterstützt dabei

die zeitliche Stabilität des Algorithmus auf natürliche Weise durch das wiederverwenden der

Gruppierungsinformation aus dem zuvor berechneten Bild. Diese Methode wird erweitert um

eine gleichzeitige Evaluierung der eigenen Ergebnisse um eventuell auftretende ungleichmäßige

Verteilungen in der Gruppierung zu beheben. Unsere Resultate zeigen, dass diese neue Varian-

te hinsichtlich Leistung und Bildqualität Vorzüge gegenüber den bisherigen Implementierungen

aufweist.

v

Abstract

In this thesis, we present an approach to compute approximate but plausible indirect lighting,

a subtopic of global illumination (GI) in computer graphics, in real-time by utilizing the capa-

bilities of modern computer hardware. For years, this topic could only be handled in so-called

offline rendering processes that mostly utilize ray-tracing techniques where single images can

take up to multiple hours to generate. These offline methods are still largely used in the com-

puter animated movies industry, and only in recent years have ray-tracing methods begun their

foray into interactive and real-time computer graphics.

However, in contrast to offline methods, real-time computer graphics have traditionally been,

and still are (mostly), computed using so-called rasterization methods, by using standardized

hardware (graphics cards) and software interfaces. Through the advent of programmable graph-

ics hardware in the early 2000s and seemingly ever-increasing compute capabilities, the topic

of global illumination has in recent years finally stepped into the realm of real-time computer

graphics. Over the past years, a very active research community produced multitudes of tech-

niques to approximate GI using rasterization-friendly methods.

We introduce another variant that is an evolution to a subset of these methods that can be

summarized under the term instant radiosity, where indirect lighting is simulated by placing

many virtual light sources at the intersection points of light rays with reflecting geometry. Our

method, called Adaptively Clustered Reflective Shadow Maps, uses a novel, adaptive clustering

approach inspired by k-Means clustering, to reduce the number of required virtual lights without

negatively impacting image quality through application of a sophisticated shadowing technique.

The aforementioned clustering naturally facilitates temporal coherency by re-using clustering

information from the previous frame while simultaneously evaluating its results to counter po-

tential uneven cluster distributions. The results show that our new method exhibits advantages,

both performance-wise and image-quality-wise, over previously employed methods.

vii

Contents

1 Introduction 1

1.1 Overview & Motivation . 2

1.2 Scope Of The Work . 3

1.3 Structure Of This Thesis . 3

2 Background 5

2.1 Physical Units . 5

2.2 Bidirectional Reflectance Distribution Function 6

2.2.1 Characteristics . 8

2.2.2 Categorization . 8

2.2.3 Models . 9

2.3 The Rendering Equation . 12

3 Related Work 17

3.1 Shadow Mapping . 17

3.1.1 Percentage-Closer Soft Shadows . 18

3.1.2 Convolution Shadow Maps . 20

3.2 Radiosity Methods . 22

3.2.1 Instant Radiosity . 22

3.2.2 Reflective Shadow Maps . 24

3.2.3 Incremental Instant Radiosity . 25

3.2.4 Imperfect Shadow Maps . 28

3.2.5 Clustered Visibility . 31

3.2.6 Reflective Shadow Map Clustering . 33

4 Adaptively Clustered Reflective Shadow Maps 37

4.1 Motivation . 37

4.2 Contribution . 40

4.3 Overview . 41

4.4 Seeding . 43

4.5 Importance Warping . 44

4.6 Mapping . 46

4.7 Averaging . 47

ix

4.8 Evaluation . 48

5 Implementation 51

5.1 Buffers & Data Structures . 51

5.1.1 G-Buffers . 51

5.1.2 Cluster Textures . 54

5.1.3 Lighting and Shadow Buffers . 54

5.1.4 Interleaved Sampling Geometry . 55

5.1.5 RSM Sampling Geometry . 57

5.2 Point Generation . 58

5.3 Rendering Loop . 60

5.3.1 Clustering . 60

5.3.2 ISM Generation . 65

5.3.3 Indirect Illumination . 66

5.3.4 Direct Illumination & Image Composition 69

6 Results 71

6.1 Global Illumination . 71

6.1.1 Indirect Lighting . 71

6.1.2 Indirect Shadows . 72

6.2 ISM Generation . 74

6.3 Adaptive Clustering . 77

6.4 Performance . 79

7 Conclusion 83

List of Figures 87

List of Tables 88

Bibliography 91

x

CHAPTER 1
Introduction

As human beings, we perceive our environment through our senses, the most important one of

which is the ability to see. All the things that we observe with our eyes are nothing more than

electromagnetic energy hitting our retina, stimulating our visual nervous system, which in turn

sends out signals to our brain that are then interpreted as colors. From the almost infinite range

of electromagnetic frequencies like radio signals, microwaves, infrared- and ultraviolet rays, x-

rays and so on we can however only see a very narrow range of the spectrum around 380-780

nanometers in length. Radiation within that wavelength will be interpreted as colors ranging

from red to green to blue.

In visual computing the topic of image synthesis (or rendering) concerns itself with vari-

ous techniques and methods to create computer-generated images of a scene. These approaches

cover a broad range of subtopics, from the accurate representation of material reflectance, re-

fraction and absorption to the accurate modeling of light sources themselves. In such a global

representation of a rendering system, it is only natural to assume that objects are not only lit

from direct light sources, like lamps or the sun, but also from indirect light sources via object

interreflection.

Imagine any natural setting, for instance sitting at your desk with the desk lamp on and

reading this thesis, in an otherwise dark room. The lamp acts as a direct light emitter. Light

rays emitted from its bulb hit the wooden material of your desk as well as the paper in front

of you. The room is however not completely dark otherwise, as some of the light is reflected

off your desk, the paper and so on. This reflected light in turn hits other objects, walls, the

ceiling, where part of it is absorbed, another part is again reflected, again hitting other objects

until all energy has been absorbed. This is what is commonly known as indirect lighting. In

computer graphics it is called global illumination (GI). And as it turns out, it has – for a not so

brief amount of time – been a topic in visual computing that was only achievable with offline

rendering solutions, where the process of image synthesis takes upwards of multiple seconds

to compute a final picture. Only in recent years has our computer hardware become powerful

1

enough, to have the possibility to implement simple forms of global illumination that run in

real-time (i.e., at or above interactive framerates) on consumer-grade machines.

1.1 Overview & Motivation

In order to realize global illumination using visual-computing methods, we employ a so-called

many-lights approach (MLA), which uses – in addition to a direct light emitter (i.e., a light bulb,

flashlight, etc.) – additional virtual light sources placed at intersection points of where the light

rays hit surrounding surfaces to simulate the reflection of light and thus create the illusion of

indirect illumination. For a convincing effect, we have to faithfully replicate common proper-

ties of indirect light such as smooth gradients, soft shadows and “light bleeding”. The latter

describes the effect of having the reflector’s surface influence the color of the reflected (indirect)

light, where for instance a bright red curtain would radiate slightly reddish indirect light when hit

by light rays. Furthermore, another important requirement especially in real-time applications is

that our method also supports fully dynamic scenes (i.e., moving light sources, moving/animated

objects, destruction, etc.) in order to be applicable in a broad variety of situations like visualiza-

tion in architecture, e-learning or games. This of course adds an additional layer of complexity

to this work since we cannot rely as much on pre-computations, thus requiring a highly efficient

technique that is able to generate plausible images in real-time.

However, in order to achieve this goal a few concessions have to be made especially with

respect to the indirect lighting: Remember from the desk-lamp example on the first page how

we described the process of indirect lighting as light rays “bouncing” around the scene from one

object to another until all energy is spent. It is here, where the most computational effort would

be required, and thus it is a logical step to try and reduce the number of times we “follow” these

light bounces around the scene. This is especially true since we know that about 95% of the

energy is spent within the first two indirect light bounces, and further research [44] revealed that

even only tracing a single bounce of indirect illumination is able to produce convincing results.

Thus, many real-time implementations of indirect lighting rely on tracing only a single bounce

of indirect illumination. This is also one concession we make for our work.

In the research field of global illumination, the many-lights approach and the group of al-

gorithms derived from it can be summarized under the term Instant Radiosity after the original

method [23]. Keller was the first to propose and implement the idea of using virtual light sources

to simulate indirect illumination, where the physical term radiosity can be described as “energy

leaving a surface” and instant refers to the ease of implementation of this approach. Since then,

a myriad of additional research on how to improve upon this method has been published and

we later introduce the relevant methods and the theoretical background in more detail. Many

of these publications, especially the ones aiming for real-time implementations, also rely on

simplifications in order to achieve their performance goal and thus exhibit certain weaknesses,

either in image quality (visual artifacts) or in their realization.

With our work, we aim to address some of these shortcomings by combining existing meth-

ods in a new and creative way while also contributing our own novel ideas as well. This thesis

2

expands on our previous work [49], in which we already experimented with instant radiosity-

based approaches. We will provide a brief introduction into the theoretical background in Chap-

ter 2 and after outlining the related work and their advantages and disadvantages we present our

own contributions for this work.

1.2 Scope Of The Work

In this thesis, we present a novel approach called Adaptively Clustered Reflective Shadow Maps

for applying “single-bounce”1 indirect illumination for scenes consisting of arbitrary polygonal

meshes.

We provide an introduction to the idea behind our approach, the algorithms and methods in

use as well as implementation specifics for the integration into an existing rendering pipeline.

Furthermore we provide detailed results, highlight advantages and disadvantages, analyze the

difficulties of our method and how they are addressed by our implementation.

1.3 Structure Of This Thesis

This thesis is structured into the following chapters:

CHAPTER 2 provides information about the background of this work by means of introducing

the reader to the concept of Bidirectional Reflectance Distribution Functions (BRDFs) in

order to understand how surfaces reflect incoming light rays and the Rendering Equation

(RE) as described by Kajiya [21], which mathematically explains the problem of light

transport within a scene.

CHAPTER 3 evaluates related work in real-time global illumination, analyzing the strengths and

weaknesses of those methods. In the end we outline how to improve upon these methods

and state our own contributions.

CHAPTER 4 introduces our approach, describing the basic idea, stating prerequisites, then fur-

ther moving on to detailed descriptions of the various parts of our technique.

CHAPTER 5 provides a technical description of how to integrate our method into an existing

G-Buffer based rendering pipeline by exploiting already given data as well as extending

the buffers as required by our technique.

CHAPTER 6 shows the results of our implementation. It gives a detailed evaluation of our

method and compares the results of our work with the related work. Furthermore we

outline differences, advantages, disadvantages and the limits of this thesis’ work.

CHAPTER 7 summarizes the contributions and contents of this thesis. Finally, we discuss pos-

sible future work and enhancements to the technique.

1Only the first reflection of light from an intersected object is considered for indirect illumination.

3

CHAPTER 2
Background

We have already briefly touched the topic of global illumination in the introduction using fa-

miliar terms and concepts. In this chapter, we introduce the scientific background of GI that is

required to understand the remainder of this thesis.

2.1 Physical Units

Since lighting is a natural phenomenon, it adheres to the laws of physics. Photons emitting from

a light source, is basically energy traveling through a transmissive medium that is at some point

converted into power. In computer graphics, we want to model reality and create perceptually

plausible images. Hence, our models are often based on physical criteria. In this section, we

will give a short introduction into the physical terms used throughout this thesis.

RADIANT FLUX (or short flux) is a term used for radiant power described by Φ. In physics,

power is energy per unit time, measured in Watts, which is in turn described through Joule

per second. For lighting calculations, we are talking about the energy of photons. As

photons travel through a medium per unit time, their energy is converted into power.

As working with actual wavelenghts is too complicated and computationally intensive for

use in real-time computer graphics, flux is often given as a discretized, tri-chromatic color

value – a mixture of the red, green and blue color channels. The factor of time is inherent

to the process, as our images are synthesized for a specific point in time of the scene.

SOLID ANGLE is expressed in a dimensionless unit called steradians (sr). An object’s solid

angle (ω) is equal to the area of the segment of a unit sphere, centered at the angle’s

vertex that the object covers (refer to Figure 2.1(a)). It is similar to how a planar angle

in radians equals the length of an arc of a unit circle. The solid angle plays a crucial role

when normalizing the transferred flux from a given light source.

5

Ar

A11

r

(a) The solid angle ω of a cone with radius r and

base Ar is equal to the area of its projected spheri-

cal cap A1 onto the unit sphere.

A⊥A θ

(b) Projecting an oblique area A onto the plane per-

pendicular to the ray by using angle θ yields A⊥.

The ray direction is given by the dashed lines.

Figure 2.1: Solid angle geometry in (a) and perpendicular projection in (b).

RADIANCE is flux (Φ) per solid angle (ω) per unit area perpendicular to the ray (A⊥). It is

denoted by L calculated as

L =
dΦ

dω dA⊥
.

We can rewrite A⊥, by projecting the surface area (A) onto the plane perpendicular to the

ray via simple trigonometry (refer to Figure 2.1(b)) as A⊥ = Acosθ , which yields

L =
dΦ

dω dAcosθ
.

IRRADIANCE is the flux incident on a surface per unit surface area. In a simple form it is

described by E = Φ
A

or for infinitesimal amounts of flux and area it can be E = dΦ
dA

. We

can easily relate this to the radiance given above as,

Lcosθ dω =
dΦ

dA
= E. (2.1)

RADIOSITY also known as Radiant Exitance, is the flux leaving a surface (i.e., going in the

opposite direction) per unit surface area. It is given by B = Φ
A
= dΦ

dA
(in some publications

B can be denoted as M). Again, we can easily spot the similarity between irradiance

and radiosity. The difference between those two is in the nomenclature, where irradiance

means flux received by a surface, while radiosity means the flux leaving a surface.

2.2 Bidirectional Reflectance Distribution Function

In order to describe and understand light transport in a scene, we first have to understand how

surface properties influence the paths of incoming light. Fred Nicodemus first introduced the

6

Bidirectional Reflectance Distribution Function (BRDF) [32] in 1965. It was the first compre-

hensive model to describe surface properties in a physical way and is used to describe effects for

light reflected into the upper hemisphere of a sphere surrounding a point~x that is aligned along

its surface normal n̂.

In its original form, the BRDF is a parametrized function defined by,

fr(~x,ωi,ωo) =
Lo(~x,ωo)

Ei(~x,ωi)

where~x is a positional vector and ωi,ωo are directional vectors denoting the incident (or incom-

ing) direction and the reflected (or outgoing) direction. L and E, like discussed before, denote

the radiance and irradiance respectively. The BRDF gives the proportion of light reflected from

the incoming direction ωi into outgoing direction ωo at position~x.

Similar to Equation (2.1), we can easily rewrite it as,

fr(~x,ωi,ωo) =
Lo(~x,ωo)

Li(~x,ωi)cosθi dωi

(2.2)

where θi gives the angle between the surface normal n̂ and the incoming direction ωi. Since

the incoming radiance for any given volumeless direction is zero, we actually have to consider

infitesimal solid angles dωi around the incoming direction ωi (see Figure 2.2).

More complex (i.e., higher dimensional) variations of a BRDF with fr(~x,ωi,ωo, . . .) can ac-

count for additional effects like polarization, phosphorescence and fluorescence. We do not deal

with such effects in this work, hence we also do not go into detail regarding those specializations.

For the sake of completeness, it is worth noting that there also exist functions that take care

of effects regarding the lower hemisphere (i.e., when using transparent objects). In this case,

light is not only reflected off the surface, but also transmitted through it, in which case we also

have to concern ourselves with Bidirectional Transmittance Distribution Functions (BTDFs).

A combination of both these variants is termed Bidirectional Scattering Distribution Functions

(BSDFs).

n dωiLo(ωo)

x→

θo
θi

Li(ωi)∧

Figure 2.2: The BRDF hemisphere is centered around ~x and aligned according to its corre-

sponding normal n̂.

7

2.2.1 Characteristics

Physically-based BRDFs have a few key characteristics that we will briefly touch below.

BIDIRECTIONALALITY As the name suggests, BRDFs are bidirectional. This means that switch-

ing the incoming and outgoing directions will not change the result of the BRDF:

fr(~x,ωi,ωo) = fr(~x,ωo,ωi). This characteristic is called Helmholtz Reciprocity.

POSITIVITY The amount of energy (reflected and incident) cannot be negative: fr ≥ 0.

ENERGY CONSERVING The amount of reflected energy cannot exceed the amount of incident

energy: fr(~x,ωi,ωo)≤ 1.

2.2.2 Categorization

Material reflectance properties can be classified into four main groups. Since we are dealing

with analytical BRDFs later in this chapter, it is important to understand these major reflector

categories (see Figure 2.3):

DIFFUSE reflectors have the characteristic of reflecting incoming light equally into all direc-

tions. Hence, they are independent of the outgoing direction ωo. In reality, no material

is an ideal diffuse reflector, but for instance materials with rough surfaces like natural,

unpolished wood exhibit the main characteristics of a diffuse reflector.

ROUGH SPECULAR (also known as DIRECTIONAL DIFFUSE) materials concentrate the distri-

bution of reflected light around the general direction of ωo. The glossiness of a material

describes the variance in the reflection direction. That is, a higher glossiness results in

a more mirror-like behavior. Glossy specular surfaces show a highlighted region around

the general reflection direction. Many polished materials like coated wood or clean metal

display such a behavior.

PERFECTLY SPECULAR surfaces reflect light only into the reflection direction ωo. In practice,

such materials do not exist, as even mirrors that appear to be perfect reflectors have small

imperfections in their surface structure, so called microfacets.

RETRO-REFLECTIVE materials scatter most of the incoming light back into the general direc-

tion of where they originated. Such materials are quite common in day to day life and are

used on road surfaces and signs, safety clothing, etc.

Most natural materials cannot be strictly classified into one of those categories but instead are

a mixture of at least two of them. Another categorization is based on whether a material exhibits

isotropic or anisotropic reflective properties: Isotropic reflections are rotational invariant which

is the case for a large number of materials. Anisotropic reflections on the other hand change with

respect to the rotation of the surface around its normal vector. Examples are radially brushed

metals or optical discs.

8

n
∧

ωi

x
→

n
∧

ωi

x
→

n
∧

ωi

x
→

n
∧

ωi

x
→

(a) (b) (c) (d)

Figure 2.3: Each column represents the reflective properties (top) and an example render (bot-

tom): (a) ideal diffuse, (b) rough specular, (c) perfect specular and (d) retro-reflective. Render-

ings courtesy of Andrea Weidlich.

2.2.3 Models

To represent the material characteristics given above we either need mathematical models or raw

data captured from real materials. As such, BRDF data can be captured from physical objects by

using Gonioreflectometers. However, capturing this data is a very time-consuming and memory-

intensive task that is most often not performed for real-time applications. Instead, we often rely

on simplified analytical models that are easier to evaluate.

Analytical models are often expressed as a combination of three components: An 1) ambient

component Ia, 2) a diffuse component Id and 3) a specular component Is. These components

are usually calculated separately and various models for the various parts exist. Since most

materials are represented by a combination of these classifications, the analytical models are

mostly calculated independently but are superimposed for final composition as I(Ia, Id , Is). These

ambient, diffuse and specular terms are thereby often weighted by coefficients ka,kd and ks.

It is worth mentioning that the ambient component historically was given by Ia = ka. This

was born out of necessity for use in computer graphics, where ka is a static reflectance term

that was meant to be used as a drop-in solution to account for ambient lighting before global

illumination methods (either pre-computed or generated in real-time) took its place and allowed

the evaluation of more complex Ia functions.

The following list provides an overview of some popular analytical variants which can be

further categorized into empirical and physically based models.

9

Empirical

Empirical models are created from observation and testing. They simulate physical behavior but

are not meant to be accurate, just plausible. Superpositions of multiple models are often used to

gain a higher degree of realism. Many well-known models are of this type:

LAMBERT: This model is named Lambert’s Cosine Law after Johann Heinrich Lambert [26]

and applies for diffuse surfaces only. For application in computer graphics, it is usually

given as Id = kd · cosθ , which states that the radiant intensity Id observed on an ideal

diffuse reflector kd is directly proportional to the cosine of the angle θ between the surface

normal n̂ and the direction of the incident light l̂ll. Since we concern ourselves only with

reflections on the positive hemisphere around the surface normal we can clamp any value

below 0° or above 180° to zero. Thus, it can be rewritten as Id = kd ·max(0,
〈

n̂|l̂ll
〉

).

PHONG: this model for specular illumination by Phong [34] approximates the highlights of

glossy materials (as described in Section 2.2.2) through Is = ks ·max(0,〈v̂|r̂〉α) where v̂ is

the viewing direction, r̂ is the reflection of light direction l̂ll around the surface normal, α

is a glossiness factor and ks the specular reflection coefficient. Since Phong’s model only

calculates specular highlights, it is often superimposed with a diffuse lighting model like

Lambert’s to achieve a convincing illumination.

BLINN: Recalculating 〈v̂|r̂〉 for varying light directions as in the Phong model was - especially

at the time of its invention - a computationally heavy task. For efficiencies sake James

Blinn [5] came up with a modification of the Phong model, thus sometimes called Blinn-

Phong model, which is calculated by Is = ks ·max(0,
〈

n̂|ĥ
〉

)α ′ . Here, the 〈v̂|r̂〉 dot product

is substituted by
〈

n̂|ĥ
〉

, where

ĥ =
l̂ll + v̂

∥

∥

∥l̂ll + v̂

∥

∥

∥

. (2.3)

is the halfway vector between the light direction and the viewing direction. This has

a significant benefit for so called directional lights, which model light sources that are

very far away from the surface such as the sun, where the light direction is assumed

to be constant. In this case, the halfway vector becomes a quasi-constant that can be

calculated once per light, instead of having to be recalculated at each pixel, therefore

drastically reducing the computational effort. Whereas Phong highlights always appear

circular, Blinn highlights become elliptical when viewed from a steep angle which is more

realistic. This behavior is due to its usage of the halfway vector which was inspired by

physically based microfacet BRDFs (see below). Similar to the Phong model, it must be

combined with a diffuse illumination model to yield a plausible shading.

Physically based

Phyiscally based models are built to be physically accurate, hence are usually more complex

in terms of the maths involved, harder to implement and do also often require knowledge of

physical material constants.

10

COOK-TORRANCE: Similar to the Phong and Blinn models discussed above, this model also

models specular reflectance, hence it must be combined with a diffuse model. Cook and

Torrance’s model is based on simulating surface microfacets, where the material’s rough-

ness (m) decides the orientation of the facets. On smooth surfaces, neighboring micro-

facets are oriented similarly, whereas on rough materials their orientation varies greatly.

It is calculated as

Is(n̂, l̂ll, v̂,m, fλ) =
F(fλ) ·D(n̂, ĥ,m) ·G(n̂, l̂ll, v̂)

π ·
〈

n̂|l̂ll
〉

· 〈n̂|v̂〉

where n̂, l̂ll, v̂ are the known directional vectors for surface normal, light direction and

reflection direction. The Fresnel factor F is computed via Schlick’s approxmiation [42]

F(fλ) = fλ +(1− fλ) · (1−
〈

ĥ|v̂
〉

)5

where the reflection coefficient at normal incidence is given by fλ . The microfacet distri-

bution (roughness) is calculated as

D(n̂, ĥ,m) =
1

π ·m2 ·
〈

n̂|ĥ
〉4
· e

(

〈n̂|ĥ〉2−1

m2 ·〈n̂|ĥ〉2

)

.

where ĥ is the halfway vector as defined in Equation (2.3). Finally, the geometrical atten-

uation is given by

G(n̂, l̂ll, v̂) = min

1,
2 ·

〈

n̂|ĥ
〉

· 〈n̂|v̂〉
〈

v̂|ĥ
〉 ,

2 ·
〈

n̂|ĥ
〉

·
〈

n̂|l̂ll
〉

〈

l̂ll|ĥ
〉

 .

This factor determines how incoming light is influenced by the microfacet structure of

the surface and therefore how much light is reflected or absorbed by self-shadowing or

masking effects.

The interested reader is referred to Cook and Torrance’s publication [8] for a more detailed

discussion of the model and its physical background. We can however easily grasp that

the computational effort is much higher than for the simple empirical models discussed

above. Nonetheless, methods of this complexity have already found their way into real-

time applications [22, 43], resulting in much more realistic shading.

WARD: As an example of an anisotropic model, Ward’s BRDF [47] is based on elliptical Gaus-

sian distributions. His work is based on real measurements from a gonioreflectometer.

The important specular term is represented by

Is(n̂, l̂ll, v̂, x̂, ŷ,αx,αy) = ks ·
1

4παxαy

·
1

√

〈

n̂|l̂ll
〉

· 〈n̂|v̂〉

· e

[

(〈ĥ|x̂〉/αx)
2
+(〈ĥ|ŷ〉/αy)

2

〈ĥ|n̂〉2

]

11

n
∧

x
→

ωi

θi
ωo

h(, -ωi)x
→

Li(, ωi)h(, -ωi)x
→

Ω

Lo(,ωo)x
→

fr(, ωi, ωo)x
→

Le(, ωo)x
→

Figure 2.4: Showcases the various different parts of the Rendering Equation in graphical form.

where αx and αy are material constants that describe the size of the highlights, while x̂ and

ŷ are perpendicular, directional vectors on the surface plane that describe the orientation

of the elliptical highlight.

Many other analytical models exist today. The ones presented above belong to the more

prominent BRDFs used in computer graphics. The work in this thesis is however only based on

Lambert’s diffuse and Blinn’s specular model. In particular our radiosity-based global illumina-

tion method only calculates diffuse interreflection.

2.3 The Rendering Equation

After an understanding of material reflectance properties and how to mathematically describe

them has been established, we can now formally describe how light emitted by a light source

propagates through space. A mathematical way to formulate this was introduced in 1986 by

James Kajiya [21]: the Rendering Equation (RE). There are multiple possible formulations and

variants of his equation. In this work, we focus is on the directional formalism (see Figure 2.4

for a graphical interpretation):

Lo(~x,ωo) = Le(~x,ωo)+
∫

Ω
Li(h(~x,−ωi),ωi) · fr(~x,ωi,ωo) · cosθi dωi (2.4)

Parts of the Rendering Equation

Le(~x,ωo) Denotes radiance emitted from position~x into direction ωo.

∫

Ω . . .dωi The integral that computes the irradiance over the hemisphere Ω that

contains all directions ωi and is centered around the surface normal n̂ at

~x.

12

Li(h(~x,−ωi),ωi) Specifies incoming radiance at point ~x from direction ωi. Li is parame-

terized by the visibility function h, which determines whether~x is visible

from direction ωi.

fr(~x,ωi,ωo) The BRDF (discussed in Section 2.2) giving the proportion of light re-

flected from ωi to ωo at position~x.

cosθi The weakening factor of incoming radiance in order to transform it to

irradiance (see Section 2.1). In computer graphics this is often rewritten

as a dot product given by 〈n̂|ωi〉.

Lo(~x,ωo) Finally, based on the emittance term and the integral over Ω, the RE

gives the overall radiosity leaving the surface at position~x into direction

ωo.

It becomes clear that when interpreting the rendering equation, the outgoing radiance Lo

of one surface point will have to be considered when determining the incident radiance Li at

another point. By introducing an integral operator T for
∫

Ω . . .dωi the equation can be rewritten

in a short form as

Lo = Le +T Lo′

which can be further expanded into the following, recursive form

Lo = Le +T (Le′+T (Le′′+T (. . .))).

The Radiosity Equation

The method described in this thesis primarily uses diffuse interreflection, which is characterized

by the fact that it distributes light equally in all directions ωo. This allows a reduction of the

BRDF term fr(~x,ωi,ωo) to fd(~x). It then only represents the diffuse reflectivity at position ~x,

which allows further simplification of the rendering equation into the following form:

Lo(~x,ωo) = Le(~x,ωo)+ fd(~x)
∫

Ω
Li(h(~x,−ωi),ωi) · cosθi dωi. (2.5)

In this variant, fd ≡ fr moves out of the integral, which means that the BRDF term does not

have to be evaluated with respect to ωo for each incoming direction ωi over the hemisphere Ω.

Instead, fd remains static per position~x, which reduces the complexity significantly. This yields

the so called radiosity equation [15], which includes a number of variable substitutions and

describes the light transport rather in terms of relationships between two points in space (x,x′):

B(x) =E(x)+ fd(x)
∫

S
B(x′) ·G(x,x′) ·V (x,x′)dA′

=E(x)+ fd(x)
∫

S
B(x′) ·F(x,x′)dA′

(2.6)

where, Li,Lo have been substituted with B, the emittance term Le is now given by E, the integral

over the hemisphere is given by
∫

S where S is the entirety of all discretized surfaces in the scene.

13

LDSE

LDDE

LSDE

Figure 2.5: Rendering of a complex scene with a global illumination renderer. Depicted are

some possible light paths using Heckbert’s notation. Image courtesy of Hašan et al. [18].

cosθi dωi has been replaced with the geometry term G(x,x′)dA′. Furthermore, the visibility

function h is rewritten as V (x,x′). G and V are often further combined into a form factor F(x,x′),
which gives the proportion of energy transferred from x′ to x. This notation will be used in later

sections of this work.

The Light Transport Notation

Before introducing the most common methods of solving the rendering and the radiosity equa-

tion, a notation by Heckbert [19] to classify those solvers is presented first: he Light Transport

Notation. It is used to describe the type of rays that occur when light is transported through the

scene, of which his notation identifies four:

L is used for rays that originate from a light emitting source,

D describes a diffuse light bounce1,

S describes a specular light bounce and

E is a ray that travels to the eye/view point.

By expanding the notation further with operators inspired from Regular Expressions

? zero or one occurence,

1A bounce describes a ray that originates from reflecting off of an intersecting surface.

14

* zero or more occurrences,

+ one or more occurrences, as well as

| that allows to decide between multiple selections

it becomes more flexible and easier to depict complex ray variations. Figure 2.5 shows an exam-

ple of possible combinations of paths in a scene. The single-bounce radiosity solver presented

in this thesis, can thus be categorized using Heckbert’s notation as an LDE solver.

Solving the Rendering Equation

The inherent coupling between the terms Lo and Li makes analytical solutions of the RE mostly

impossible. However, due to that same feature we can immediately spot a possibility to employ

an iterative (or recursive) algorithm to numerically integrate and approximate a solution.

In visual computing, two main groups of algorithms to numerically approximate the render-

ing equation emerged:

RADIOSITY: The original Radiosity-approach (although related, not to be confused with the

physical term described in Section 2.1) by Goral et al. [15] is a finite-element method that

accounts only for diffuse interreflection of type LD*E and is thus meant for solving the

RE given in Equation (2.5). It either iteratively or recursively divides the surfaces of a

scene into smaller subsurfaces, called patches. For each of those patches, it calculates a

form factor (sometimes also called view factor), which is a coefficient that quantifies the

visiblity between two patches: patches that are farther away from each other or that are

oriented at oblique angles will have smaller form factors. If the visibility is (partially)

blocked, the form-factor will be reduced or equal to zero. These form-factors act as inputs

for a system of linear equations that yields the brightness of each patch.

Nowadays, this method is not as widely used any more, especially when talking about

real-time solutions. It has been altered and adapted, and as with many other methods

that have evolved over time, the original term Radiosity has however stuck and is still

commonly used when talking about global illumination and diffuse interreflection.

MONTE CARLO: These kind of methods are based on pseudo-random sampling patterns to

achieve numerical solutions for non-analytic problems with bad convergence behavior.

They are not only used for global illumination but are applicable to a broad field of com-

putational algorithms. Since the RE’s integral is almost impossible to solve analytically

because an infinite amount of incoming directions (ωi) would have to be considered, an

approximation using only a finite subset of directions that are pseudo-randomly distributed

over the hemisphere is sufficient to create a converging solution. Thus, Monte Carlo-based

methods lend themselves well to this kind of problem and allow the creation of solvers

that are able to approximate the “full” variant of the Rendering Equation (refer to (2.4))

consisting of L(S|D)*E paths.

15

Various different global illumination solvers exist that are based on Monte Carlo meth-

ods, such as Ray Tracing [50], Path Tracing [21], Photon Mapping [20] or Metropolis

Light Transport [45]. The general idea behind most of them is, to shoot rays in an in-

formed random direction into the scene and follow their paths (influenced by reflection,

absorption, etc.) through the scene. By using a good sampling pattern and a repeated

application of this method, the numerical integration converges towards a correct solution

of the rendering equation.

Historically, both, Radiosity- and Monte Carlo-based approaches have their roots in offline

rendering solutions. As computers and graphics hardware became more powerful over the years,

radiosity-inspired methods however became more prevalent in real-time applications as its ideas

were more easily integrable into the standard rasterization pipeline, as will be discussed in the

next section. With the advent of compute languages such as OpenCL or CUDA, it is nowadays

also possible to create Monte Carlo-based real-time ray-tracing solutions that run entirely on

programmable graphics hardware.

16

CHAPTER 3
Related Work

Now that the most important aspects of the theory behind global illumination have been covered,

we give an introduction to the related work that is in large parts based on the previously presented

methodologies. However, before going into detail on the radiosity-based approaches (starting in

Section 3.2.1), we also require the reader to understand the complexities of shadows and how

they relate to global illumination. The following paragraphs should act as an introduction to this

topic as far as our related work is concerned. A more complete discussion of the various existing

shadow generation methods is given in state-of-the-art reports [13, 48].

3.1 Shadow Mapping

Shadow generation is an important topic in real-time computer graphics, as shadows provide

important visual cues about the scene that would otherwise be hard or even impossible to grasp:

• Shadows aid in understanding relative object positions and dimensions in a scene. Without

a cast shadow, it is not easily possible to visually determine the location of an object.

• They facilitate understanding the geometric complexity of the shadow receiver and oc-

cluder.

In real-time applications, shadows are generated for a low number of light sources, as each

shadow casting light source requires its own shadow computation. With each additional light

source, the number of shadow computations required during illumination increases. This prob-

lem persists for global illumination methods, which is why a lot of the subsequently discussed

methods try to either reduce the amount of shadow maps that are needed (or have to be updated)

[25, 11], or to speed up the rendering of large amounts of shadow maps [39, 41]. A characteristic

feature of shadows generated from indirect light is that they are usually very subtle. Hence, cer-

tain other methods [36] do not generate shadows from indirect lighting at all, since even without

indirect shadows convincing images can be produced [44].

17

The most common method for shadow generation in real-time applications is Shadow Map-

ping [51]. It is an image-based approach that produces a two-dimensional depth map – called

shadow map – that is constructed from the point of view of the light source. Each pixel p of the

shadow map stores a depth value d(~x) for a world-space position ~x ∈ R
3. The translation from

world-space position to shadow map pixel is constructed via a surjective mapping T : R3→ R
2,

such that p = T (~x). The shadow map itself encodes a function z(p) that represents the depth of

the blocker that is closest to the light source for each p. To define whether a pixel with world-

space position ~x is considered to be in shadow the corresponding binary shadow test f (d,z) is

evaluated for each single pixel as

f (d(~x),z(p)) =

{

0 if d(x)> z(p)

1 otherwise,
(3.1)

where d(~x) gives the depth value of the world-space position. Another way to describe f is

via a unit step function, H(t), where f (d,z) = H(d− z). The step, from “in-shadow” to “lit”

occurs where d− z = 0. This further emphasizes the fact that this simple evaluation, produces

hard shadow boundaries. However, as stated above, we expect very soft shadows with smooth

gradients from indirect illumination, which simply cannot be achieved this way without applying

additional filtering.

3.1.1 Percentage-Closer Soft Shadows

The so called Percentage-Closer Soft Shadows (PCSS) by Fernando [14] is a shadow filtering

method that is based on a variable multi-sampling approach. It aims to generate more realistic

soft shadows that exhibit characteristics such as contact hardening.

(a)

{{

{

A wlight

Bwpenumbra

Receiver

Blocker

dreceiver

dblocker

{

(b)

Figure 3.1: (a) Various shapes with PCSS shadows. We can observe effects such as hardening

on contact (beam on the left) and softer shadows when the distance between blocker and receiver

increases (object on the right). (b) Basic idea of the PCSS algorithm based on similar triangles.

Image courtesy of Fernando [14].

18

Outline

The idea behind PCSS is to perform multiple binary shadow tests for a single pixel that also

incorporates neighboring texels in the shadow map. The results of the depth comparisons are

averaged, giving a value between zero and one (rather than only 0 or 1), which softens the result-

ing shadow. This technique is known as Percentage-Closer Filtering (PCF) [37]. By adaptively

varying the sizes of the filter kernel, different degrees of soft shadows can be created, i.e., small

kernels give harder shadows, large kernels produce softer shadows. Figure 3.1(a) gives examples

of the results that can be achieved using this technique.

Soft Shadows Through Varying Filter Sizes

Fernando employs a simple heuristic to determine the penumbra1 size

wpenumbra =
(dreceiver−dblocker) ·wlight

dblocker

(3.2)

that is based on

• occluder depth (dblocker),

• receiver depth (dreceiver) and

• light source dimension (wlight).

The receiver depth is trivially acquired for each shaded pixel by performing a shadow map

lookup at its pixel location. Also the light source’s dimension can be easily supplied to the

shader from an external source such as a texture or as a uniform variable. For dblocker, a simple

search algorithm – the blocker search – is applied to find the average occluder depth. Its search

region depends on the size of the light source as well as the distance to the light. Finally, the

resulting value wpenumbra can be used to vary the parameters of the PCF kernel. See Figure 3.1(b)

for a visualization of the equation.

Conclusions

PCF & PCSS: Employing PCF during shadow computation is rather trivial since it seamlessly

replaces a traditional shadow map lookup. It is able to produce far more natural looking

shadows and the computational effort scales with the size of the filter kernel. The variable

filter size that is used for PCSS, is able to simulate even more perceptually plausible

shadows that exhibit certain features like hardening on contact that would be expected

from real soft shadows.

1Shadow regions can be classified into two regions: The umbra defines the core shadow, where the occluder

completely hides the light source. The penumbra is the region where part of the light source is visible. This degree of

visibility varies throughout the penumbra region: near the umbra, only a small area of the light source is visible, on

the other side of the penumbra, almost the entire light source becomes visible until the shadow completely vanishes.

19

(a) (b) (c)

Figure 3.2: (a) Approximation of the shadow test step function using Fourier expansion for

different orders M. (c) Basis images for M = 16 generated from a linear depth map shown in

(b). Images courtesy of Annen et al. [1].

3.1.2 Convolution Shadow Maps

While PCF-based shadow filtering achieves softer shadow boundaries, it is not entirely opti-

mized for graphics hardware, since it cannot apply cheap pre-filtering techniques such as bi-

linear or tri-linear filtering. This is due to the pre-filtering occurring before the shadow test,

which would first average the depth values from the shadow map and then perform the f (d,z)
test. PCF on the other hand filters after the shadow test. Convolution Shadow Maps (CSMs)

[1] introduce a way to apply standard pre-filtering techniques as well as other filters such as

Gaussian blur directly to the shadow map.

Outline

To this end, Annen et al. show a way to perform a Fourier series expansion on the shadow test

function as given in (3.1). They demonstrate that f (d,z) can be made separable with respect

to d and z in order to perform a pre-convolution of the shadow function z. In other words, this

separability allows for pre-filtering of the shadow map.

Convolution Of The Shadow Test

Separability is achieved by transforming the z-values such that the shadow test s(~x) = f (d,z)
can be written as a sum. Its finite expansion up to truncation order N is given by

s(~x) =
N

∑
i=1

ai(d)Bi(z) (3.3)

where Bi are basis funcions in term of z and ai are the corresponding coefficients depending on

d. In practice, this means that the shadow map is converted to “basis images” by applying each

basis function to the shadow map as Bi (z(p)). The authors demonstrate that this expansion can

20

be applied to a convolution of the shadow function s f (~x) such that

s f (~x) =
N

∑
i=1

ai(d(~x)) [w∗Bi] (p) (3.4)

where w is the convolution kernel. This forms their key observation, which states that “any

convolution operation on the shadow function is equivalent to convolving the individual basis

images Bi(z(p))”. This decoupling of d(~x) from z(p) is important, because it allows convolving

the basis images Bi(z(p)) before the shadow test.

In order to perform the Fourier series expansion on the shadow function f (d,z), a represen-

tation based on the unit step function H(t) where f (d,z) = H(d− z) is used. An example of this

approximation is given in Figure 3.2(a). The final separable shadow test function is given by

f (d,z)≈
1

2
+2

M

∑
k=1

1

ck

cos(ckd)sin(ckz)

−2
M

∑
k=1

1

ck

sin(ckd)cos(ckz)

(3.5)

where ck = π(2k−1) and N = 2M. The terms sin(ckz) and cos(ckz) are computed based on the

shadow map and stored in additional texture maps (see Figure 3.2 (b) and (c)) depending on the

order M. On these texture maps, arbitrary filtering functions can be applied to yield smoother

shadow terms. For the complete derivation of Equations (3.4) and (3.5) as well as the Fourier

expansion of H(d− z) please refer to the work by Annen et al. [1].

Conclusions

CONVOLUTION: The approximation of the shadow test function using a Fourier expansion al-

lows for using cheap filtering techniques such as bi-linear and tri-linear filtering. This

reduces shadow aliasing and is therefore a simple yet effective method to achieve soft

shadows.

BASIS IMAGES: A possible downside are the increased memory requirements for storing the

basis images compared to a straight-forward approach such as PCF.

21

(a) (b)

Figure 3.3: The Instant Radiosity approach: In (a), the scene is lit only directly and light rays

are traced from the main light source. At the intersection points with scene geometry, VPLs are

placed and used to simulate indirect illumination in (b).

3.2 Radiosity Methods

As the work presented in this thesis is mostly based on the radiosity approach described above,

the following sections give an introduction to the origins of the many-lights approach and its

evolution over time. At the end of this chapter, the reader should be familiar with the tech-

niques and terms that are used in the remainder of this thesis and understand their strengths and

weaknesses that also form the basis for our own contributions.

3.2.1 Instant Radiosity

In 1997, Keller [23] proposed the idea of Instant Radiosity (IR). Most of the methods discussed

throughout Chapter 3 can be classified as evolutions or variations of this original instant radiosity

approach. It is an efficient technique to generate global illumination effects for diffuse and not-

too-glossy materials. In contrast to the original Radiosity approach, which models the energy

transport via form factors of surface patches, the basic idea of IR is to instead place a number

of Virtual Point Lights (VPLs) throughout the scene which are then used to compute the overall

illumination effects for every pixel on the screen. Figure 3.3 shows the basic principle of all

Instant Radiosity-based methods.

Outline

Starting from the light sources, rays are cast into the scene. VPLs are placed at the intersection

points of those rays with scene geometry. The VPLs are aligned along the intersecting surface’s

normal and emit a colored light according to the BRDF of the underlying material. The scene

22

is via a separate pass for each of the VPLs, where just like for each real light source, a shadow

map is created for each virtual point light source.

Indirect Lighting

For the calculation of the indirect light contribution from a surface point two points x′ (emitter)

to another point x (receiver), usually a simple form factor is used:

F(x,x′) =
cosθx · cosθx′

π · ‖x− x′‖2
. (3.6)

The inverse squared distance term 1/‖x− x′‖2
causes a singularity problem that manifests as

“light sparks” during rendering when the distance between points x and x′ gets very small. This

is however a very common problem for the approach because VPLs are commonly placed near

scene geometry. A typical way to circumvent this problem is to either clip or re-modulate the

form factor to the maximum representable value in the framebuffer.

VPL distribution

The raycasting process uses a pseudo-random, low-discrepancy sampling pattern known as Hal-

ton sequences [16] to determine the direction of each ray. Due to this pseudo-random sampling

pattern, a quasi-Monte Carlo integration for the evaluation of the Rendering Equation (refer to

Section 2.3) is achieved when the results of the separate shading processes of each single VPL

are accumulated into a buffer and weighted by their contribution factor 1/N.

Conclusions

SIMPLENESS: This simple and straight-forward approach allows for global illumination without

the need of costly precomputation. It works directly in image space without requiring

special data-structures or subdivision surfaces, which makes it perfectly suitable for drop-

in usage in common, hardware-accelerated rendering pipelines.

RECURSIVENESS: Recursive application of this method (i.e., casting rays from the created

VPLs) allows to easily account for multiple indirect light bounces within the scene.

SCALABILITY: Keller notes that his technique is mostly decoupled from scene complexity and

depends mainly on the hardware rendering speed.

OVERMODULATION: The overmodulation of the geometry term poses a serious and common

problem for this approach. It is often overcome by clamping the energy so that the result

cannot grow without bounds. This however leads to the undesirable effect of energy loss

during indirect illumination.

23

Figure 3.4: The Reflective Shadow Map (RSM) is a texture-array consisting of depth, world-

space position, normals and flux (f.l.t.r) buffers rendered from the point-of-view of the light

source. On the far right, the final rendered image of the scene from the camera perspective is

depicted. Image courtesy of Dachsbacher and Stamminger [9].

3.2.2 Reflective Shadow Maps

This method by Dachsbacher and Stamminger [9] is another variant of a many-lights approach

for the computation of one-bounce indirect illumination. In contrast to Instant Radiosity (and

most other described methods in this section), where VPLs are placed via a quasi-random sam-

pling pattern, the authors propose a different approach: The scene is rendered from the point of

view (PoV) of the light source to generate an extended shadow map buffer that also stores nor-

mals and radiant flux. This Reflective Shadow Map (RSM) is then used to compute the indirect

illumination from it by treating every pixel as a VPL. An example of such an RSM is given in

Figure 3.4.

Outline

In a first step, the scene is rendered from the PoV of the light source, generating the RSM

consisting of a depth map, and three additional buffers that store world-space position, normals

and radiant flux. Afterwards, in a separate pass, the scene is rendered normally from the camera’s

viewpoint into a low resolution buffer. For each pixel x and corresponding normal n of this low

resolution image, the indirect illumination is evaluated by looking up pixel lights xp in the RSM

according to a precomputed sampling pattern with about 400 individual samples. Between those

illumination pairs, the irradiance Ep is calculated according to

Ep(x,n) = Φp ·
max(0,〈np|x− xp〉) ·max(0,〈n|xp− x〉)

‖x− xp‖
4

and summed up for each individual normal-point pair to form the final indirect illumination at x.

Finally the full resolution image is rendered with per-pixel direct lighting and additively

blended with the upsampled indirect illumination. The upsampling of the low resolution image is

performed via adaptive bi-linear interpolation. For pixels where this interpolation is not possible,

the full evaluation as done on the low resolution variant must be performed.

24

Interpolation

The adaptive screen-space interpolation scheme outlined above, is based on bi-linear interpo-

lation. When upsampling the low-resolution buffer storing the indirect illumination to full

resolution, the algorithm checks whether four surrounding low-res samples are similar to the

corresponding high res pixel. Similarity is decided based on world-space position and normal

difference. Interpolation in a weighted, bi-linear manner is performed only if at least three out

of the four samples are similar.

Conclusions

G-BUFFER: The deferred rendering setup employed in this approach is used throughout many

modern graphics engines. Many of the buffers used during calculation are either already

easily accessible by the programmer or can be added without much effort, which allows

an easy integration into existing rendering pipelines.

Although the authors described a completely novel indirect illumination process in their

work, the most notable contribution is their proposed G-Buffer setup. Nowadays, most

authors refer to this G-Buffer setup when they talk about RSMs.

INTERPOLATION: The interpolation method described by the authors depends heavily on scene

and depth complexity. It works well for smooth surfaces but fails on complex objects, at

which point the costly evaluation has to be performed in full for large parts of the scene.

This has the undesirable side effect that the computation time can fluctuate heavily.

3.2.3 Incremental Instant Radiosity

While Keller’s original Instant Radiosity approach is extremely simple and scales with available

compute power, it is still a rather brute-forcing method. Hence, especially for use in real-time

applications, optimizations would have to be applied to reduce the computational effort in order

to deliver high enough frame rates for interactivity. To that end, Laine et al. [25] developed a

method to cache and reuse VPLs over successive frames, called Incremental Instant Radiosity

(see Figure 3.5).

Outline

Since the movement of light sources through a scene is mostly continuous and temporally coher-

ent, the authors came to the conclusion that many of the calculations done in the previous frame

(i.e., the placements of the VPLs) might still be valid for the current frame as well. In principle,

only if the position of an existing VPL cannot be seen from the light source’s new position is

a reinitialization of that VPL necessary. Due to this behavior, most of the VPLs can be reused

between frames.

However, in order to also maintain a near ideal distribution of the VPLs, they would some-

times also have to be removed and reseeded at new positions. This is a side effect that occurs due

to the movement of the light source, which skews the VPL distribution away from the ideal and

thus has to be handled accordingly. To guarantee real-time frame rates, an application-defined

25

(a) (b) (c)

Figure 3.5: Similar to Instant Radiosity, VPLs are placed on intersection points between

scene geometry and light rays (a). In (b), indirect illumination for a shaded point (red) is

computed. Whenever the main light source or the camera moves, the existing VPLs that

are still valid are evaluated. Invalid VPLs are discarded and new VPLs are created instead.

Image courtesy of Laine et al. [25].

upper boundary for the number of new VPLs in each frame is defined. On the other hand, the

minimum number of new VPLs must be a nonzero value to ensure that even if all VPLs stay

valid, the quality of the VPL distribution is maintained.

One downside of their approach is that dynamic objects are omitted from the VPL valid-

ity check due to the usage of a CPU ray-tracing method. Thus, indirect illumination can only

bounce off static scene geometry. On the other hand, dynamic objects are still allowed to receive

indirect illumination alleviating the aforementioned limitation somewhat.

To account for shadows from indirect illumination, paraboloid shadow maps [6] are created

for VPL. Calculation of the indirect illumination is then performed on a tiled G-Buffer, where

each tile is lit by a different subset of all VPLs. This allows to the cost of shading and additive

blending significantly. In the end, the tiles are recombined into a full-sized picture, exhibiting a

mosaic pattern (see Figure 3.5(a)) that stems from the fact that each neighboring pixel has been

lit using a different set of VPLs. To eliminate this pattern, a geometry-aware box filter of the

same size as the number of tiles in the G-Buffer is applied.

Tiled G-Buffer Illumination

As has already been shown in the work by Dachsbacher and Stamminger (described in Section

3.2.2), it is helpful to reduce the amount of pixels that have to be shaded in order to mini-

mize the cost of performing the indirect illumination. While the approach by Dachsbacher and

Stamminger performs the indirect illumination calculations on a down-sampled picture and then

applies interpolation on the original picture, the Incremental Instant Radiosity offers a slightly

different solution:

1. The G-Buffer is split into n×m tiles, where each tile represents an interleaved set of pixels

of the initial G-Buffer. The pixel (x,y) in the tile (i, j) is thereby computed from the initial

26

(a) (b)

Figure 3.6: (a) After shading on the tiled G-Buffer is completed and the resulting sub-images are

merged back together, a structured noise pattern emerges. (b) By employing a geometry-aware

box blur, the noise pattern can be largely eliminated. Image courtesy of Laine et al. [25].

G-Buffer as (xn+ i,ym+ j), where 0≤ i< n and 0≤ j <m. This is a variant of interleaved

sampling as described by Keller and Heidrich [24].

2. In the indirect illumination step, each tile is lit independently by a different subset of

VPLs taken from the entire set. This facilitates the low-resolution accumulation of indi-

rect illumination and reduces the workload on the graphics hardware, where accumula-

tion/blending operations are still a huge bottleneck.

3. After illumination on the tiles is completed, the splitting process is reversed and the vari-

ous tiles are merged back into a singular, full-size image.

Geometry-aware Box Blur

Since the merged indirect illumination buffer exhibits a structured noise pattern due to inter-

leaved illumination, a box filter of size n×m, which equals the number of tiles in the split

G-Buffer, must be applied. This has the desirable effect of completely removing the struc-

tured noise from the surfaces. For each pixel, the geometric distance and the normal difference

between the processed pixel and a kernel sample is computed. Two tresholds, α for geometric

differences and β for normal differences are used to decide whether the pixels are similar enough

to be considered in the filtering. This way, it can be guaranteed that the filter will not blur over

borders that result from depth discontinuities in the scene or on sharp edges (see Figure 3.6).

Conclusions

The idea of performing interleaved sampling & filtering, is not new and has been used before

[24]. In order to speed up the processing to meet real-time requirements the combination of

methods is also used in our work.

VPL CACHE: The VPL management is an effective way to reduce computation costs by reusing

data from the previous frame. However, since those computations are done entirely on the

27

CPU, a costly roundtrip between system- and graphics-memory has to be done in each

frame in order to keep both data pools up to date.

INDIRECT ILLUMINATION: Only a single bounce of indirect lighting is performed by this im-

plementation, but as Tabellion and Lamorlette [44] have demonstrated, this is sufficient

even for high-quality offline rendering. Furthermore, although dynamic objects are still lit

by indirect illumination, they do not contribute to it themselves, which is a drawback of

this method.

G-BUFFER TILING: Generating a tiled G-Buffer and performing the indirect illumination using

VPL subsets on each tile is another important optimization to achieve real-time frame

rates. This way, the costly accumulation process can be split up into as many subitems as

needed, relieving the graphics hardware’s memory subsystem and in turn providing more

computational resources for shading..

3.2.4 Imperfect Shadow Maps

The most influential contribution for this thesis is given by the work of Ritschel et al. [39, 41].

They introduce a method that uses a point-based representation of the scene that allows them

to re-render low-quality shadow maps for hundreds of VPLs in each frame. Their point-based

nature, however leads to leaks and holes in the resulting depth maps, which is why they are

called Imperfect Shadow Maps (ISMs).

Outline

Whereas all previously described methods rely on standard, multi-pass (i.e., one pass per VPL)

shadow mapping solutions [51] for the inclusion of shadows from virtual indirect light sources,

this method uses point samples of the scene geometry. In contrast to polygons, each point sample

can be randomly distributed to one out of hundreds of point-based shadow maps in a single pass.

Thus, using a sufficient amount of point samples an approximate scene representation can be

generated for a large amount of imperfect shadow maps. Furthermore, all ISMs are included in

a single large texture atlas which also speeds up the rendering significantly.

Therefore, this method is especially advantageous if a suitable point sampling of the scene

is already available, as is the case in point-based rendering [35]. In mesh-based rendering how-

ever an intermediary step is required to create the point representation from the mesh polygons.

The original approach of the authors is to approximate the 3D scene by a set of points with

roughly uniform density, which they calculate in a preprocessing step. By assigning each point

on the surface to its corresponding triangle, this method also supports dynamic scenes without

the need to recompute the point representation. Only fully dynamic objects of varying mesh

topology, such as implicit surfaces or blobby objects where mesh-transformations cannot be

simply mapped to the point samples, pose a limitation to the approach. However, modern imple-

mentations [4] make use of the tessellation hardware in current GPUs, which allows to generate

the point representation on-the-fly.

28

Figure 3.7: Generation of Imperfect Shadow Maps: For two exemplarily selected VPLs (ma-

genta and yellow), their generated ISMs are shown. The small, yellow and magenta dots rep-

resent some of the possible sample positions of the scene that are used to splat into the re-

spective ISMs. On the right hand side, the resulting texture-atlas consisting of numerable ISMs

is shown (top: before pull/push, bottom: after pull/push small holes in the depth map filled).

Image courtesy of Ritschel et al. [39].

For the gathering of indirect illumination, the same method as described above (refer to Sec-

tion 3.2.3) is used, where only a subset of the VPLs are evaluated at each pixel. The combination

of both these methods, 1) low-quality point-based ISMs and 2) an efficient shading scheme al-

lows the real-time computation of indirect illumination from hundreds of VPLs that even respect

visibility.

Point Generation

Points are approximated from a polygonal mesh representation with roughly uniform density.

For this purpose, a random triangle is selected, where the selection probability is proportional

to the triangle’s area. Then, a random point on the chosen triangle is picked and its barycen-

tric coordinates are stored alongside the triangle’s index. This way, translations, rotations and

scaling operations can be applied just like on the original geometry. Thus, common forms of an-

imation such as hierarchical or skeletal animations, and even cloth deformation can be applied,

while more dynamic effects such as dynamic destruction and implicit object surfaces cannot be

presampled.

To allow such effects, the point representation of the affected geometry would have to be

computed on-the-fly. At the time of the original work by Ritschel et al. in 2008, graphics hard-

ware was not capable of performing this at runtime. More recently however, tessellation shaders

were introduced to the programmable graphics pipeline, which were tailormade for this task. In

2013 Barák et al. [4] therefore introduced a method that performs the point generation entirely

on the graphics hardware.

29

ISM Processing

All ISMs are stored within a single large texture atlas where each ISM receives a random subset

of the sample points. ISMs are rendered from the point-of-view of the corresponding VPL

where the view vector equates to the surface’s normal. Since the goal is to illuminate an entire

hemisphere of objects, a paraboloid mapping [6] is employed.

A single ISM for each VPL is created by splatting2 the preprocessed sample points into the

depth buffer. The size of a point splat is determined by its distance from the corresponding VPL.

Since the splatting process will most likely leave holes and gaps within the shadow map, a pull-

push approach [30] is applied in order to enhance the quality of the depth maps. To that end,

an image pyramid is created first. In the pull-phase, each level of the pyramid downsamples the

image by a factor of two and valid pixels are averaged. In the push-phase, the holes are filled

iteratively using interpolation, beginning from the coarsest level down to the finest level. The

resulting ISM atlas can be seen in Figure 3.7.

During the indirect illumination pass, the depth of a ray direction is queried from the ISMs

and used to determine the visibility term of the RE. While a low amount of VPLs/ISMs results

in artifacts that stem from the low-quality nature of the ISMs, a much smoother result can be

achieved through blending the visibility information from a large amount of ISMs, which is why

a texture-atlas should usually consist of several hundreds of VPLs.

Conclusions

VPL SHADOW MAPS: Although techniques, like instanced rendering (also called instancing)

offer a solution to the problem of multi-pass shadow mapping, these methods are still trou-

blesome when used with large amounts of instances and complex geometry. For shadow-

mapping a scene, the entire scene geometry would have to be instanced possibly hundreds

of times, and various CPU-based culling optimizations that are usually dependent on the

point of view of the camera thus cannot be utilized, since the computed culling is likely

to vary for each VPL. The usage of ISMs alleviates these drawbacks since the point splats

for all VPLs can be rendered in a single pass. On modern graphics hardware, even the

precomputation of the point representation is not necessary and can instead be computed

on-the-fly using tessellation shaders.

SHADOW QUALITY: A drawback of the ISM method is that due to the low-quality nature of

the depth map, additional steps have to be taken to yield a sufficiently smooth shadow

term. A single ISM would produce noticeable stair stepping artifacts and would require

a disproportionate amount of point samples to achieve a quality that is comparable to a

classic shadow mapping for polygonal meshes. However, since indirect lighting effects are

usually smooth and comprised of low-frequency changes, these artifacts can typically be

hidden by a combination of the following methods: a) Blending a large amount of ISMs,

b) increasing the number of point samples per ISM, c) performing a pull-push operation

2“Splatting” can be intuitively imagined by throwing a paintball onto a wall (in our case, the image plane) where

it will burst upon impact, thus leaving a colored marking.

30

on the ISMs to fill holes, d) using a more sophisticated shadow map sampling technique

(like PCSS [14], described in Section 3.1.1).

OTHER APPLICATIONS: The authors show that given enough VPLs and corresponding ISMs

even specular illumination effects, such as caustics can be recreated to a certain degree.

Also, this method can be easily expanded to include multi-bounce indirect illumination,

by generalizing the idea of RSMs and ISMs – in the same way that classic shadow maps

can be generalized to reflective shadow maps – to IRSMs (Imperfect Reflective Shadow

Maps).

3.2.5 Clustered Visibility

One of the first relevant clustering techniques for global illumination, was introduced by Dong

et al. [11] in their 2009 paper Real-Time Indirect Illumination with Clustered Visibility. Similar

to the ISM method described previously, this method again tries to speed up the costly shadow

mapping process for the VPLs. However, while ISMs are generated in one single pass for all

VPLs, the method by Dong et al. relies on classic shadow maps that are created for clusters of

VPLs and then sampled using a special soft shadowing technique. Instancing techniques are

applied to speed up the multi-pass rendering process required for classic shadow mapping.

Outline

In this method, VPLs are again generated and distributed using quasi-random number genera-

tors. VPLs with similar orientation and position are then grouped together to form clusters using

an algorithm inspired by k-means clustering. These groups of VPLs are then used to form virtual

area lights (VALs), for which a sophisticated shadowing method – called CSSM (Convolution

Soft Shadow Maps) [2] – is used. This significantly reduces the amount of required shadow

maps while maintaining the smooth shadow penumbras that are common for indirect illumina-

tion. Lighting is still performed on a per-VPL basis, only the shadow casting process utilizes the

VAL/cluster information. A graphical overview of this method can be seen in Figure 3.8.

Figure 3.8: Overview of the algorithm: (1) VPLs (black dots) are initialized in the first step.

(2) Similar VPLs are clustered into virtual area lights. (3) Soft shadow maps are created for

each VAL cluster. (4) The indirect illumination process uses the VPLs for illumination and the

VAL shadow maps for soft shadow generation. Image courtesy of Dong et al. [11].

31

k-Means Clustering

Clustering of the VPLs is based on the similarity between the VPL properties (alignment and

position) and the cluster centers. The clustering consists of two steps:

1. Starting from arbitrary cluster centers, each point is assigned to its nearest cluster using

the distance metric

µ(c,~x) = ẘ~x∆~x + ẘα∆α (3.7)

between the point~x and the cluster center c. ∆~x and ∆α denote the euclidean distance and

the angle between the point’s normal and the cluster normal respectively. The influence

of both parameters on the result can be weighed independently by ẘ~x and ẘα .

2. The cluster centers are then updated by averaging all point positions that were previously

assigned to the clusters.

This process is repeated until convergence is achieved. In the end, a mapping of VPLs to VALs

is performed.

Figure 3.9: In this scene, a spotlight is moving from the wall (lower half) to the ceiling (upper

half) over the course of a few frames. On the left side, clustering information from the previous

frame is reused, causing the number of clusters to decrease when the spot moves to the ceiling.

On the right side, each frame the k-Means is restarted from the same initial cluster assignment.

Thus, the number of clusters stays the same. Image courtesy of Dong et al. [11].

Furthermore, the authors use a simple, but effective way to achieve a temporally coherent

illumination: Instead of reusing information from the previous frame, the clustering process

starts from an identical, initial cluster assignment in each frame. This way they do not have to

deal with vanishing clusters and varying cluster sizes in dynamic scenes. See Figure 3.9 for a

comparison between reusing information from the previous frame and restarting the k-Means

algorithm in each frame. This problem also plays a crucial role in our own work, which will be

discussed in greater detail in Chapter 4.

32

Convolution Soft Shadow Maps

Dong et al. [11] use Convolution Soft Shadow Maps (CSSMs) [2] to generate soft shadows with

variable penumbra sizes from high quality shadow maps constructed per VAL cluster. CSSM

is an extension to CSM [1] (Section 3.1.2) that also incorporates ideas from Percentage-Closer

Soft Shadows [14] (Section 3.1.1). It works by generalizing the concept of CSMs on the process

of estimating an average depth value dblocker, as required in Equation (3.2). In PCSS, dblocker is

estimated using an expensive “blocker search” heuristic that samples the shadow map region.

CSSM instead applies a similar convolution method as for the normal shadow test to estimate

dblocker. Since only blockers with a depth value smaller than d(~x) should be averaged, the stan-

dard depth test is simply inverted. To that end, new basis images [B̄i(z(p))z(p)] are computed

alongside the regular CSM basis images for use in the inverted shadow test f̄ (d,z) = 1− f (d,z).
An average blocker depth can then be efficiently estimated using pre-filtered basis images as

dblocker ≡ zavg(~x) =
1

1− s f (~x)

N

∑
i=1

āi(d(~x)) [wavg ∗ [B̄i(z)z]] (p)

where wavg is an averaging kernel. Refer to the work by Annen et al. [2] for a complete derivation

of the equation.

Conclusions

CLUSTERING: The clustering of VPLs to VALs is used to reduce the number of shadow maps

to one per VAL, but omits the obvious use of the same information to perform indirect

lighting through a VAL approximation. The authors also found a simple way ensure a

coherent clustering result in dynamic scenes by starting the clustering in each frame from

the same initial cluster distribution. This allows them to trivially circumvent the problem

of vanishing clusters that can occur when reusing clustering information from the previous

frame.

CSSM: In contrast to the work by Ritschel et al. [39, 41], a far smaller amount of shadow maps

has to be generated, while the rendering cost of each single shadow map is however much

higher. Furthermore, the pre-convolved depth maps have the drawback that they are only

an approximation of the original depth function. On the other hand, the possibility to use

simple and fast filtering techniques allows for efficient calculation of soft shadows. Typ-

ical artifacts [2, 11] caused by the reconstruction of the depth function (ringing, curving,

MIP discretization, etc.) are not as noticeable in the case of indirect illumination effects.

3.2.6 Reflective Shadow Map Clustering

In 2012, another clustering technique for indirect illumination systems was presented. Inspired

by Dong et al.’s work, Prutkin et al. [36] also use a clustering algorithm inspired by k-Means

clustering. Their work focuses solely on the clustering and reduction of the number of VPLs

that are required to illuminate the scene. To this end, they accept a few concessions such as

completely omitting the visibility term for indirect light sources and limiting their method to

33

Figure 3.10: In this comparison, the Crytek Sponza scene is used to highlight differences be-

tween a reference picture rendered with 256.000 VPLs (far left) and the method presented by the

authors using 960 disk-shaped area lights (2nd from left). The third picture shows a pixel-wise

difference between the two methods and the last one gives a representation of the distribution of

the VALs (depicted as hexagons) in the scene. Image courtesy of Prutkin et al. [36].

single-bounce diffuse indirect illumination. See Figure 3.10 for results the authors achieved

with their method.

Outline

The setup is similar to most recent methods, where an RSM is generated from the light source’s

point-of-view. Afterwards, the clustering process is initialized on the RSM using bi-directionally

importance-sampled seed positions [41]. Bi-directionality is ensured by accounting for visibil-

ity from the main camera such that surface areas that contribute to the main view gain higher

importance. There are three main differences to the clustering method described in the previous

section:

1. The clustering has been enhanced by also incorporating the flux into the distance metric.

Reusing the notation of Equation (3.7) we get

µ(c,~x) = ẘ~x∆~x + ẘα∆α + ẘΦ∆Φ (3.8)

where ∆Φ is the squared vector distance ‖cΦ−Φ‖2 between the color values at the cluster

center cΦ and at the current position Φ. The influence of which is weighted by ẘΦ.

2. This method only performs a single k-Means iteration in each frame, instead of performing

many iterations in a single frame until convergence. Thus, temporal coherence is achieved

by reusing the clustering information from the previous frame. The phenomenon of van-

ishing clusters is counteracted by simply re-seeding vanished clusters in the next frame.

3. Instead of disregarding the clustering information during illumination, the clusters in this

work are also used to perform VAL illumination using point-to-disk or point-to-polygon

form factors.

34

x'

A'

Θx

Θx'

x

Figure 3.11: Point-to-disk form factor for VAL illumination as suggested by Prutkin et al. [36].

VAL Illumination

Because the clustering method is very similar to Clustered Visibility, our focus lies on the newly

introduced idea of using the VALs for illumination purposes. These clusters provide an easy

way to calculate an approximate area per cluster: a simple point-to-disk form factor [46] can be

used to approximate disk-shaped area light sources. Using the same notation as for Equation

(3.6), the form-factor can be rewritten as

F(x,x′) =
∫

A′

G(x,z)

π
dAz ≈

cosθx · cosθx′

π · ‖x− x′‖2 +A′
(3.9)

where A′ is the area of a cluster centered at x′, θx is the angle between surface normal at x and

the incoming ray direction from the cluster at x′. θx′ is the angle between the surface normal at

cluster center x′ and the outgoing ray direction in direction of x (Figure 3.11). The similarity

to Equation (3.6) is immediately visible. However, notice the change in the originally worri-

some denominator, 1/(‖x− x′‖2 +A′), where the addition of A′ prevents the denominator from

growing without bounds at small distances between x and x′.

Conclusions

CLUSTERING: When compared to the variant used by Dong et al., employing a frame-by-frame

iterative k-Means algorithm allows a more predictable and steady frame-time. As a draw-

back, certain issues such as the need for reseeding of individual clusters or maintaining a

continuous, uniform cluster distribution have to be handled explicitly.

VAL ILLUMINATION: Using an already available clustering to perform area light illumination

through the use of simple point-to-disk form factors is quite obvious and exhibits the

following additional advantages: a) In comparison to using the original form factor, this

variant provides an elegant solution to the singularity problem. b) In contrast to naive

clamping, this solution is energy-conserving. c) The additional computational cost for

using this form factor is negligible.

35

CHAPTER 4
Adaptively Clustered Reflective

Shadow Maps

In this chapter we propose our new algorithm, Adaptively Clustered Reflective Shadow Maps

(ACRSM) that is based on the concepts presented in the previous chapters. The focus lies on

our novel adaptive clustering that aids in achieving temporally coherent indirect illumination at

real-time frame rates for arbitrarily complex scenes.

Our algorithm is based on the concept of Instant Radiosity using Reflective Shadow Maps

(RSMs). The idea is to simulate the interreflection of surfaces that receive light from a primary

light source by using additional virtual light sources (VLs). We use the information stored in

the RSM to generate VLs at positions where lights rays emitted from the primary light source

intersect with scene geometry. In order to simulate indirect illumination, the virtual lights should

then emit light colored according to the reflection characteristics of the underlying surface. To

account for shadows from these VLs we employ Imperfect Shadow Maps (ISMs) in combination

with a more sophisticated shadow sampling technique called Percentage-closer Soft Shadows

(PCSS).

4.1 Motivation

While the techniques reviewed in Chapter 3 mainly describe methods to simulate global illumi-

nation, various problems arise in different areas. To some of them there already exist suitable

solution approaches, others require new or improved methods to elevate the rendering quality

and performance to an acceptable level:

§1 The use of point light sources [23, 25, 39, 41] can lead to point singularities, which occur

when point lights end up at surface locations that are very close to receiving geometry

they illuminate, as is typically the case in corners (see Figure 4.1(a)). This is often tackled

by simply clamping the geometry term, which however also leads to energy loss.

37

(a) (b)

Figure 4.1: (a) Illumination singularities appearing as “light sparks” that stem from a simple

VPL form factor when the distance between light emitter and receiver is very small. (b) Example

of reduced shadow quality when using an insufficient amount of ISMs.

Prutkin et al. [36] suggest to cluster the RSM to disk-shaped virtual area lights (VALs)

instead (outlined in Section 3.2.6) which are able to reduce these kinds of artifacts. This

also comes with a considerable performance improvement because much less virtual light

sources are required and the increase in computational effort is minimal.

Other forms of VALs for use in real-time applications such as Virtual Spherical Lights

(VSLs) have been proposed by Hašan et al. [18], while Luksch et al. [28] generate Virtual

Polygon Lights for use in GPU-aided light-map computations.

§2 The point lights are usually reseeded every frame using a pseudo-random initialization

[23, 39, 41] that causes high frequency changes in the lighting, which can lead to flickering

artifacts as well as erratic behavior in the resulting indirect shadows.

In order to reduce these artifacts, clustering approaches [11, 36] of similar fashion have

been suggested (Sections 3.2.5 and 3.2.6) that facilitate temporal coherency.

§3 Clustering solutions [11, 36], however, introduce other problems in dynamic scenes that

stem from the distance metrics µ as given in Equations (3.7) and (3.8):

a) As light sources move through the scene and pixels are assigned to clusters according

to the distance metrics, it can happen that some clusters will not be assigned any

pixels. Hence, the clusters vanish (Figure 3.9), which needs to be handled by the

algorithm.

b) Furthermore, the distance metrics can prevent clusters from moving between objects.

In Figure 4.2 a spot light is moving from one wall to another. The corner between

the two walls poses a problem for the clustering due to the strong dissimilarity of

their surface normals, which influences the distance metric µ . Hence, only a hand-

ful of clusters transition between the walls, while the majority of clusters are not

transitioning, which therefore produces an unbalanced cluster distribution.

38

(a) (b)

Figure 4.2: A spotlight transitioning smoothly from the position in (a) further to the right in (b)

over the course of a few seconds. The clustering of the lit region is represented by the Voronoi-

shaped, colored cells in each picture. Notice, how the cluster distribution becomes unbalanced

in (b), because most clusters do not move over the clustering-boundary (sharp edge) between

the two walls.

Dong et al. [11] do not reuse clustering information from the previous frame, which allows

them to easily prevent the vanishing of clusters as well as unbalanced cluster distributions.

Prutkin et al. [36] simply reseed vanished clusters in the next frame but do not propose a

solution to the problem of unbalanced cluster distributions.

§4 Achieving soft indirect shadows normally requires a large number of indirect light sources

and corresponding low-quality shadow maps, which considerably increases the rendering

cost for the indirect illumination. Therefore, simply reducing the amount of ISMs to

improve performance leads to bad shadow quality (Figure 4.1(b)).

Dong et al. [11] suggest the use of Convolution Soft Shadow Maps [2] to gain higher

quality shadows from a smaller bunch of clustered VPLs, improving the shadow quality

while also reducing the computational cost. An alternative soft-shadowing technique is

presented by Fernando [14] as discussed in Section 3.1.1.

§5 The low-resolution shadow maps used for indirect shadows by Ritschel et al. [39, 41]

rely on a point representation of the scene, which would normally require an offline pre-

process to sample the geometry. This, however, does not allow for fully dynamic scenes

since the static, precomputed point samples cannot be easily remapped to.

An approach by Barák et al. [4] circumvents this by employing the tessellation hardware

of modern GPUs to dynamically create point samples for the scene geometry at run-time.

39

4.2 Contribution

The methods discussed above all target individual aspects of the challenging task of performing

high-quality indirect illumination in real-time rendering, but have so far never been combined in

one unified, integrated system. In this thesis, we therefore describe a new algorithm that builds

on the strengths of the methods above, combines them in a new way and additionally employs a

number of novel ideas to tackle remaining problems outlined below:

• By using disk-shaped virtual area lights [46, 36] (see §1) it is possible to reduce the singu-

larity artifacts that appear in indirect illumination with virtual point lights (VPLs), while

circumventing energy loss. Furthermore, VALs offer the possibility to reduce the num-

ber of virtual light sources themselves, which in turn reduces shading costs and hence

achieves higher performance (Section 3.2.6).

• A lower number of virtual light sources also results in a lower number of indirect shadow

maps. This, however, means that simple point-based shadow maps like Imperfect Shadow

Maps (ISMs) [39, 41] are not suitable, as their low-quality nature depends on a huge

number of ISMs being superimposed to produce a smooth shadow result (see §4). To

address this problem we use a more sophisticated shadow-map sampling that is based on

Percentage-closer Soft Shadows [14] (Section 3.1.1).

• To avoid indeterministic illumination flickering artifacts due to incoherently changing vir-

tual light source locations (§2), we employ a clustering method inspired by Dong et al. [11]

and Prutkin et al. [36] that ensures a perceptually temporally coherent illumination. In line

with findings by Dong et al. (Section 3.2.5), our experiments show that simply reusing the

clustering information from the previous frame can lead to problems (§3) such as van-

ishing clusters (Figure 3.9) and/or an unbalanced cluster distribution (Figure 4.2). Our

solution therefore expands upon this idea by introducing an adaptive clustering method

that 1) re-seeds vanished clusters and 2) evaluates the clusters in each frame to decide

whether a cluster needs to be repositioned in order to obtain a more balanced distribution

(Section 4.8).

Combining all these approaches and contributions allows us to achieve a technique that is both,

comparable in visual quality to existing methods and reduces the computation costs, therefore

gaining higher performance in real-time applications.

40

4.3 Overview

Fill G-Buffers
Camera + Split

Light/RSM

Adaptive Clustering

ISM Generation

Indirect Illumination

Pull/Push

VAL Lighting

Indirect Soft Shadows

Direct Illumination

Composition
Merge + Filter Indirect

Add Direct

Tonemap

E�������

S���
I��������� W���

M��
A������

Figure 4.3: Overview

of the algorithm’s

pipeline. In this chapter

we emphasize on our

adaptive clustering as

discussed below.

Our algorithm (see figure on the right) works on the scene represen-

tation stored in G-Buffers generated from the point-of-view of the

viewer (in other words, the camera G-Buffer) and the light source

(i.e., the RSM). To efficiently generate VALs, we employ a cluster-

ing algorithm that works directly in the Reflective Shadow Map’s

image-space. Our method is therefore more similar to the work by

Prutkin et al. [36], while other related clustering techniques [11, 28]

work on VPLs.

In the beginning, cluster centers (or centroids) are positioned

quasi-randomly (SEEDING & IMPORTANCE WARPING). Then,

clusters are formed around the centroids by grouping pixel regions

inside the RSM based on similarity (MAPPING). To that end,

weighted distances between cluster centers and nearby pixels are

computed based on Euclidean distance from the cluster center, simi-

larity of surface-normal, -color, -reflectivity, etc. This is achieved by

performing a single k-Means iteration in each frame (AVERAGING).

An additional EVALUATION is performed with each iteration to ver-

ify the current cluster distribution and, if necessary, perform a re-

seeding of a subset of clusters to re-balance the distribution. In the

end, each cluster is defined by its center position and a radius, thus

forming a disk-shaped virtual area light (VAL).

Low-quality imperfect shadow maps are generated for each VAL

cluster from the scene geometry either in a pre-process or on-the-fly

using tessellation. To improve the coverage of these point-based

shadow maps, a pull/push process is performed to close smaller

gaps.

In order to reduce shading costs, we perform VAL illumination

including soft shadows generated from imperfect shadow maps via

tile-based interleaved shading. The low-resolution tile-based indi-

rect illumination is in the end filtered using a geometry-aware blur

and ultimately combined with the direct light source’s high-resolution illumination.

Adaptive Clustering

As highlighted in Figure 4.3, we want to emphasize one of the main contributions of this work,

the Adaptive Clustering approach described in depth in the next few sections. Our approach is

inspired by k-Means clustering [29], which has been used in a similar fashion by both Dong

et al. [11] (object-space VPL clustering) and Prutkin et al. [36] (image-space clustering). k-

Means is a popular choice whenever spatial data has to be partitioned based on similarity char-

acteristics. The goal of the algorithm is to create k partitions in such a manner that the sum of

the squared distances between the clusters C = {C1,C2, . . . ,Ck} and the d-dimensional input data

X = {~x1,~x2, . . . ,~xn} (in other words, the variance) is minimized. This problem can be formalized

41

as

argmin
C

k

∑
i=1

∑
~x∈Ci

‖~x− ci‖
2

where ci is the mean of points in Ci. Visually, the result of the clustering represents a Voronoi

diagram [3] generated by the means (Figure 4.2). In our case, each cluster Ci represents a virtual

area light (VAL) and X are pixels inside the RSM. The properties position, normal and flux

stored in the RSM make up the d-dimensional vector data that is used to minimize the distance.

Following Lloyd’s [27] definition, k-Means performs the following three steps:

1. Choose k random centroids ci from the data set.

2. Assign each input vector~x to the cluster that has the least increase in variance.

3. Update the current cluster centroids by averaging the data from the assigned vectors.

Steps 2-3 are repeated until convergence.

We adapted this procedure to better fit the requirements of our application and made changes

with respect to

Centroid initialization: Instead of choosing random positions for the initial cluster distribu-

tion, we employ an importance-based seeding. This way we can skew the initial distribu-

tion into a more favorable state for the task of forming VAL clusters.

Time-criticalness: In order to be applicable in a real-time application with steady performance,

we only apply a single iteration of steps 2 and 3 in each frame. Inherently, we are reusing

the clustering information from the previous frame and thus, we usually achieve conver-

gence over the course of a few frames.

Clustering optimization: Especially in dynamic scenes, reusing data from the previous frame

can have its drawbacks. As depicted in Figure 4.2, a good initial cluster distribution

might become suboptimal over time due to a moving light source or dynamic objects. In

this case, we need to adapt our clustering dynamically in order to re-balance the cluster

distribution. Since such a step is not present in standard k-Means variants, our adapted

algorithm outlined below contains an additional EVALUATION step.

42

F
ra

m
e

 S
ta

rt

Previous
Frame data
available?

Yes

EVALUATION
Area is

for vicinity

Too large

Split

Too small

Merge

SEED
IMPORTANCE

WARP
MAP AVERAGE

F
ra

m
e

 E
n

d

Free Cluster
List

Add
to

(Re-)Seed

List

Free

Cluster
ready?

Yes

Remaining Free Clusters are immediately added to Re-Seed List

Figure 4.4: Basic sequence of our clustering algorithm. Start- and End-Nodes are represented

by round-border rectangles and also denote the beginning and end of a single frame. Decisions

are given by the diamond-formed shapes. Rhombuses denote important data structures that feed

the processes, which in turn are represented as simple rectangles. Inter-Frame flow is given by

dashed-lines.

Hence, our final adaptive clustering procedure (Figure 4.4) consists of the following five steps:

SEEDING Initializes the cluster centers at quasi-random positions (Section 4.4).

IMPORTANCE

WARPING

Re-distributes the randomly positioned clusters according to the sur-

faces’ reflection characteristics (Section 4.5).

MAPPING Assigns individual pixels to the corresponding nearest cluster according

to a specific distance metric (Section 4.6).

AVERAGING Performs an adjustment of the cluster properties according to their cur-

rently mapped region (Section 4.7).

EVALUATION Re-distributes the clusters to ensure a balanced cluster distribution through

neighborhood evaluation (Section 4.8).

4.4 Seeding

The first step of the clustering process is the seeding of the cluster centers among the lit surfaces

in the RSM. The (Re-)Seed-List stores the current set of clusters that need to be seeded and

their initial seed positions. Usually, we generate these seed positions in 2D texture space using

a quasi-uniform distribution given by a low-discrepancy Halton-sequence [16] (refer to Figure

4.5).

However, it is probable in dynamic scenes that in the following frames, the clusters are

moving and changing, which leads to additional scenarios where elements are queued to the

re-seed list:

43

(a) (b)

Figure 4.5: 500 random points generated with the low-discrepancy Halton-sequence (a) and

with Monte-Carlo sampling (b). Images courtesy of The MathWorks, Inc.

1. Some clusters will not be assigned any corresponding pixels of the RSM by the MAPPING

procedure. These clusters vanish and have to be re-seeded, which is discussed in greater

detail in Section 4.6.

2. Additionally, too large or too small clusters can be detected by the EVALUATION step. In

this case, clusters are relocated to different positions utilizing the re-seed list. We discuss

these scenarios in Section 4.8.

It is interesting to point out that the usage of a low-discrepancy sequence for initialization

stems from related work [23, 25, 39] where VPL positions are re-seeded in each frame. This is

required to guarantee a more uniform distribution without generating recurring patterns as these

are known to produce sampling artifacts. Although our algorithm is less prone to exhibit these

artifacts due to its progressive nature, a good initial distribution is still important in order to

ensure a faster convergence.

4.5 Importance Warping

In general, instead of uniformly distributing the clusters among the lit surfaces, it is beneficial to

bias the distribution according to an informed decision-making process. To that end, we assign

a so-called importance value ρ(~x) to each point ~x of the RSM beforehand. This way, we can

assign a higher importance to clusters that have more complex reflection characteristics, such as

specular surfaces. Modifying the sampling density of clusters based on this importance value

allows us to place more clusters in areas with reflection characteristics of higher frequency, and

less in areas of low frequency (importance sampling). In turn, this results in a loose coupling

between the area of a cluster and the importance of the underlying surface. We derive a two-

tiered importance value, based on a

BRDF-DERIVED value ρ f that is based on the observation that specular materials usually cre-

ate more complex lighting effects than rougher materials. Thus, we base our importance

44

Figure 4.6: Illustration of importance warping on a single hierarchy level.

Image courtesy of Clarberg et al. [7].

calculation on diffuse and specular surface reflectivity, deeming surfaces with higher spec-

ularity as more important than those surfaces with less specular reflectivity. In a more

formalized way, we derive a normalized value in the range [0,1] from a simplified BRDF-

term fr(~x) such that

ρ f (~x) = fd(~x) ·wd + fs(~x) · (1.0−wd) (4.1)

where fd ≈ Id is the diffuse reflection component and fs is a combination of specular

surface reflection properties. Both values are implementation specific and thus detailed

in Chapter 5. Finally, wd is a variable that allows to shift the importance contribution

between the diffuse and specular components. Additionally, a

VIEW-DEPENDENT value ρv as proposed by Ritschel et al. [41] is employed, to further refine

the importance. This is achieved by also incorporating additional information about the

currently viewed region in camera space. To this end, we compute the influence of each

lit pixel on the visible region by taking up to M random samples from this region and

deriving an averaged influence based on Lambert’s law. Hence, RSM regions with higher

influence on the randomly sampled positions in view-space get a higher importance. We

can formalize this as

ρv(~x) =

M

∑
i=1

〈

n̂i|l̂lli

〉

M
(4.2)

where, n̂i is the surface normal at the sampled view region and l̂lli is the normalized di-

rectional vector between the sampled position in the view region and the lit position at

~x.

These two values are then combined to a final bi-directional importance [41] value:

ρ(~x) = (1.0−wv) ·ρ f (~x)+wv ·ρv(~x) (4.3)

where wv allows to weigh the contributions of the BRDF- and view-dependent terms. This value

is then stored as part of the RSM to represent an importance map.

After the initial cluster positions have been seeded, we apply an Importance Warping [7]

on these seed positions. The aim of this process is to warp (re-distribute) the cluster positions

according to the importance map. This process is illustrated in Figure 4.6. It is a hierarchical

45

process employing an image pyramid1 of the importance map. For each cluster center (black

dots in the figure), we start from the coarsest level of the image pyramid of size 2× 2. Each

of the quadrants (pixels) of that sub-sampled image gives a measure of importance for its en-

compassing region (Figure 4.6b). The warping procedure then begins by first warping vertically,

thus partitioning the image into two rows: a top row, consisting of the top-left and -right quad-

rants, as well as a bottom row, consisting of the bottom-left and -right quadrants respectively.

The individual importance values are summed up for each row to get percentages in the top row

pt and in the bottom row pb respectively. To perform vertical warping, we first classify each

cluster’s y coordinate if it lies within the top pt percent of the row or the bottom pb percent

(Figure 4.6c). According to this classification, the y coordinates are then rescaled so that pt% of

the clusters are in the top row and pb% in the bottom row (Figure 4.6d). Afterwards, horizontal

warping is achieved in a similar fashion by scaling the cluster’s x coordinate to fit within one of

the two child regions of the respective row (Figure 4.6e). Finally in Figure 4.6f, we arrive at the

warped position for the current cluster at the current level of the image pyramid. This process is

repeated at the next finer level of the image pyramid within the 2× 2-quadrant the cluster was

scaled to and continues until a specific level of the mip-map has been reached. Usually, it is not

required to continue this process up to the finest level of the image pyramid (i.e., the original

image). Instead the process can be stopped after a few levels as the impact on the warped posi-

tions becomes smaller with each finer level. Pseudocode of this algorithm is given in Chapter 5,

Algorithm 5.3.

4.6 Mapping

After the cluster centers are warped into position according to the importance values, the sur-

rounding areas have to be mapped to their nearest cluster center (refer to Figure 4.7). This is a

standard procedure of the k-Means algorithm. To that end, we define a square-region of the same

size around each cluster center, which yields an irregular grid of clusters where the cluster areas

can overlap. Each smallest addressable area inside such a square-region (in an image, usually

a pixel) will be assigned a normalized distance to the respective cluster center according to the

following distance-metric:

µ(ci,~x) = ∆~x · ẘ~x +∆n̂ · ẘn̂ +∆ρ · ẘρ . (4.4)

Similar to Prutkin et al., we use an additional parameter besides the distance ∆~x and the normal

difference ∆n̂. However, instead of using the flux as in Equation (3.8) we employ the importance

ρ as an additional parameter. This decision is based on the observation where the inclusion of

the flux often leads to oscillation during mapping whenever finely structured albedos are present.

The various distances ∆ are given as follows:

∆~x A normalized Euclidean distance ‖~x− ci‖/bmax between the cluster center ci and

the current pixel position ~x. Normalization is performed relative to the diameter

of the world-space bounding box bmax.

1In computer graphics, an image pyramid is created through a method called mip-mapping. Starting from a

square base image of side-length 2n, multiple sub-sampled, smaller images are created. Each smaller image is down-

sampled by a factor of two, effectively halving the side-length with each coarser level in the hierarchy.

46

cj

ck

∀~x ∈ c j ∩ ck : C
[j,k]
min (~x) = argmin

i∈{ j,k}

µ(ci,~x)

Figure 4.7: Mapping of pixels to clusters for a given surface region (gray) with multiple cluster

centers (blueish dots). Two randomly selected clusters c j and ck with their highlighted mapping

regions (cyan and magenta) are candidate clusters for the intersecting area (dotted region in

the middle). Each smallest quantifiable area ~x within the dotted region will be assigned to the

cluster C
[j,k]
min to which it has the smallest distance µ .

∆n̂ A distance derived from the angle between the normal cn̂ at the corresponding

cluster center and the normal n̂ at the current pixel, given by 1.0−|〈cn̂|n̂〉|.

∆ρ The absolute difference
∣

∣cρ −ρ(~x)
∣

∣, between the importance value stored at the

cluster center cρ and at the current pixel ρ(~x).

Combined, they form a convex sum of distances, where each component is weighted by a

corresponding weight ẘ. RSM pixels~x where the areas A of multiple clusters C = {C1,C2, . . .Ck}
overlap, are assigned to the cluster Cmin with the lowest overall distance µ , such that

Cmin = argmin
Ci∈C|~x∈Ai

µ(ci,~x) (4.5)

where ci is the cluster center of Ci. This definition does not guarantee that every cluster in C will

have mapped pixels. Clusters without any mapped pixels cannot partake in the following steps

of the algorithm. Thus, in order to prevent the permanent vanishing of unmapped clusters, they

are added to the re-seed list to be reseeded in the next frame.

4.7 Averaging

After the mapping of addressable areas to clusters has been established, we have to adjust the

cluster centers to reflect the new mapping. We generally call this averaging, because usually

most cluster properties are calculated anew by averaging the properties from the entirety of all

contributing pixels. In our case, most properties are updated according to their averages: cluster-

position, -normal and -importance. The odd cases are:

47

• The flux of the cluster center, which instead of being averaged, is read normally from the

newly updated cluster position. Thus, it always reflects the flux at the center of the cluster.

• The area of the cluster, which instead of being averaged, has to be recomputed to match

the number of newly assigned pixels. Since we employ a point-to-disk form factor later

during indirect illumination, we estimate a radius rc for the cluster as the distance between

the cluster center and the mapped pixel with the largest distance to it. Based on this radius,

the area of a circle is given by r2
c π .

4.8 Evaluation

Usually, in standard k-Means implementations, once the averaging step is done, the mapping

process begins again and the result is refined over the course of a few iterations. In static scenes,

the combination of pseudo-random cluster seeds with the following mapping and averaging

steps quickly converges towards an optimal solution. However, in dynamic scenes with moving

objects and light sources, these changing boundary conditions can lead to situations where the

current cluster distribution becomes suboptimal. Instead of converging towards a global opti-

mum, the current clustering keeps converging towards a disadvantageous local optimum. Refer

again to Figure 4.2 where a moving light source causes an unbalanced cluster distribution.

Following the concepts of optimization theory, we propose an EVALUATION step between

the averaging step and the re-initialization/-seeding step of the next frame. Its aim is to reintro-

duce some guided randomness into the clustering algorithm to allow it to leave the unfavorable

state of a local optimum. To that end, the EVALUATION heuristic performs a validation on a

random subset of all clusters that determines whether a cluster is a) too small or b) too big in

relation to the average size of the surrounding clusters. In the first case, the cluster cm is merged

by dropping it from the list of currently active clusters and added to a free cluster list L f . In

the latter case, a cluster cs is split only if a free cluster is available in L f . In this case, the free

cluster cm is reseeded at a random position within the cluster cs to be split. Consequently, the

importance-mapping process for cm is circumvented in this scenario because its desired position

has already been established. After the splitting operations have been performed, we check if

there are any remaining free clusters in L f . In order to ensure that the cluster budget of k active

clusters is used up in each frame, those free clusters are injected into the re-seed list in order to

be reseeded immediately.

Since area cA and importance cρ of a cluster are loosely coupled through the importance

mapping, using these two values to derive a metric for evaluation makes the most sense:

• A cluster with a low importance tends to have a large area and vice versa.

• Therefore, the comparison of the metrics between a small cluster with a high importance

and a large cluster with low importance yields comparable results.

Thus, the comparison metric δc is derived from these properties as

δc =
cA

Amax

· cρ (4.6)

48

cm

(a) Merging: δcm − δ̄ <−εm

cs

(b) Splitting: δcs − δ̄ >+εs

Figure 4.8: A theoretical scenario of how the evaluation step might perform for the given

clustering. Clusters are represented by blue dots, their mapped regions are represented as

Voronoi cells. The square-shaped regions around the selected clusters represent the area of

the neighborhood-search. Yellow dots denote clusters found by the neighborhood-search and

are used to compute δ̄ .

where Amax is the area of the biggest cluster. The basic principle of the EVALUATION step is

depicted in Figure 4.8, which is similar to the one of the MAPPING procedure: Starting from

a cluster center c, we look at a surrounding area of at least twice the size of the cluster to find

neighboring clusters Cn ⊂C. Subsequently, a weighted arithmetic mean δ̄ over the comparison

metrics δci
of the neighboring clusters ci ∈Cn is computed as

δ̄ =
∑(δci

·δci
)

∑δci

, (4.7)

where the data is simply weighted by itself. By way of their definition, equations (4.6) and (4.7)

always return values in the range [0,1]. Thus, the evaluation heuristic is performed by comparing

the values δc of the current cluster (refer to cm and cs in Figure 4.8) with δ̄ of the neighborhood

Cn, which can result in three possible outcomes:

δc− δ̄

<−εm merge,

>+εs split,

otherwise do nothing.

(4.8)

Here, the thresholds εm and εs are merge- and split-thresholds that decide when a splitting or

merging process occurs. A practical range for εm is around 0.35–0.5. This can be interpreted

as “if a cluster is εm% smaller than the sampled neighborhood it is merged”. In turn, since

our splitting process relies on free clusters that must be generated by the merge-process right

beforehand, we usually have a lower split-threshold that lies around 0.1–0.2. Remaining free

clusters generated by the merge process are immediately added to the re-seed pipeline and will

be processed in the current frame as the algorithm continues with SEEDING.

49

CHAPTER 5
Implementation

In this chapter, we give an in-depth view on how the algorithm can be implemented into an

existing deferred rendering pipeline. We use OpenGL 4 in conjunction with GLSL shaders

to implement this work as a plugin for a C++-based rendering framework. Please note that

our description might therefore use terminology specific to those programming languages and

APIs. From a technical point of view, our implementation consists of various pre-processing

steps, a diverse range of buffers (textures, arrays, etc.) to hold our data, a large number of

shaders to either create or visualize the results, and surrounding framework-level code to put

it all together. All of this is then combined in our ACRSM algorithm, which achieves fast and

efficient diffuse single-bounce global illumination. In the following sections, we outline the

most important aspects of the implementation with emphasis on technical details to make our

method reproducible.

5.1 Buffers & Data Structures

In the next few sections we outline the basic setup of the most important buffers in our imple-

mentation, from G-Buffers to cluster-data.

5.1.1 G-Buffers

G-Buffers are used in deferred shading setups to store scene information projected to screen

space when the actual shading is intended to happen not at rasterization time, but in a deferred

post-processing pass. These setups are widely used in recent rendering pipelines and became

very popular due their capability to decouple geometric complexity from lighting computations.

In order to compute lighting in common forward shading renderers, each object O has to be ren-

dered again for each light source L that it affects, resulting in O (O∗L) complexity. A deferred

renderer, on the other hand, renders the geometry once and stores information that is relevant

during illumination such as position, albedo and normals in textures. During illumination, these

51

textures are then sampled to perform deferred lighting computations for each light in a sepa-

rate pass, yielding a much more lenient complexity of O (O+L). This decoupling is especially

beneficial when dealing with large amounts of light sources, as we do in our approach.

There are different ways to set up a G-Buffer layout, which mostly depends on the needs of

the application and the information they store. In our approach, we use a slim G-Buffer setup,

which relies on 32bit-wide textures. On the one hand, this reduces the amount of expensive

texture-memory and -bandwidth, but on the other hand, this tends to be more computationally

expensive, because values like normals and positions have to be stored in a packed way to fit

inside such limited storage.

32bit

8bit 8bit 8bit 8bit

DIFFUSE kd R G B –

SPECULAR ks R G B Power

NORMAL n̂ X Y

DEPTH z̃ Hardware-Depth

(a) Camera: Variable resolution.

32bit

8bit 8bit 8bit 8bit

REFL. FLUX Φ R G B –

NORMAL n̂ X Y

IMPORTANCE ρ Bi-dir. Importance Map

DEPTH z̃ Hardware-Depth

(b) Light/RSM: 512×512 pixels.

Table 5.1: Slim G-Buffer layouts as used in our implementation.

We use two G-Buffers, one from the point-of-view of the camera that has a variable reso-

lution of width×height plus an additional tiled variant that is split according to our tiled mesh

geometry (Section 5.1.4). This Split G-Buffer is used during indirect illumination while the orig-

inal is employed for direct illumination. We discuss both cases at the beginning of Section 5.3.3.

The other G-Buffer, our RSM, is rendered from the PoV of the light source with a static resolu-

tion of 512×512 pixels. This is sufficient since we use a spot light source for illumination. Both

G-Buffers use similar layouts as can be seen in Table 5.1. For convenience, we use the Light-G-

Buffer’s attached depth buffer directly for shadow-mapping as well. Because of the slim layout,

the following values have to converted, packed and unpacked when writing and reading them,

respectively:

NORMAL n̂: Since 8-bit floats are not sufficient for storing the three normal components, we

opted to store the normals in view-space using spherical mapping [31]. To that end, during

G-Buffer creation, only the x,y components of the compacted normal are stored as

n̂′xy = normalize(n̂xy) ·
√

n̂z ·0.5+0.5.

When reading from the G-Buffer, we restore the normal components n̂z and n̂xy separately

as

n̂z =−(
〈

n̂′xy|n̂
′
xy

〉

·2.0−1.0)

n̂xy = normalize(n̂′xy) ·
√

1.0− n̂z · n̂z

DEPTH z̃: We use a hardware depth buffer, which is computed using the standard model-view-

projection transformation in the vertex shader through setting gl_Position. Restoring

52

the view-space position, on the other hand, is a bit more involved than when using a linear

depth-buffer. By drawing a full-screen quad with coordinates given in projection-space

[−1,1] and multiplying with the inverted projection-matrix we end up with view-space

x,y coordinates per pixel. To further reconstruct the view-space z-component from z̃, we

use

z =
znear · z f ar

z̃ · (z f ar− znear)− z f ar

where znear,z f ar are the near- and far-clipping plane values in view-space.

REFLECTED FLUX Φ: As specified in the beginning, the flux defines the radiant power. De-

pending on the type of light source, there are different ways to compute it. For a uniform

directional light, this is a constant value. For a uniform spotlight, which is the type of

light we use, defined through its direction l̂lls and a half-opening angle ωs, the flux de-

creases with the cosine cosθ to the spotlight’s direction. The reflected flux incorporates

the material reflection coefficient k and is computed as

Φ = k ·
cosθ

cosωs

where θ defines the angle between l̂lls and the position vector ~x of the point to shade as

depicted in Figure 5.1.

ls
ˆ

x
→

ωs θ

Figure 5.1: Spotlight geometry. The computed flux at~x decreases with the cosine (cosθ) to the

spotlight’s direction l̂lls and vanishes completely at cosωs.

IMPORTANCE ρ : We have already defined ρ in Equation (4.3), which is based on a BRDF-

component ρ f (Eq. (4.1)) and a view-dependent component ρv (Eq. (4.2)). In our imple-

mentation we define the parameters fd and fs of the BRDF-dependent part as

fd(~x) = max
rgb

(

kd · l ·
cosθ

cosωs

)

(5.1)

fs(~x) = max
rgb

(

ks · l ·
cosθ

cosωs

)

·α (5.2)

where the maxrgb-function returns the maximum of the three RGB values, l defines the

RGB light color, cosθ defines the spotlight falloff as above, kd and ks define the diffuse-

and specular-reflection coefficients, respectively. and α is the specular exponent.

53

5.1.2 Cluster Textures

Information for the clustering process is stored twofold:

1. Per-pixel information is stored in a 2D-texture of the same size as the RSM. We use an

integer-based texture with two (red & green) 32-bit wide components. The red component

stores for each pixel the index of the cluster to which it belongs. The green component is

only sparsely filled. It only stores the current cluster index at the pixel where the cluster

has its center, which is useful later during EVALUATION when we want to find neighboring

clusters.

2. Per-cluster information is stored in nine separate 1D-textures. They are comprised of the

overall number of pixels belonging to a cluster cK , its orientation cn̂, view-space position

c, position in texture coordinates cuv, flux cΦ, area cA, importance cρ , irradiance cE and

verification measures cδ . Note that in order to store additional helper data, our imple-

mentation uses more textures than the minimum set of relevant properties we mentioned

previously in Section 4.3. Most of the additional data could be computed on the fly, but

temporarily storing them has proven to be more efficient. The cluster textures are defined

as given below:

Texture
component(s) channels

of bits per R G B

POSITION c 3 32bit ~xx ~xy ~xz

NORMAL cn̂ 3 32bit n̂x n̂y n̂z

FLUX cΦ 3 8bit Φr Φg Φb

VERIFICATION cδ 2 32bit ∑δ 2
c ∑δc –

TEX COORD cuv 2 32bit u v –

AREA cA 1 32bit current cluster area

COUNT cK 1 32bit # of pixels belonging to cluster

IMPORTANCE cρ 1 32bit ρ at cluster center

IRRADIANCE cE 1 32bit E at cluster center

Table 5.2: 1D-textures for cluster information, specifying layout and usage.

Each of these textures is 1×M pixels in size. However, the amount of clusters in use

at any time can vary dynamically at run-time, based on a user-specific parameter. Thus,

the active amount of clusters always lies in the range m ≤ k ≤M, where m, M define the

lower- and upper-bound for manageable clusters in our algorithm. In our implementation,

we define them as 16 and 512, respectively.

5.1.3 Lighting and Shadow Buffers

ISM Atlas

The ISM atlas is a single, large texture buffer of size 4096×4096 pixels, consisting of a single

32-bit wide component. It is used to store an array of smaller, point-based shadow maps, where

54

each of those is of size 128×128 (see Figure 3.7). This yields a theoretical maximum of up to

1024 imperfect shadow maps that can be stored inside the atlas.

Lighting Buffers

Various textures of the same size as the Camera G-Buffer are also needed during the illumination

steps of the algorithm:

a) One texture to hold the direct light contribution.

b) Three 16-bit per-channel textures for the indirect light contribution. The first texture holds

the Split G-Buffer (i.e., a representation of the Camera G-Buffer, but split into n×m tiles),

which is lit using tile-based interleaved shading. The remaining two textures keep the

merged and filtered contributions of indirect light.

c) One texture to store the combined output of direct- and indirect-light contribution.

Additionally, a luminance texture of the scene of size 1024×1024 is used to perform tonemap-

ping during rendering into the back-buffer.

5.1.4 Interleaved Sampling Geometry

In order to accumulate the lighting contributions of many light sources, an additive blending

operation has to be performed by the graphics hardware, which involves a lot of read/write locks

(instead of just a simple write). Naturally, this puts a lot of stress on the hardware’s memory bus

and leads to stalls in the pipeline.

In a deferred rendering pipeline, the most trivial, but also slowest solution is to simply per-

form a fullscreen-pass for each individual light source in order to compute its illumination contri-

bution to every pixel of the scene. Assuming L light sources and K pixels to shade, this amounts

to a runtime complexity of O (L∗K) (as mentioned above in Section 5.1.1). Since graphics

shaders are usually capable of executing with high parallelism, such a runtime complexity is

normally feasible. However, in this case, a read/write lock is instated each time the value has to

be updated, so that only one shader thread can read or write a pixel at the same time to ensure

correct blending results. This locking behavior is thus detrimental to the high parallelism.

To minimize the bottleneck that appears due to additive blending, we therefore employ tile-

based interleaved shading. The idea is to split the above problem into multiple smaller problems

of the same complexity. Inspired by Laine et al. [25] (Section 3.2.3), we create a tiled represen-

tation of the original frame, which is split into n×m smaller tiles. Each of those smaller tiles

will represent a full, but sub-sampled version of the G-Buffer. Thus, instead of rendering one

fullscreen quad per light source, we create a structure that consists of n×m smaller tiles, where

each tile is later on only lit by exactly one of the lights in L. The complexity is therefore reduced

55

L

1

K pixels

…

(a)

L/(n × m)

… … …

…

…

K/(n × m)

pixels

…

1

…

…

…

…

…

(b)

Figure 5.2: (a) represents the trivial approach where for each light in L, K pixels are shaded.

In (b) on the other hand, the basic principle of tile-based interleaved shading is shown: Each

quad represents a full but sub-sampled version of the scene, which means less pixels have to

be shaded per light, as each light is only used to illuminate a single, small quad instead of the

whole scene.

to a sum over similar complexities

n×k

∑
i

O

(

L ·K

(n ·m)2

)

.

This allows the GPU to achieve a higher degree of parallelism, since only L/(n×m) lights are

requesting read/write permissions per quad. Also, the number of pixels to shade per light has

also been reduced to K/(n×m). Figure 5.2 gives a visual explanation of the change and im-

provement.

Thus, we create a helper structure, the tiled mesh geometry, to facilitate interleaved render-

ing. For our implementation, we generated a structure with a predefined amount of 3× 3 tiles

in a pre-process on the CPU. This seems to give the most benefit in terms of performance and

quality for the amount of indirect light sources we are aiming for. Note that it should also be

possible to create this helper structure on the fly from a single full-screen quad using a geometry

shader that emits newly created vertices for the specified number of rows and columns. This

would yield a more dynamic solution that allows changing the number of tiles during runtime.

The created helper structure is facilitated later during indirect illumination in Section 5.3.3,

while the creation of the required buffers that describes how the original pixels are distributed

among the tiles has already been summarized in Section 3.2.3 and we describe it in more detail

in Section 5.1.

It is also worth noting that any other way of minimizing overdraw during illumination could

be used additionally. Among them are, using bounding volumes representing the light sources to

limit the region of influence while shading. For instance, one could render a sphere for a point-

light source, where the radius is derived from the attenuation factor and only shade pixels that

56

are within this bounding volume. Other bounding volumes could be utilized for different types

of lights (i.e., paraboloid for directional light, pyramid for spot light, etc.). More recent methods

[17, 33] use a similar approach to our tile-based interleaved shading, but use much more and

smaller tiles including bounding volume calculations computed entirely on the GPU.

5.1.5 RSM Sampling Geometry

During various stages (especially MAPPING and EVALUATION) of our clustering process, we

need an array of vertices that can be drawn in order to verify each pixel of a quadratic grid of

the RSM and then project it to an arbitrary position inside a 1D-texture. This way, we can write

per-cluster data into a 1D-texture, such as the number of pixels belonging to a cluster, which is

required during k-Means averaging (discussed in greater detail in Section 5.3.1).

Figure 5.3 shows the layout of the grid that we want to render utilizing an array of sequential

points. Each pixel in the grid can be assigned a number i from 1 to M, where M is the size of

the RSM and i the size of the squared region inside the RSM that we want to sample. Thus, the

numbers 1 through i represent all pixels that have to be rendered in order to yield this quadratic

sample area inside the RSM. Each pixel in the grid stores a corresponding (u,v) texture coor-

dinate in RSM texture space as (u,v) = (x,y)/M, where (x,y) are the pixel coordinates of the

RSM. We flatten the entire grid of size M×M into a sequential array starting with the (u,v)-
coordinates for i = 1, then adding the three (u,v) values for i = 2, then the additional 5 values for

i= 3, etc. until we reach i=M adding the final 2i−1 values to the array. Hence, in order to draw

a quad that allows us to sample each pixel of the quadratic region of size i× i inside the RSM

we draw the first i2 vertices of the array by calling glDrawArrays(clusterGeomVBO, i

* i). Algorithm 5.1 outlines the exact creation of the array clusterGeomVBO.

1 2
22

3
3
333

4
4
4
4444

12223333334 …

RSM Grid

Array

u
v

u
v M

M

M

M

M

M

MMMMMM

…

…

i i i i i

i

i

i

i

… … … … …

…
…
…
…
…

…

Figure 5.3: The top represents a grid of quadratic size where the numbers 1 through i represent

the pixels that have to be rendered for a quadratic region of width/height i inside the RSM with

corresponding size M×M. For this to be easily renderable, we need to create an array as layed

out at the bottom.

57

Algorithm 5.1 Generating a vertex geometry for sampling each pixel of a quadratic region of

arbitrary size.

1: procedure CLUSTERMAPGEOMETRY

2: Initialize clusterGeom array that will hold points

3: hal f Texel← 0.5/M

4: for i← 0 through M do

5: ni← 2 · i−1

6: Init x,y and u,v
7: u← ((i−1)/M)+hal f Texel

8: for y← 0 through ni/2 do

9: v← (y/M)+hal f Texel

10: clusterGeom.Add(u, v)

11: v← u

12: for x← 0 through ni/2 do

13: u← (x/M)+hal f Texel

14: clusterGeom.Add(u, v)

15: Create clusterGeomVBO from clusterGeom

5.2 Point Generation

As stated previously, our algorithm is designed to work on arbitrary scenes consisting of triangle

meshes. However, since we rely on a point-based representation of the scene for use with the

Imperfect Shadow Maps, a point-generation scheme based on tessellation is required to create

that point-based model. By hooking into the model-loading methods, we gain access to the

raw mesh data (vertices, faces, etc.), which we analyze in order to find a few scene-describing

properties:

Amin,Amax Smallest and largest triangle area, as well as

emin,emax shortest and longest triangle edge.

We also supply user-definable min- and max-tessellation factors fmin, fmax to keep the tessel-

lation levels within reasonable bounds. To define a combination of minimum- and maximum

tessellation factors in a single term, we use the notation f[min,max]. From these values we derive

inner- (tA) and outer-tessellation factors te:

tA = max(ceil(smoothstep(Amin,Amax,A) · fmax) , fmin) (5.3)

te = max(ceil(smoothstep(emin,emax,e) · fmax) , fmin) (5.4)

These equations compute tessellation factors along the edges and inside the face of a triangle

such that both the longest triangle edge and the largest triangle face in a scene correspond to the

maximum tessellation factor fmax, and the shortest edges and smallest faces correspond to the

smallest possible tessellation factor fmin, respectively. All other faces and edges will be assigned

58

interpolated tessellation factors that lie in the range f[min,max]. The smoothstep(l,u, t)-function

is a higher order Hermite interpolation polynomial commonly used in computer graphics where

l ≤ t ≤ u. It is a standard function available in both GLSL and HLSL shading languages that

performs smooth interpolation in the range [0,1] through a 3rd order polynomial given below as

3rd order: 3x2−2x3

5th order: 6x5−15x4 +10x3

where x = (t− l)/(u− l). Also given is a 5th order variant of the smoothstep function, while

even higher order variants are known to exist, which further minimize the slope of the inter-

polation function. The tessellation factors created from Equation (5.3) and (5.4) feed the two

interchangeable methods of point generation used by our algorithm:

STATIC TESSELLATION: Using the CPU we create a static point-representation at the start of

the application after the entire scene has been loaded. We iterate all triangles within the

scene and compute inner- and outer-tessellation factors according to the equations given

above. For each triangle, step-sizes sa,sb,sc along their edges a,b,c are computed as

demonstrated in Algorithm 5.2. To generate additional points on the triangles, we employ

a custom iteration scheme which is based on barycentric coordinates. The barycentric

weights are incremented in each iteration using the step-sizes computed before. Using

this static tessellation method, simple dynamic scenes that support translation, scaling

and rotation of whole objects are possible.

Algorithm 5.2 Point Generation on static mesh geometry

Require: Amin,Amax,emin,emax, Meshes

1: procedure POINTGEN

2: fmax← 64, fmin← 5 ⊲ Tessellation factor range f[5,64]

3: for each mesh in Meshes do

4: for each triangle in mesh.Triangles do

5: triangle.tA← Calc Equation (5.3)

6: for each edge in triangle.Edges do

7: edge.te← Calc Equation (5.4)

8: A,B,C← the three triangle positions

9: a,b,c← the three edges opposite of the positions

10: sa← 1.0/(a.te + triangle.tA) ⊲ Define stepsizes along the three edges

11: sb← 1.0/(b.te + triangle.tA)
12: sc← 1.0/(c.te + triangle.tA)
13: for γ ← 0.0 through 1.0 step sc do ⊲ Generate points on triangle

14: α ← 1.0− γ,β ← 0.0 ⊲ Use barycentric coordinates α,β ,γ
15: while α > 0.0 do ⊲ to iterate over triangle area using step-sizes sa,sb,sc

16: mesh.Positions.Add(A∗α +B∗β +C ∗ γ)

17: α ← α− ((1.0−α)∗ sa +(1.0−β)∗ sb +(1.0− γ)∗ sc)
18: β ← 1.0−α− γ

59

DYNAMIC TESSELLATION: In order to support fully dynamic objects that are dynamically cre-

ated or morphed on a per-vertex basis, for instance, surfaces defined by dynamic im-

plicit functions (“blobby objects”, liquid surfaces in smoothed particle hydrodynamics,

etc.), we employ dynamic tessellation using the graphics hardware’s built-in tessellation

unit. Here we use the same basic principle as above and compute equations (5.3) and

(5.4) inside the tessellation control shader by assigning gl_TessLevelInner← tA and

gl_TessLevelOuter← te. The barycentric coordinates for the new points on the sur-

face are computed by the hardware, which eliminates the need for a custom iteration as in

the static tessellation case. Hence, we only have to interpret the given barycentric coordi-

nates in order to translate the created points on the face of the triangle. More information

on this specific technique is given in Section 5.3.2.

5.3 Rendering Loop

Fill G-Buffers
Camera + Split

Light/RSM

Adaptive Clustering

ISM Generation

Indirect Illumination

Pull/Push

VAL Lighting

Indirect Soft Shadows

Direct Illumination

Composition
Merge + Filter Indirect

Add Direct

Tonemap

Evaluate

Seed

Importance Warp

Map

Average

Figure 5.4: Overview

of the algorithm’s

pipeline.

In this section, we describe the main rendering loop, which consists

of the individual steps to be executed in each consecutive frame.

An overview of the various steps is given in Figure 5.4 to the right

(adapted from a similar figure in Chapter 4), while the following

sections describe the more advanced steps in greater detail. All of the

below discussed methods are designed to be executed on the GPUs

programmable shader pipeline.

5.3.1 Clustering

Since generating the G-Buffers according to the layout discussed in

Section 5.1 is rather straight-forward, we get right to the clustering

itself, which as discussed in Chapter 4, can be subdivided into five

substeps.

Distribution

We start by seeding quasi-uniformly distributed clusters inside our

RSM texture using positions generated from a 2D-Halton sequence

[16] (described in Section 4.4). This gives us pairs of values (u,v) in

texture coordinates which are stored in a Vertex Buffer Object (VBO)

of size M, containing two data streams: a) A single integer value

containing the index of the cluster and b) the generated (u,v) coor-

dinates of the cluster.

This stage is fed by two data sources: The first is the normal

SEEDING pipeline utilizing the (Re-)Seed List (refer to Figure 4.4)

that checks for each cluster whether the number of assigned pixels

is zero. If so, the cluster will be reset by relocating it to a new position from the Halton se-

quence. This usually happens in the very first frame for all clusters, and then occurs sporadically

throughout the algorithms lifetime whenever a cluster is eliminated by the process (i.e., no pixels

60

are assigned to a cluster). We use the transform feedback capabilities of the GL-device to return

the indices of the affected clusters and create new positions for them.

The second mechanism feeding into this stage is the EVALUATION process (described later),

during which a cluster can be identified as either too small or too large for its vicinity. Clusters

that are too small will be eliminated by manually resetting their pixel-count to −1 and adding

them to the Free-Cluster List L f . Clusters that are too large will be split in half by taking a

cluster from L f and re-inserting it into the distribution within that split cluster using a random

offset. If any free clusters are still remaining after the evaluation process, they are injected into

the re-seed pipeline and will be assigned new positions according to the Halton sequence. These

two mechanisms ensure that all clusters are in use in each frame.

Importance Warping

Through the process of importance warping, our initial seed positions are then re-distributed

according to the importance map ρ , which is stored in the RSM. The idea behind this is to give

higher importance to surfaces that we deem more important than others: Surfaces with reflection

characteristics favored by our BRDF-dependent term ρ f using Equations (5.1) and (5.2). Addi-

tionally, surfaces that have a greater effect on the currently viewed part of the scene according to

ρv as defined in Equation (4.2). From a technical point of view, we perform importance warping

as described in Section 4.5 on the GPU using a transform-feedback loop. The pseudo-code is

given in Algorithm 5.3.

Algorithm 5.3 Performing importance warping on a single point using a transform-feedback

loop, where~x is the original seed position, ρtex defines the importance map texture and n is the

number of MIP-levels to traverse. The result is returned as~xwarped .

Require: ~x,ρtex,n
1: procedure IMPORTANCEWARPING

2: for i← 1 through n do ⊲ iterate through the MIP-levels starting at the 2nd coarsest

3: ρq← sample(ρtex, at each of the 4 quadrants q)

4: percentq← 1.0/∑ρq

5: tilerange← qwidth ·2
6: if~xy in q < tilerange · percentbottom then ⊲ point in lower-half

7: posy←~xy in q/percentbottom ·0.5 ⊲ warp vertically

8: percentle f t ← percentbottom-le f t/percentbottom

9: if~xx in q < tilerange · percentle f t then ⊲ warp horizontally

10: posx←~xx in q/percentle f t ·0.5
11: else

12: posx← tilerangex
− (tilerangex

−~xx in q)/(1.0− percentle f t) ·0.5

13: else ⊲ point in upper half

14: Perform similar to lines 7-12 for upper half

15: ~x←~x+ posxy

return~xwarped ←~x ⊲ return the warped position

61

After the warping procedure is done, the clusters are initialized by writing the now finalized

cluster-attributes to the 1D-texture map (refer to Table 5.2): The POSITION c, NORMAL cn̂,

FLUX cΦ, TEX COORD cuv and IMPORTANCE cρ can be initialized, since they are defined from

the properties of the cluster center.

Mapping

After our cluster centers have been warped to their final position, we can continue to assign each

pixel of the RSM to the cluster to which it belongs. To that end, we render a quadrilateral area of

size i× i pixels, centered around each cluster’s midpoint and aligned with the texture’s uv-axes

(i.e., non-rotated). Here, i defines the maximum size of a cluster, which is a user-definable value

usually in the range [64,256] depending on the amount of clusters in use.

In the fragment shader, we compute the distance µ(ci,~x) between the current fragment ~x
and the cluster center ci according to Equation (4.4). The cluster’s attributes are read from the

1D-texture maps initialized in the previous step and the attributes at the current position ~x are

reconstructed from the RSM. We write the index of the currently rendered cluster into the red

channel of the cluster-map (see enumeration item 1 in Section 5.1.2) at position~x. The result for

µ is written to gl_FragDepth. This way, we make use of the GPUs depth-testing capabilities

to efficiently decide which cluster has the smallest distance to the current pixel ~x (see Figure

5.5).

Warped Clusters RSM

c

c

1

2

Mapping Example

D
ep
th

F
lu
x

N
o
rm
al

Im
p
o
rt
an
ce

∀~x∈ c1∩c2 :C
[1,2]
min (~x)= argmin

i∈{1,2}

µ(ci,~x)

Figure 5.5: Illustration of the cluster mapping process. After importance warping, each pixel

of the RSM is assigned to its nearest cluster ci according to Eq. (4.5) using distance metric µ

defined in Eq. (4.4).

After this process is completed, we know for each pixel of the RSM to which cluster it

is currently assigned. In a final pass we utilize the cluster map geometry (Section 5.1.5) by

iterating over each pixel of the cluster map in order to compute the missing values for AREA cA

and COUNT cK of the 1D-texture map. The AREA of the cluster is estimated as the area of a

62

maximum bounding circle that fully encompasses the cluster. This is achieved using GL_MAX-

blending on the result of r2
c π , where rc = dist(c,~x), the Euclidean distance between the cluster

center and the currently sampled position ~x. This usually leads to overestimated cluster areas,

that will also most likely intersect one another. The areas are therefore not mathematically exact,

however, they serve their purpose without negatively impacting the result of the algorithm.

COUNT, on the other hand, is calculated via additive-blending, by simply adding 1 to the

cluster’s counter for each occurrence of the cluster’s index.

Averaging

The next step in the clustering pipeline, inspired by k-Means clustering, is the averaging process.

Since we now know for each pixel to which cluster it belongs, we recompute each cluster’s center

by averaging the values of the cluster-position, -texture-coordinates, -normal and -importance.

These are computed in the vertex shader, utilizing the cluster-map geometry introduced in Sec-

tion 5.1.5, by dividing the current values by the COUNT cK . The final values are again achieved

through additively blending them together in the fragment shader stage, which is possible ac-

cording to distributivity as ∑i
ci

cK
≡ ∑i ci

cK
. This works analogously for cuv,cn̂ and cρ .

cΦ, as well as cE are exempt from the averaging. Both of these values are computed anew in

a separate pass, where cΦ is simply read from the RSM at the new, averaged cluster center and

cE is recomputed according to Equation (2.1).

Evaluation

Cluster evaluation (or verification) is actually performed at the beginning of the clustering pipe-

line. However, in order to cover the prerequisites for understanding how the clustering works

without evaluation, we describe it here at the end. Thus, you are now familiar with the basic

principle of our frame-by-frame iterative k-Means clustering and its nomenclature, which makes

it easier to understand how the evaluation step adjusts the results of clustering.

As a first step, the cluster map’s green channel is updated, by only storing the index of the

cluster at the pixel that represents its center. This is necessary, since with our next step, we

want to find neighboring clusters. We do this very similarly to the process we described above

in Mapping, where we render a quadrilateral centered around the cluster’s midpoint. This time,

however, the quad has a size of 2i×2i to make sure it is large enough to find neighboring cluster

centers. Again, we utilize the cluster-map geometry to render 2i× 2i vertices, such that we

are able to sample each relevant individual pixel of the cluster map. In this case, we look in

the green-channel of the cluster map (which we filled previously) for other cluster centers and

using the geometry shader, only emit these vertices to the fragment stage. For them we simply

compute δc and δ 2
c according to Equation (4.6). The values for all found neighboring clusters

are additively blended together and stored in the 1D-texture map as VERIFICATION cδ to form

the sum of these values. They act as the base for evaluating whether a cluster is too large or

small for its neighborhood.

63

After these pre-processing steps are completed, we employ three compute shaders to per-

form merging and splitting (pipeline depicted in Figure 5.6) of the clusters according to the

verification metric (4.8). From the active amount of clusters k, we take a random subset of usu-

ally k/3 clusters and run the verification pipeline on these selected clusters only. The process

begins with

MERGING, where each randomly selected cluster is evaluated by computing the weighted arith-

metic mean δ̄ according to Equation (4.7) from the values stored in the 1D-texture VER-

IFICATION cδ . Additionally we calculate δc for the current cluster and compare it to

δ̄ . According to the decision in Equation (4.8) we merge a cluster if δc− δ̄ < −εm, in

which case, we add the cluster-index to a free-cluster list L f and increment the free-cluster

counter c f .

At the end of this step, we end up with a free-cluster list of size 0≤ c f ≤ k/3 and continue

with

SPLITTING, which only runs in case of c f > 0. Otherwise, L f is empty and no clusters are

available that can be used for splitting. However, if some clusters have been merged

beforehand, we take the same randomly chosen k/3 clusters and check for each cluster c if

δc− δ̄ >+εs. If this comparison evaluates as true and a free cluster is available (c f > 0),

we take the last (i.e., at position c f) cluster from L f and initialize its seed position within

the current cluster’s radius. Afterwards, we decrement c f by 1. This process is continued

for all k/3 clusters.

As mentioned previously, in this case, we circumvent the normal seed-pipeline that is

based on Halton-samples and instead initialize the position of the cluster taken from the

free-cluster list to a random position near the cluster that is to be split.

In the end, we perform a clean-up, which ensures that any remaining free clusters (i.e., c f > 0)

are handled by our normal re-seed pipeline through setting their COUNT cK ← 0.

k...

k/3

1. Take random clusters

...

2. Merge

Free cluster list Lf
cf...

3. Split

Split clusters

...

Figure 5.6: The evaluation pipeline checks k/3 random clusters and performs merging on eligible

clusters by adding them to a free-cluster list of size c f . The random clusters in combination with

the free-cluster list are in turn used in the third step to feed the splitting process.

64

5.3.2 ISM Generation

After the clustering pipeline has finished, we generate the imperfect shadow maps using a point

representation of the scene that is rendered into a single large texture, called the ISM Atlas.

To reiterate, ISMs [39, 41] are sparsely filled shadow maps that are generated by splatting

point samples representing the scene into a large amount of small shadow maps. In our case, each

cluster representing a virtual area light uses exactly one corresponding ISM, yielding m≤ k≤M

imperfect shadows maps. Reusing our nomenclature, m and M define the lower- and upper-

bound for manageable clusters and k is the amount of currently active clusters.

As mentioned previously, we employ two different splatting strategies: One uses a static

point representation of the scene generated in a pre-process, the other one is based on a dynamic

representation utilizing the graphics hardware’s tessellation capabilities.

Static Representation

For the static representation, we use the vertex buffers that were generated during the start-

up of the application. We use a scene graph where each node is assigned a child model that

represents the point cloud sampled from its surface. By attaching it as a child, we ensure that

each transformation (i.e., translation, rotation, scaling) applied to its parent polygonal mesh is

also applied to the point representation.

During ISM rendering, we traverse the scene graph, but only render the point clouds, ig-

noring all other mesh types. In this case, we employ three shaders: vertex-, geometry- and

fragment-shaders. The vertex and fragment shaders are straight forward, with the former sim-

ply passing the current vertex ~x and an integer i used to compute the receiving cluster to the

geometry stage. The latter writes the computed depth-value to the ISM atlas texture. The vast

bulk of the computation is handled by the geometry shader (i.e., it lies in between the vertex-

and fragment-stages). For the integer passed from the vertex stage we chose to use the built-

in gl_VertexID variable. We compute the index of the receiving cluster as i mod N, thus

assigning point splats in an interleaved manner to the ISM atlas. Based on that index, we can

perform lookups into the 1D-texture maps containing cluster information, such as POSITION c

and NORMAL cn̂. From these values we compute a view-matrix, which allows us to transform

and project a point sample to an ISM viewed from a given cluster center using paraboloid map-

ping [6]. By further computing the distance between the point sample and the cluster center, we

can estimate a projected size (gl_PointSize) for the point such that far away points yield

smaller splats, while those close to the cluster center produce larger splats. Additionally, by

looping the geometry-shader code, we render each point s times, controlled by the splat factor

s f , but into different clusters through adding the loop’s iteration counter to i before applying the

modulo operation.

Dynamic Representation

The dynamic point representation is handled very similarly. Since we use the GPUs tessellation

hardware to dynamically generate point clouds from polygons, the scene graph is traversed

normally and only the polygonal meshes are drawn (i.e., the static point clouds are ignored). To

65

this end, two additional shaders are attached after the vertex stage: the tessellation-control and

-evaluation shaders. In the control-shader we set the tessellation factors tA and te in exactly the

same way as we did during the static point mesh generation (according to Equations (5.3) and

(5.4)). The evaluation shader replaces the output of the vertex stage, by computing a random

cluster index i from a primitive identifier and the barycentric weights as

i =gl_PrimitiveID+

gl_TessCoord.x ·7+

gl_TessCoord.y ·89+

gl_TessCoord.z ·991

By multiplying the barycentric weights with prime numbers we achieve additional randomness

for the computed index.

The barycentric coordinates stored in gl_TessCoord are used to generate the new in-

terpolated vertex position on the triangle. The new position on the triangle and the computed

receiving cluster index are then sent to the geometry stage and subsequently the fragment shader,

which remain unchanged from the description given in Static Representation.

Pull-Push

Figure 5.7: Two

iterations of Pull-

Push performed

on a single ISM.

Smaller holes (top)

are filled by the

algorithm (bottom).

With large amounts of ISMs, rendering proportionally larger amounts

of point splats quickly becomes a performance bottleneck in the render-

ing pipeline. Thus, similar to the original implementation [39], we al-

ways render the same amount of point splats but into varying amounts of

ISMs. Since the so rendered ISMs can become very sparsely filled, one

way to accomplish a more dense scene representation is by performing

a pull-push operation on the ISMs in image space. To this end, a cus-

tom image pyramid is created, where we start from the finest resolution

level l← 0 and perform j iterations of the pull-phase: In each iteration,

a median-of-four is computed using data from the lth level of the ISM

texture. Each quadruple of values from level l forms a single new value

– the median – in level l + 1 (i.e., the next coarser level), thus pulling

data down in the hierarchy. l is incremented in each iteration and the

process continues until l ≡ j.

The push-phase works in the opposite direction: Starting from level

j, we push data up the hierarchy, and use the pushed depth values to

fill pixel that contain no data. This way we fill the holes in each finer

level. Again, this iterative process is continued until we reach the finest

level in the image pyramid. The result of such an operation is depicted

in Figure 5.7.

5.3.3 Indirect Illumination

From the information created by the clustering pipeline and with the ISM rendering completed,

we now possess all necessary data to perform indirect illumination. We employ tile-based in-

66

Figure 5.8: The split G-Buffer representation after indirect illumination using tile-based in-

terleaved shading. Each tile is lit by a different subset of VAL clusters using the tiled mesh

geometry.

terleaved shading via our tiled mesh geometry (refer to Section 5.1.4) using a single tile per

VAL cluster. As shown in Figure 5.2(b), multiple VALs will render into the same tile, which

means we have to additively blend the indirect illumination results together into the first indirect

illumination buffer containing the split indirect illumination (see Figure 5.8).

Indirect illumination itself is computed using the data in the 1D-textures for each cluster.

The basic principle for computing the illumination is the same as with any other light source.

The main difference is that in this case we deal with area light sources. Plugging our predefined

variables into Equation (3.9) we get

F(~x,c) =
cosθ~x · cosθc

π · ‖~x− c‖2 + cA

=

〈

n̂|l̂ll
〉

·
〈

cn̂|− l̂ll
〉

π · ‖~x− c‖2 + cA

(5.5)

to compute the form factor between our disk-shaped light source c and the receiving pixel ~x,

where l̂ll is the directional vector from ~x to c. The single-bounce diffuse light intensity for a

single cluster is then calculated as

Id(~x,c) = kd ·F(~x,c) ·V (~x,c)

where kd represents the diffuse reflection characteristics and V (~x,c) denotes the soft shadow

term discussed below. The form factor arithmetics are visualized in Figure 5.9.

Soft Shadows from Indirect Light

One important thing missing in the diffuse lighting term Id given above is the visibility com-

ponent V (~x,c). The original ISM implementation relies on having a large amount of ISMs to

sample from. By virtue of this, smooth indirect shadows are achieved through blending the re-

sult of many binary shadow lookups together. As mentioned previously, we however employ

percentage-closer soft shadows (discussed in Section 3.1.1), a technique that is usually com-

bined with standard shadow mapping. In our case, we use the percentage-closer filtering (PCF)

67

c

Ac

Θ

Θc
n
∧

cn
∧

l
∧

x
→

Figure 5.9: Arithmetics of the form factor in use in our algorithm. The intensity of light reflected

at the blue pixel~x is dependent on cosθ~x,cosθc, the cluster size cA and the distance between the

point and the cluster center, given as ‖~x− c‖2
.

for imperfect shadow maps, in order to reduce the amount of required virtual lights and thus gain

higher performance.

There is actually little difference between applying PCSS on a normal shadow map or on

imperfect shadow maps since the filtering itself works practically the same. We just have to

make sure to transform a current pixel into the paraboloid space used by the ISM and then

continue with the PCSS sampling as usual. Two important remarks have to be made:

1. At this point, we also remember that the penumbra size depends not only on the distance

between shadow blocker and receiver (i.e., the closer the blocker is to the receiver the

smaller the penumbra and vice versa), but also on the size of the light source. Refer again

to Figure 3.1(b). This is where the combination of our algorithm with PCSS especially

benefits: since our indirect lights are area lights of specific sizes, we can accurately esti-

mate a penumbra region.

2. Instead of varying the kernel size itself, as suggested in Section 3.1.1, it is more practical

to keep the kernel size static and instead scale the corresponding lookup coordinates ac-

cording to the estimated penumbra size. To that end, we employ a static kernel of size 16,

that is initialized with Poisson-disk samples [12] on the unit sphere. These values are then,

upon lookup, rescaled to the corresponding lookup region as computed by the penumbra

size estimation given in Equation (3.2). Using these rescaled coordinates, we perform 16

shadow lookups to compute the final, smooth visibility term V (~x,c).

Merging and Filtering the Split Indirect Illumination

After the gathering of the indirect light into the split representation (see Figure 5.8) is completed,

we need to merge the split representation back into a single image. This is achieved by reversing

the split operation introduced in Tiled G-Buffer Illumination in Section 3.2.3. For a given screen

coordinate (xm,ym) in the merged representation, we compute the tile (i, j) from which to gather

68

(a) (b)

Figure 5.10: (a) A mosaic pattern emerges after the join operation is performed on the split

illumination. (b) Through application of a geometry-aware box-blur the mosaic pattern vanishes

almost completely.

the split data as
(

i

j

)

=

(

xm

ym

)

mod

(

n

m

)

where (n,m) is the number of tiles in horizontal and vertical dimensions. The final sample

position in screen coordinates (xs,ys) for the split texture is then calculated by
(

xs

ys

)

=

(

i

j

)

·

(

w

h

)

+

(

xm

ym

)

/

(

n

m

)

where the vector (w,h) gives width and height of a single tile in screen-space. Subsequently,

(xs,ys) can simply be used to lookup the merged value at (xm,ym). This process results in a

mosaic pattern on the merged image that appears due to the interleaved shading, which can

be removed through an additional step: A geometry-aware filtering technique as presented in

Section 3.2.3 performs filtering based on depth-discontinuity ∆α , as well as normal-similarity

∆β , using a filter-kernel of size n×m. This convolution uses step-functions in combination

with two thresholds α and β to determine whether a sample s is similar enough to the current

position~x and normal n̂ to include it in the filtering:

∆α = 1.0−step(α,abs(~xz− sz))

∆β = step(β ,〈n̂|sn̂〉)

Only in the case when both similarity conditions are met, i.e., ∆α = ∆β = 1, the current pixel is

included in the computation of the filtered value. The results of the merging process and its final

filtered version are shown in Figure 5.10.

5.3.4 Direct Illumination & Image Composition

Our scene’s main light emitter is a spotlight with angular falloff as depicted in Figure 5.1. As the

BRDF for our scene we employ Lambert’s law in combination with the Blinn specular model

69

(see Section 2.2.3). To account for visibility we perform shadow mapping by reusing the depth

information already stored inside the RSM. This way we can circumvent another costly object

rendering pass that would only be used for shadow-map generation. The downside to reusing the

already available depth information is, however, that the RSM is a rather low resolution texture

(512× 512 pixels), where the contained depth information is also rather prone to aliasing and

stair-stepping artifacts. In order to counter these artifacts, we employ 25-tap PCF filtering during

shadow lookup, which achieves sufficiently soft shadows for use in a real-time application.

Image Composition

The final step in our pipeline before rendering into the back-buffer is to combine the filtered

indirect illumination contribution with the direct illumination into a 16-bit wide final-gather

texture. In order to present the information on the screen, we have to ultimately rescale the 16-

bit values to an 8-bit per-channel range through means of a tonemapper [38]. An example of a

scene rendered with our algorithm is shown in Figure 5.11.

Figure 5.11: A Cornell-box scene rendered with our algorithm. The spotlight in the upper-right

corner of the box acts as the area light that is indirectly illuminating the scene by means of

128 individual clusters. Shadows from the horse and sphere are rendered for the indirect lights

through PCSS-sampling of their ISMs.

70

CHAPTER 6
Results

In the previous chapters we introduced our new method called Adaptively Clustered Reflective

Shadow Maps (ACRSM), and discussed the theoretical background and practical implementa-

tion. In this chapter we present our results by highlighting the improvements we made with

respect to global illumination (see Section 6.1), ISM generation (refer to Section 6.2) and espe-

cially our adaptive clustering algorithm (in Section 6.3). We round out our results chapter with

some performance measurements in Section 6.4.

6.1 Global Illumination

The results regarding global illumination are split into two separate sections, by first highlighting

the differences regarding indirect lighting itself (see Section 6.1.1). Secondly, we present results

for the indirect shadows in Section 6.1.2. Finally, Figure 6.3 shows results using three different

scenes rendered with our method and provides detailed comparisons between our method and a

reference implementation using VPLs and standard ISMs.

6.1.1 Indirect Lighting

Remember that one of the alleged improvements is supposed to stem from the fact that we inter-

pret the virtual lights that we use for indirect illumination as clusters with a corresponding area,

thus allowing us to use a slightly more advanced form factor (see Equation (5.5)) to simulate vir-

tual area lights. This should in comparison provide a significant improvement over trivial virtual

point light sources in certain scenarios where point light sources have proven to be problematic.

A simple Cornell-Box is used, since an unoptimized clustering algorithm may have severe trou-

ble with the many “hard” boundaries in this scene, which can easily lead to bad virtual-light

distributions with a moving spot light. Depending on the illumination type (i.e., VAL or VPL)

used for the indirect light, image quality can degrade severely in these cases. Comparisons are

given in Figure 6.1, which showcases pure indirect illumination results (i.e., without indirect

shadows) when using VPL or VAL lighting for good and bad virtual light distributions. From

71

G
o
o
d
D
is
tr
ib
u
ti
o
n

B
a
d
D
is
tr
ib
u
ti
o
n

64 Virtual Point Lightsources 64 Virtual Area Lightsources Light Distribution

V
P
L

V
A
L

V
P
L

V
A
L

Figure 6.1: The same scene rendered using 64 indirect light sources under different lighting conditions and with

either VPL or VAL lighting. Shadows from indirect light sources are disabled in this comparison to emphasize the

differences in pure illumination. In the top, an ideal light distribution is used: The resulting illumination is nearly

identical in both cases. Slight differences only occur due to more pronounced virtual light singularities in the case of

VPLs. In the bottom, a bad distribution of virtual lights is used. This time, the differences are more extreme: In the

VPL case, the lighting sparks from the singularities become disturbingly implausible, while the VALs’ singularities

on the other hand remain contained. Another, more pronounced difference is in the rest of the scene’s illumination:

Most of the VPLs’ energy is spent on the small regions of the spot light where a large amount of the virtual lights

are distributed, thus the scene appears unnaturally dark as the large spot light area on the back wall contains a

rather limited amount of the overall VPLs. In the VAL case, however, each cluster is aware of its individual size with

respect to the overall spotlight’s area, which allows us to rescale the amount of energy reflected by each virtual light

source according to that size. The illumination remains more plausible, with the large spotlight area on the back

wall reflecting more energy than the small regions on the ceiling or the right wall although more clusters have been

distributed there.

these comparisons we can easily see that the VAL illumination we employ in ACRSM is superior

in all cases when compared to a standard VPL illumination.

6.1.2 Indirect Shadows

Another goal of our approach is to achieve smoother soft shadows from a smaller amount of

virtual light sources via the use of a more sophisticated shadow sampling technique. Using

the percentage-closer soft-shadow technique we circumvent the problem of under-sampling that

would usually occur due to using less imperfect shadow maps. In Figure 6.2 we compare the

indirect shadow terms of our ACRSM method versus a standard ISM implementation and pro-

vide detail comparisons of the final composition as well as the sole shadow term. Note that all

72

comparison shots in this section are rendered using dynamic point generation with f[5,32].

A
C
R
S
M

,
6
4
 V

A
L
s

IS
M

,
5
1
2
 V

P
L
s

Cornell-Box Scene Detail 1 Detail 2 Detail 3

C
o
m

p
o
s
it
io

n
S
h
a
d
o
w

 T
e
rm

C
o
m

p
o
s
it
io

n
S
h
a
d
o
w

 T
e
rm

C
o
m

p
o
s
it
io

n
S
h
a
d
o
w

 T
e
rm

A
C
R
S
M

,
1
2
8
 V

A
L
s

30.53 ms

36.96 ms

85.13 ms

Figure 6.2: In this comparison we show the same scene using different ISM sampling configurations. The two

scenes in the top are rendered using our ACRSM method with 64 and 128 VAL clusters and percentage-closer soft-

shadow sampling enabled. The bottom scene acts as a frame of reference using 512 ISMs with default shadow

sampling. Comparing the final composited scenes (images on the left), we can see that our method is able to render

perceptively comparable results to the reference ISM implementation using only a fraction of the originally required

ISMs. The detail comparisons show the final composition and the shadow term (white = shadow, black = no shadow).

These reveal that our method slightly overestimates shadow regions of finely detailed structures (Detail 1), but has

no trouble providing smooth shadows for large, homogenous regions (Detail 2). We can define further problematic

regions on areas with smooth geometric changes and their self-shadowing (Detail 3). This is one instance where

the point-based nature of the ISMs is not able to faithfully reproduce the fine changes in the geometry and even our

more advanced sampling technique is not able to achieve better results. However, in this case the more pronounced

artifacts on the back of the sphere are not visible in the final composition, since the problematic areas are part of

the unlit region where Lambert’s law already negates any impact from the light sources. A second-bounce indirect

illumination would probably make these artifacts more visible.

73

C
o
rn
e
ll
-B
o
x
S
c
e
n
e

ACRSM% 64 Virtual Lights Detail 1 Detail 2 Detail 3

A
C
R
S
M

V
P
L
0
IS
M

A
C
R
S
M

V
P
L
0
IS
M

S
ib
e
n
ik
S
c
e
n
e

ACRSM% 128 Virtual Lights

A
C
R
S
M

V
P
L
0
IS
M

S
p
o
n
z
a
S
c
e
n
e

ACRSM% 128 Virtual Lights

22.49ms

83.12ms

81.50ms

015p Brightness

015p Brightness

Figure 6.3: Three different scenes rendered with our method and compared to a default ISM implementation

using the same amount of virtual lights. Throughout all comparisons, our algorithm is able to achieve smooth soft

shadows with even small amounts of VALs, while in the standard ISM implementation using the same amount of

VPLs the image quality degrades noticeably: Shadows appear more aliased and blocky (compare Detail 1 and Detail

2 shots of the Cornell-Box and Sibenik scenes) and VPLs tend to produce more noticeable singularity sparks (i.e.,

Cornell-Box and Sponza scenes Detail 3).

6.2 ISM Generation

Another important observation to make is with regards to the ISM generation schemes which

we outlined in Section 5.3.2. One important metric that has to be considered when generating

ISMs is the coverage (i.e., how sparse or dense the ISMs are filled with point splats) and how

this influences the shadows in the final composition. Hence, Figure 6.4 focuses on differences

between static vs. dynamic scene representations, their advantages and disadvantages and how

the Pull-Push method fits into both scenarios to help tackle the coverage problem.

74

5
1
2
IS
M
,
s
ta
ti
c
,
f [
1
6
,6
4
]

Detail 1 Detail 2ISM Detail

61.24ms

C
o
m
p
o
s
it
io
n

S
h
a
d
o
w
T
e
rm

1
2
8
A
C
R
S
M
+
1
P
/P
,
s
ta
ti
c
,
f [
5
,3
2
]

10.56ms

C
o
m
p
o
s
it
io
n

S
h
a
d
o
w
T
e
rm

1
2
8
A
C
R
S
M
,
d
y
n
a
m
ic
,
f [
1
2
,4
8
]

C
o
m
p
o
s
it
io
n

S
h
a
d
o
w
T
e
rm

6.34ms

Final composition with ISM rendering time

Figure 6.4: Here we explore the visual differences between various ISM generation settings. The top row is a

reference rendering produced using 512 standard ISMs and a static point generation scheme with tessellation factors

fmin = 16 and fmax = 64 yielding approximately 1000000 point splats. The rows below employ our ACRSM method.

In the middle, we use static point generation and tessellation factors f[5,32] in combination with a single iteration

of pull/push. In the last row, we employ dynamic point generation with f[12,48]. The ISM Detail column reveals

sufficient coverage of the spherical objects in the scene for all configurations. However, the middle row due to

activated pull/push generates more blocky spheres. Overall, the last row appears to provide the best mix of coverage

and detail throughout the scene and also eliminates the slight light leakage visible in the Shadow Term of Detail 2

on the floor below the sphere.

It is important to point out that there is a clear correlation between the tessellation factors

(i.e., the number of points splats) and the amount of ISMs in use: The more ISMs that have to

be rendered, the less coverage is achieved with the same number of point splats. Thus, larger

amounts of ISMs require massively larger numbers of point splats to achieve sufficient coverage.

75

Since our algorithm needs fewer ISMs to produce comparable indirect shadow results, we also

reap the benefit of requiring smaller point counts. Both these factors have a large influence on

performance since tessellation factors as well as number of ISMs/VALs are reduced significantly,

hence achieving higher performance. The performance difference for the ISM generation stage

can be substantial, as reflected in Figure 6.4. From additional measurements in Table 6.1 and

Figure 6.5 we can see that the results for dynamic tessellation are highly dependent on the

number of meshes, and performance can therefore vary greatly depending on scene setup (refer

to the SIBENIK and SPONZA results), whereas pull/push adds a largely static amount of time to

the rendering pipeline, hence allowing more predictable changes in rendering times.

method 128 ACRSM 512 ISM

point generation static dynamic static

configuration f[5,32] 1 P/P 2 P/P f[5,32] 1 P/P f[12,48] f[16,64] f[16,64]

S
ce

n
e CORNELL B. 2.91 10.56 12.22 2.58 10.23 6.34 10.93 61.24

SIBENIK 34.78 42.41 44.79 35.33 43.20 113.85 203.44 245.19

SPONZA 51.56 59.65 61.69 54.73 62.88 185.22 347.93 945.09

Table 6.1: Timings in milliseconds for the ISM rendering stage in different scenes for various

configurations. The value f[x,y] defines the min- and max-tessellation factors in use. Consecutive

columns with z P/P additionally employ z iterations of the pull/push algorithm using the previ-

ously defined tessellation factors. The splat factor is scene-dependent and set to s f = 1 for the

CORNELL BOX and SIBENIK scenes and s f = 0.3 for SPONZA.

2
.9

1

1
0

.5
6

1
2

.2
2

2
.5

8

1
0

.2
3

6
.3

4

1
0

.9
3

6
1

.2
4

3
4

.7
8

4
2

.4
1

4
4

.7
9

3
5

.3
3

4
3

.2 1
1

3
.8

5

2
0

3
.4

4

2
4

5
.1

9

5
1

.5
6

5
9

.6
5

6
1

.6
9

5
4

.7
3

6
2

.8
8 1

8
5

.2
2

3
4

7
.9

3 9
4

5
.0

9

1

10

100

1000

f
[5,32]

+1 P/P +2 P/P f
[5,32]

+1 P/P f
[12,48]

f
[16,64]

f
[16,64]

sta�c dynamic sta�c

128 ACRSM 512 ISM

m
ill

is
e

co
n

d
s

[l
o

g
sc

a
le

]

ISM Rendering Times

Cornell Box Sibenik Sponza

Figure 6.5: Visualization of Table 6.1 on a logarithmic scale depicting ISM rendering time

in milliseconds for the three different scenes under various tessellation configurations. The

numbers in the bars denote the exact render times in ms.

76

6.3 Adaptive Clustering

The main contribution of this thesis is the adaptive clustering process (refer to Chapter 4) that

is meant to tackle the problem of cluster distribution in dynamic scenes (remember Figure 4.2

where a spotlight is moving from one wall to another over a clustering boundary). Timings in

milliseconds for the evaluation procedure are given Figure 6.6 for different amounts of clusters

and at varying cluster sizes. The cluster size has a direct influence on the timings since the

verification region scales linearly with the cluster size, thus larger regions have to be evaluated.

32 clusters 64 clusters 128 clusters 256 clusters

96 pix 2.66 3.28 4.45 7.03

128 pix 3.15 4.23 6.39 10.79

160 pix 3.71 5.42 8.97 15.97

192 pix 3.98 5.96 9.85 17.83

0

2

4

6

8

10

12

14

16

18

20

m
il
li
se

c
o

n
d

s

Verifica�on Time

Figure 6.6: Timings in milliseconds for our adaptive cluster evaluation process for 32, 64, 128

and 256 clusters at four different cluster sizes of 96, 128, 160 and 192 pixels.

In the following paragraphs we outline the improvements we have been able to achieve us-

ing our adaptive approach when compared to non-adaptive clustering by means of time series

comparisons. In Figure 6.7 a comparison of the problematic Cornell-Box scene as discussed pre-

viously is given, where a spotlight moves smoothly from the back wall to the right-side wall over

the course of ten seconds. On the left side, the time series for non-adaptive clustering is shown,

while the adaptive variant is shown right next to it. We also provide detail-comparison shots to

highlight differences in shadow quality at the current point in time. Focusing on the clusters, we

can see that their distribution remains more uniform with adaptive clustering enabled. The bene-

fits of this can be seen especially in the 3rd and 4th row, where a smoother shadow term is but one

of the positive side effects that can be gained. Having a better distribution automatically yields

a softer shadow term since a more uniform sampling is achieved. Conversely, a bad distribution

leads to more visible artifacts. Most of the other negative side effects that could be caused by

the non-uniform distribution like VPL singularities and unexpected lighting contributions (refer

again to Section 6.1.1) stemming from the bad distribution are mostly eliminated through the

usage of VAL lighting, which is active in both scenarios.

77

Non-Adaptive Clustering Adaptive Clustering Detail (+15% Brightness)

N
o
n
-A

d
a
p
ti
v
e

A
d
a
p
ti
v
e

1
.

S
h
o
t

2
.

S
h
o
t

3
.

S
h
o
t

4
.

S
h
o
t

5
.

S
h
o
t

N
o
n
-A

d
a
p
ti
v
e

N
o
n
-A

d
a
p
ti
v
e

N
o
n
-A

d
a
p
ti
v
e

N
o
n
-A

d
a
p
ti
v
e

A
d
a
p
ti
v
e

A
d
a
p
ti
v
e

A
d
a
p
ti
v
e

A
d
a
p
ti
v
e

Figure 6.7: A time series comparison for a moving light source comparing non-adaptive and adaptive

clustering from top (beginning) to bottom (end). In this comparison 128 clusters are in use. Their size

and distribution is visualized by the Voronoi-shaped colored cells.

78

6.4 Performance

In this final section we give detailed performance measurements of our implementation mea-

sured in milliseconds for three test scenes at varying cluster counts. Our test system consists of

an Intel XEON X3350 processor clocked at 2.66 GHz with an AMD Radeon R9 380 graphics

card. Measurements are taken at a framebuffer resolution of 800×600 pixels. The various stages

are timed using a high-performance counter provided by the Qt framework and are carried out

through the usage of the glFinish operation.

Beginning with the simple Cornell Box scene (see Figure 6.8), we provide exact timings

for the cluster evaluation, cluster averaging, ISM rendering and indirect lighting stages via

the green, blue, yellow and orange stacks in the bar charts. The greyish stacks denote various

other stages of the algorithm that are largely independent of the number of clusters: a) G-Buffer

performance is largely dependent on scene complexity, while b) cluster initialization happens

only sporadically throughout the algorithm and its impact on the performance is negligible.

c) Cluster mapping depends on the cluster size, which is fixed to 128 pixels for these leading to

static and minimal contribution to the frame timings. d) Direct lighting and tonemapping scale

linearly with the rendering resolution and are therefore not affected by changes to the number of

clusters in use by our algorithm.

3.74 4.65
6.94

11.46

6.06 4.39

3.93

4.02

2.79 4.19

5.95

13.85

2.23
2.75

3.85

6.00

19.74
20.86

25.78

40.97

0

5

10

15

20

25

30

35

40

45

32 clusters 64 clusters 128 clusters 256 clusters

m
il
li
se

c
o

n
d

s

Cornell Box Frame�mes

Tonemapping

Indirect ligh�ng

Direct ligh�ng

ISM rendering

Cluster averaging

Cluster mapping

Cluster ini�aliza�on

Cluster evalua�on

Light GBuffer

Geo GBuffer

Figure 6.8: Complete frame timings for the Cornell Box scene, rendered with 32, 64, 128 and

256 clusters. For this scene we use dynamic tessellation with factors f[10,32] and s f = 1.

Apart from the expected measuring inaccuracies, the values for the clustering verification

stage match up with our earlier measurements as shown in Figure 6.6. Once again, it becomes

clear that this process scales with the number of clusters in use.

The cluster averaging, on the other hand, is much more interesting as there is no clear pattern

to discern at first. As mentioned earlier, the averaging process is an additive blending operation

(i.e., an alternating read/write procedure) that puts a lot of stress on the memory subsystem of

the graphics hardware. The reason why the averaging process is more costly for fewer clusters

79

3.84 4.86

7.02

11.51

6.19 4.57

4.12

3.93
16.43

28.04

36.36

44.21

2.34

2.92

4.15

6.60

80.63

92.88

108.27

126.18

0

15

30

45

60

75

90

105

120

32 clusters 64 clusters 128 clusters 256 clusters

m
il
li
se

c
o

n
d

s

Sibenik Frame�mes

Tonemapping

Indirect ligh�ng

Direct ligh�ng

ISM rendering

Cluster averaging

Cluster mapping

Cluster ini�aliza�on

Cluster evalua�on

Light GBuffer

Geo GBuffer

4.33
5.51

7.27
6.56

5.10
4.51

36.39
37.68

62.88
2.38

3.03

4.11

78.37
82.30

110.67

0

15

30

45

60

75

90

105

120

32 clusters 64 clusters 128 clusters

m
il
li
se

c
o

n
d

s

Sponza Frame�mes

Tonemapping

Indirect ligh�ng

Direct ligh�ng

ISM rendering

Cluster averaging

Cluster mapping

Cluster ini�aliza�on

Cluster evalua�on

Light GBuffer

Geo GBuffer

Figure 6.9: Complete frame timings in milliseconds for the Sibenik scene (top) with s f = 1 and

the Sponza scene (bottom) with s f = 0.3. Both scenes use dynamic tessellation with factors

f[5,32].

(32 and 64) is because in these cases, each individual cluster covers a larger area of the RSM,

thus more individual pixels play a role in the averaging process of a single cluster, which in

turn equals more read/write interlocks. At 128 clusters we appear to have hit some kind of

sweet spot for our algorithm where the tradeoff between number of clusters and average size of

a single cluster allows the operation to perform at an optimal pace. At 256 clusters the tide is

beginning to turn again (although the difference appears to be within the margin of error for our

measurement technique). Further measurements at 512 clusters (not visualized here) confirm

that this is indeed the case and cluster averaging becomes more costly again.

80

ISM Rendering and indirect lighting also scale with the number of clusters. The former has

a higher performance penalty starting to be visible at 256 clusters. We attribute this specific

behavior to a combination of the tessellation and geometry shader stage. The latter does all the

heavy lifting (i.e., paraboloid mapping, replicating vertices to be rendered into multiple ISMs)

and it appears that our hardware is hitting some kind of limitation that causes a higher than

expected increase in ISM rendering times. Indirect lighting, on the other hand, scales largely as

expected and is also influenced by an additive blending operation (as described in Section 5.1.4).

Note that these results may also be dependent on the type of hardware in use.

In Figure 6.9 (top) the results for the Sibenik scene are visualized. The pattern described

previously emerges again. Obvious from the stacked bars is also that this scene is much more

heavy during GBuffer creation, owing to its higher complexity thus requiring a higher number

of draw calls. Notable differences can be seen in the ISM Rendering stage, which scales more

linearly as in the Cornell Box scene and is also dependent on the scene complexity. Furthermore,

the cluster averaging appears to come in at a lower measurement when comparing with the 256

cluster results from the previous figure, which might again be attributed to the margin of error

in our measurement.

Results for the Sponza scene are given in Figure 6.9 (bottom). Similar to the Sibenik scene,

this scene has a higher geometric complexity but requires fewer draw calls, thus the GBuffer

creation is a bit faster when compared to the previous scene. This is, however, contrasted by

the results of the ISM rendering stage, which is exorbitantly higher as when compared to the

Sibenik scene and again the scaling is not really as expected. Once more, we attribute this to

the tessellation and geometry shading stages due to the layout of the scene, which consists of

2
8
.9
3

3
0
.5
3

3
6
.9
6

3
9
.3
7 8
5
.1
3

8
0
.1
4

9
7
.7
5

1
0
5
.5
6

1
0
4
.1
3

1
7
0
.1
9

7
6
.8
2

8
0
.1
1

1
1
5
.3
6

1
9
3
.0
3

8
3
4
.7
8

1

10

100

1000

32 clusters 64 clusters 128 clusters 256 VPLs 512 VPLs

ACRSM ISM

m
il
li
se

c
o

n
d

s
[l

o
g
 s

c
a

le
]

ACRSM vs ISM
Cornell Box
f
[16,64]

, s
f
=3

Sibenik
f
[5,48]

, s
f
=1

Sponza
f
[5,48]

, s
f
=0.3

Figure 6.10: Complete frame timings of ACRSM compared with standard ISMs at virtual light

counts that produce qualitatively similar visual results (Fig. 6.2). For better comparability, both

variants employ static tessellation .

81

much larger triangle areas, thus requiring higher tessellation factors on average, putting addi-

tional stress on the knowingly weak AMD tessellator and the following geometry stage. We

omit the 256 cluster result for this scene entirely as the ISM rendering stage alone takes up ~160

milliseconds, dwarfing the other results and thus making the remaining results confusing.

Finally, we provide a simulated comparison between our algorithm and the classic ISM ap-

proach. Since we are not able to fully replicate the classic ISM method with our approach due to

the many differences with respect to how VPLs are seeded and updated, we estimate their results

by cutting out the timings of the cluster verification, mapping and averaging steps. We only leave

the cluster initialization intact, since this step is very similar to what the classic ISM approach

does (i.e., seeding VPL positions and performing importance warping). Additionally, we change

the indirect lighting computation and the shadow-lookup algorithm for the ISM variant to em-

ploy VPL-based illumination and simple shadow-map sampling (instead of VAL illumination

and PCSS sampling as in the ACRSM case). These simulated results are given in Figure 6.10.

82

CHAPTER 7
Conclusion

In this thesis we have presented Adaptively Clustered Reflective Shadow Maps (ACRSM): An

efficient real-time single-bounce diffuse global illumination method that is based on clusters

which form Virtual Area Lights (VALs), a fast method to provide shadow information for them

and an improved soft shadow-map sampling technique to achieve visually acceptable results

from lower amounts of Imperfect Shadow Maps (ISMs). Our main contribution is a progressive

VAL clustering algorithm that works in the Reflective Shadow Map’s (RSM) image space. To

maintain a balanced VAL distribution in dynamic scenes we have proposed a new verification

procedure inspired by methods from optimization theory.

The result of our work is a real-time global-illumination rendering framework that extends

state-of-the-art indirect illumination and shadowing techniques by a novel, adaptive VAL clus-

tering approach (Chapter 4). While a simple k-Means based clustering of VALs is sufficient

for static scenes, its usefulness for dynamic scenes proved to be strongly limited, because the

convergence of the clusters is highly dependent on their initial seed positions. This means the

clustering will converge towards a local optimum that has been defined at the start of the al-

gorithm, and does therefore not account for changing scenes with moving light sources and

objects.

To deal with these problems, we have extended the clustering pipeline by an extra cluster

evaluation pass, which evaluates the VALs produced by the k-Means clustering and identifies

degenerated clusters that became too large or too small for their local neighborhood. To that

end, we have introduced a custom measure that verifies whether the geometric properties of a

single cluster still contribute to a balanced cluster distribution within its neighborhood, or, if not,

requires removing and re-seeding the cluster at a better suited location.

Chapter 5 elaborates on the technical implementation of this technique into a deferred ren-

dering pipeline as is commonly found in today’s graphics engines. The presented method ren-

ders dynamic scenes entirely on the GPU in real-time by employing the various shader stages

available on modern graphics hardware.

The results presented in Chapter 6 show that our ACRSM is more efficient and produces

higher-quality results compared to a standard ISM implementation. Using VALs instead of

83

Figure 7.1: The Crytek-Sponza scene rendered with our algorithm using 256 VAL clusters.

VPLs for illumination reduces singularity artifacts (i.e., light sparks) considerably at little to

no extra cost in performance. We also require far smaller amounts of imperfect shadow maps

to achieve perceptually similar or even better results with regards to indirect shadow quality.

Since we distribute the point splats in an interleaved manner to the ISMs, requiring less ISMs

has the additional benefit of gaining a higher point-splat coverage per ISM. This enables further

performance gains because the algorithm does not require to perform pull/push operations on

the ISMs in order to fill large gaps in them. A time series comparison shows that the adaptive

clustering effectively maintains a balanced VAL distribution, thereby optimizing the indirect

illumination quality at a constant virtual lights budget. Furthermore, it has a beneficial influence

on the visual quality of the rendered GI image, due to the improved distribution of virtual area

lights. While our adaptive clustering requires additional evaluation computation compared to a

naive re-seeding approach, the amount of performance gained by requiring far less point splats

greatly outweighs its costs.

Future Work

Despite the aforementioned contributions, there are still some limitations that could be improved

upon in the future to increase the overall quality and possibly performance of global illumination

rendering:

MULTIPLE BOUNCES Currently, our method is a radiosity solver limited to only a single bounce

of indirect illumination. The approach could be easily extended to include a second light bounce.

One way would be to replace the ISMs by RSMs, where each point splat stores additional in-

formation such as flux and orientation. This would result in imperfect reflective shadow maps

84

(IRSMs), which Ritschel et al. [39] already envisioned in their original work. Based on these

IRSMs, a second set of virtual lights could then be seeded and used for another indirect illumina-

tion bounce. Alternatively, a screen-space method such as Screen-Space Directional Occlusion

(SSDO) [40] could be employed to approximate a second illumination bounce in screen space

only.

SPECULARITY Another possible extension of our GI implementation is the additional handling

of specular light reflections. However, to faithfully reproduce high-frequency specular effects

would again require much larger amounts of virtual lights. In some way, this would counteract

our current intention to reduce the number of virtual lights while keeping image quality intact. A

feasible approach could be to keep the current clustering and ISM generation to obtain an initial

set of VALs and supplement each cluster with an additional set of VPLs based on a cluster’s

specularity using a rotated Poisson-disk for seeding within the bounds of the cluster. Highly

glossy surfaces would gain larger amounts of additional VPLs than less glossy or diffuse reflec-

tors. A cluster’s ISM could then be shared with each VPL to incorporate visibility information

similar to Dong et al. [11].

INDIRECT LIGHTING OPTIMIZATION For accumulation of the contributions of indirect light,

more sophisticated methods than the rough tile-based interleaved sampling used by our current

implementation could be considered. There exist methods that are designed to reduce overdraw

by either clustering pixels into much smaller tiles and performing lighting computations in the

compute shader [17, 33] or by splatting spherical objects into the G-Buffer, adapting their shape

based on the reflection characteristics [10]. These extensions would be especially helpful when

introducing specular effects as mentioned above, since they could handle the higher number of

virtual lights more efficiently.

85

List of Figures

2.1 Solid angle geometry in (a) and perpendicular projection in (b). 6

2.2 BRDF Hemisphere . 7

2.3 Reflector categories with example renderings . 9

2.4 Visualization of the Rendering Equation . 12

2.5 Heckbert’s notation . 14

3.1 Shadow example and basic principle of PCSS . 18

3.2 Convolution Shadow Maps . 20

3.3 Instant Radiosity . 22

3.4 Reflective Shadow Maps (RSMs) . 24

3.5 Incremental Instant Radiosity . 26

3.6 Geometry-aware blur to eliminate mosaic pattern from tile-based interleaved shading 27

3.7 Imperfect Shadow Maps (ISMs) . 29

3.8 Clustered Visibility . 31

3.9 Coherency visualization between re-using clustering and restarting k-Means 32

3.10 Reflective Shadow Map Clustering (RSMC) . 34

3.11 Point-to-disk form factor for VAL illumination 35

4.1 Motivation: “light sparks” and shadow quality . 38

4.2 Motivation: unbalanced clustering . 39

4.3 Overview of the algorithm’s pipeline with emphasis on adaptive clustering 41

4.4 Clustering algorithm overview . 43

4.5 Halton-sequence vs. Monte-Carlo sampling . 44

4.6 Importance Warping . 45

4.7 Cluster Mapping . 47

4.8 Cluster Evaluation . 49

5.1 Spotlight geometry . 53

5.2 Tile-Based Interleaved Shading principle . 56

5.3 RSM Sampling Geometry . 57

5.4 Implemented algorithm pipeline . 60

5.5 RSM pixel to cluster mapping . 62

5.6 Evaluation pipeline . 64

5.7 Pull/Push operation . 66

87

5.8 Split G-Buffer and Tile-Based Interleaved Shading 67

5.9 VAL form factor . 68

5.10 Removing the mosaic pattern from tile-based interleaved shading 69

5.11 ACRSM: Cornell-box scene sample . 70

6.1 VPL vs VAL lighting comparison . 72

6.2 Indirect shadow comparison between ACRSM and standard ISM method 73

6.3 Overall GI comparison between ACRSM and standard ISM in three different scenes 74

6.4 Comparison of ISM generation methods between standard ISM and ACRSM . . . 75

6.5 ISM rendering times at various tessellation factors and with/without pull/push . . . 76

6.6 Evaluation timings at different cluster sizes . 77

6.7 Time series comparison with and without adaptive clustering 78

6.8 Complete frame timings for the Cornell Box scene 79

6.9 Complete frame timings in milliseconds for the Sibenik and Sponza scenes 80

6.10 Complete frametimings of ACRSM vs. standard ISM 81

7.1 The Crytek-Sponza scene rendered with our algorithm using 256 VAL clusters. . . 84

List of Tables

5.1 Slim G-Buffer layouts . 52

5.2 1D-textures for cluster information, specifying layout and usage. 54

6.1 Timings for the ISM rending stage in different scenes for various configurations . . 76

88

List of Algorithms

5.1 RSM sampling geometry . 58

5.2 Point Generation on static mesh geometry . 59

5.3 Importance Warping . 61

89

Bibliography

[1] T. Annen, T. Mertens, P. Bekaert, H.-P. Seidel, and J. Kautz. Convolution Shadow Maps. In

J. Kautz and S. Pattanaik, editors, Rendering Techniques. The Eurographics Association,

2007. ISBN 978-3-905673-52-4. 20, 21, 33

[2] T. Annen, Z. Dong, T. Mertens, P. Bekaert, H. Seidel, and J. Kautz. Real-time, all-

frequency shadows in dynamic scenes. In ACM SIGGRAPH 2008 Papers, SIGGRAPH

’08, pages 34:1–34:8, New York, NY, USA, 2008. ACM. ISBN 978-1-4503-0112-1. 31,

33, 39

[3] F. Aurenhammer. Voronoi diagrams – a survey of a fundamental geometric data structure.

ACM Comput. Surv., 23(3):345–405, Sept. 1991. ISSN 0360-0300. 42

[4] T. Barák, J. Bittner, and V. Havran. Temporally coherent adaptive sampling for imperfect

shadow maps. In Proceedings of the Eurographics Symposium on Rendering, EGSR ’13,

pages 87–96, Aire-la-Ville, Switzerland, Switzerland, 2013. Eurographics Association. 28,

29, 39

[5] J. F. Blinn. Models of light reflection for computer synthesized pictures. In ACM SIG-

GRAPH Computer Graphics, volume 11, pages 192–198. ACM, 1977. 10

[6] S. Brabec, T. Annen, and H. Seidel. Shadow mapping for hemispherical and omnidirec-

tional light sources. In Proc. of Computer Graphics International, pages 397–408, 2002.

26, 30, 65

[7] P. Clarberg, W. Jarosz, T. Akenine-Möller, and H. Jensen. Wavelet importance sampling:

efficiently evaluating products of complex functions. ACM Transactions on Graphics

(TOG), 24(3):1166–1175, 2005. 45

[8] R. L. Cook and K. E. Torrance. A reflectance model for computer graphics. ACM Trans-

actions on Graphics (TOG), 1(1):7–24, 1982. 11

[9] C. Dachsbacher and M. Stamminger. Reflective shadow maps. In Proceedings of the 2005

symposium on Interactive 3D graphics and games, pages 203–231. ACM, 2005. 24

[10] C. Dachsbacher and M. Stamminger. Splatting indirect illumination. In Proceedings of

the 2006 Symposium on Interactive 3D Graphics and Games, I3D ’06, pages 93–100, New

York, NY, USA, 2006. ACM. ISBN 1-59593-295-X. 85

91

[11] Z. Dong, T. Grosch, T. Ritschel, J. Kautz, and H. Seidel. Real-time indirect illumination

with clustered visibility. In Vision, Modeling, and Visualization Workshop 2009, 2009. 17,

31, 32, 33, 38, 39, 40, 41, 85

[12] D. Dunbar and G. Humphreys. A spatial data structure for fast poisson-disk sample gen-

eration. In ACM SIGGRAPH 2006 Papers, SIGGRAPH ’06, pages 503–508, New York,

NY, USA, 2006. ACM. ISBN 1-59593-364-6. 68

[13] E. Eisemann, U. Assarsson, M. Schwarz, and M. Wimmer. Casting shadows in real-time.

In ACM SIGGRAPH ASIA 2009 Courses, SIGGRAPH ASIA ’09, New York, NY, USA,

2009. ACM. 17

[14] R. Fernando. Percentage-closer soft shadows. In ACM SIGGRAPH 2005 Sketches, page 35.

ACM, 2005. 18, 31, 33, 39, 40

[15] C. M. Goral, K. E. Torrance, D. P. Greenberg, and B. Battaile. Modeling the interaction

of light between diffuse surfaces. SIGGRAPH Comput. Graph., 18(3):213–222, Jan. 1984.

ISSN 0097-8930. 13, 15

[16] J. H. Halton. Algorithm 247: Radical-inverse quasi-random point sequence. Commun.

ACM, 7(12):701–702, Dec. 1964. ISSN 0001-0782. 23, 43, 60

[17] T. Harada, J. McKee, and J. C. Yang. Forward+: Bringing Deferred Lighting to the Next

Level. In C. Andujar and E. Puppo, editors, Eurographics 2012 - Short Papers. The Euro-

graphics Association, 2012. 57, 85

[18] M. Hašan, J. Křivánek, B. Walter, and K. Bala. Virtual spherical lights for many-light

rendering of glossy scenes. ACM Transactions on Graphics (TOG), 28(5):143, 2009. 14,

38

[19] P. S. Heckbert. Adaptive radiosity textures for bidirectional ray tracing. SIGGRAPH Com-

put. Graph., 24(4):145–154, Sept. 1990. ISSN 0097-8930. 14

[20] H. W. Jensen. Realistic image synthesis using photon mapping, volume 364. Ak Peters

Natick, 2001. 16

[21] J. T. Kajiya. The rendering equation. In Proceedings of the 13th annual conference on

Computer graphics and interactive techniques, SIGGRAPH ’86, pages 143–150, New

York, NY, USA, 1986. ACM. ISBN 0-89791-196-2. 3, 12, 16

[22] B. Karis. Real shading in unreal engine 4. In ACM SIGGRAPH 2008 Presentation, 2013.

11

[23] A. Keller. Instant radiosity. In Proceedings of the 24th annual conference on Computer

graphics and interactive techniques, pages 49–56. ACM Press/Addison-Wesley Publishing

Co., 1997. 2, 22, 37, 38, 44

92

[24] A. Keller and W. Heidrich. Interleaved sampling. In Proceedings of the 12th Eurographics

Workshop on Rendering Techniques, pages 269–276. Springer-Verlag, 2001. 27

[25] S. Laine, H. Saransaari, J. Kontkanen, J. Lehtinen, and T. Aila. Incremental instant ra-

diosity for real-time indirect illumination. In Proceedings of Eurographics Symposium on

Rendering, pages 277–286, 2007. 17, 25, 26, 27, 37, 44, 55

[26] J. H. Lambert. Photometria. 1760. 10

[27] S. Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28

(2):129–137, 1982. 42

[28] C. Luksch, R. F. Tobler, R. Habel, M. Schwärzler, and M. Wimmer. Fast light-map com-

putation with virtual polygon lights. In Proceedings of ACM Symposium on Interactive 3D

Graphics and Games 2013, pages 87–94. ACM, Mar. 2013. ISBN 978-1-4503-1956-0. 38,

41

[29] J. MacQueen. Some methods for classification and analysis of multivariate observations.

In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability,

volume 1, pages 281–297. California, USA, 1967. 41

[30] R. Marroquim, M. Kraus, and P. R. Cavalcanti. Efficient point-based rendering using image

reconstruction. In Symposium on Point-Based Graphics, pages 101–108, 2007. 30

[31] M. Mittring. A bit more deferred–cryengine 3. In Triangle Game Conference, volume 4,

2009. 52

[32] F. E. Nicodemus. Directional reflectance and emissivity of an opaque surface. Appl. Opt.,

4(7):767–775, Jul 1965. 7

[33] O. Olsson, M. Billeter, and U. Assarsson. Clustered deferred and forward shading. In HPG

’12: Proceedings of the Conference on High Performance Graphics 2012, 2012. 57, 85

[34] B. T. Phong. Illumination for computer generated pictures. Communications of the ACM,

18(6):311–317, 1975. 10

[35] R. Preiner. Real-time global illumination in point clouds. In Proceedings of the 14th

Central European Seminar on Computer Graphics, May 2010. 28

[36] R. Prutkin, A. Kaplanyan, and C. Dachsbacher. Reflective shadow map clustering for

real-time global illumination. In Eurographics 2012-Short Papers, pages 9–12. The Euro-

graphics Association, 2012. 17, 33, 34, 35, 38, 39, 40, 41

[37] W. Reeves, D. Salesin, and R. Cook. Rendering antialiased shadows with depth maps.

ACM SIGGRAPH Computer Graphics, 21(4):283–291, 1987. ISSN 0097-8930. 19

[38] E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda. Photographic tone reproduction for

digital images. ACM Transactions on Graphics (TOG), 21(3):267–276, 2002. 70

93

[39] T. Ritschel, T. Grosch, M. H. Kim, H. P. Seidel, C. Dachsbacher, and J. Kautz. Imperfect

Shadow Maps for Efficient Computation of Indirect Illumination. ACM Trans. Graph.

(Proc. of SIGGRAPH ASIA 2008), 27(5), 2008. 17, 28, 29, 33, 37, 38, 39, 40, 44, 65, 66,

85

[40] T. Ritschel, T. Grosch, and H.-P. Seidel. Approximating dynamic global illumination in

image space. In Proceedings of the 2009 Symposium on Interactive 3D Graphics and

Games, I3D ’09, pages 75–82, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-

429-4. 85

[41] T. Ritschel, E. Eisemann, I. Ha, J. Kim, and H. Seidel. Making imperfect shadow maps

view-adaptive: High-quality global illumination in large dynamic scenes. In Computer

Graphics Forum. Wiley Online Library, 2011. 17, 28, 33, 34, 37, 38, 39, 40, 45, 65

[42] C. Schlick. An inexpensive brdf model for physically-based rendering. In Computer graph-

ics forum, volume 13, pages 233–246, 1994. 11

[43] N. Schulz. The rendering technology of ryse. In GDC 2014 Session, 2014. 11

[44] E. Tabellion and A. Lamorlette. An approximate global illumination system for computer

generated films. ACM Trans. Graph., 23(3):469–476, Aug. 2004. ISSN 0730-0301. 2, 17,

28

[45] E. Veach and L. J. Guibas. Metropolis light transport. In Proceedings of the 24th Annual

Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’97, pages

65–76, New York, NY, USA, 1997. ACM Press/Addison-Wesley Publishing Co. 16

[46] J. R. Wallace, K. A. Elmquist, and E. A. Haines. A ray tracing algorithm for progressive

radiosity. SIGGRAPH Comput. Graph., 23(3):315–324, July 1989. ISSN 0097-8930. 35,

40

[47] G. J. Ward. Measuring and modeling anisotropic reflection. SIGGRAPH Comput. Graph.,

26(2):265–272, July 1992. ISSN 0097-8930. 11

[48] C. Weinzierl-Heigl. Shadows in real-time applications. Bachelor’s Thesis, 2011. 17

[49] C. Weinzierl-Heigl. Efficient val-based real-time global illumination. In Proceedings of

the 17th Central European Seminar on Computer Graphics, CESCG ’13, pages 17–24, Fa-

voritenstraße 9-11/186, 1040 Vienna, Austria, Apr 2013. Vienna University of Technology.

3

[50] T. Whitted. An improved illumination model for shaded display. Communications of the

ACM, 23(6):343–349, 1980. 16

[51] L. Williams. Casting curved shadows on curved surfaces. In Proceedings of the 5th Annual

Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’78, pages

270–274, New York, NY, USA, 1978. ACM. 18, 28

94

	Introduction
	Overview & Motivation
	Scope Of The Work
	Structure Of This Thesis

	Background
	Physical Units
	Bidirectional Reflectance Distribution Function
	Characteristics
	Categorization
	Models

	The Rendering Equation

	Related Work
	Shadow Mapping
	Percentage-Closer Soft Shadows
	Convolution Shadow Maps

	Radiosity Methods
	Instant Radiosity
	Reflective Shadow Maps
	Incremental Instant Radiosity
	Imperfect Shadow Maps
	Clustered Visibility
	Reflective Shadow Map Clustering

	Adaptively Clustered Reflective Shadow Maps
	Motivation
	Contribution
	Overview
	Seeding
	Importance Warping
	Mapping
	Averaging
	Evaluation

	Implementation
	Buffers & Data Structures
	G-Buffers
	Cluster Textures
	Lighting and Shadow Buffers
	Interleaved Sampling Geometry
	RSM Sampling Geometry

	Point Generation
	Rendering Loop
	Clustering
	ISM Generation
	Indirect Illumination
	Direct Illumination & Image Composition

	Results
	Global Illumination
	Indirect Lighting
	Indirect Shadows

	ISM Generation
	Adaptive Clustering
	Performance

	Conclusion
	List of Figures
	List of Tables
	Bibliography

