
Dynamic Word Clouds
Martin Seyfert

TU Wien
Vienna, Austria

Ivan Viola
TU Wien

Vienna, Austria

ABSTRACT
Using word clouds to visualize dynamic time-varying data is a
field still under-explored. The goal of our approach is to provide a
novel way of generating smoothly animated word clouds to show
changes in word frequency via font size. Unlike existing methods,
a compact layout, inspired by the popular word cloud generation
tool Wordle, is preserved during animation and implemented using
web technologies. Word size changes in time are also illustrated via
color and word rotation.

CCS CONCEPTS
•Human-centered computing→ Information visualization;

KEYWORDS
word cloud, tag cloud, dynamic, animated, time-varying
ACM Reference Format:
Martin Seyfert and Ivan Viola. 2017. Dynamic Word Clouds. In SCCG ’17:
SCCG ’17: Spring Conference on Computer Graphics 2017, May 15–17, 2017,
Mikulov, Czech Republic. ACM, New York, NY, USA, 8 pages. https://doi.org/
10.1145/3154353.3154358

1 INTRODUCTION
The method of visualizing word frequency via font size goes back
many years, from early experiments in the 1970s by Stanley Mil-
gram [Milgram 1976] to the rise of so-called “tag clouds” in Web 2.0
design [Viégas and Wattenberg 2008]. In 2002, photo-sharing site
Flickr started visualizing tags people used on their photographs
by sorting them by popularity and showing more frequent ones in
bigger font sizes. This was done in a simple paragraph of words
being sorted alphabetically.

Jonathan Feinberg’s work on the social bookmarking applica-
tion “dogear” for IBM and, eventually, Wordle1 (his free, web-based
implementation of the algorithm) popularized a new way of dis-
playing words in a cloud layout [Steele and Iliinsky 2010]. Wordle
offers automatic text analysis for word frequency (which led to
a shift from the term “tag cloud” to “word cloud”), places words
freely instead of within a paragraph and considers the white space

1http://www.wordle.net/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SCCG ’17, May 15–17, 2017, Mikulov, Czech Republic
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5107-2/17/05. . . $15.00
https://doi.org/10.1145/3154353.3154358

between individual glyph shapes to create a more compact and
aesthetically pleasing layout.

Since word clouds do not allow exact measurement or compar-
ison of the underlying data, their main purpose is to provide a
quick overview over a more in-depth subject. While other visu-
alization methods (as an obvious example, a simple, vertical list),
can provide as good or better results in forming an overall impres-
sion [Rivadeneira et al. 2007], word clouds still have been found to
be a useful supplementary research tool [McNaught and Lam 2010].
With time as an additional dimension, the appearance of the result
also changes to a point where it significantly differs from any static
representation, which suggests that findings based on static word
clouds are no longer directly comparable. It is not obvious whether
dynamic word clouds are more or less successful in visualizing the
underlying data than static word clouds.

It is also worth noting that the original motivation for Wordle
had a strong aesthetic component to it, which was powerful enough
for it to quickly spread in popularity among users who do not work
with text analysis on a professional or scientific level [Steele and
Iliinsky 2010]. It can be argued to act as an “ice breaker” of sorts,
getting people to notice interesting patterns in word frequency
even where they had no intention to actively look for them. The
animated nature of a dynamic word cloud can serve as an additional
source of attention, getting users to form an interest in the subject
via a quick overview and potentially inspire later, more in-depth
insights. A possible use could be a widget that accompanies an
article on a website.

While the usefulness of static word clouds [McNaught and Lam
2010; Rivadeneira et al. 2007] and further experiments in user inter-
action [Jo et al. 2015; Koh et al. 2010] have been explored in the past,
literature on visualizing data with changing word frequency over
time—via dynamic, animated word clouds—is surprisingly sparse.
Further, the focus of existing methods lies with simpler word colli-
sion detection that does not take into account the more compact
layout made possible in Wordle-inspired methods.

With these considerations in mind, we propose a novel way of
creating dynamic word clouds for visualizing time-varying data.
Our approach takes into account the shift in size changes at all
keyframes simultaneously and uses them to arrange words more
efficiently for a smooth animation of transitions. Also, aWordle-like
placement algorithm assures a compact layout.

Additional typographic visualization methods add visual infor-
mation besides font size. A color gradient as well as word rotation
is used to emphasize changes in word size. A goal was also to test
the feasibility of implementing dynamic word clouds using web
technologies like HTML5, SVG and JavaScript, especially regarding
generation time.

https://doi.org/10.1145/3154353.3154358
https://doi.org/10.1145/3154353.3154358
https://doi.org/10.1145/3154353.3154358

SCCG ’17, May 15–17, 2017, Mikulov, Czech Republic Martin Seyfert and Ivan Viola

2 RELATEDWORK
2.1 Static Word Clouds
The modern, space-efficient layout of word clouds is primarily
based on Wordle, by Jonathan Feinberg. He describes his approach
in detail in Chapter 3 of the book “Beautiful Visualization: Looking
at Data through the Eyes of Experts” [Steele and Iliinsky 2010].
After simply determining the font sizes based on relative word
count, each word is placed in a random position. Collisions are
done for individual glyph shapes using hierarchical bounding boxes
for optimization. When a collision is found, the word is gradually
moved outward along a spiral path to find the closest free placement
position.

There have been several attempts to improve static word cloud
layouts. “Rolled-out Wordles” [Strobelt et al. 2012] offer an im-
proved word placement strategy to resolve overlaps, which results
in a more even layout of the overall Wordle shape. Another possible
feature is the preservation of spatial information, like the location
of cities tagged in a map in “Geo Word Clouds” [Buchin et al. 2016].
It is notable that finding a satisfying layout using such complex
requirements can have a significant impact on performance (in the
case of Geo Word Clouds, the algorithm can take a full hour to
place 126 location-constrained tags in the shape of Great Britain).
Of course, simpler, bounding box based collisions such as the place-
ment strategy used in WordBridge [Kim et al. 2011] are also an
option and lead to larger amounts of white space with the added
benefit of faster computation times.

2.2 Dynamic Word Clouds
There have been several attempts at providing more interactive and
flexible manipulation of word clouds. ManiWordle [Koh et al. 2010]
allows moving and rotating individual words in a word cloud via
drag-and-drop to refine the layout manually. WordlePlus [Jo et al.
2015] provides a similar set of tools but adds resizing, adding and
grouping of words as well as an option to animate the result by
making words pop in one after the other.

One way of using word clouds for visualizing trends in time-
varying (or otherwise dynamic) data is to combine multiple visual-
ization techniques. Parallel Tag Clouds [Collins et al. 2009] combine
parallel coordinates and a gradient line to illustrate changes in word
frequency while also using this data for the font size of words ar-
ranged in columns. SparkClouds [Lee et al. 2010] are simple tag
clouds with a sparkline underneath each word. Tag frequency, of
course, can also be visualized without using such complex lay-
outs as illustrated by “Cloudalicious” [Russell 2006], which simply
displayed tag frequency changes over time as a graph.

Cui et al. [Cui et al. 2010] have proposed a method for illustrating
time-varying word cloud data while preserving the overall layout of
a graph connecting nearby words. Simple bounding boxes are used
for detecting collisions and repulsive, spring and attractive forces
push words until collisions are resolved. A more complex approach
for “morphable word clouds” by Chi et al. [Chi et al. 2015] uses
interpolated boundary shapes and constrained rigid body dynamics
to deal with collisions, which also allow words to be rotated to
better fit within the layout. Word shapes are approximated via a
convex polyhedral. This method can require manual intervention
and tweaking to prevent words blocking each other in collision.

WordSwarm [Kane 2014] uses the real-time 2D physics engine
Box2D to apply a gravitational force to each word’s bounding box
and gradually move them to the center of the screen. The layout
takes time to reach a stable form and overlaps can occur because
of compromises in the real-time optimized physics engine.

Existing approaches to dynamic word cloud generation either
introduce additional visualization methods or use rather simple
collisions (bounding boxes) and sparse layouts. This can result in
wasted space, jittery animation or other collision artifacts such as
overlapping words which can, in some cases, even require manual
tweaking. It is our goal to use some techniques previously only
attempted in static word clouds as well as further optimizations in
how to handle time-varying data to overcome these compromises.

3 METHODOLOGY
The basic idea of our approach is to use an exact, Wordle-like
placement strategywhere all collisions overmultiple key-frames are
considered simultaneously. Time can be thought of as an additional
dimension along a time axis.

Bitmap-level collisions are used to create a compact layout that
avoids the distracting amounts of white space that can be the result
of great size differences between words as well as glyphs with sig-
nificant ascenders or descenders. The goal is to create a concise and
aesthetically pleasing overall shape. To avoid unnecessary checks
for overlaps and to keep size changes balanced over the whole time
axis, a special algorithm is used to pick the order at which new
words are added. Instead of Wordle’s initial random placement,
words are always placed using a spiral placement strategy start-
ing from the center to achieve an optimal layout. The size change
between different keyframes is also used for coloring and word
rotation to further illustrate changes.

3.1 Choosing the word placement order
The first step in word placement is ranking words for their place-
ment order. A simple approach of picking thewordswith the highest
total size (over all keyframes) can create a satisfying layout in which
more prominent words are closer to the center. A more advanced
placement strategy (Fig. 1) can help handling word clouds with
drastic size changes. For that, words are sorted by their average size
difference (as measured by the diagonal of their bounding boxes)
over all keyframes. This allows to pick the most temporarily stable
in size word as a starting point. The word is placed in the middle of
what Wordle considers the “playing field” [Steele and Iliinsky 2010],
an area of sufficient size to hold the combined area of all words.

After an initial word has been placed, the next word has to
be chosen. For this, the average absolute difference in bounding
box diagonals between the already placed and the new word at
all keyframes is considered and the new word with the minimal
change in size difference is chosen.When the already placed word is
growing, the new word should be shrinking and vice versa. This is
continued until all words are placed, always comparing the bound-
ing box of the next word to the total bounding box enclosing already
placed words.

The benefit of this approach is that during collision detection,
size changes from one keyframe to the next likely compensate each
other. This means that if a non-overlapping position is found in the

Dynamic Word Clouds SCCG ’17, May 15–17, 2017, Mikulov, Czech Republic

Figure 1: An example of an ideal match between two bound-
ing boxes. The change in size (as measures by its bounding-
box diagonal) between word a and word b at each keyframe
adds up to zero while the combined size stays constant.

first keyframe, it likely also fits in all other keyframes, despite the
size changes.

3.2 Resolving collisions
For resolving collisions, we choose a spiral path placement strategy
as it is used in Wordle. Collisions also take into account the exact
glyph shape of letters in each word rather than simple bounding
boxes. This allows more efficient and compact layouts, especially
when there is a big contrast in word sizes and fonts with long
ascenders or descenders are used. For each considered position,
collisions are checked in all points over time. Once a collision is
detected in any keyframe, the position is rejected for all keyframes
as illustrated in Fig. 2. The word is moved along a spiral path going
outward from its initial placement position until there is no collision
found in any keyframe. A simple rectangular spiral pattern is used.
While it can cause the overall cloud layout to look slightly square,
it is good enough to generate a centered layout (see Fig. 3).

The disadvantage of this method is that longer calculation times
are necessary than in randomized placement. The best way to solve
this problem depends on the implementation platform but checking
spline-based glyph shapes for collision is certainly too expensive.
A simple approach is rendering font shapes into bitmaps and using
those for collisions. The bitmap resolution has to be chosen based
on the desired exactness of the collision. A minimum resolution (or,
respectively, a minimum word size) to handle the smallest words
in the cloud should be considered. Further, the distance a word is
moved along the spiral path in each iteration can be increased to
get to potentially valid placement positions more quickly.

In a last step, the newly placed word is moved linearly towards
the center of the combined bounding box of the previously placed
words, until it collides. This is done separately in all keyframes.
The goal is making the layout even slightly more compact. The
complete result is then centered in the playing field before the next

Figure 2: Collisions have to be tested at all keyframes. In
example (a), the new word “Gamma” doesn’t overlap in
keyframes t1 and t3 but does so in t2. As a result, the posi-
tion is rejected and the word is moved to a next position. In
example (b), theword has beenmoved slightly and no longer
overlaps in any keyframe. Note that this has caused slightly
more white space between the words, especially in t1 and t3.
This is solved by moving the word towards the center of the
already placed words which is done in a final step (c).

word is going to be placed, to keep the word cloud from wandering
towards the edge.

A problem that can occur with the time data, is missing or zero
values for font size, for example when a word only starts appearing
at a later keyframe or disappears from the word cloud completely. A

Figure 3: In order to find the closest available position to the
center of the word cloud, the word is moved outward along
a rectangular spiral path until no collisions are found.

SCCG ’17, May 15–17, 2017, Mikulov, Czech Republic Martin Seyfert and Ivan Viola

simple solution is to convert words that are zero sized or otherwise
so small that they might not be visible to a minimal size that can be
used for collision but set them to not be rendered. That way some
space is considered for animations without significantly hurting
the overall layout.

3.3 Color, rotation and other typographic
options

Wordle uses randomized word colors as an aesthetic choice. The
only real concern is contrast to the background color to ensure
readability. Given the added complexity of time data, however, color
can be used as an additional source of information. For example,
Cui et al. [Cui et al. 2010] use colored labels to tag appearing,
disappearing and unique words. Besides making changes more
visible during animation, using color in this way also allows the
user to see trends in a static frame.

Our approach uses the derivative in size change for color inten-
sity with a certain threshold for maximum change. The color and
threshold can be chosen by the user. Possible choices could include
green for growing and red for shrinking words and words growing
to twice or half their previous size for maximum color intensity of
a gradient from a black base color.

Word rotation is another option to add visual interest and is
widely used in word cloud generation. Rotation can either be chosen
freely (with certain constraints like keeping words from being
rotated to an upside-down orientation) or from a fixed set of angles
(for example, 0°, 90°and -90°).

In our case, word rotation can also be used to further illustrate
changes in size since the last keyframe. Shrinking words are rotated
clockwise to make them point downwards in reading direction,
words growing in size are rotated counter-clockwise. A constraint
is set to avoid too extreme rotations (for example, capped at 30°and
-30°).

It is tempting to use additional typography to further illustrate
aspects of the word cloud, such as bold or italic font faces for the
aforementioned changes, but the additional fonts should also not
overload the visuals, which could lead to reduced readability. One
reasonable option would be to allow for font changes that require
editing the input data. While using color or rotation might require
some general tweaking of threshold values, it is mostly automated.
Additional meta data could help illustrate input values but would
have to be done manually by the user for the entire dataset. For
example, in a word cloud illustrating the popularity of male and
female given names, male names can be set to display a different
font than female ones.

3.4 Frame Interpolation
While methods described so far guarantee words not intersecting
at the provided keyframes, interpolation is used to animate in-
between states. This can occasionally cause words to still overlap
(Figure 4). These overlaps are especially unpredictable when word
rotation is used.

A solution to this problem is calculating collisions for a set
amount of in-between frames. This further increases calculation
time and therefore should be considered a luxury refinement. A
single frame of interpolation can already serve as a compromise.

Figure 4: A case of subtle collisions that can occur during
animation because of interpolated positions. Although both
keyframes of the word “Delta” do not overlap, in-between
frames do.

4 RESULTS
4.1 Target Platform
The goal of the described methodology is allowing an implementa-
tion in a modern, real-world environment: a web-based, in-browser
solution not depending on plugins. The technologies used are
HTML5, JavaScript and the data visualization library D3 [Bostock
2011]. Words are rendered as SVG text elements on a website and
can thus be easily selected, copied or stylized using a variety of
formatting options. D3 provides interactive elements such as a
slider and handles interpolation and animation between keyframes.
Collision is done by rendering the SVG text onto a HTML5 canvas
and reading the bitmap data. The code is available on GitHub2.

4.2 Optimization
Performance is a big concern considering the comparably slow
nature of JavaScript. While many browsers’ JavaScript engines are
now reasonably optimized, delays and inefficiencies still can be a
problem. The main bottleneck lies in comparing bitmaps for colli-
sion. One possible optimization used inWordle is using hierarchical
bounding boxes. However, an existing implementation for static
word clouds using D3 by Jason Davis [Davies 2012] suggests a faster
option using 32-bit integers. The one-bit bitmaps retrieved from
rendering the SVG text to an HTML5 canvas are simply stored as
32-pixel blocks, each pixel representing a bit in a 32-bit integer. This
way, checking for collisions is reduced to only a single operation
for 32 pixel values at once. Bit-shifting as well as simple AND and
OR operations can be used to efficiently manipulate bitmaps stored
as 32 bit blocks.

4.3 Data
While not a focus of this project, retrieving data is an important
and often rather straightforward part of word cloud generation.
Wordle [Steele and Iliinsky 2010] uses a simple method that starts
with a large amount of text as an input. Words are separated by
spaces and punctuation. Stop words such as “the”, “it” and “and”
are removed since they are of little interest to the user. Of course,
different languages require their own lists of “stop words”. The
resulting words are simply weighted by their frequency. Other
sources for word cloud generation can of course be data collected

2https://github.com/martinsft/wdc

Dynamic Word Clouds SCCG ’17, May 15–17, 2017, Mikulov, Czech Republic

Figure 5: An example of a dynamic word cloud illustrating the most popular given names in Vienna between 2006 and 2011.
Shades of red and clockwise rotation indicate shrinking, shades of green and counter-clockwise rotation growth. Font family
(Arial for female, Times for male) indicates gender. The transitions are smoothly animated. Word overlaps can occasionally
occur in interpolated frames.

in a database or Excel file. The original use for tag clouds relied
exclusively on data provided in such an easily usable fashion.

Handling changing word frequencies over time is a little more
complex as it requires separate data from multiple points in time.
Our input must be pre-formatted as a comma-separated values list
(CSV)which already hasword size entries for each desired keyframe.

Figure 6: A visualization of submitted and accepted key-
words from PacificVis 2016, weighted around a 0.5 ratio. For
example, half of the submitted papers about “Uncertainty
Visualization” were acceptedwhile only about 24% of papers
using the popular keyword “Graph/Network Data” were ac-
cepted.

Keyframes also have a label (for example, the year) which will be
displayed in the interface.

For testing, a simple data set containing the 30 most popular
given names in Vienna between the years 2006 and 2014was created,
based on data by the Austrian government3. The preformating of
the data was performed in Excel. The input was saved in the form
of a CSV file. Different font families (Arial for female, Times for
male) were used to indicate gender.

A continuous transition from red (shrinking) to green (growing)
was used for color. Word angle (upward in reading direction for
growing, downward for shrinking) was applied with a maximum
of 30°. A slider at the bottom can be manually dragged to a wanted
year. Pressing the space bar plays an automated animation. In either
case, transitions are smoothly animated.

In the resulting visualization (Fig. 5), popularity trends can be
recognized. Since word size changes are calculated from the previ-
ous keyframe, the first keyframe does not contain such information.
In 2010, for example, most names can be seen growing, with the
exception of “Leonie” and “Fabian”.

For an alternative use of dynamic word clouds, keywords from
PacificVis 2016 were compared (Fig. 6). Only two key-frames are
used: One with the 25 most submitted keywords and another with
how often they were present in accepted papers. Keywords with
acceptance ratios below 0.5 are shown in red and downward facing.

3https://www.data.gv.at

SCCG ’17, May 15–17, 2017, Mikulov, Czech Republic Martin Seyfert and Ivan Viola

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

word count

ge
ne
ra
tio

n
tim

e
(s
ec
on

ds
)

Word cloud generation time (by word count)

Figure 7: Word cloud generation time for a dataset of the
most popular given names in Vienna between 2006 and
2014 (9 keyframes, no interpolation).While generation time
grows as more words are used, the new words added are also
smaller in size and thus easier to place, which keeps gener-
ation time almost linear within realistic word counts.

5 EVALUATION
A small user study was conducted. 12 participants were given a
link to a web-implementation4 of a dynamic word cloud using
the dataset of given names. The UI consisted of a slider to move
through different points in time, the space bar to start an automated
animation and radio buttons to switch color and rotation on or off.
For convenience, the word positions were pre-calculated to avoid
the significant generation time. There was no time limit given but
most users spent between 2 and 5 minutes interacting with the
dynamic word cloud before answering the questions. Users were
asked to describe their general impression (positive and negative),
what they learned about the dataset and which combination of
visualization elements (color, rotation, size) they preferred.

Participants had a mostly positive impression, describing the
nature of the visualization as inviting and fun, but noted that the
rotation element appeared confusing and chaotic in movement. The
distinction between male and female names through font type was
criticized as being too subtle. On being asked for their preference,
most participants (50%) mentioned “size and color only” as their
favorite combination of visualization elements, followed by “size,
color and rotation” with 33%. The reason givenwas that the addition
of color makes the individual words easier to distinguish.

Similar to static word clouds, the word size put the focus on
overall larger words such as David, Maximilian and Leon while
exact measurements and comparisons between words of similar
size were considered difficult. Users noticed trends such as the name
Mia showing strong growth over the whole time period, the growth

4https://martinsft.github.io/dwc_eval/

1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

keyframes

ge
ne
ra
tio

n
tim

e
(s
ec
on

ds
)

Word cloud generation time (by time points)

Figure 8: Word cloud generation time for a dataset of the 30
most popular given names in Vienna between 2006 and 2014
with different amounts of keyframes (1 to 9).

of all names except Leonie and Fabian in 2010 as well as certain
popular names such as Maximilian, David and Sophie staying rather
constant. One user mentioned that he found it striking that certain
names gain popularity for only one or two years before going down
again. Upon being asked, users could come up with examples for
other data sets for which they could imagine the visualization to be
useful, ranging from marketing surveys, changes in bird population
to software downloads.

In addition to the user study, the authors of reference papers were
contacted for expert feedback. Ming-Te Chi, author of “Morphable
Word Clouds for Time-Varying Text Data Visualization” [Chi et al.
2015] recommends avoiding using rotation and color at the same
time or at least using rotation carefully because the amount of at-
tributes changing might lead to “change blindness” which weakens
the effectiveness of the visualization. He also suggests only using a
single hue with different saturation instead of using different colors
for growing and shrinking which could help users identify words
and trace their trend.

6 DISCUSSION
Evaluation shows that users respond to the visualization with in-
terest and can read certain trends within the dataset. The use of
rotation, however, can be problematic as it might be distracting or
overwhelming.

The result preserves a compact layout usually only found in
static word clouds and allows for smooth transitions along multiple
keyframes. Overlaps are minimal but can occur in interpolated
frames, especially during rotation.

One concern is performance, as even with several optimizations,
large word clouds (100+ words) can result in generation times of
over a minute, which might turn out to be a barrier in certain use
cases. However, in our example dataset, adding more words did

Dynamic Word Clouds SCCG ’17, May 15–17, 2017, Mikulov, Czech Republic

not increase performance as drastically as feared (Fig. 7). This is
probably due to the dataset being sorted by decreasing overall word
frequency, as common for data used in word clouds. Smaller words
create less bitmap data and are thus faster to collide. Similarly, while
having significant impact on performance, having more keyframes
does not increase calculation time too quickly (Fig. 8).

It is also questionable whether word clouds with such large
amounts of words are even useful for analyzing time-varying data.
The used library, D3, struggles animating so many words at once,
which is another technical barrier for realistic use.

7 CONCLUSION
The visualization method leaves an overall positive impression
among test users but likely requires further adjustments and eval-
uation before deployment for wider use. Users enjoy the general
look and are able to recognize trends in the data. Problems of static
word clouds, such as difficulties in making exact comparisons be-
tween words, remain in their dynamic representation. Secondary
visualization elements such as size, rotation and font type have to
be used with care as they can quickly overwhelm users.

Expanding a Wordle-like layout strategy along a time axis is
feasible, even though the bitmap-based collision detection causes
significant word cloud generation times. For implementing such
a method on the web, the generally short attention span of users
has to be considered. Our JavaScript implementation takes several
seconds, even for a reasonably sized data set. Further optimization
would be desirable. Since users can’t be expected to wait up to a
minute to see the results in most real-world uses, the word posi-
tions would have to be pre-generated and then reused. This way,
the dynamic word cloud would appear almost instantly to most
users. Because streaming of real-time data is not supported in the
used methodology, anyway, pre-generation would not be a major
limitation.

There are several ways of illustrating word change per key-frame
typographically, without adding separate visualization methods
that would go beyond what can be considered a “word cloud”.
Methods we explored include word color, orientation and font. By
using these options (which in other word cloud generators, such
as Wordle, are only used for aesthetic reasons) for size change
information, trends are noticeable even in a static frame of the
result.

8 FUTUREWORK
There is room for further evaluation since there was unfortunately
not enough time to conduct a more in-depth user study. The most
effective use of visualization elements such as color and rotation
could be determined by comparing a larger amount of different
settings and combinations. More test data sets could give insight
into which types of data are best suited for dynamic word cloud
representation (for example, maximum number of words or word
length). Other visualization methods for illustrating time-varying
data could be compared to dynamic word cloud representations,
especially in regard to the accuracy and speed at which users can
form an impression.

Currently, this method of generating dynamic word clouds re-
quires all time data to be available at the moment of generation.

This makes it unsuitable for streaming data. Adding new words
or unpredictable changes in word size would undo the benefits of
the existing placement strategy and require an entirely different
approach for resolving collisions. It would be interesting to ex-
plore whether the placement strategy could be expanded to handle
streaming data efficiently. Chi et al. [Chi et al. 2015] describe a
similar limitation of their approach and briefly mention a possi-
ble solution involving splitting up the streaming data into smaller
sub-data.

Performance is another concern as the calculations over multi-
ple keyframes for many words (50+) can become more and more
tedious, taking up several seconds up to a minute on a modern
browser. More efficient collision methods could improve the work
flow and allow users to see results more quickly. Unfortunately,
other word cloud generation methods, especially when using more
complex positioning requirements, suffer from considerable gener-
ation times as well [Buchin et al. 2016], which makes it likely that
this is a problem that is hard to solve. There might be more efficient
packaging algorithms which are applicable. One possible way of
achieving better performance would be to give options for using
simpler collision methods, however this would undo the work done
on improving the layout and balance of white space. A more ideal
solution would lie in implementing more efficient, bitmap-based
collision methods, for example using the GPU. The implementa-
tion might also benefit from parallelization, especially for checking
collisions in multiple keyframes at once.

ACKNOWLEDGMENTS
We would like to thank the Visualization Group at TU Wien, in
particular Dr. Manuela Waldner and Meister Eduard Gröller, for
their feedback and support.

This project has been funded by the Vienna Science and Technol-
ogy Fund (WWTF) through project VRG11-010 and supported by
EC Marie Curie Career Integration Grant through project PCIG13-
GA-2013-618680.

REFERENCES
Mike Bostock. 2011. D3 – Data-Driven Documents. https://d3js.org/. (2011). Accessed:

2016-02-15.
Kevin Buchin, Daan Creemers, Andrea Lazzarotto, Bettina Speckmann, and Jules

Wulms. 2016. Geo word clouds. In PacificVis. IEEE Computer Society, 144–151.
Ming-Te Chi, Shih-Syun Lin, Shiang-Yi Chen, Chao-Hung Lin, and Tong-Yee Lee.

2015. Morphable Word Clouds for Time-Varying Text Data Visualization. IEEE
Transactions on Visualization and Computer Graphics 21, 12 (2015), 1415–1426.

Christopher Collins, Fernanda B. Viégas, and Martin Wattenberg. 2009. Parallel Tag
Clouds to explore and analyze faceted text corpora. In IEEE Visual Analytics Science
and Technology. IEEE Computer Society, 91–98.

Weiwei Cui, Yingcai Wu, Shixia Liu, Furu Wei, Michelle X. Zhou, and Huamin Qu.
2010. Context preserving dynamic word cloud visualization. In PacificVis. IEEE
Computer Society, 121–128.

Jason Davies. 2012. Word Cloud Generator. https://www.jasondavies.com/wordcloud/.
(2012). Accessed: 2016-02-15.

Jaemin Jo, Bongshin Lee, and Jinwook Seo. 2015. WordlePlus: Expanding Wordle’s
Use through Natural Interaction and Animation. IEEE Computer Graphics and
Applications 35, 6 (2015), 20–28.

Michael Kane. 2014. Word Swarm. \tolerance9999\emergencystretch3em\
relaxhttp://www.kdnuggets.com/2014/07/wordswarm-visualizing-word-trends-
periodicals.html. (2014). Accessed: 2016-02-15.

KyungTae Kim, Sungahn Ko, Niklas Elmqvist, and David S. Ebert. 2011. WordBridge:
Using Composite Tag Clouds in Node-Link Diagrams for Visualizing Content and
Relations in Text Corpora. In HICSS. IEEE Computer Society, 1–8.

Kyle Koh, Bongshin Lee, Bo Hyoung Kim, and Jinwook Seo. 2010. ManiWordle:
Providing Flexible Control over Wordle. IEEE Transactions on Visualization and
Computer Graphics 16, 6 (2010), 1190–1197.

https://d3js.org/
https://www.jasondavies.com/ wordcloud/
\tolerance 9999 \emergencystretch 3em\relax
\tolerance 9999 \emergencystretch 3em\relax

SCCG ’17, May 15–17, 2017, Mikulov, Czech Republic Martin Seyfert and Ivan Viola

Bongshin Lee, Nathalie Henry Riche, Amy K. Karlson, and M. Sheelagh T. Carpen-
dale. 2010. SparkClouds: Visualizing Trends in Tag Clouds. IEEE Transactions on
Visualization and Computer Graphics 16, 6 (2010), 1182–1189.

Carmel McNaught and Paul Lam. 2010. Using Wordle as a supplementary research
tool. The Qualitative Report 15, 3 (2010), 630.

Stanley Milgram. 1976. Psychological maps of Paris. Environmental psychology: People
and their physical settings (1976), 104–124.

A. W. Rivadeneira, Daniel M. Gruen, Michael J. Muller, and David R. Millen. 2007. Get-
ting our head in the clouds: Toward evaluation studies of tagclouds. In Conference
on Human Factors in Computing Systems. ACM, 995–998.

Terrell Russell. 2006. Cloudalicious: Folksonomy over time. In JCDL. ACM, 364.
Julie Steele and Noah Iliinsky. 2010. Beautiful Visualization: Looking at Data through

the Eyes of Experts. O’Reilly Media, Inc.
Hendrik Strobelt, Marc Spicker, Andreas Stoffel, Daniel A. Keim, and Oliver Deussen.

2012. Rolled-out Wordles: A Heuristic Method for Overlap Removal of 2D Data
Representatives. Computer Graphics Forum 31, 3 (2012), 1135–1144.

Fernanda B. Viégas and Martin Wattenberg. 2008. Timelines - Tag clouds and the case
for vernacular visualization. Interactions 15, 4 (2008), 49–52.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Static Word Clouds
	2.2 Dynamic Word Clouds

	3 Methodology
	3.1 Choosing the word placement order
	3.2 Resolving collisions
	3.3 Color, rotation and other typographic options
	3.4 Frame Interpolation

	4 Results
	4.1 Target Platform
	4.2 Optimization
	4.3 Data

	5 Evaluation
	6 Discussion
	7 Conclusion
	8 Future Work
	References

