
Visual Analytics for Digital Radiotherapy
Towards a Comprehensible Pipeline

Renata Georgia Raidou



 

 
 

This work was supported by the European Commission’s Seventh Framework Programme(Call: FP7-ICT-2011-9, activity ICT-9-5.2 - Virtual Physiological Human) and is part of theproject DR THERAPAT–Digital Radiation Therapy Patient. Additional funding for printingwas provided by Philips Healthcare, Best, The Netherlands.

Keywords: Medical Visualization, Visual Analytics, Digital Radiotherapy Pipeline, Tumor Tis-sue Characterization
Printed by: OffPage, Amsterdam, The Netherlands
Front & Back: "Adding a small piece to the big puzzle of tumor tissue characterization", de-signed by Renata Georgia Raidou

A catalogue record is available from Eindhoven University of Technology library:ISBN 978-90-386-4230-7.
Copyright© 2017 by Renata Georgia Raidou, Delft, The Netherlands, unless stated otherwiseon the chapter front pages. All rights reserved. No part of this publicationmay be reproducedor transmitted in any form or by any means, electronic or mechanical, including photocopy-ing, recording or any information storage or retrieval system, without permission in writingfrom the copyright owner.



Visual Analytics for Digital Radiotherapy
Towards a Comprehensible Pipeline

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Eindhoven,

op gezag van de rector magnificus prof. dr. ir. F.P.T. Baaijens,
voor een commissie aangewezen door het College voor Promoties,

in het openbaar te verdedigen op donderdag 23 maart 2017 om 16:00 uur

door

Renata Georgia Raidou
geboren te Vólos, Griekenland



Dit proefschrift is goedgekeurd door de promotoren ende samenstelling vandepromotiecom-missie is als volgt:
voorzitter: prof.dr. P.A.J. Hilbers1e promotor: prof.dr.ir. M. Breeuwer2e promotor: prof.dr. J.P.W. Pluimco-promotor: dr. A. Vilanova Bartrolileden: prof.dr. L.P. Muren (Aarhus Universiteitshospital)Prof.Dr.-Ing. B. Preim (Universität Magdeburg)prof.dr. U.A. van der Heide (Universiteit Leiden)prof.dr.ir. J.J. van Wijk (Technische Universiteit Eindhoven)

Het onderzoek dat in dit proefschrift wordt beschreven is uitgevoerd in overeenstemming met
de TU/e Gedragscode Wetenschapsbeoefening.



A nonno Nicola





Contents
Summary xi
Samenvatting xiii
Περίληψη xv
1 Introduction 11.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2 Contribution and Outline . . . . . . . . . . . . . . . . . . . . . 4
2 Clinical Background 72.1 Cancer: An Overview . . . . . . . . . . . . . . . . . . . . . . . 82.2 Prostate Cancer. . . . . . . . . . . . . . . . . . . . . . . . . 92.3 Radiotherapy . . . . . . . . . . . . . . . . . . . . . . . . . . 112.4 The Radiotherapy Planning Pipeline . . . . . . . . . . . . . . . . . 122.4.1 Multi-Parametric Imaging . . . . . . . . . . . . . . . . . . . . . . 152.4.2 Features Derivation from Medical Images . . . . . . . . . . . . . . 182.4.3 Tumor Tissue Characterization . . . . . . . . . . . . . . . . . . . 202.4.4 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 212.4.5 Radiotherapy Dose Planning. . . . . . . . . . . . . . . . . . . . . 212.4.6 Tumor Control Probability Modeling . . . . . . . . . . . . . . . . . 222.4.7 Supplementary Steps of the Radiotherapy Planning Pipeline . . . . . 22
3 Visualization: State of the Art 253.1 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . 263.2 Visual Analytics . . . . . . . . . . . . . . . . . . . . . . . . . 273.3 Fundamental Techniques and Methods. . . . . . . . . . . . . . . . 273.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 293.4.1 Visualizing Multi-Dimensional, Multi-Varied Data . . . . . . . . . . . 293.4.2 Uncertainty Visualization . . . . . . . . . . . . . . . . . . . . . . 343.5 Evaluation of Visualization Solutions . . . . . . . . . . . . . . . . . 39
4 Visualization of Multi-Dimensional Data 414.1 Abstract. . . . . . . . . . . . . . . . . . . . . . . . . . . . 424.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 424.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 434.4 Orientation-Enhanced Approach for PCPs . . . . . . . . . . . . . . . 444.4.1 Background: Parallel Coordinate Plots . . . . . . . . . . . . . . . . 444.4.2 Orientation-Enhanced Parallel Coordinate Plots . . . . . . . . . . . 464.4.3 Orientation-Enhanced Brush (O-Brushing) . . . . . . . . . . . . . . 51



Contents

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524.5.1 Results with Two-Dimensional Synthetic Stimuli . . . . . . . . . . . 534.5.2 Results with Multi-Variate Synthetic and Real Data . . . . . . . . . . 554.5.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 574.6.1 First Part: User Performance . . . . . . . . . . . . . . . . . . . . 584.6.2 Second Part: User Experience . . . . . . . . . . . . . . . . . . . . 604.7 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . 604.8 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . 62
5 Visual Analytics for the Exploration of Imaging Modeling 675.1 Abstract. . . . . . . . . . . . . . . . . . . . . . . . . . . . 685.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 685.3 Clinical Background . . . . . . . . . . . . . . . . . . . . . . . 695.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 705.5 The Design of the iCoCooN . . . . . . . . . . . . . . . . . . . . 715.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 745.6.1 Evaluation with Clinical Researchers . . . . . . . . . . . . . . . . . 745.6.2 Usability and Effectiveness Evaluation . . . . . . . . . . . . . . . . 825.7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . 84
6 Visual Analytics for the Exploration of Tissue Characterization 87Part I – Exploration and Analysis of Tumor Tissue Characterization . . . . . . . 896.1 Abstract. . . . . . . . . . . . . . . . . . . . . . . . . . . . 906.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 906.3 Clinical Background . . . . . . . . . . . . . . . . . . . . . . . 916.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 926.5 Visual Analysis of Tumor Tissue Characterization . . . . . . . . . . . . 946.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1016.6.1 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1026.6.2 Interviews with Clinical Researchers . . . . . . . . . . . . . . . . . 1056.7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . 107Part II – Aiding the Design and Understanding the Behavior of Tissue Classifiers . . 1096.8 Abstract. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1106.9 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1106.10 Materials and Method . . . . . . . . . . . . . . . . . . . . . . 1116.10.1 Subjects and MRI Data . . . . . . . . . . . . . . . . . . . . . . . 1116.10.2 Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1116.11 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1136.12 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . 116
7 Visual Analytics for the Exploration and Assessment of Segmentation Errors 1197.1 Abstract. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1207.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1207.3 Model-Based Segmentation of Pelvic Organs . . . . . . . . . . . . . 1217.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 1247.5 Visual Analytics for the Exploration and Assessment of Segmentation Errors . 1257.5.1 Exploration of the Full Cohort . . . . . . . . . . . . . . . . . . . . 1267.5.2 Exploration of the Error Hierarchy . . . . . . . . . . . . . . . . . . 128

viii



Contents

7.5.3 Exploration of Individual Subjects . . . . . . . . . . . . . . . . . . 1287.6 Usage Scenario Results. . . . . . . . . . . . . . . . . . . . . . 1317.6.1 Dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1327.6.2 Exploration of the Full Cohort . . . . . . . . . . . . . . . . . . . . 1327.6.3 Exploration of Error Hierarchy . . . . . . . . . . . . . . . . . . . . 1337.6.4 Exploration of Individual Subjects . . . . . . . . . . . . . . . . . . 1337.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1347.8 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . 138
8 Visual Analytics for the Exploration of Variability in Dose Planning Alternatives 1398.1 Abstract. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1408.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1408.3 Clinical Background . . . . . . . . . . . . . . . . . . . . . . . 1418.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 1428.5 Visual Analytics for the Exploration of Dose Planning Variability . . . . . . 1438.5.1 Contour-Based Analysis of Variability . . . . . . . . . . . . . . . . 1438.5.2 Voxel-Based Analysis of Variability . . . . . . . . . . . . . . . . . . 1458.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1468.6.1 Usage Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 1468.6.2 Informal Discussion with Clinical Researchers . . . . . . . . . . . . 1488.7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . 149
9 Visual Analytics for the Exploration of Tumor Control Probability Modeling 1519.1 Abstract. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1529.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1529.3 Clinical Background . . . . . . . . . . . . . . . . . . . . . . . 1549.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 1559.5 Visual Analytics for the Exploration of Tumor Control Probability Models . . . 1569.5.1 Quantification and Interactive Exploration of Uncertainty and its Prop-agation to TCP Modeling . . . . . . . . . . . . . . . . . . . . . . 1569.5.2 Exploration and Analysis of the Assumption-induced TCPModel Sen-sitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1599.5.3 Identification of Inter-patient Variability to Treatment Response. . . . 1619.5.4 Bi-Directional Design of TCP Modeling Workflow . . . . . . . . . . . 1639.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1659.6.1 Interviews with Clinical Researchers . . . . . . . . . . . . . . . . . 1669.6.2 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1679.7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . 168
10 Conclusion 17110.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 17210.2 Discussion and Directions for Future Research . . . . . . . . . . . . . 173
References 177
List of Figures 199
List of Tables 207
List of Abbreviations 209

ix



Contents

Acknowledgements 213
Curriculum Vitæ 219
List of Publications 221

x



Summary
Visual Analytics for Digital Radiotherapy:Towards a Comprehensible Pipeline

Prostate cancer is one of the most frequently occurring cancer types in males. It is of-ten treated with radiation therapy, which aims at irradiating tumors with a high dose, whilesparing the surrounding healthy tissues. In the course of the years, radiotherapy technologyhas undergone great advancements, but there is still room for further improvement.
Clinical researchers are now aware that tumors are not only different from each other.They are also highly heterogeneous within, consisting of regions with distinct tissue char-acteristics. According to these characteristics, clinical researchers should choose adequateradiation doses for each intra-tumor region. Tailoring radiotherapy planning to the specificneeds and intra-tumor tissue characteristics of each patient is expected to lead to more ef-fective treatment strategies. Currently, clinical research is moving towards this direction, buta deep understanding of the specific tumor characteristics of each patient, and the integra-tion of all available knowledge into a new radiotherapy planning pipeline are required.
The patient- and tumor-specific radiotherapy planning pipeline involves complex multi-modal and multi-valued data. Understanding and analyzing this data can be a demandingand time-consuming task, even for experienced clinical researchers. Additionally, all impli-cated data include sources of uncertainty, which can affect the accuracy and/or precision ofthe final planning outcome. Some of these uncertainties can be minimized. The rest, whichcannot be avoided, need to be studied and their effect on radiation therapy planning needsto be predicted. As a consequence, there is an emerging need for solutions and tools, whichcan help clinical researchers explore, understand and analyze all the available patient- andtumor-specific information.
The goal of this dissertation is to investigate and provide solutions and tools, which em-power clinical researchers to gain insight into the complex data and processes present ateach step of the radiotherapy pipeline. This kind of solutions and tools can be sought withinthe domain of Visual Analytics, the scientific field that connects visualization techniqueswithother disciplines, such as datamining or statistics, in highly interactive environments. To thisend, we designed comprehensible visualization strategies for the interactive exploration andanalysis of the radiotherapy planning data and processes, enabling the integration of theknowledge and cognitive skills of the intended clinical users.
More in particular, we introduce a novel technique, the Orientation-Enhanced Parallel Co-

ordinates Plots, for the representation and exploration of multi-variate, multi-dimensionaldata (Chapter 4). With our technique, which is an enhancement of Parallel Coordinate Plots,we improve the display of the data, addressing the challenging topic of reducing clutter dueto overplotting of polylines.



Additionally, we propose a number of visualization designs, more specific to the radio-therapy planning pipeline. Initially, we provide a visualization design for the exploration andvisual analysis of potential variability in imaging-derived features, caused by differences in themethods employed for their computation (Chapter 5). With this, we facilitate the – currentlytedious – exploration of variations of the feature space, with respect to patient anatomy.
Furthermore, with a new visualization framework, we support the easy exploration andanalysis of the feature space of imaging-derived intra-tumor tissue characteristics (Chap-

ter 6). This component enables the identification of distinct intra-tumor regions, the explo-ration of tumor heterogeneity, new knowledge discovery within the feature space of tumortissue characteristics, as well as hypothesis generation and confirmation, with respect toclinical reference data, such as histopathological data. We demonstrate the strengths ofthe proposed framework with an additional practical application, where we employ the pro-posed system to aid the design and to understand the behavior of tissue characterization
classifiers.

Moreover, we propose a Visual Analytics tool for the exploration and assessment oferrors occurring during the segmentation of the involved organs from the medical images(Chapter 7). Our proposed approach supplies new insight in the performance of the em-ployed segmentation algorithms.
In addition, we demonstrate the use of a new visualization design to address the ex-ploration and analysis of variability in an ensemble of radiotherapy dose plans, generated byadjustments in the previous steps of the pipeline (Chapter 8). With this work, we aim atproviding new understanding into the impact of these adjustments on the final outcome.
Finally, we present a new Visual Analytics system for the exploration and analysis of

Tumor Control Probability modeling to evaluate and predict the outcome of a radiotherapytreatment (Chapter 9). With our introduced approach, the–up to nowdisregarded– imaging-induced uncertainty and sensitivity analysis of the employed radiobiological parameters canbe incorporated in the workflow of clinical researchers, providing new possibilities for theevaluation of the selected radiotherapy strategies.
All in all, this dissertation describes solutions from the field of Visual Analytics, aiming atincorporating information from the distinct steps of the radiotherapy planning pipeline, alongwith potential sources of uncertainty, into comprehensible visualizations. These approachescontribute towards the interactive exploration and visual analysis of the involved data andprocesses at each step of the radiotherapy planning pipeline, creating a fertile ground forfuture radiotherapy planning and visualization research.
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Samenvatting
Visual Analytics voor Digitale Radiotherapie:Naar een Inzichtelijke Werkwijze

Prostaatkanker is een veelvoorkomende vorm van kanker, die vaakwordt behandeld doormiddel van radiotherapie. Hierbij wordt getracht de tumor met een hoge dosis ioniserendestraling te bestralen en het omliggende gezondeweefsel te sparen. Radiotherapietechniekenhebben grote ontwikkelingen doorgemaakt in de afgelopen jaren, maar er is nog altijd ruimtevoor verdere verbeteringen.
Tumoren kunnen niet alleen verschillend zijn ten opzichte van elkaar, maar een enkeletumor kan ook verschillende weefseltypen bevatten, die op een andere manier behandeldmoeten worden. Het aanpassen van radiotherapiebehandelingen voor de specifieke weef-selkarakteristieken binnen de tumor in iedere patiënt zou kunnen leiden tot effectievere be-handelingen. Het huidige klinische onderzoek richt zich steeds meer op dergelijke behandel-methoden, maar een goed begrip van de specifieke tumorkarakteristieken en de integratievan deze kennis in een nieuwe patiënt-specifieke planningsmethode voor radiotherapiebe-handelingen ontbreekt nog.
Patiënt- en tumorspecifieke planning van radiotherapiebehandelingen vergt analyse vancomplexe data uit verschillendemodaliteiten. Het analyseren en begrijpen van dit soort datakan een moeilijke en tijdrovende taak zijn, zelfs voor ervaren klinische onderzoekers. Daar-naast is iedere soort data onderhevig aan bepaalde onzekerheden die de nauwkeurigheiden precisie van de behandeling kunnen beïnvloeden. Sommige onzekerheden kunnen gem-inimaliseerd worden, andere kunnen niet worden vermeden en dienen daarom te wordenonderzocht en het effect ervan op de behandeling dient te worden voorspeld. Daarom is vanbelang dat er methoden worden ontwikkeld die klinische onderzoekers kunnen helpen allebeschikbare patiënt- en tumorspecifieke data te bekijken, begrijpen en analyseren.
Het doel van dit proefschrift is het onderzoeken en ontwikkelen van methoden die klinis-che onderzoekers kunnen helpen inzicht te krijgen in complexe data en processen in iederestap in het radiotherapie proces. Voor dit soort methodenmaken we gebruik van Visual Ana-lytics, waarbij visualisatietechnieken worden gecombineerd met andere onderzoekgebiedenzoals datamining en statistiek in interactieve computerprogramma’s. Daarvoor hebben webegrijpelijke visualisatietechnieken ontwikkeld om interactief onderzoek en analyse te kun-nen doen naar data en processen met betrekking tot radiotherapiebehandelingen, die hetmogelijk maken de kennis en cognitieve vaardigheden van de klinische gebruikers te integr-eren in de planning.
In Hoofdstuk 4 introduceren we een nieuwe techniek genaamd Orientation-EnhancedParallel Coordinate Plots voor de representatie en exploratie vanmultivariate enmultidimen-sionale data. Met deze techniek, een uitbreiding van Parallel Coordinate Plots, verbeteren wede visualisatie van polylines.



Daarnaast beschrijven we een aantal specifieke visualisatiemethoden voor de planningvan radiotherapiebehandelingen. In Hoofdstuk 5 beschrijven we een visualisatiemethodevoor de exploratie en visuele analyse van potentiële variabiliteit in features (eigenschappen)die zijn berekenduit beelden, veroorzaakt door verschillen in demethodenwaarmee ze berek-end zijn. Hiermee maken we de exploratie van de feature space met betrekking tot variatiein de anatomie mogelijk.
In Hoofdstuk 6 beschrijven we een nieuw visualisatie framework voor de gemakkelijkeexploratie van de feature space van deweefselkarakteristieken binnen de tumor berekend uitde beelden. Dit framework maakt mogelijk: identificatie van onderscheidende gebieden bin-nen de tumor, exploratie van de heterogeniteit van de tumor, nieuwe ontdekkingen binnen defeature space en het opstellen en testen van hypothesesmet betrekking tot klinische referen-tiedata, zoals histopathologische data. Daarnaast laten we de voordelen van dit frameworkzien met een praktische toepassing waar we het systeem gebruiken om het ontwerp en hetbegrip van classifiers voor het herkennen van weefseltypen te ondersteunen.
In Hoofdstuk 7 introduceren we een methode voor de exploratie en beoordeling vanfouten die zijn ontstaan bij segmentatie van organen in medische beelden. De methodezorgt voor nieuwe inzichten in de kwaliteit van de gebruikte segmentatiemethodes.
In Hoofdstuk 8 laten we het gebruik van een nieuwe visualisatiemethode zien voor deexploratie en analyse van variabiliteit in verschillende radiotherapiedosisplanningen resul-terend uit aanpassingen in de voorgaande stappen in de radiotherapie pipeline. Met dit werkhopen de invloed van deze aanpassingen om het uiteindelijke resultaat van de behandelingbeter te kunnen begrijpen.
In Hoofdstuk 9 presenteren we een nieuw Visual Analytics systeem voor de exploratie enanalyse van Tumor Control Probability modeling voor de evaluatie en predictie van het resul-taat van radiotherapiebehandelingen. Met deze methode kan de onzekerheid in de gebruikteradiobiologische parameters worden meegenomen in de workflow van klinische onderzoek-ers, wat zorgt voor nieuwe mogelijkheden met betrekking tot de evaluatie van radiothera-piebehandelingen.
Samengevat beschrijft dit proefschrift verschillende Visual Analytics methoden gerichtop het gebruiken van informatie en potentiële bronnen van onzekerheid binnen de verschil-lende stappen van radiotherapiebehandelingen om deze te kunnen presenteren in begrijp-bare visualisaties. Deze methodes dragen bij aan de interactieve exploratie en visuele anal-yse van data en processen in iedere stap van de pipeline van radiotherapiebehandelingen enkunnen worden gebruikt voor verder onderzoek naar radiotherapiebehandelingen en visual-isatiemethoden.
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Περίληψη

Η οπτική ανάλυση ως μια πιο κατανοητή προσέγγιση

της ψηφιακής ακτινοθεραπείας

Ο καρκίνος του προστάτη είναι ένα από τα συνηθέστερα είδη καρκίνου που συναντάται

στον ανδρικό πληθυσμό. Για τη θεραπεία του συνιστάται η χρήση ακτινοθεραπείας, η οποία

στοχεύει στο να παράσχει υψηλή δόση ακτινοβολίας που καταστρέφει τους παθολογικούς

ιστούς, με όσο δυνατόν λιγότερες παρενέργειες για τους περιβάλλοντες φυσιολογικούς

ιστούς. Τα τελευταία χρόνια, η ακτινοθεραπευτική τεχνολογία έχει σημειώσει ιδιαίτερη

πρόοδο, αλλά επιδέχεται περαιτέρω βελτίωσης.

Πλέον είναι γνωστό ότι οι καρκινικοί όγκοι δεν διαφέρουν μόνο μεταξύ τους, αλλά

ταυτόχρονα αποτελούνται από ετερογενείς παθολογικούς ιστούς, οι οποίοι φέρουν διακριτά

ιστολογικά χαρακτηριστικά που χρήζουν ξεχωριστής αντιμετώπισης. Προσαρμόζοντας

κατάλληλα την ακτινοθεραπεία στις ιδιαίτερες ανάγκες και στα ενδότερα ογκολογικά χαρακ-

τηριστικά του κάθε ασθενούς, μπορούμε να επιτύχουμε πιο τελεσφόρες στρατηγικές θερ-

απείας. Επί του παρόντος, κλινικές έρευνες οδεύουν προς αυτή την κατεύθυνση, απαιτώντας

μια πιο ουσιαστική κατανόηση των ιδιαίτερων ογκολογικών χαρακτηριστικών του κάθε ασ-

θενούς και την ενσωμάτωση όλης αυτής της γνώσης στην θεραπεία.

Αυτή η προσέγγιση, που λαμβάνει υπόψιν τις ιδιότητες των ασθενών και τα χαρακτηρισ-

τικά των όγκων τους, εμπλέκει πολυδιάστατα και πολυσύνθετα δεδομενα. Η κατανόηση

και ανάλυση αυτών των δεδομένων είναι μια απαιτητική και χρονοβόρα διαδικασία, δύσκολη

ακόμα και για τους πιο έμπειρους κλινικούς ερευνητές. Επιπροσθέτως, τα εμπλεκόμενα

δεδομένα περιλαμβάνουν αβεβαιότητες, που μπορούν να επηρεάσουν την ακρίβεια και την

ορθότητα του επιθυμητού αποτελέσματος. Μερικές από αυτές τις αβεβαιότητες μπορούν

να καταπολεμηθούν. ΄Οσες δεν μπορούν να αποφευχθούν, οφείλουν να μελετηθούν και η

επίδρασή τους στο τελικό αποτέλεσμα πρέπει να προβλεφθεί. Ως εκ τούτου, έχει προκύψει

τα τελευταία χρόνια η ανάγκη για νέες λύσεις και εργαλεία, που μπορούν να βοηθήσουν

τους κλινικούς ερευνητές να διερευνήσουν, να κατανοήσουν και να αναλύσουν όλες τις

διαθέσιμες ογκολογικές πληροφορίες των ασθενών.

Ο στόχος αυτής της διατριβής είναι η διερεύνηση και η παροχή λύσεων και εργαλείων,

που ενισχύουν τους κλινικούς ερευνητές στην προσπάθειά τους να εμπλουτίσουν τις γνώσεις

τους σχετικά με τα πολυσύνθετα και πολυδιάστατα δεδομένα τις διαδικασίας του προγραμμα-

τισμού της ακτινολογικής θεραπείας. Τέτοιου είδους λύσεις μπορούν να αναζητηθούν στον

επιστημονικό τομέα της Οπτικής Ανάλυσης (Visual Analytics), ο οποίος συνδέει τεχνικές

οπτικοποίησης (Visualization) με άλλους επιστημονικούς κλάδους, όπως τον κλάδο της

εξόρυξης δεδομένων (data mining) και της στατιστικής, μέσω διαδραστικότητας. Μέσα στα

πλαίσια αυτής της διατριβής, σχεδιάστηκαν νέες και εύληπτες στρατηγικές οπτικοποίησης

για την διαδραστική διερεύνηση και ανάλυση των προαναφερθέντων δεδομένων και των δι-

αδικασιών από τις οποίες προκύπτουν. Αυτές οι στρατηγικές επιτρέπουν την ενσωμάτωση



των γνώσεων και των νοητικών ικανοτήτων των εμπλεκόμενων κλινικών χρηστών, καθ΄

όλη την αναλυτική προσέγγιση.

Πιο συγκεκριμένα, εισάγουμε μία πρότυπη τεχνική, ονομαζόμενη Orientation-Enhanced
Parallel Coordinates Plots, για την απεικόνιση και διερεύνηση των εμπλεκόμενων πολυ-

διάστατων δεδομένων (Κεφάλαιο 4). Με την παρούσα τεχνική, η οποία αποτελεί ουσι-

αστική ενίσχυση των ήδη υπαρχόντων Parallel Coordinates Plots, βελτιώνουμε τον τρόπο

παρουσίασης πολυδιάστατων δεδομένων.

Επιπλέον, παρατίθεται ένα σύστημα για τη διερεύνηση και την οπτική ανάλυση εν-

δεχόμενης μεταβλητότητας στα γνωρίσματα που προέρχονται από τις ιατρικές εικόνες του

ασθενούς (imaging-derived features) (Κεφάλαιο 5). Αυτή η μεταβλητότητα μπορεί να προέρ-

θει από τη χρήση διαφορετικών μεθόδων υπολογισμού των προαναφερθέντων γνωρισμάτων.

Με τον σχεδιασμό που προτείνουμε, διευκολύνουμε την δύσκολη – μέχρι πρότινος – διερεύ-

νηση των αποκλίσεων αυτών, σε σχέση με την ανατομία του ασθενούς.

Στη συνέχεια, με ένα νέο πλαίσιο οπτικοποίησης, υποστηρίζουμε την εξερεύνηση και

ανάλυση του συνόλου των ενδότερων ογκολογικών χαρακτηριστικών, όπως αυτά έχουν εξ-

αχθεί από τις διάφορες μεθόδους ιατρικής απεικόνισης του ασθενούς (imaging-derived fea-
tures) (Κεφάλαιο 6). Αυτό το νέο εργαλείο επιτρέπει την ταυτοποίηση των διακριτών ενδο-

ογκολογικών περιοχών, την διερεύνηση της ετερογένειας του όγκου, την απόκτηση νέων

γνώσεων σχετικά με τα χαρακτηριστικά γνωρίσματα (feature space) των ετερογενών πε-

ριοχών του όγκου, καθώς επίσης και τη δημιουργία ή την επιβεβαίωση υποθέσεων, σε σχέση

με άλλα κλινικά δεδομένα, όπως ιστοπαθολογικά δεδομένα. Παραθέτουμε μια επιπρόσθετη

πρακτική εφαρμογή του στον εύκολο σχεδιασμό και στην κατανόηση μεθόδων ταξινόμησης

και χαρακτηρισμού ιστών (tissue characterization classifiers).
Επιπροσθέτως, παρουσιάζουμε ένα νέο εργαλείο Οπτικής Ανάλυσης για την διερεύνηση

και αξιολόγηση σφαλμάτων που προκύπτουν κατά τον καταμερισμό των οργάνων στις ια-

τρικές εικόνες (segmentation) (Κεφάλαιο 7). Η προτεινόμενη προσέγγιση προσφέρει μια

καινούρια εικόνα σχετικά με την αποτελεσματικότητα των χρησιμοποιούμενων μεθόδων.

Ακόμη, προτείνουμε τη χρήση ενός νέου εργαλείου απεικόνισης για τη διερεύνηση και

ανάλυση της ενδεχόμενης μεταβλητότητας μέσα σε ένα σύνολο προγραμματισμένων ακ-

τινολογικών πλάνων, τα οποία έχουν προκύψει από διάφορες τροποποιήσεις καθ΄ όλη τη

διάρκεια της διαδικασίας προγραμματισμού της θεραπείας (Κεφάλαιο 8). Μέσω αυτού,

στοχεύουμε στο να προσφέρουμε μια νέα αντίληψη για τον αντίκτυπο που μπορούν να

έχουν ενδεχόμενες τροποποιήσειες πάνω στο τελικό αποτέλεσμα.

Τέλος, παρουσιάζουμε ένα νέο σύστημα Οπτικής Ανάλυσης για την εξερεύνηση και

ανάλυση των μοντέλων που χρησιμοποιούνται κατά την πρόβλεψη του αποτελέσματος της

ακτινοθεραπείας (Tumor Control Probability modeling) (Κεφάλαιο 9). Με αυτή μας την

προσέγγιση, οι – παραβλεφθείσες, έως τώρα – αβεβαιότητες των μοντέλων μπορούν να

ενσωματωθούν στη ροή εργασίας των κλινικών ερευνητών, προσφέροντας νέες δυνατότητες

για την εκτίμηση του αποτελέσματος των επιλεγμένων ακτινοθεραπευτικών στρατηγικών.

Συνολικά, αυτή η διατριβή περιγράφει λύσεις από τον κλάδο της Οπτικής Ανάλυσης, που

στοχεύουν στην ενσωμάτωση πληροφοριών από τα διάφορα βήματα της διαδικασίασς του

ακτινολογικού προγραμματισμού και ενδεχόμενων πηγών αβεβαιότητας, μέσα σε εύληπτες

απεικονίσεις. Αυτές οι λύσεις συνεισφέρουν στην διαδραστική διερεύνηση και ανάλυση των

εμπλεκόμενων δεδομένων και μεθόδων, δημιουργώντας κατάλληλο έδαφος για μελλοντική

έρευνα τόσο στον κλινικό τομέα όσο και στον κλάδο της Οπτικής Ανάλυσης.

xvi



1
Introduction

Πάντες ἄνθρωποι τοῦ εἰδέναι ὀρέγονται φύσει.

Aristotle (384-322BC)



1.1. Motivation

1.1. Motivation
Cancer involves a group of diseases, which are characterized by the uncontrollable and ab-normal division of cells. These cells have also the potential to invade or spread from oneorgan or body part to another [183, 309]. In 2012, 14.1 million people were globally diagnosedwith cancer, while 8.2 million deaths have been attributed to malignancies [262]. Yet, theconstantly rising life expectancy of the population, as well as the changes in the lifestyle inthe developed world, are expected to induce an increase in the current rates. In the next twodecades, cancer incidence is expected to rise by 60% among the population [262].

Prostate cancer is the specific type of cancer that develops in the prostate gland of themale reproductive system. Being first in incidence and second in mortality, it is one of themost commonmalignancies in males [6, 309]. However, this type of cancer can be success-fully treated, usually through radical prostatectomy, chemotherapy or radiotherapy. Amongthese, the latter is the most common, with 60% of all prostate cancer patients being referredto radiotherapy at some stage of their treatment [66].
In the past decade, radiotherapy technology has undergone a big revolution, offeringexceptional flexibility in dose delivery. It hasmanaged to improve treatment by irradiating tu-mors with a high dose, while minimizing the side effects of radiation on the adjacent healthyorgan tissues [300]. Despite the significant achievements of radiotherapy, there is still roomfor further improvement. Each patient case should be handled individually, as tumors mightdiffer in type, aggressiveness, location, or size. Additionally, tumors are heterogeneous tis-sues, consisting of distinct regions with different characteristics. Understanding better thespecific anatomical and intra-tumor characteristics of each patient and incorporating theseinto treatment planning, by selecting the most adequate radiation strategy for each tumorregion, can lead to the design of more effective treatments [266].
To this end, a standardized process, which will include all available patient- and tumor-specific information, needs to be designed and employed. Developing a reusable, but per-sonalizable radiotherapy pipeline, tailored to the specific anatomical and intra-tumor charac-teristics of each patient, is the main goal of the FP7 European Project DR THERAPAT – Digital

Radiation Therapy Patient [89], part of which is this dissertation. The pipeline proposed bythe DR THERAPAT Project consists of several steps, which are depicted in Figure 1.1 and willbe discussed in detail in the upcoming chapters.
In this pipeline, imaging data of the prostate of the patient are initially acquired, usingseveral modalities. From this, additional features indicative of tissue characteristics maybe computed. Subsequently, tumor tissue characterization takes place to enable the iden-tification of intra-tumor regions. At this point, the specific characteristics of each region,such as aggressiveness or resistance to treatment, are derived. The structures surroundingthe prostate, which need to be spared during treatment, must be identified as well. This isperformed during the segmentation step. Based on all this tumor tissue and anatomical in-formation, radiation doses can be selected adequately, to more effectively treat the differenttumor parts, without harming the adjacent healthy organs, during the planning phase. Afterthe radiotherapy plan is designed, the eventual response of the tumor to the employed radio-therapy treatment strategy is modeled. From the latter, clinical researchers can predict theoutcome of the treatment.
This patient- and tumor-specific radiotherapy planning pipeline involves data, which are
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1.1. Motivation
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Figure 1.1: Schematic depiction of the steps of the patient- and tumor-specific radiotherapy planningpipeline, employed in clinical research to create personalized, tumor-tailored radiotherapy plans.

constantly growing in complexity. In addition, this data might include noise, inaccuracies,errors and uncertainties, which also need to be considered, studied, or predicted. Currently,the mental processing and cognitive analysis of this complex information is a tedious task,even for experienced clinical researchers. Hence, there is an emerging need for tools and so-lutions, to help clinical researchers explore, understand and analyze the complex informationinvolved in the tumor-tailored radiotherapy planning pipeline.
Conventional computational solutions would not be sufficient for exploration and hy-pothesis generation purposes, as there is one essential aspect that cannot be easily autom-atized and incorporated: the prior knowledge and cognitive skills of the involved clinical ex-perts. Yet, in visualization, human vision and perception can be exploited to amplify cognitionand provide new insight for clinical researchers, helping them to achieve better understand-ing of the information from the radiotherapy planning pipeline. Of particular interest is thefield of Visual Analytics [142]. This is, in essence, the integration of visualization techniqueswith other disciplines, such as data mining or statistics, further enhanced by the capabil-ities of interactive visual interfaces. Visual Analytics is particularly suitable for facilitatinginteractive data exploration and analysis, and for providing a deeper cognitive insight for theintended users [142, 269].
In the present context, Visual Analytics has the potential to provide a direct means offeedback on imaging data, tumor tissue characterization, segmentation and modeling ofthe tumor response to treatment for clinical researchers. This can be attained by design-
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1.2. Contribution and Outline

ing comprehensible visualizations for the interactive exploration and visual analysis of theinvolved data and processes. In this way, the intended clinical researchers are empoweredto derive information from their data, to understand the newly discovered knowledge, and toformulate or confirm hypotheses with respect to their observations and findings. The mainresearch goal of this dissertation can be summarized as:

Investigating Visual Analytics strategies
to aid clinical researchers gain insight into

the complex processes and data,
present in the radiotherapy pipeline.

To the best of our knowledge, involving clinical experts through visual analysis and inter-action in theworkflowof the entire personalized and tumor-specific radiotherapy pipeline hasnot been addressed before. In addition to that, despite the broadness of applications that thefield of Visual Analytics has tackled, the exploration and analysis of the data involved in theradiotherapy planning pipeline has also not been addressed. Although there are numerousways of visualizingmulti-dimensional and complex data [143], themost relevant previous ap-proaches are not fully compatible with our specific field of application, nor with the involveddata and requirements of clinical researchers.

1.2. Contribution and Outline
Theprimary contributionof thiswork is the design and implementation of Visual Analytics so-lutions, which are able to increase the knowledge and understanding of clinical researchersinto the data and processes of the radiotherapy planning pipeline. We propose new visual-ization strategies in the form of novel application prototypes, which advance the state-of-artin visualization. Our proposed solutions are structured following the radiotherapy pipeline,as depicted in Figure 1.2. In particular:

• We introduce a novel technique for the representation and exploration ofmulti-variate,
multi-dimensional data, as an extension of Parallel Coordinate Plots (PCPs) [128]. Re-ducing clutter due to overplotting of polylines in this representation is a challengingtopic, and the proposed technique addresses it, by improving the display of the dataand by emphasizing their underlying structure. Pattern and outlier discernibility is en-hanced, especially, in cases where multiple patterns are present or when the view oncertain patterns is obstructed by noise. This technique, called Orientation-EnhancedParallel Coordinate Plots, can be applicable to several steps of the pipeline, as well asto other broader applications.

• We provide a visualization design for the exploration and visual analysis of potentialvariability in imaging-derived features, caused by differences in themethods employedfor their computation. Currently, this is a tedious and time-consuming task for clini-cal researchers, which does not provide all the necessary insight. The presented ap-
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Figure 1.2: Overview of the contributions of the core chapters of the dissertation. Each chapter ad-dresses one or more steps of the tumor-tailored radiotherapy pipeline, depicted in Figure 1.1.

proach provides a solution for the easy exploration and analysis of variations in a sin-gle combined view. Particular attention is given to the association of observationsfrom the feature space to patient anatomy.
• We present a new Visual Analytics system that addresses the easy exploration andanalysis of the feature space of imaging-derived intra-tumor tissue characteristics.This work employs dimensionality reduction, enabling the identification of distinctintra-tumor regions, the exploration of tumor heterogeneity, new knowledge discoverywithin the feature space, as well as hypothesis generation and confirmation, with re-spect to clinical reference data, such as histopathological data. An additional practicalapplication of the proposed system, namely aiding the design of tissue characteriza-tion classifiers and understanding their behavior, is also introduced.
• We propose a new Visual Analytics tool for the exploration and assessment of errorsoccurring in the segmentation step of the pipeline. Here, the focus is on the visualanalysis of errors in the segmentation of the involved pelvic structures surroundingthe prostate and on how Visual Analytics can supply insight into the prediction of theperformance of the employed segmentation algorithms. These two key-points of thesegmentation step of the radiotherapy pipeline have not been addressed before.
• We demonstrate a new visualization design to address the exploration and analysisof variability in an ensemble of radiotherapy dose plans, generated by adjustments in
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1.2. Contribution and Outline

the previous steps of the pipeline. For example, parameter adaptations in one of theprevious steps might result into differences in the final dose planning outcome. Thegoal of this design is to provide insight into the effect of these adjustments in thepipeline on the resulting radiation dose plan.
• We establish a new Visual Analytics system for the exploration and analysis of tumor
control probability modeling. This modeling is often performed in clinical research toevaluate and predict the outcome of a radiotherapy treatment. With our introducedapproach, the – up to now disregarded – imaging-induced uncertainty and sensitivityanalysis of the radiobiological parameters employed in themodel can be incorporatedin the workflow of clinical researchers, providing new possibilities for the evaluationof the selected radiotherapy strategies.

All proposed solutions share three commonmain characteristics. First of all, they can bedescribed as highly interactive exploratory environments that amplify the understanding ofclinical researchers into data or processes of the pipeline. In all of them, insight is achievedthrough a high level of involvement of the intended users. Secondly, they are all designedtaking into consideration the characteristics of the data, the users – clinical researchers –and the specific tasks that these users need to perform at each step of the pipeline, follow-ing the Data-Users-Tasks Design Triangle concept [178]. Thirdly, evaluation plays an impor-tant role in all of the proposed solutions. After the design and implementation, all of themare carefully evaluated with their intended users, following commonly employed evaluationguidelines [159].
The remainder of this dissertation is structured as follows. Chapters 2 and 3 are estab-lishing the clinical and technical background of this work, respectively. Chapter 2 gives anoverview of the clinical background, providing all the necessary information for understand-ing the radiotherapy pipeline, its components and the data or processes involved at eachstep. Chapter 3 provides a summary of the technical background of this work. Basic con-cepts of the visualization field are presented and previous related work is discussed, withparticular focus on the existing limitations, open problems and challenges. Chapters 4 to 9comprise the core of this dissertation. More in particular, Chapter 4 proposes a novel tech-nique for the representation of multi-variate, multi-dimensional data, which is applicable tothe whole radiotherapy pipeline. Chapters 5 to 9 are structured to address each of the stepsof the radiotherapy pipeline, as shown in Figure 1.2. Finally, Chapter 10 concludes the disser-tation, providing an overview and discussion of the obtained results. A reflection regardinglessons learned and directions for future work are also presented in the final chapter of thisdissertation.
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2
Clinical Background

Medicine is a science of uncertainty and an art of probability.

Sir William Osler (1849-1919)

In this chapter, a brief overview on the basics of cancer and, in particular, of prostate cancer is
provided. Basic concepts of radiotherapy are introduced, with emphasis on the radiotherapy
planning pipeline and the steps, which need to be performed prior to radiotherapy treatment.
The multi-varied and multi-dimensional data involved at each step of the pipeline, along with
potential sources of uncertainty, are also presented.



2.1. Cancer: An Overview

2.1. Cancer: An Overview
The oldest reference to cancer dates back to 1600 BC, in an ancient Egyptian textbook ontrauma surgery, called the Edwin Smith Papyrus [300]. The papyrus did not refer to the dis-ease as cancer, but it described several cases of breast tumors, and proposed surgical treat-ments. The term cancer (in greek, καρκίνος or καρκίνωμα) is credited to Hippocrates (c. 460- 370 BC), due to the resemblance of the shape of tumors to a crab [200]. Hippocrates at-tributed cancer to an excess of black bile – a belief that defined cancer formany centuries, asa systemic disease or a natural process. According to this theory, any kind of local treatment,such as surgery, was considered unsuitable [200, 300].

The theory of Hippocrates continued to prevail, until the French physician Claude Gen-dron (1663-1750) described cancer as a locally hard-growing mass, which cannot be treatedby drugs, but needs to be removedwith all its filaments [200]. In the 18th century, Jean Astrucand Berhard Peyrilhe were the first to conduct experiments, seeking better diagnosis, newtreatments and deeper understanding of the causes of the disease [200]. The developmentof microscopes, in the late 19th century, made possible the examination of cancer tissuesand tumors [192]. Researchers discovered that cancer cells differ in appearance from nor-mal cells, and started focusing more on investigating the behavior of cancerous tissues. Inthe following years, several different theories and studies about the origin, the causes andthe treatment of cancer emerged, out of which, many were discarded [192].
Nowadays, researchers are able to diagnose tumors, even in early stages. Through theexamination of the genetic information of cells, scientists are able to determine the pro-cesses that are responsible for the initiation of cancer in a patient. Current theories explainthat cancer is the result of abnormal cellular growth, during which cells proliferate and dividein an unregulated way. This occurs due to genetic mutations in otherwise non-reproductivecells [300]. In many tumor types, mutations both in the genes that promote the prolifera-tion of cells and in the genes that stop cell division, are encountered. These mutations maybe triggered by exposure to carcinogens, such as radiation, sunlight or smoking [171, 300].However, gene mutations can also be passed on through generations in a familial expres-sion of the disease, while random mutations are also possible [300]. A schematic depictionof the abnormal processes taking place before and during the multiplication of cancer cellsis presented in Figure 2.1.
Tumors can originate from any cell and are, in general, divided into two categories: be-

nign and malignant [300]. The former are well differentiated and do not invade surroundingnormal tissues, but can compress it causing damage. The latter have the ability to spread toother body parts though the bloodstream or lymphatic system, in a process called metasta-
sis [300]. They can also divide and growby creating newblood vessels to sustain themselves,in a process called angiogenesis [87, 300]. In addition to these two types, pre-malignantcases are also possible. These involve abnormal cells that may develop into malignancies,if left untreated.

Early detection and diagnosis is considered an important factor in tumor treatment, aschances of metastasis are lower [300]. However, not all cancer types are accompanied withclear symptoms, making detection and diagnosis difficult in the early stages. Advances inmedical imaging have increased the capabilities of physicians to detect tumors, and – insome cases – screening tests are performed. Examples of screening tests include mam-
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Figure 2.1: Schematic depiction of all processes occurring during the uncontrolled and abnormal divi-sion and growth of cancer cells, in a malignant tumor. Figure created by the author, inspired by figures in
the website of the National Institute of Health [184].

mography for breast cancer, or colonoscopy for colorectal cancer [163, 264]. Medical imag-ing, such as Computed Tomography (CT) or Magnetic Resonance Imaging (MRI), has al-lowed a view on the inside of their patients, aiding clinicians to determine more appropriatetreatments. Currently, cancer can be successfully treated through a vast selection of tech-niques [300], among which surgery, chemotherapy and radiotherapy.

2.2. Prostate Cancer
Prostate cancer – or carcinoma of the prostate – refers to the development of cancer inthe prostate, a gland in the male reproductive system [275]. The prostate gland is a walnut-shaped and sized organ that consists of fibrous, glandular and muscular tissues. It sur-rounds the urethra, and is located between the bladder and the urogenital diaphragm.

In pathology, the prostate is divided into four zones [191]. These include the peripheral
zone, which is the biggest part of the gland and the location where 70-80% of cancer origi-nates; the central zone, which surrounds the ejaculatory ducts and accounts formore aggres-sive types of cancer; the transition zone, which surrounds the urethra; and the fibro-muscular
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2.2. Prostate Cancer
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Figure 2.2: The anatomy of the prostate and its main surrounding structures. Drawing created by Peter
Mindek for this dissertation.

zone or stroma. The anatomy of the prostate, as well as the main structures around andinside it, are presented in Figure 2.2.
Prostate cancer is themost commonmalignancy inmales. Approximately 1 out of 6menare estimated to develop the disease in their lifetime [300]. Several factors may increase therisk of prostate cancer, among which older age, hereditary predisposition and race [7, 300].More than 60% of prostate cancer cases occur in men above 65 years, while having a first-degree relative with the disease doubles the risk [7]. Additionally, African Americans have ahigher incidence of the disease in comparison to other races of similar age [300].
Often, prostate cancer screening and diagnosis are performed through digital rectal ex-amination, prostate-specific antigen (PSA) testing, biopsy, and medical imaging [300]. Stag-ing of the disease is necessary to determine the most suitable treatment, and is performedusing the so-called TNM Classification of Malignant Tumors [77, 300]. This system takesinto consideration the size of the primary tumor (T), the number of involved lymph nodes (N)and the presence of metastasis (M). Another standardized scoring method, which is oftenemployed, is the Prostate Imaging Reporting and Data System (PI-RADS), which is assessedon imaging data of the prostate of the patient [8].
If a biopsy is performed, then the Gleason grading system [82, 125] can be used, as well.For this, the degree of differentiation and the morphology of the tumor are graded to deter-
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2.3. Radiotherapy
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Figure 2.3: Increasing Gleason grades indicate increasing aggressiveness of the prostate tumor, whichis accompanied by changes in the formation, differentiation and structure of the glands. Figure adapted
from [300].

mine a Gleason score (GS). Lower grades denote slowly growing, non-aggressive tumors,while higher grades denote invasive and metastatic malignancies. A schematic example ofthe Gleason grading system is depicted in Figure 2.3.
Common treatments for prostate cancer include radical prostatectomy, hormonother-apy, chemotherapy and radiotherapy [300]. Yet, the most frequently adopted treatment isradiotherapy, addressing up to 60% of all prostate cancer patients at some stage duringtheir treatment [66].

2.3. Radiotherapy
Radiotherapy, or radiation therapy (RT), is one of the most common approaches for cancertreatment, which uses ionizing radiation to treat malignant cells. It is used as therapeutic
treatment to cure the disease, as adjuvant therapy to prevent tumor recurrence, or as palliative
treatment to relieve patients fromseveral symptoms [300]. Often, radiotherapy complementssurgery, chemotherapy, hormonotherapy, immunotherapy or a combination of those [300].

Radiotherapy has been used as cancer treatment for more than a century [254, 267] –starting in 1896, when x-rays were first employed to treat breast tumors [108]. With the dis-covery of radioactive elements by Marie Curie, a new era in medical research and treatment
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2.4. The Radiotherapy Planning Pipeline

began [267]. Although the hazards of radiation exposure were still unknown, radiotherapywas already applied to many diseases. Prior to World War II, only radium was known andused as source of radiation for radiotherapy, but later additional artificial radioisotopes wereemployed [146, 254]. In the 50s, linear particle accelerators were developed, improvingmanyaspects of radiotherapy [38, 254]. In the 70-80s, new imaging technologies allowed for 3D ra-diation delivery, Intensity-Modulated Radiation Therapy (IMRT) [162, 165] and Image-GuidedRadiation Therapy (IGRT) [311]. All these advances enabled better targeting tumors, withbetter treatment outcomes and less side effects for healthy tissues [267].
Radiotherapy is based on the concept that ionizing radiation can damage the geneticinformation of cancerous tissues [300]. The administered radiation dose used in radiationtherapy is measured in Grays (Gy), and varies depending on the type and stage of cancerbeing treated. In general, the response of tumor tissues to radiation is determined by theirsize, but especially by their radiosensitivity [267, 300]. More radiosensitive cancers, suchas leukemia or epithelial tumors, can be treated by moderate doses, while more resistantones, such as renal cancer ormelanoma, requiremuch higher doses. Hypofractionation [267,300] of the dose is another common practice, where the total dose is spread out in smallamounts over time, to allow the recovery of normal cells and to prevent the repair of tumorcells between fractions.
Currently, the two most common technologies of radiotherapy treatment are ExternalBeam Radiation Therapy (EBRT) and Brachytherapy (BT) [267, 300]. In the former, the ra-diation source is located outside of the patient. In the latter, the radioactive sources arepositioned precisely in the area to be treated, affecting only a very localized area [93]. Anexample of EBRT is Intensity-Modulated Radiation Therapy (IMRT), which can precisely ad-dress concave tumors, such as tumors enclosing the spinal cord or major blood vessels.This is achieved, by modulating the intensity of the radiation beam near the tumor volume,while decreasing or avoiding the radiation among the surrounding healthy tissues [301]. Inorder to reduce the toxicity to the normal tissues, radiation beams need to be shaped andaimed from several angles of exposure, to cumulatively target the tumor [300].
Still, radiotherapy may result in a number of side effects, most commonly fatigue or skinirritations [300]. In particular, prostate cancer radiotherapymay cause rectal bleeding, incon-tinence, impotence, as well as other urinary or bowel-related side effects.

2.4. The Radiotherapy Planning Pipeline
Prior to the administration of the radiation dose, the delivery strategy and prescribed doseneed to be determined, in a process called treatment planning [300]. Conventional radiother-apy treatment planning consists of a number of steps, which are depicted in the upper partof Figure 2.4.

After the patient has been diagnosed and referred to radiotherapy by a physician, medicalimaging is employed to obtain a view into the patient. This is done, typically, using ComputedTomography (CT). Subsequently, the target tumor and the surrounding organs at risks aredefined. In order to account for patient setup errors [263] and for other sources of inaccu-racy [131, 234], safety margins are added around the organ volumes [19, 131, 176]. Thesesafety margins are shown schematically in Figure 2.5.
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Figure 2.4: Schematic depiction of the conventional radiotherapy pipeline (top, inspired from [300])and its modification (bottom), with the integration of patient- and tumor-specific knowledge, in order toachieve a treatment planning, tailored to the intra-tumor characteristics of each subject, as proposed bythe DR THERAPAT project [89].

The volume that contains the palpable, or visible in imaging techniques tumor is calledGross Tumor Volume (GTV). The Clinical Target Volume (CTV) contains the GTV with anadditional a safety margin around it, based on anatomical and biological guidelines. Finally,there is the Planning Target Volume (PTV), which accounts for the effect of themovement ofthe tissues of the CTV, themovements of the patient, variations in the size of the CTV tissuesand variations in beamgeometry characteristics, to ensure that the CTV actually receives theprescribed dose [19, 131, 176].
After the localization of the tumor and adjacent organs, an initial treatment plan is de-signed, using dedicated treatment planning software. This treatment planning software de-fines the geometric, radiobiological and dosimetric aspects of the treatment, optimizing fortumor treatment and for healthy tissue preservation [300]. Once the plan is performed, itis reviewed and approved. Still, before the treatment delivery, the location of all implicatedstructures, as well as the selected radiation strategy are verified, once more.
In the past decades, radiotherapy treatment hasmanaged to improve tumor control, andto minimize the radiation-induced toxicity in healthy tissues around the tumor. However, astandardized process, which, as described in Chapter 1, will include all available patient- andtumor-specific information, still needs to be designed and employed [266]. To achieve this,a number of additional steps need to be conducted. These steps have already been brieflypresented, in Figure 1.1 (Chapter 1).
In the lower part of Figure 2.4, we depict schematically how the basic radiotherapy plan-ning pipeline is affected, when additional patient-specific and tumor tissue information are

2

13



2.4. The Radiotherapy Planning Pipeline

PTV

CTV

GTV

OAR

TV

IV

Figure 2.5: Safety margins to account for patient setup errors and other sources of inaccuracy, duringthe administration of the radiation dose. The Gross Tumor Volume (GTV), Clinical Target Volume (CTV)and Planning Target Volume (PTV), as well as the organs at risk (OAR) are denoted. Outside of thePTV, the Treated Volume (TV) and the Irradiated Volume (IV) are additionally defined. Figure adapted
from [300].

included, in order to achieve a more personalized planning, tailored to the specific intra-tumor properties of each patient. In this new, modified pipeline, data from different acquisi-tion modalities, their derived features or parameters, segmented data, tumor-specific tissuecharacteristics, as well as relationships between them, need to be integrated, as shown inFigure 2.4. The modified pipeline is the one proposed by the DR THERAPAT project [89].
Apart from the aforementioned multi-modal and multi-valued data, another importantaspect is the uncertainty, which is present at all steps of the planning pipeline. In literature,there is no unanimous opinion on the definition of uncertainty. According to the NationalInstitute of Standards and Technology (NIST), data uncertainty includes concepts, such as

statistical variation or spread, error or inaccuracy and minimum-maximum ranges [167]. An-other definition is provided by Griethe et al. [104], as a composition of different concepts, such
as error (outlier or deviation from a true value), imprecision (resolution of a value compared
to the needed resolution), subjectivity (degree of subjective influence in the data) and non-
specificity (lack of distinction for objects). In the current case of radiotherapy planning, wedefine uncertainty as any variation in the dose planning outcome, which is produced by anad-hoc choice or a stochastic process, in one or more steps of the radiotherapy planningpipeline.

In all steps of the radiotherapy planning pipeline, there are several sources of uncertainty.Although some of these uncertainties can be minimized, there are others that cannot beavoided. The accumulation and propagation of uncertainties, throughout the entire pipeline,
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may have an influence on the dosage planning, and the final outcome of the planning pro-cedure. Therefore, the analysis and communication of uncertainty to the clinical user wouldalso be essential for the interpretation of the outcome, for reducing the existing uncertaintiesand, potentially, for improving the final outcome.
Incorporating patient-specific tumor and anatomical characteristics, as well as the in-volved uncertainty, in the radiotherapy planning pipeline is currently addressed only in re-search – not in clinical practice. Researchers are interested in exploring and analyzing thecomplex, multi-valued data involved in the tumor-tailored planning pipeline, in order to un-derstand the data and formulate hypotheses concerning their patients, the approaches thatare being followed during the pipeline and the treatment strategies that need to be pursued.These researchers could be radiation oncologists, radiologists and clinical physicists, andalso researchers that are working on algorithms and methods used through the pipeline.
In the following sections, we will separately address each step of the personalized radio-therapy planning pipeline, along with the data, uncertainty, and processes that are of partic-ular interest for researchers and for the present dissertation.

2.4.1. Multi-Parametric Imaging

The purpose of the first part of the pipeline is to obtain the images needed for radiother-apy planning, from a multitude of acquired medical imaging sequences [124]. The multi-parametric imaging that is employed in prostate cancer research includes T2-WeightedMag-netic Resonance Imaging (MRI), Diffusion-Weighted Imaging (DWI), Dynamic-Contrast En-hanced MR Imaging (DCE-MRI) and, optionally, MR Spectroscopy [16, 25, 51, 124]. Addition-ally, Computed Tomography (CT) Imaging may be performed [124]. All aforementioned im-ages need to be registered, in order to be transformed into the same coordinate system. Anexample of a multi-parametric imaging acquisition is shown in Figure 2.6.
Computed Tomography (CT) Imaging is the acquisition of a series of X-ray images atdifferent angles, which are composed together into a volume [220]. Each single X-ray imageexploits the different absorption properties of tissues with different densities. CT imaging isnot suitable for soft tissue differentiation, but it provides a very good contrast between softtissue and bones. Hence, it can be used to provide anatomical context, with respect to thepelvic bones, while it can also aid to identify whether the cancer has already spread into thelymph nodes, other organs or boney structures [124].
Magnetic resonance imaging (MRI) is a medical imaging technique, which exploits theproperties of human tissues in magnetic fields [220]. The basic concept behind MRI is that,when the protons of nuclei of atoms – in particular hydrogen, which is in abundance in thewater molecules of the human body – are placed in a magnetic field, they align themselvesalong this field. When a radio frequency pulse is emitted and tuned to a specific range offrequencies, at which the hydrogen protons precess, the magnetic spins of some hydrogenprotons flip with a specific angle. When the radio pulse is stopped, these hydrogen protonsalign back with the magnetic field, losing energy and emitting an electromagnetic signal.This emitted signal is detected by receiver coils located around the body and the intensity ofthe received signal is used to build up the cross sectional images of the patient.
By using different pulse sequences, different tissue characteristics are brought forward,creating different kinds of images from inside the human body [220]. T2-Weighted imaging
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T2W-MRI DWI

DCE-MRICT

Figure 2.6: The four main medical imaging acquisitions that are used for prostate cancer diagnosisand detection: T2-Weighted Magnetic Resonance Imaging (MRI), Diffusion-Weighted Imaging (DWI),Dynamic-Contrast Enhanced (DCE) MR Imaging and Computed Tomography (CT). The latter (CT) isused to provide anatomical context.

is one of the basic sequences of MRI and is commonly employed in prostate imaging [16,25, 51, 124], in order to highlight the peripheral zone, which is the biggest part of the glandand the location where 70-80% of cancer originates [191]. The central zone, the transitionalzones and the stroma have a lower signal intensity in T2-Weighted images.
Diffusion-Weighted (DW or DWI) MRI is an imaging method that produces in-vivo im-ages of biological tissues, exploiting the diffusion of water molecules [256]. It is based onthe concept that the diffusion of water molecules inside a voxel of tissue, which is the ran-dom Brownianmotion of these water molecules, is constrained by the boundaries of the cellmembranes. Different tissues or pathologies can affect the properties of diffusion, whichcan be used to identify highly dense cellular tissue, like tumors [16, 25, 51, 124]. As a mea-sure of the magnitude of diffusion and to quantitatively asses the cell membrane restrictionof water, the apparent diffusion coefficient (ADC) maps are used [256]. In prostate cancer,there are indications that lower diffusion values relate to higher tissue cellularity, which is asign of the existence of a tumor [16, 25, 51, 124].
Dynamic-Contrast Enhanced (DCE) MRI is based on the idea that different tissues havedifferent uptake properties, when they are injected with a contrast agent [16, 25, 51, 124].Tumors tend to develop new, disorganized and permeable vessels, which have thinner and
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Figure 2.7: Signal Intensity enhancement curves for three different types of tissue (malignant, benignand ambiguous) across time. Figure inspired from [190].

weaker walls [283]. Thus, they show early and rapid enhancement and early wash-out of con-trast agents, unlike healthy tissue, as shown in Figure 2.7. In order to study the vascularity, thevascular perfusion and vessel permeability characteristics of the tissues, pharmacokinetic(PK) modeling is performed. From that, different maps, indicative of tissue characteristicsare calculated [257]. These characteristics will be discussed in the upcoming section.
All these imaging acquisitions are accompanied by uncertainty, mainly from noise orartifacts inherent in each scanning procedure. More specifically, T2-Weighted MR imaginghas high sensitivity and poor specificity for tumor detection and characterization [156, 282],while it usually suffers from artifacts, due to patient motion.
DW-MRI has highly varying sensitivity and specificity for tumor detection [147, 282], de-pending on patient population characteristics, on the prostate tissue zone and on the scan-ning procedure itself. In DW-MRI, different degrees of diffusion weighting can be applied,in order to retrieve the ADC maps. This degree of diffusion is described by the so-calledb-value and, traditionally, a value of 1000 sec/mm2 is used, due to hardware restrictionsfor achieving acceptable echo times. However, there is no general consensus and severalrecommendations for b-values have been made in literature [193]. Still, the use of higher b-values can enhance the sensitivity and the specificity of the acquisition [25, 51], but they canalso deteriorate the contrast resolution among healthy and tumorous tissues [51]. Amongothers, additional common problems in DW-MRI can be motion artifacts [25, 244, 248] evenfrom small movements of the rectum or the bladder, poor spatial imaging resolution andimage distortions, due tomagnetic field inhomogeneities at the interfaces between differenttissues [25, 51, 248].
DCE-MRI alone has reported highly varying sensitivity and specificity for the detectionand characterization of tumors [156, 282]. This means that several benign conditions, suchas prostatitis or infections, may have the same appearance as tumors in DCE-MRI [26, 119,282, 288]. In addition to this, the employed pharmacokinetic modeling may also be a sourceof uncertainty, which will be further discussed in the upcoming section. Another majorsource of uncertainty in DCE-MRI is related to motion artifacts, such as patient motion dur-
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ing acquisition, involuntary rectal motion or bladder filling [39, 283, 288], which can affect thequality of the images.
Several sources of uncertainty, such as the ones related to the specificity and sensitivityof each one of the employed acquisitions, may be minimized by combining the differentimaging modalities. Many studies have demonstrated that the combination of the differentacquisitions can improve detection, diagnosis and staging [16, 25, 51, 124]. Nevertheless,there are others sources of uncertainties that cannot be avoided, and their effect needs tobe analyzed and explored.
In this first step of the radiotherapy planning pipeline, clinical researchers are interested inexploring the involved multi-varied, multi-dimensional data effectively. Patterns and trendswithin these data need to be identified and relationships among data dimensions requireto be discovered, especially when noisy, complex data are present. The current method ofexploration of this data is a rudimentary slice-based technique, where all slices of the dif-ferent imaging volumes are visually inspected and the relationships between different ac-quisitions are mentally performed. This exploratory method provides limited insight and istime-consuming – hence, new techniques need to be investigated and designed.

2.4.2. Features Derivation from Medical Images

As mentioned in the previous section, it is common practice to derive several features frommedical images, in order to obtain information about patient-specific tissue characteristics.In the present case, we focus on the derivation of features from DCE-MRI data.
A way of measuring tissue properties from DCE-MRI data is to extract several measuresfrom the enhancement curves, presented in Figure 2.7. In this case, several measures canbe considered: the wash-in velocity of enhancement, which is the flow of the contrast agent,entering the blood plasma; thewash-out velocity of enhancement, which the flow of the con-trast agent, being diffused out of the blood plasma into the extracellular extravascular space;the peak or maximum enhancement intensity; the time between the beginning of the acqui-sition and the peak of contrast; and the area under the curve (AUC), to relatively quantify theenhancement of contrast agent over time. Additional measures can also be calculated.
Another way of measuring tissue properties from DCE-MRI data is to employ one ofthe established pharmacokinetic (PK) models [153, 257, 271]. These models are employedto derive per voxel a set of PK parameters, which describe the distribution of the contrastagent inside the tissue and are indicative of tissue characteristics [257].
One of themost commonand simple PKmodels is the ExtendedToftsmodel (ETM) [271],which is a mathematical model that quantifies per voxel the exchange of contrast agent be-tween the vessel and the extracellular extravascular space, as shown in Figure 2.8. In thiscase, four parameters are derived: Ktrans (min-1), which denotes the concentration of con-trast agent, transferring from the blood plasma into the extracellular extravascular space; kep(min-1), which denotes the concentration of contrast agent, transferring from the extracellu-lar extravascular space to the blood plasma; Ve (mL/100mL of tissue; %), which denotes theextravascular extracellular space volume per unit of volume of tissue; and Vp (mL/100mL oftissue; %), which is the blood plasma volume per unit of volume of tissue.
Apart from the Extended Tofts Models, there are more complex mathematical mod-
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Figure 2.8: The Extended Tofts Model, as an example of pharmacokinetic (PK) modeling applied onDCE-MRI data. Figure inspired from [271].

els [61, 152, 197, 283]. Each of these models considers a number of assumptions or crispchoices, depending on which, the number or values of the obtained parameters, or even theparameters themselves may differ.
In general, most uncertainties and errors in DCE-MRI data can be associated to the gen-eral lack of standardized acquisition and modeling protocols, which results into problems inthe repeatability and the reproducibility of the computed parameters [244, 288]. To name afew, a high temporal resolution is required, so that the enhancement curves can be describedcompletely and significant errors in the estimation of the pharmacokinetic parameters dur-ing the fitting procedure can be avoided. However, high temporal resolution is conflictingwith high spatial resolution and different trade-off strategies in spatiotemporal resolutioncan be followed [39, 113, 151, 288]. Another source of uncertainty can originate from thechoice of the arterial input function (AIF), such as reference-based AIFs, population-basedAIFs andAIFsmeasured from theDCE-MRImagnitude or phase signal [61, 152, 197, 283, 314].Quantification of the AIF is usually demanding, because it depends on the saturation, theblood flow and the eventual inhomogeneity of the magnetic field [39]. The choice can beeither based on literature knowledge or on calculations, which might both introduce uncer-tainty [197]. Other assumptions in the pharmacokinetic modeling approach include assump-tions on blood hematocrit values, contrast agent relaxivity, models that lead to the over-simplification of the contrast agent injection and the determination of blood plasma flowrates [197], which can also induce uncertainty to the calculation of the DCE-MRI derived pa-rameter maps [39, 63, 68, 197].
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Figure 2.9: Standard layout for the inspection of pharmacokinetic (PK) parameter maps (columns) of atumor, modeled using three different PK models (rows). Some parameters of the two-CompartmentalExchangemodel (2CXM) are not involved in the Tofts model (TM) and Extended Tofts model (ETM), andare missing [257]. Figure courtesy of J. F. Kallehauge, Aarhus University Hospital.

The impact of the modeling choice, as well as the suitability of each model for everypatient is not fully comprehended [139]. For clinical researchers working on PK modeling,it is valuable to investigate how the derived PK parameters behave with different modelingchoices. To this end, they currently employ a slice-based technique in their exploration andanalysis, similar to the one described in the previous section, which is sub-optimal in provid-ing insight and tedious. An example of this method is presented in Figure 2.9.
2.4.3. Tumor Tissue Characterization

For many years, it has been common practice to consider tumors homogeneous masses.In reality, tumors are heterogeneous tissues, enclosing multiple regions with distinct char-acteristics. Incorporating patient-specific intra-tumor tissue information into radiotherapyplanning can play an important role in tumor diagnosis and in designingmore effective treat-ment strategies, where distinct intra-tumor tissues are irradiated with adequately selectedradiation doses [106, 107].
Currently, the only way to investigate intra-tumor tissue heterogeneity is to study data ac-quired from invasive procedures, such as frombiopsies or from the inspection of histopatho-logical slices. To perform a non-invasive in-vivo identification and exploration of intra-tumortissues, clinical researchers need to associate histopathological findings, such as Gleasonscores [82] with features derived from co-registered imaging data, such as perfusion fromDCE-MRI, or diffusion from DW-MRI data.
The exploration and analysis of the characteristics of distinct intra-tumor regions is nota trivial subject, but it is an essential component of the radiotherapy planning pipeline. Theintra-tumor tissue classification exploration can be additionally used by clinical researchersto evaluate and assess supplementary clinical data that are often used as reference or as a
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means of diagnosis and outcome prediction [106, 107]. These clinical reference datamay be,for instance, data from risk prediction models [106]. Furthermore, the exploration of tumortissue characterization could be of particular interest for researchers developing classifica-tion algorithms, to aid the design of classifiers that can differentiate between distinct tissuetypes, as well as to understand the behavior of such classifiers.
2.4.4. Segmentation

The segmentation step of the radiotherapy planning pipeline aims at constructing modelsof the prostate and the organs at risk in the area involved, such as the rectum and the blad-der. Segmentation of the bones and the body surface is also important, as these structuresprovide information for anatomical reference.
The results of this step are highly dependent on the selected segmentation method andthe eventual parameter settings of the chosen algorithms. Segmentation can be either per-formed manually, semi-automatically, or automatically. In manual segmentation, medicalexperts inspect the imaging slices one-by-one and delineate the structures of interest. Thisprocedure can be time consuming, but it can also create inter-observer variability, whichmaypose critical questions concerning the reproducibility and accuracy of the procedure [24, 59].Therefore, automatic methods are often preferred, with a lot of effort being invested in thedevelopment of robust algorithms [43, 76, 148, 239]. However, opting for an automatic algo-rithm may also come with several limitations and challenges.
The segmentation of structures in the pelvic area involves organs with a large variabilityin shape, size and imaging intensity [59]. The noise, inappropriate resolution or geometricaldistortions induced by theMR scanner can be detrimental whenwe need to segment smallerprostate volumes [148]. In addition to that, it has been documented that prostate volumescan vary by an average of ±10%, the bladder and the rectal volumes can vary by ±30%, whilethe seminal vesicles can vary up to 100% [232]. The variation of the prostate center of masshas been found to vary less than 1mm in the left-right direction, but up to 1 cm in the anterior-posterior and the superior-inferior direction [232].
Organ motion is another important factor that needs to be taken into account in theradiation therapy planning pipeline [145, 148, 157, 199, 239, 270]. The prostate and the seminalvesicles move not only relatively to the bony structures, but also within the pelvic region, dueto their position close to the bladder and the rectum. For example, the distension of theadjacent organs, due to filling, may result into the displacement of the prostate [62, 232].
In this step of the radiotherapy planning pipeline, the focus of clinical researchers is oncreating robust segmentation algorithms. Still, their implemented methods might not beable to account for all cases and may perform sub-optimally. In such cases, it is requiredto predict anatomic regions and circumstances under which these methods are more proneto inaccuracies. The ultimate goal, in this case, would be to determine how to improve thesegmentation process, namely the selected methods and their settings.

2.4.5. Radiotherapy Dose Planning

After segmentation, the actual radiotherapy plans is designed. A simulation of the treatmentplanning is performed in dedicated software, as described in the previous sections. Thissoftware takes care of maximizing the effect of the dose in the tumor areas, while minimiz-
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ing the toxicity in the adjacent healthy organs. Our focus in this work is not on the actualdose planning procedure, but on the incorporation of the variability in planning, which can beinduced as a result of adjustments or choices in the previous steps of the pipeline.
All previously mentioned steps introduce their own specific uncertainties. In particular,the results of each step also highly depend on the employed methods and their assump-tions, or chosen algorithms and their respective parameter settings. It is valuable for clinicalresearchers to understand and evaluate the sensitivity of the treatment plan to different as-sumptions and parameterizations, from the previous steps of the pipeline. In that way, theycan assess whether different choices in the planning pipeline can have an impact on the finaltreatment planning and be aware of this, when designing their treatment plans.

2.4.6. Tumor Control Probability Modeling

Clinical practice aims at choosing the most effective radiotherapy strategy, based on clinicalknowledge and guidelines. However, clinical research aims at thoroughly evaluating all pos-sible treatment alternatives. These take into account several points, such as dose escalation,uniform or non-uniform tumor irradiation, the amount of the received dose and eventual frac-tionation of the treatment. To simulate and evaluate the effects of these different treatmentstrategies, clinical researchers need radiobiological modeling. This involves two aspects:Tumor Control Probability (TCP) modeling [302] and Normal Tissue Complication Probabil-ity (NTCP) modeling [172]. TCP models are statistical models that quantify the probabilitythat a tumor is effectively controlled, i.e. treated, given a specific radiation dose. NTCPmod-els are statistical models that quantify the probability that normal tissue around the tumoris harmed, given a specific radiation dose. Figure 2.10 presents an example of TCP/NTCPmodeling prediction. In the present work, only the TCP modeling part will be addressed.
Conventional TCP models are linear regression models, based only on statistical andliterature knowledge. Recently, novel TCP models [48] started incorporating additional infor-mation from imaging modalities, such as DW-MRI [48]. In this way, patient-specific proper-ties of tumor tissues are included, improving the radiobiological accuracy of TCP modeling.As a consequence, these image-based TCP models are subject to uncertainties, inherent intheir employed imaging modalities, with significant impact on the outcome. In addition tothis, the modeling step includes, amongst all, parameter assumptions, which are not alwayscrisp choices [97, 258, 302]. The parameter sensitivity of the model is also an aspect, whichneeds to be taken into consideration when predicting the outcome of a specific radiotherapystrategy. Currently, these two aspects are not incorporated into clinical research, neglectingsignificant information for the outcome prediction.

2.4.7. Supplementary Steps of the Radiotherapy Planning Pipeline

In the presented radiotherapy planning pipeline, an additional step has been implicitly con-sidered – registration. MRI and CT data need to be registered in order to combine functionaland anatomical information, while multi-parametric MR images also need to be registeredto ensure the same coordinate space for each image acquisition. In addition to that, thehistopathological data that are used in clinical research, also need to be registered to all otheravailable data. Although we will not address registration in the present work, we need to un-derline the importance of this process. The literature on registration methods is vast [321]
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Figure 2.10: The concept of Tumor Control (TC) Probability [302] andNormal Tissue Complication (NTC)Probability [172].

and different algorithms can be employed, each with different strengths and implications.
Registration may be accompanied by uncertainty, which may have an impact on the re-mainder of the radiotherapy planning pipeline, as well. Uncertainty in image registration isprimarily related to the inherent characteristics of the different imaging modalities that areco-registered. In addition to this, different registration algorithmsmay bring different types ofuncertainty, related to the localization accuracy or robustness [141]. In particular, the use ofnon-rigid registration requires the selection of parameters, which can yield results with largevariability [231]. In other cases, the lack of objective ground truth in the validation of registra-tion creates the need for manual registrations by experts, which introduces uncertainty thatis related to inter-observer variability.
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3
Visualization: State of the Art

A picture is worth a thousand words.

English idiom

In this chapter, we identify and present the research field, to which the current work belongs,
providing the necessary technical background and setting the context of this dissertation. For
this, we introduce the field of Visualization and, in particular, the field of Visual Analytics to
the reader. Basic terminology or techniques, which are vastly used throughout the entire dis-
sertation, are also presented. Additionally, we provide a general overview of state-of-the-art
visualization systems and solutions dealing with multi-dimensional or multi-varied data, and
with uncertainty. Other related work – more specific to methods and techniques presented
in the core chapters of the dissertation – will be discussed in detail within each one of the
following chapters.



3.1. Visualization

3.1. Visualization
As already mentioned in Chapter 1, the field of visualization can provide solutions for re-searchers, investigating the different steps of the radiotherapy planning pipeline. These so-lutions aim at providing better understanding and deeper insight into the complex data andprocesses, involved in radiotherapy planning.

According to Cliff Pickover, Visualization is the art and science of making the unseen
workings of nature visible [204]. In essence, Visualization is the scientific field that employselements from the field of computer graphics to create meaningful visual representations ofthe data [46], which can facilitate interpretation and can provide access to – or deepen – theunderstanding of users, taking advantage of the human vision and cognition.

Visualization can be described as a tool to enhance human cognitive capabilities – andnot a set of automatic computationalmethods, which aimsat replacing humans [182]. There-fore, Visualization can be particularly suitable and powerful, in cases where users know littleabout their data and processes [182], but need to explore and discover new knowledgewithinthese, generate or confirm hypotheses, and make decisions.
Card et al. [46] describe the Visualization process, depicted in Figure 3.1, as a numberof steps which enable visual sense making. Initially, raw data is collected and transformedinto data tables, which are derived data that are easier to manipulate and understand. Then,these data are turn into visual structures, with the aid of visual mappings. Subsequently, atransformation is employed to provide perspective on the data, in a view that is presentedto the user. The user, finally, interprets the view and gains a deeper insight into the data.Perception, cognition and interaction play a very important factor in the explorative process,as users navigate through the data and interactwith them, in order to understand the involvedinformation.
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Figure 3.1: Overview of the visualization process, described by Card et al. [46] as the mapping of datato visual forms that support human interaction for visual sense making.

Visualization can be applied to many different application fields, among which to pro-cesses and data from the medical field. In this case, we refer to it as Medical Visualiza-tion [217]. A common taxonomy of Visualization is done, with respect to the characteristicsof the data. The term Scientific Visualization refers to the discipline that engages data witha geometric structure or inherent spatial information, which are typically related to scientificapplications, such as medical data [277]. Information Visualization refers to the discipline
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that deals with abstract, non-physical data [277, 299]. In addition to these two fields, there isthe distinct discipline of Visual Analytics [58], which is discussed in the following section.

3.2. Visual Analytics
Visual Analytics is one of the three main flavors of Visualization. It is the result of integratingconcepts from Scientific and Information Visualization, with other disciplines and analyticalprocesses, such as data mining or statistics. This integration usually happens in a highly in-teractive environment, where analytical sensemaking and reasoning are supported. Thomasand Cook [58] describe Visual Analytics as the science of analytical reasoning facilitated by
interactive visual interfaces, while Keim et al. [144] state that:

Visual Analytics combines automated analysis techniques
with interactive visualizations for an effective understanding,

reasoning and decision making on the basis of
very large and complex datasets.

The human factor, or human-in-the-loop concept, is an essential component of Visual An-alytics solutions, which focus on integrating and combining the strengths of human abilitiesfor sense and decision making, with semi-automated methods for data analysis [182, 276].The human is deeply involved in the process, while steering the exploration through visual-ization and interaction. The process of Visual Analytics is depicted in Figure 3.2.
In the present dissertation, Visual Analytics will be employed to provide insight into thedata, information and knowledge at each distinct step of the radiotherapy planning pipeline,through the interactive exploration and analysis of the involved data and processes.

3.3. Fundamental Techniques and Methods
In the coming chapters, we will present Visualization solutions for the exploration and analy-sis of each step of the radiotherapy planning pipeline. All of them incorporate several designmethods and interaction techniques, which are briefly described below:

• The Information Seeking Mantra [249] can be summarized as: Overview first – Zoom
and filter – Details-on-demand. According to this, users should first have an overviewon the data, which can give a global impression about the information within the data.Then, users should be able to zoom in and filter the data, in order to obtain moredetailed information. At the end, all detailed information should be shown on demand.This process should be enabled through interaction.

• The Visual Analytics Seeking Mantra [142] is an adaptation of the Information Seek-ing Mantra, adapted to fit within the field of Visual Analytics: Analyze first – Show the
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Figure 3.2: Overview of the Visual Analytics process, described by Keim et al. [142]. In Visual Analyt-ics, the strengths of visual data exploration and automated data analysis are combined with the data,visualization and models, to obtain knowledge within a highly interactive environment.

important – Zoom, filter and analyze further – Details-on-demand. In contrast to theoriginal Mantra, the data need to be initially visually analyzed to show the most inter-esting or relevant aspects.
• The Data-Users-Tasks Design Triangle [178] is a concept that dictates that, during thedesign of a Visual Analytics system, three aspects should be taken into consideration:the data involved in the process, the users for which the system is being designed andtheir respective needs, and the tasks that the system is required to fulfill.
• Multiple (Coordinated) Views [294] is a widely used design method in Visual Analytics.This refers to employingmultiple views that provide different viewpoints on the data, inorder to observe the data and their in-between relations though different perspectives.Multiple Views are usually combined with Brushing and Linking, described below, tofacilitate the identification of relationships between data.
• Brushing and Linking (B/L) [18, 40, 143] is a concept that involves selecting one or sev-eral interesting items in one view, and highlighting corresponding items in another. Asstated by Keim, this method is meant to overcome the shortcomings of single tech-
niques, and provides more information than the exploration of individual views.

• The idea behind Focus + Context (F+C) [46] is to present items at different levels ofdetail. More interesting or relevant items are presented with more detail, while lessimportant items are presented with less detail, but are retained in the view, in order toprovide context for a better understanding and insight.
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• The notion of the Overview + Detail technique [54] is related to the combined use ofMultiple Views and Focus + Context. Here, at least two views are presented to theusers: one with a rough overview on the entire visualization space, and one with adetailed view of a smaller portion of the space.

3.4. Related Work
The field of Visual Analytics has addressed numerous fields of application in the past. Theexploration and visual analysis of the data involved in the radiotherapy pipeline, however,has not been explicitly tackled before. Each step of this pipeline requires different handling,depending on the involved data and processes to be explored, on the tasks that have to befulfilled, and on the intended users and their needs.

During all steps of the pipeline, the topics revolve around the exploration and visual anal-ysis of multi-dimensional, multi-varied data with complex relationships, or the incorporationof uncertainty into the designed visualizations. Therefore, in this section, we will addressprevious related work, with respect to these two categories. In the other chapters, we willdeepen into literature that is more specific to each step of the pipeline.
3.4.1. Visualizing Multi-Dimensional, Multi-Varied Data

The literature that addresses the visualization of multi-dimensional and complex data isvast [143]. In this section, we will focus on previous related work that is relevant to ours.Initially, we will present traditional, widely used techniques from the field of Information Vi-sualization and, subsequently, a number of Visual Analytics system designs and methodsthat support the exploration and analysis of multi-variate, multi-dimensional complex data.At the end of this section, we go one step beyond the exploration and understanding of data,by discussing the use of Visual Analytics to understand dimensionality reduction and clus-tering processes.
Multi-Dimensional Information Visualization Representations

Among all distinct techniques that have been designed in the field of Information Visual-ization [143], two have been extensively employed: the Scatterplot Matrix and the ParallelCoordinates Plot.
The Scatterplot Matrix, or SPLOM, is a matrix-like configuration of all pairwise scatter-plot views of the dimensions of the data [50, 110, 280]. It is based on the concept of smallmultiples by Tufte [279]. Being easy to comprehend and interpret, it has become a power-ful representation of multi-dimensional data and it can be used as a good starting point forthe exploration of relationships within the data. However, with an increasing number of di-mensions, the number of scatterplots – and subsequently, the demand for screen space –increases rapidly. In addition to that, it may cause significant cognitive load, as the part ofthe SPLOM below the diagonal is redundantly encoding the same information, as the partabove the diagonal. Without interaction, SPLOM may also require from the user to use theirmemory, in order to identify and analyze relationships within the data. Furthermore, eachscatterplot of the SPLOM is able to show only pairwise relations within the data. An exampleof the use of the this representation is depicted in Figure 3.3 - a.
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Parallel Coordinates Plot, or PCPs, is another widely known and used representation forhigh-dimensional data [128]. In this case, multiple data dimensions are mapped one-by-oneto a number of parallel vertical axes. Each multi-dimensional data object is mapped to apolyline that intersects the axes, connecting the scalar values of every dimension. PCPsefficiently display in a single view all 2D projections of adjacent data dimensions [126, 129,303], enabling the identification of relations and the detection of data patterns or trends,especially with the help of interaction [112, 251] such as brushing [111] or reordering [13, 201,285]. A limitation of PCPs is that theymight suffer from clutter due to overplotting [112]. Thiscauses problems in the exploration and interpretation, especially in high density data. Still,scalability is not only an issue with respect to the number of data points; it is also a matterof an acceptable number of axes. The order of the latter is also important as it implicitlydetermines the relationships that can be identified and explored. An example of PCPs ispresented in Figure 3.3 - b.

(a) (b)

Figure 3.3: An example of visualizing the four dimensions of the iris dataset [86], using (a) a ScatterplotMatrix (SPLOM) and (b) the Parallel Coordinates Plot (PCPs). The two representations were created,using D3.js [29].

Visual Analytics for the Exploration of Multi-Dimensional Data

In the field of Visual Analytics, there are many solutions and systems, which deal with theexploration ofmulti-dimensional data. In this section, we select themost relevant to the con-tent of this dissertation and we present them, dividing them them into four main categories.We present solutions where only two data dimensions are visualized after being selected bythe user; solutions where linear projections of the data are visualized; solutions where non-
linear projections of the data are visualized; and solutions visualizing all data dimensionsthrough projections and providing understanding in the employed projections. At the end ofthis section, we provide a summarized view and connection to our own work.
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■ Selection and visualization of two data dimensions. The exploration of multi-dimensionaldata has been tackled multiple times before, by allowing the user to select two data dimen-sions of particular interest and visualizing only these. Early examples include the GrandTour [15] and the XmdvTool [295].
More recently, WEAVE [103] was introduced as an environment for the interactive visual-ization of multi-dimensional data. It employed linking and brushing between custom three-dimensional visualizations and multi-dimensional statistical representations. The WEAVEsystemwas an improvement to mere visualizations of scientific data and to existing statisti-cal visualization packages, by allowing the user to quickly compare and to correlate variables,while also visualizing the spatial data. However, the systemdid not support the simultaneousincorporation of data from different modalities.
Coto et al. proposed theMammoExplorer system [60], to enable the exploration and anal-ysis of breast DCE-MRI data. In this approach, segmentation techniques were linked to visu-alization, in an interactive environment. Scatterplots were used to show the enhancement ofthe contrast agent in DCE-MRI data. Combined with two-dimensional and three-dimensionalanatomic representations of the data through brushing and linking, they enabled the iden-tification and characterization of breast lesions. For conveying temporal information, theauthors proposed using multiple scatterplots, with all the limitations that such an approachcould entail. Color encoding was employed to highlight brushed areas, while volume ren-dering was performed using Maximum Intensity Projection (MIP) or Composite Ray Casting(CRC). Focus+Context was employed to selectively visualize the brushed data, while keepingthe rest of the context visible with less details.
The work of Hennemuth et al. [116] presented amethod for the exploration and visualiza-tion of the perfusion and late enhancement in myocardial tissue MRI data, for the detectionof distortions due tomotion. The authors implemented an approach to inspect the enhance-ment curves and their derived parameter distributions, in different areas of the myocardium.For this, they enabled users to segment regions by thresholding the parameter space. Theyalso provided a functionality to compare regions segmentedwith different settings. Brushingand linking was a necessary interactive component, also in this work.
Another well-known system, which was employed for the interactive exploration and vi-sual analysis of various multi-dimensional and time-varying data, was SimVis [72, 73, 74,158, 179]. SimVis was using multiple linked views, interactive feature derivation and selec-tion through smooth brushing, and Focus+ Context visualizations, to visualize, explore andanalyze data from amultitude of domains, from engines to hurricane data, and from air flowto medical datasets, such as brain perfusion data.

■ Visualization of linear data projections. Up to now, all presented systems faced issues,either with respect to the acceptable number of display views orwith respect to the displayeddimensions of the data, which were limited to two, by user selection. The latter started beingaddressed more suitably with the incorporation of linear projection methods [154] in VisualAnalytics approaches.
The work of Oeltze et al. [189] enabled the exploration of the correlations and relationsbetween several features and parameters of perfusion data. In their approach, they initiallyextracted time-intensity curves (TICs) that characterize the amount of contrast-agent en-hancement at each voxel in the perfusion imaging data. From these curves, they derived
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parameters that could be used as indicators in the diagnosis of tumors. To check the even-tual correlation between these parameters, they employed Principle Component Analysis(PCA) [137] to reduce the dimensionality of their parameter space. After that, they used mul-tiple linked views to enable the user to explore and analyze complex or multi-dimensionalfeatures within their data. This work allowed the localization of specific characteristics ofthe parameter space in the anatomic and temporal domain, it enabled a multi-variate analy-sis of the parameter space and it facilitated the local exploration of the data.
In a comparable approach, Fang et al. [84] proposed a method for the visualization andexploration of time-varyingmedical image datasets. In their work, a time-activity curve (TAC)was extracted from each voxel of the time-varying dataset, similarly to the TICs of Oeltze etal. [189]. Using linear projections techniques, all the voxels with similar TACs were retrievedand meaningful features that form these similarities were brought forward. With this ap-proach, they managed to distinguish between tissues with different features, such as heart,liver and lung tissues.

■ Visualization of non-linear data projections. The frameworks, which were discussed up tothis point, were able to visualize either user-selected pairs of dimensions or two-dimensionallinear projections of the multi-dimensional data. This entails the limitation of providing arestricted view on the entire data, as well as assuming that the structure of the involvedfeature space is characterized by linearity.
To address these points, Blaas et al. presented a new approach to handle large multi-field data, showing both the anatomical domain and the high-dimensional feature space ofthe data in an interactive environment, with multiple linked views [23]. They employed thisapproach to investigate its utility in data segmentation. To this end, they demonstrated itsclassification functionality by finding clusters and their relations within the data, as well asits capability for selective data visualization based on feature values. Interaction, brushingand linking, feature selection and pattern analysis were used again to enhance the data ex-ploration process.
To extend this work, Steenwijk et al. [261] proposed a Visual Analytics system for cohortstudies. This approach enabled inter-patient studies, where users could easily easy exploremulti-modal and multi-timepoint parameters across patients by extracting and visualizingparameters of interest. In their approach, the investigation of a full medical cohort wasmadepossible in a highly interactive framework for the visual and statistical analysis of the involveddata.
Recently, the Cytosplore application of Höllt et al. [122] was introduced to provide under-standing into the cellular composition of the immune system and the properties of the cells,as derived frommass cytometry data. It consisted of an interactive environment, which wasbuilt on the basis of dimensionality reduction to represent a high-dimensional feature spaceof cells. Multiple linked views on the data, at different level of details, facilitated the explo-ration of the exploding feature space of mass cytometry data. The interface of Cytosploreis presented in Figure 3.4.

■ Visualization of data projections, providing insight into the employed projection techniques.The frameworks, which were discussed up to now, aimed only at the exploration and under-standing of the involved data. There is a number of approaches that aims – additionally, or
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Figure 3.4: An example of Cytosplore, as proposed by Höllt et al. [122], with its four main components:(a) overview, (b) embedding and (c) heatmap. Figure courtesy of Thomas Höllt, Delft University of Tech-
nology.

instead – at providing insight and means for direct feedback on an employed projection orclustering techniques.
Jeong et al. [133] proposed a system for the evaluation and understanding of the resultsof Principal Component Analysis (PCA) [137]. Although PCA is widely used, many times itbecomes difficult to understand why a specific result is achieved. In order to aid the userto understand and use PCA appropriately, the iPCA system was developed. It consisted ofmultiple interactive coordinated views for the visualization of multi-variate data and theircorrelations in three spaces, i.e., the original data space, the eigenspace and the projectedspace.
The iVisClassifier [52] was another Visual Analytics system for obtaining insight into clus-tered data and the classification process performed with linear discriminant analysis (LDA).It enabled users to explore high-dimensional data, using a combination of different views.These included parallel coordinate plots, scatterplots and heat maps for an overview on thecluster relationships in both high and low dimensional domains. In thisway, a new interactiveinterpretation of LDA and its outcomes was facilitated.
DimStiller [127] was another tool for the visual analysis and exploration of dimensional-ity reduction. It used a set of abstractions to structure and navigate through the complexprocesses of dimensionality reduction, by providing guidance in the feature space, throughinteraction.
Poco et al. [207] proposed a system where the user could modify, control and improve2D or 3D projections of complex diffusion tensor imaging feature spaces. The system wastargeting the exploration of large collections of fiber tracts for diagnosis and for understand-ing brain functions. To do so, users could interact with or modify and improve the generatedLocal Affine Multidimensional projections (LAMP). Views on the fiber space and the projec-tions of the feature space were presented to the user and linked bi-directionally, to enhancethe exploration of the data.
Seo et al. [247] designed a system, where multiple linked views were employed to an-alyze clustering results in genome data. This work focused on the analysis of hierarchicalclustering, whichmay be complex and difficult to understand and analyze. With the proposed
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system, the user was presented with several views and features to obtain an overview of thedata and the features that contribute to the clustering outcome. The user could also controlthe clustering process and interact with the generated outcomes.
Finally, Turkay et al. [281] presented a visual analysis method to analyze how clusteringresults change in time. The structural and quality changes of the clusters were encoded ina Parallel Coordinates view, while another view visually summarized properties of the clus-ters over time. These two components were linked through brushing and enabled users toenhance the understanding of the temporal evolution of clusters.

■ Connection to our work. All previously presented systems and solutions aim at dealingwith the representation and exploration of multi-dimensional data. In the first category, theuser needed to select two data dimensions and visualize them. However, this kind of ap-proaches would not be sufficient for the data at the different steps of the radiotherapy plan-ning pipeline, because of the implicated dimensionality and complexity. Furthermore, suchapproaches would require prior knowledge about which dimensions are more significant,which is not feasible in our case. The second category included solutions employing linearprojections to represent and visualize the data. As already explained, these solutions makespecific assumptions about linearity in the structure of the data, which is not guaranteed inthe case of the complex data of intra-tumor tissue characteristics. Therefore, these two cat-egories are not suitable for the exploration and analysis of the data involved in radiotherapyplanning.
Closer to the approaches that we will introduce in the upcoming chapters are the solu-tions employing non-linear projection techniques, as well as the solutions that aim at under-standing the underlying structure of the data and at providing means for feedback on theresult of the employed techniques. Yet, all previous related work is not fully applicable toour application domain and to the specific radiotherapy pipeline steps, as we will describe indetail in the following chapters.

3.4.2. Uncertainty Visualization

Uncertainty visualization is a relatively new and popular domain [31, 136]. Although the im-portance of raising awareness on uncertainty information and its influence on the data hasbeen stressed multiple times [30, 105], in many cases this concept is still overlooked withserious implications [30, 167]. For example, in the present case of the radiotherapy planningpipeline, the precision and accuracy of the outcome of the radiotherapy procedure can haveconsequences on the treatment outcome. Hence, it is crucial to incorporate informationabout eventual sources of uncertainty into the radiotherapy pipeline.
Uncertainty visualization is a difficult and demanding task. Often, uncertainty comes asan additional channel of information, which needs to be visualized on top of other underlyingdata. This can increase the complexity of the view and the visual overload, decreasing theunderstanding of the user about the original data and the implicated uncertainty. When ap-proaching an uncertainty visualization problem, the choice of the design methods dependson the nature of the uncertainty data itself, on the uncertainty data type and on the alreadyemployed visualizations of the remainder of the data [104]. This design choice is often noteasy, as uncertainty tends to dominate over certainty in the data [36], which results intovisualizations where the underlying data are distorted or obscured, while uncertainty is em-
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phasized [49, 104].
Some of themost common design approaches for the visualization of uncertainty, whichhave been vastly used in the past [36, 27, 195], are summarized in the scheme of Figure 3.5.All of them entail a number of limitations. Using free graphical variables is suitable in cases,where a representation within the already existing geometry of a structure is required. Thechoice of which variable should be used to encode uncertainty is not easy, and the combina-tion of these attributes with the visualization for the other information within the data mustbe done inmoderation andwith consideration. Using additional graphical objects needs sen-sible and careful management, as the underlying data should not be overshadowed by theuncertainty visualization. Opting for this approach might also mean that the user faces thechance of a cluttered visualization, where visual overload cannot be avoided [185]. Employ-ing interactive representations for uncertainty visualization requires a lot of interaction withthe interface, which may be distractive for the user, if not properly designed. Animations canalso be distractive, as they are known for causing visual fatigue to the user [168].
In the following two sections, we will present previously designed methods for visualiz-ing uncertainty. We separate them into uncertainty incorporated in Scientific Visualizationsolutions, and uncertainty in Information Visualization or Visual Analytics systems.

Uncertainty in Scientific Visualization Systems

The literature on solutions for the Scientific Visualization of uncertainty is vast. In the cur-rent section, we introduce the most relevant solutions, using the categorization presentedin Figure 3.5. In the upcoming chapters, several of the described methods and visual cueswill be used as inspiration for the visualization of the uncertainty, implicated in the differentsteps of the radiotherapy pipeline.
■ Using free graphical variables. Free graphical objects, such as color, brightness, fuzziness,
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Figure 3.5: A categorization of different methods, which have been employed in literature for the visu-alization of uncertainty.

3

35



3.4. Related Work

texture, or combinations of the previous, have been employed for the visualization of uncer-tainty in a multitude of application fields. However, the available non-conflicting free graph-ical objects are often limited, limiting also the potential to encode simultaneously severalsources of uncertainty.
Color and texture are the most frequently encountered techniques. The concept behindthe use of these methods is that color is an easy and effective attribute, which can be usedas an additional parameter, without adding much distraction, if adequately selected. On theother hand, when texture is employed to encode uncertainty, the surface color is available forthe visualization of an additional variable. For example, the paper of Botchen et al. [30] pre-sented a texture-based technique for visualizing uncertainties in real-world measured dataor inaccuracies in simulated flow data. This was performed either with a generic texturefiltering process to improve the perception of uncertainty affected regions or with a user-adjusted color coding of uncertainty. Color and texture was also employed by Rhodes etal. [230], in a surface visualization of the structure under investigation.
In the same category, Twiddy et al. [284] proposed to visualize missing data using someneutral and non-distracting shades of grey, Davis et al. [65] employed an approach where dif-ferent shades or different levels of hue represented different levels of uncertainty, and Rothet al. [233] proposed to use a two-dimensional discrete scheme that varied in color and thealpha channel value. An extension to a continuous scheme was introduced by Hengl [115]for visualizing uncertainty, using the HSI color space. Finally, Coninx et al. [57] visualized un-certain scalar data fields by combining color encoded with animated, perceptually adaptedPerlin noise, while Drapikowski et al. [75] presented a method for depicting uncertainty insurface-based models from fragments of CT or MRI data, with the combined use of a colorscale to show the quality of uncertainty present at various locations of the data.
Apart fromcolor and texture, other free graphical objectswere used byDjurcilov et al. [71].In this work, the uncertainty was incorporated directly into volume rendering using grids forone-dimensional data and transfer functions for two-dimensional data. Additionally, post-processing by adding speckles, holes, noise and texture to locations of uncertainty was alsoproposed. In this case, the simultaneous use of color, transparency, noise, speckles couldbe conflicting and, hence, difficult for the user to interpret.
A different approach is encountered in the paper of Grigoryan et al. [105], who adoptedpoint-based surfaces that showed the uncertainty of a tumor surface. The surfaces wererendered as a collection of points, where each point was displaced from its original locationalong the surface normal, proportionally to the uncertainty. Combined with pseudo-coloringand transparency, this method could handle up to six dimensional uncertainties. However,the employed deformation of the shape of the rendered structures may not always be anadequate choice. This is the case for medical applications, where the anatomical shape ofstructures should be preserved.

■ Using additional graphical variables. The literature presented in this section includesmeth-ods where additional graphical variables, meaning additional objects, were used. This is agood solution to the limited amount of free graphical variables, but it can entail clutter in thevisualization, encumbering the exploration and interpretation of the underlying data.
Pang et al. [195] and Johnson [136] gave an interesting overview of uncertainty visualiza-tion techniques that use additional graphical objects. In the paper of Pang et al. the authors
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discuss uncertainty visualization methods, such as adding glyphs or geometry, and modify-ing attributes or geometry. There are more papers proposing the use of additional graphicalobjects, such as uncertainty glyphs [306] or distorted annotation grids [49] to show the un-certainty along with the data.
Glyphs have also been used in the paper of Lodha et al. [167]. In this work, six methodsfor visualizing uncertainty in flow visualization with the use of glyphs, envelopes, animations,priority sequencing, twirling baton displays of trace viewpoints and rakes were presented. Allthose methods were tested on artificial datasets and demonstrated to be valuable for peo-ple interested in decision-making, especially when missing or imperfect flow data were in-volved. In amedical visualization application, Schultz et al. [243] propose amethod tomodeland visualize the probability distribution of fiber directions from diffusion MRI data. Thesedirections were integrated into a new glyph representation, which significantly enhanced theinsight into the direction of fibers and their uncertainty in comparison to previously employedglyph designs for the same purpose [138].
Other methods, which involved the calculation and visualization of iso-surfaces in an un-certain field, were discussed by Pothkow et al. [209, 210, 211, 212], Pfaffelmoser et al. [203]andFerstl et al. [85]. A particularly interesting approachwasdescribed in the paper ofWhitakeret al. [305], where the authors introduced an abstraction of the boxplot metaphor to encodethe variability and quantify the uncertainty in ensembles of contours. The proposed methodwas called contour boxplots and was based on the concept of data depth to generate anordering of the data, based on the location of each sample within the density function.

■ Using animations. Animation has been used for the visualization of fuzzy data, takingadvantage of the sensitivity of the human visual system to motion and dynamic changes ina display [95]. A medical application of uncertainty visualization using animations can befound in the paper of Lundström et al. [168]. Here, uncertainty in tissue classification wasaddressed with the use of animation methods. Uncertainty was animated in the volumerendering of anatomical structures, with the use of transfer functions. Regions that werecertain remained static, while uncertain structures changed with time in an animation cycle.This method was, though, evaluated and documented to cause visual fatigue [168].
Uncertainty in Information Visualization and Visual Analytics Systems

Uncertainty has been tackled less often in Information Visualization and Visual Analyticssystems. Below, we present the most relevant approaches, diving them with respect to theaforementioned two fields of Visualization.
■Uncertainty in Information Visualization. A traditional way of displaying uncertainty in Infor-mation Visualization was to use error bars to convey accuracy in measurements or boxplotsto convey information on the value ranges and outliers [213]. Modifications of these tech-niques have allowed the incorporation of additional statistical information. An example ofthat was themodified boxplot or violin plot. In this representation, the size or the skew of theboxes have been used to encode additional statistical information [27]. Also, the 2D boxplothas been used for the same purpose [27, 213].

However, the dimensions of the conveyed information were still limited to a small num-ber. In order to solve this issue, the summary boxplot was proposed in the paper of Potter
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et al. [214]. In this approach, the summary boxplot incorporated a collection of descriptivestatistics that were able to highlight features of the data, related to uncertainty due to errors.The features of summary boxplotswere easy to identify and their two-dimensional extensionfacilitated the comparison of correlations and the ability to highlight variations.
Although the research on uncertainty visualization in univariate data is rich, an exten-sion to multivariate data is encountered less frequently. A method for the visualization ofuncertainty in high-dimensional data involved the incorporation of this information into Par-allel Coordinate Plots. Barlowe et al. [17] proposed a novel visualization pipeline for exploringinteractively multi-variate data and their relationships. Havingmentioned the inherent limita-tions of parallel coordinate plots, it is not difficult to imagine that incorporating uncertaintyin this representation can encumber the visualization and exploration of the data and theircorrelations, and increase the visual overload for the user.
Two more examples of methods for exploring multi-valued data, along with their un-certainty, were proposed by Elmqvist et al. [81] and by Xie et al. [310]. Elmqvist et al. tookadvantage of the simplicity, familiarity and clarity of scatterplots, expanding their use intoa matrix of scatterplots to interactively visualize multi-dimensional data. They called theirapproach rolling the dice, because the transition between different scatterplots in the matrixwas performed as animated rotations in 3D space. The users could build queries to refine thevisualization and could re-order the animation space to highlight correlations, inaccuraciesand differences among them. In the approach by Xie et al., the authors investigated differentapproaches for including uncertainty in visualizations using different viewingmethods, suchas Scatterplot Matrices, Parallel Coordinates and glyphs.

■ Uncertainty in Visual Analytics. Berger et al. [20] implemented an interactive system for thecontinuous analysis of a sampled parameter space with respect to multiple target values,using multiple linked views of 2D scatterplots and Parallel Coordinate Plots. Their approachcould guide the users to explore the data and to find interesting patterns in them, as wellas to detect inaccuracies and uncertainties. A similar approach was presented in the paperof Matkovic et al. [174], where they used multiple linked views, including 2D and 3D scatter-plots, histograms, Parallel Coordinates Plots and pie charts. The goal was to visualize andexplore data from simulations, which can usually be complicated and their correlations orcomparisons can be difficult to identify.
In forecast and meteorology visualization, uncertainty has also been often addressed.Potter et al. [216] first created an interactive and dynamic framework for the visualization ofuncertainty in the field of climate modeling and meteorology, by using multiple linked dis-plays. Noodles, a system for the exploration and visual analysis of forecast uncertainties,was later proposed by Sanyal et al. [238]. In this approach, Multiple Coordinated Views wereemployed to provide different views on uncertainty, such as with ribbons, glyphs, spaghettiplots and colormaps. This visualization was implemented to be used interactively for thedetection of the effect of a meteorological event on weather prediction.
In the medical field of application, Saad et al. [236] proposed an interactive tool for theexploration and analysis of probabilistic segmentation results. This approachwasmeant forthe analysis of regions with segmentation uncertainty, using a number of widgets that wereintegrating the analysis of multivariate probabilistic field data with direct volume rendering.Another paper proposing an interactive visualization of uncertainty in the medical field waspublished by Brecheisen et al. [33]. In this paper, the authors proposed a visualization tool
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that allows the visual exploration of the impact of small parameter variations on the resultof fiber tracking in Diffusion Tensor Imaging (DTI) data. The purpose of this paper was theassessment of sensitivity of chosen parameters and the evaluation of intra-patient results.
Additional or more specific systems andmethods for uncertainty visualization are goingto be addressed in the upcoming chapters. These systems will be more relevant to the topicof each chapter and will be discussed there in detail.

3.5. Evaluation of Visualization Solutions
Evaluation is an important aspect of the design and implementation process of visualiza-tion systems. In the field of visualization, many discussions have been conducted on thistopic. Recently, many papers providing guidelines and address methods for performing anevaluation have been published [12, 79, 130, 159, 181, 205, 245], also in the field of medicalvisualization [100, 255].

However, in this work, we have based the evaluation of all our visualization designs andimplementations on the paper of Lam et al. [159], which is more general and includes alsonotions, concepts and methodologies from the other evaluations schemes. Lam et al. cat-egorize evaluation approaches into seven scenarios for Information Visualization systems,which can also be applicable in Scientific Visualization or Visual Analytics systems. Thesecategories include the following seven scenarios:
• Understanding Environments andWork Practices (EWP), where feedback is requestedfrom a group of evaluation participants, with or without using the visualization sys-tems, through understanding the work, analysis or information processing practices.This can be performed with field observations or interviews.
• Evaluating Visual Data Analysis and Reasoning (VDAR), where a visualization systemis assessed on the basis of whether it supports analysis and reasoning and helps toderive knowledge in a domain. This is usually performed with case studies or con-trolled experiments.
• Evaluating Communication Through Visualization (CTV), where a visualization systemis evaluated based on whether it can communicate information for teaching/learningor it can help in presenting an idea. This can be performedwith controlled experimentsor field observations and interviews.
• Evaluating Collaborative Data Analysis (CDA), where the value of a visualization sys-tem to aid the collaboration of people in a team for data analysis is assessed.
• Evaluating User Performance (UP), which aims at measuring how specific features ofthe visualization system affect the performance of the user. This can be performedwith controlled experiments.
• Evaluating User Experience (UE), which aims at obtaining feedback and the opinionof the users on the visualization system. Informal evaluations, but also usability testsare employed to measure UP.
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• Automated Evaluation of Visualization (AEV), which is related to the measurement ofthe performance of the algorithm.
This categorization has been extended by Isenberg et al. [130] with one additional cat-egory: Qualitative Result Inspection (QRI), where evaluations are conducted by means ofqualitative discussions and assessments of visualization results, not by end users of thevisualizations, but by general viewers. The categories that are more relevant for our workare the EWP, VDAR, UP and UE. In the upcoming chapters, we will discuss in detail, for eachstep of the pipeline, how we built and performed our evaluations to assess the value of ourdesigned visualization solutions.3
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4
Visualization ofMulti-Dimensional Data

Above all else, show the data.

Edward R. Tufte (1942 - )

In this chapter, we present a novel technique for the extension of Parallel Coordinate Plots
(PCPs), a common choice for the representation and exploration of multi-variate, multi-dimen-
sional data. Among others, this kind of data are encountered throughout the entire radiother-
apy planning pipeline. The proposed enhancement aims at improving the display of the data
by emphasizing their underlying structure and patterns. Hence, it could be employed at all
steps of the pipeline, but also in other applications outside this domain. Chapter 4 is based on
the paper:
■ Raidou, R.G., Eisemann, M., Breeuwer, M., Eisemann, E. and Vilanova, A., 2016. Orientation-EnhancedParallel Coordinate Plots. IEEETransactions onVisualization andComputerGraph-ics (Proceedings of the Information Visualization 2016), 22(1), pp.589-598 [222].



4.1. Abstract

4.1. Abstract
Parallel Coordinate Plots (PCPs) is one of the most powerful techniques for the visualizationof multi-dimensional, multi-variate data. However, for large datasets the representation suf-fers from clutter due to overplotting. In this case, discerning the underlying data informationand selecting specific interesting patterns can become difficult. We propose a new and sim-ple technique to improve the display of PCPs by emphasizing the underlying data structure.We call this technique Orientation-Enhanced Parallel Coordinate Plots (OPCPs).

Our proposed OPCPs improve pattern and outlier discernibility by visually enhancingparts of each PCP polyline with respect to its slope. This enhancement also allows us tointroduce a novel and efficient selection method, the Orientation-Enhanced Brushing (O-Brushing). Our solution is particularly useful when multiple patterns are present or whenthe view on certain patterns is obstructed by noise.
We present the results of our approach with several synthetic and real-world datasets.Finally, we present the results of a user evaluation, which verifies the advantages of theOPCPs in terms of discernibility of information in complex data. The results also confirmthat O-Brushing eases the selection of data patterns in PCPs and reduces the amount ofnecessary user interactions compared with state-of-the-art brushing techniques.

4.2. Introduction
Parallel Coordinate Plots (PCPs) [128] are used for the visualization of multi-dimensional,multi-variate data. With the use of PCPs, multiple data dimensions are mapped one-by-oneto a number of parallel vertical axes, as described in Chapter 3. Eachmulti-dimensional dataobject is mapped to a polyline that intersects the axes, connecting the scalar values of everydimension [128], as depicted in Figure 3.3. PCPs are able to efficiently display in a single viewall 2D projections of adjacent data dimensions [126, 128, 303]. In this way, they enable theidentification of relations and the detection of data patterns or trends – especially with thehelp of interaction [112, 251] such as brushing [111] or reordering [13, 201, 285].

A limitation of PCPs is that they might suffer from clutter due to overplotting [112]. Thiscauses problems in data exploration and interpretation, especially in high density data. Re-ducing visual clutter in PCPs is an important topic [14, 91, 175, 188, 320]. However, most ofthe previous solutions are complex and focus mainly on aiding the detection of clusters inthe data [14, 320], not in revealing the overall data structure. In other cases, the proposedvisualizations may even unintentionally lead to concealing patterns and outliers [14, 188]. Fi-nally, other solutions require interaction to achieve clutter reduction [91, 175], which is notalways possible.
We propose a simple technique to improve the representation of datasets in PCPs: the

Orientation-Enhanced Parallel Coordinates (OPCPs). Our technique visually enhances spe-cific parts of each PCP line, depending on its slope. It enables discerning individual trendsand patterns, while it may even reveal patterns that are potentially obscured in traditionalPCPs. This enhancement also allows us to introduce a new brushing technique to facilitatepattern selection in complex data, the Orientation-Enhanced Brushing (O-Brushing).
Our work consists of the following two major contributions:
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• The concept of Orientation-Enhanced Parallel Coordinates (OPCPs) to improve theview and discernibility of patterns in otherwise cluttered PCPs, without loss of lowdensity data information or outliers.
• A versatile brushing technique based on the OPCPs: the Orientation-Enhanced Brush-ing (O-Brushing). It enables efficient selection of individual data structures, with re-duced user interaction.
The remainder of this chapter is organized as follows: Section 4.3 provides an overviewon previous work related to the topic of clutter reduction and discernibility improvement inPCPs. Section 4.4 is the core of this chapter, where the OPCPs and the O-Brushing tech-niques are presented and discussed. Section 4.5 presents the results of our proposed ap-proach, while Section 4.6 presents the results of our user evaluation. Finally, Sections 4.7and 4.8 conclude the chapter with a discussion on several points with respect to OPCPs andpropositions for future work.

4.3. Related Work
Many different techniques have been proposed for enhancing the display of multi-variatedata and for reducing clutter in InformationVisualization representations [80], includingPCPs.Some approaches require the manipulation of the axes of the representation, using reorder-
ing [13, 201, 285, 313]. These approaches are able to reveal hidden patterns and facilitatedata interpretation. However, in data with a large number of points reordering is insufficient.Other approaches involve visual enhancement of PCPs by rendering curves or splines insteadof lines [11, 102, 268, 320]. Such approaches are especially effective in reducing clutter at thecrossings of PCP lines, but they might suppress data patterns, such as outliers.

Another commonly encountered group of techniques requires clustering, combined withdifferent kinds of visual enhancements. Among these, we often encounter:
• manipulating PCPs by averaging polylines and visualizing correlation coefficients be-tween polyline subsets [250],
• filtering PCPs based on frequency or density of the data [14],
• combining polyline splatting for cluster detection and segment splatting for clutterreduction [319],
• using cluster-basedhierarchical enhancements andproximity-based coloring schemesto provide a multi-resolution view to the data [91],
• enabling context visualization at several levels of abstraction, both for the representa-tion of outliers and trends [188],
• using several transfer functions to reveal specific clusters andpatterns in the data [134].
All previously mentioned cases involve clustering methods and focus on detecting anddifferentiating specific clusters or trends in the data – not data patterns or underlying struc-tures. In certain cases, clustering solutions inevitably lose information in low density areas,
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4.4. Orientation-Enhanced Approach for PCPs

when reducing overplotting in high density areas. The approach of Zhou et al. [319] evenrequires animation, which is not always feasible. Finally, a more artistic approach was pro-posed byMcDonnell et al. [175]. It incorporates a variety of techniques when rendering PCPs,such as edge-bundling, visualization of the distribution and density of the data via opacityand shading or silhouettes for easy distinction of overlapping clusters. However, not all tech-niques can be used in a single view, as some of them do not work well, if combined.
PCPshave also beenused in combinationwith other representations, such asStarGlyphs[83, 227], radviz [21], or scatterplots [315]. As recognized byHolten et al. [123], combining scat-terplots with PCPs outperforms many other PCP variants, such as combining with colors,opacity, curved polylines or animations. PCPs have also been combinedwith histograms [92]to simultaneously show the density and slopes of polylines. This combination enables theexploration of clusters, linear correlations and outliers in large datasets, withmore emphasison data-driven and not pattern-revealing exploration.
Interactionmakes local and dynamic data enhancements possible. The use of lenses [78,307] or brushing are typical examples. As part of the XmdvTool [295], a number of differentbrushes have been proposed by Martin et al. [173] and Ward [296]. Depending on the infor-mation that needs to be shown in the data, different brushes are used for highlighting, linkingor masking the underlying data. Additionally, wavelet approximations are used to enhancebrushing [308], by showing different parts of the polylines at different resolutions. However,brushing two variables in a non-separable way has only been enabled by the angular brush-ing proposed byHauser et al. [111]. Themost important state-of-the-art brushing approachesrelated to our approach are presented in Figure 4.1.
To sum up, there are different approaches for data enhancement and readability im-provement in PCPs. However, most of the solutions aim at reducing clutter in PCPs by clus-tering the data, without giving a better understanding of the overall underlying structure. Datadetails such as outliers are often unintentionally hidden. Additionally, some solutions workbetter, or only on a screen, either because they are animated or because they require interac-tion. Finally, most of the approaches require complex steps, which means that they cannotalways be easily reproduced or used. In the following sections, we present our approach tohandle all aforementioned challenges.

4.4. Orientation-Enhanced Approach for PCPs
Our solution consists of two main components: the Orientation-Enhanced Parallel Coordi-nate Plots (OPCPs) for the visual enhancement of PCPs, which will be described in sec-tion 4.4.2, and the Orientation-Enhanced Brushing (O-Brushing) for the interactive selectionand analysis in OPCPs, which will be presented in section 4.4.3.
4.4.1. Background: Parallel Coordinate Plots

In a simple two-dimensional dataset with dimensions d1 and d2, a data point D = (y1, y2) isplotted as a PCP line. This line is intersecting the two vertical axes d1 and d2 at the positions
y1 and y2, respectively, as shown in Figure 4.2. When plotting the PCP lines, it is common toemploy opacity as a simple way of representing the density of the lines [112]. From now onwe will refer to this enhancement as density PCPs.
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Probing Area Brush

Composite Slider 

AND Brush
Angular Brush

Lasso Brush

Composite Slider 

OR Brush

Figure 4.1: Overview of different state-of-the-art brushing approaches for PCPs. With the red lines, wedenote the PCP lines in each case, which were selected with the brushing operations illustrated in blue.

𝐷 = (𝑦1, 𝑦2)
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𝑦1
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Figure 4.2: Schematic representation of the concept of PCPs for the simple case of a two-dimensionalpoint D with dimensions d1 and d2 and dimension values (y1, y2): (a) In a scatterplot. (b) In a PCP.

4

45
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4.4.2. Orientation-Enhanced Parallel Coordinate Plots

Holten et al. [123] conducted an evaluation of PCP variants, where they demonstrated that noother enhancement from the examined alternatives improves PCPs significantly apart fromcombining scatterplots with PCPs. Inspired by this paper, we investigated a simple way tocombine effectively the two representations to enhance the display of PCPs. Inmany papers,the combination of PCPs with scatterplots has been limited to having multiple interactivelinked views. This might entail memory limitations for the user, caused by switching theview between the two separate representations.
The goal of the proposed visual enhancement of PCPs is to provide a better understand-ing in the visualized data, by integrating PCPs and their corresponding scatterplots in oneview. A similar approach was followed by Yuan et al. [315]. However, this technique is com-plex and requires bending the polylines to fit to the points of the scatterplots. In contrast, weare looking for a simple approach that keeps the original appearance of PCPs intact. In theproposed OPCPs, the basic principle is to enhance the PCP lines with respect to their slope.This solution links PCPs and the corresponding scatterplot of the neighboring two axes, in anatural way. In the remainder of the subsection, we describe the steps that we followed forthe design of our OPCPs.

■Mapping. For illustration purposes, we demonstrate our concept using a two-dimensionalcase. For simplicity, we also assume that the data values for each dimension have beennormalized to the range [0,1]. In Figure 4.3 - a, we show a PCP line which is defined by itsdimension values (y1, y2) and a slope α:
α= y2 − y1

dx
, (4.1)

where dx is the distance between the two vertical PCP axes. In essence, we map the PCPline to a unique reference point P = (xp , yp ) in the space between the two PCP axes, with
xp ∈ [0,dx ] and yp ∈ [0,dy ], where dy is the length of the vertical axis, as shown in Figure 4.3- a. The slope in equation (4.1) is linearly mapped to xp , while yp is chosen to make P lie onits corresponding PCP line:

xp = d2
x

2dy
·α+ dx

2
(4.2)

yp = y1 +xp ·α (4.3)

In Figure 4.3 - b, we show an example with multiple PCP lines and their respective refer-ence points. Equations (4.2, 4.3) result into a point-to-point transformation – or warping –of a 2D scatterplot space to the OPCP space, as shown in Figure 4.4. This illustration showsthe link between the scatterplot points and the reference point positions on the PCP lines.
■ Representation. To visually enhance each reference point and to preserve the orienta-tion and context of its PCP line, we create a small line segment, which we call Orientation-Enhanced PCP (OPCP). It is a small segment that shares the original PCP line orientationand is centered at the reference point P .
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Figure 4.3: Schematic representation of the concept behind OPCPs: (a) Mapping of the slope α of thePCP line (y1, y2) to the reference point P = (xp , yp ) between the two PCP axes. (b) Mapping of the slopesof multiple PCP lines to their corresponding reference points in the PCP space.

y x y 

x 
(a) (b) 

Figure 4.4: Schematic representation of the transformation from (a) the scatterplot space to (b) theOPCP space. Here, we use a 2D colormap [229] and annotations to show the point-to-point correspon-dence from one space to the other.

Assigning a constant intensity and a given length to each segment would result intoOPCP segments that would not be visually separated, if they would be very close to eachother. Therefore, we vary the intensity of the segments using a kernel smoother. We smooththe edges of the segments and assign higher intensities in the middle, which is the locationof the reference point P , as shown in Figure 4.5.
This desired intensity profile can be achieved with peak-shape kernels, such as a Gaus-sian kernel [101]. The intensity I of the OPCP segment, resulting from a reference point

P = (xp , yp ) after applying the Gaussian kernel, will be described as:
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Figure 4.5: Alternatives considered for the intensity encoding of the OPCP segments. Next to each case,we show also the intensity profile.

I (xs ) = k ·exp
(
− (xs −xp )2

2 ·σ2

)
, (4.4)

where σ is the bandwidth of the kernel, which is user-defined, and k is a scale factor, whichrelates to the height of the peak and is given by: 1
σ
p

2π
. The bandwidth σ has an impact

on the length of the OPCP segment: larger σ values result in smoother and wider-spreadsegments. Figure 4.6 shows an example of OPCPs applied to three simple synthetic casesand the effect of σ on their appearance.
■ Visual Enhancement. In the paper of Harrison et al. [109], it is stated that PCPs can em-phasize specific correlations more than others. Depending on the data aspects that needto be emphasized, we propose to employ three enhancement methods: gamma correction,transfer functions, and histogram equalization.

Gammacorrection [101] allows the user to remap the levels of the intensity range, in orderto discernmore details in the darker parts of the OPCP segments. This can be accomplishedwith low values of gamma, while increasing values of gamma sharpen the OPCPs. Gammacorrection is applied per pixel, transforming the intensity I to Ig cor r = Iγ. The effect of theparameter γ is depicted in Figure 4.7.
The effect of gamma correction can be generalized by applying a transfer function (TF),
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𝜎 = 5 𝜎 = 10 𝜎 = 20 Scatterplot Density PCPs 

Negative 
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Figure 4.6: Effect of the σ value of the Gaussian kernel on OPCPs, for three simple synthetic cases. Toincrease the visibility of the segments, we have linearly scaled the image intensities to the range [0,1].

aiming at controlling the contrast in the representation. As introduced in the work of Jo-hansson et al. [134], different TFs affect the appearance of different data aspects. A linearTF gives an overview on the data, a logarithmic TF enhances low density areas, a square rootTF emphasizes outliers in the data, and a quadratic TF enhances the high density areas. Theeffect of the four previously mentioned TFs is shown in Figure 4.8.
Optionally, histogram equalization [101] reassigns the intensity values of an image, suchthat the output will exhibit a uniform distribution of intensities. Histogram equalization cancreate a background-foreground effect and enable better discernibility of different patternsin the data, especially in the presence of noise or of strong patterns. The impact of histogramequalization in OPCPs is depicted in Figure 4.9.

■ Overlay. We enhance PCPs by overlaying the OPCP segments on top of the traditional PCPpolylines – for example, on density PCPs. To this end, we employ alpha blending [208], asshown in Figure 4.10 - a. Overlaying OPCPs on top of PCPs helps in preserving the main ben-efit of the latter, which is the connectivity across data dimensions. In this way, PCP polylinebundles can still be traced.
Additional color encoding of OPCPs can enhance and visually separate them from theunderlying PCPs, as shown in Figure 4.10 - b. To reduce as much as possible the chancesof distracting the user by overlaying OPCPs on the PCP polylines and interfering with PCPbundle tracking, the appearance of OPCPs can be further adjusted. The user can modify thecolor and opacity of the OPCP segments, but also to fine-tune the σ and γ values tomake theOPCPsmore or less prominent. For the purpose of thiswork, we encode theOPCP intensitiesas black color values in the explanatory examples and red in the overlay examples.
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Figure 4.7: Effect of the gamma correction on the appearance of the OPCPs. Here, the σ value was setto 10 and the image intensities were scaled to the range [0,1].

      

Linear TF Logarithmic TF Square Root TF Quadratic TF 

  

 

Figure 4.8: Enhancement of different data aspects, using transfer functions (TFs). Here, we use a syn-thetic dataset with a dominant linear relation among the dimensions and a few outliers. The bandwidth
σ was set to 10 and the image intensities were scaled to the range [0,1].

■ Parameter values. The parameters involved in the visual enhancement of the OPCPs, suchas the bandwidthσ and the gammacorrection valueγ, should dependon the specific aspectsof the data that need to be brought forward. Therefore, we do not assign a specific set ofvalues, but allow them to be user-controllable. In our interactive tool, we initially assign a setof values (σ=10 and γ=1), which give already a good result, but can be changed adequately
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With Histogram Equalization No Histogram Equalization 

Figure 4.9: Effect of histogram equalization on the appearance of OPCPs. Here, the σwas set to 10 and
γ to 1.

 

 

 

(a) (b) 

Figure 4.10: Example of alpha blending in random noisy data: (a) Alpha blending of histogram equalizedOPCPs with density PCPs. (b) Color encoding of the foreground blended OPCPs (red) and backgrounddensity PCPs (black).

by the user.
4.4.3. Orientation-Enhanced Brush (O-Brushing)

Brushing [112, 251] is a common strategy for the selection of polylines of interest in PCPs.However, when the amount of plotted lines increases, this selection becomesdifficult. OPCPshave an important property: they establish for each 2D data point a unique position in thespace between each pair of the PCP axes. This allows us to introduce a new brushing ap-proach that is applied in the OPCP space, for easier and more efficient selection of specificdata patterns, which we name Orientation-Enhanced Brushing (O-Brushing).
O-Brushing is performed on OPCP segments in two ways: either with a traditional brush

4

51



4.5. Results

metaphor (O-Brush) or with a prober (O-Prober). These two methods are shown in Fig-ure 4.11. The O-Brush acts as a lasso brush [112], applied only in the OPCP space. It requirestwo user interactions, namely two clicks. The O-Brush is shown in Figure 4.11 - a. The O-Prober is an interactive rectangle that can be resized and moved around the representation,as depicted in Figure 4.11 - b. It works similarly to an area brush applied only in the OPCPspace. It requires maximally three interactions, namely, 2D resizing and translation.
Compared to traditional brushing methods, the O-Brush and O-Prober act only in theOPCPspace, hereby allowing for amore precise and local selection and resulting in a reducedamount of required user interaction. The O-Prober and the O-Brush can produce the sameresult, but their main difference is that the former can be used to probe through the datasetfor multiple similar patterns – for example, for lines with a given slope or a range of slopes –employing minimal user interaction. In our current implementation, the O-Prober is a simplemovable rectangle of user-defined size, but it could be easily extended to arbitrary shapes.
Figure 4.12 shows a comparison of the O-Brushing methods with their alternatives fromexisting literature. It depicts for each brushing technique the best achieved result, and theuser interactions required to select one specific pattern of interest. In this example, thespecific selection is only possible with the composite slider brush and the two proposedO-Brushing methods. However, the two O-Brushing methods require fewer user interactionsthan the composite sliders. In our interactive implementation, we included also the state-of-the-art brushes, to enable users to perform selections both in the traditional PCP space andthe OPCP space.

4.5. Results
In this section, we present the results obtained by the application of OPCPs and the O-Brushing to different datasets, intending to provide a deeper understanding into the OPCPsspace and its characteristics. To this end, the visualization of the OPCPs was implemented

 

𝑃1 

O-Brush 

𝑃2 

𝑃1 

𝑃2 

O-Prober 

Figure 4.11: Schematic representation of the concept behind O-Brushing. The thick gray segmentsrepresent an OPCP for each underlying PCP line. With red we denote the selections in each case, whilewith blue we depict the brushing operation.

4

52



4.5. Results

Composite Slider Brush

2 interactions (4 clicks)

Lasso Brush

1 interaction (2 clicks)

Angular Brush

2 interactions (3 clicks)

O-Brush

1 interaction (2 clicks)

O-Prober

max. 3 interactions

Figure 4.12: Example for the comparison of O-Brush and O-Prober against traditional brushingmethods,when attempting to select the same part, i.e., data points with middle values of both dimensions. Allbrushes have been applied individually to the data. In this example, the lasso and area brush do notsucceed in selecting the specific data region. We show also the number of user interactions, i.e., thenumber of clicks, required for each of the brushes. The composite slider brush requires maximally fourclicks, the O-Brush requires two clicks and the O-Prober requires maximally 3 user interactions (resize inboth dimensions and translate). Here, red is used to encode the OPCPs and blue to denote the selectedPCP lines, using each of the brushes.

in Python on the GPU, using OpenCL. The interaction for the brushing was realized using theVisualization ToolKit (VTK) [2].
We tested the OPCPs on two different types of data. First, inspired by previous work [134,315], we tested the behavior of OPCPs on a number of synthetic cases with two-dimensionaldata with 1000 data points, containing predefined patterns and structures. PCPs and OPCPsare meant for multi-dimensional data, but we employ these two-dimensional examples forillustration purposes. Secondly, to demonstrate a real usage scenario of OPCPs, we usedmulti-variate data obtained from various databases [1, 4, 135, 164].

4.5.1. Results with Two-Dimensional Synthetic Stimuli

In Figure 4.13, we show our approach as applied to the synthetic stimuli, together with theircorresponding scatterplots and density PCPs. From this figure, the warping transformation
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of the scatterplot space on the PCPs, which was described in section 4.4.2, becomes obvi-ous. From these examples, we confirmed that the OPCPs, in comparison to PCPs, facilitatethe discernibility of multiple data patterns, data outliers and also data structures obstructedby noise. In the remainder of the section, we illustrate this with additional examples.
■ Discernibility of data patterns. We assume two main subcategories of relationships inthe data: either there is a single relationship in the data, which is not immediately recogniz-able; or there are multiple and more complex relationships. Examples of both results wereshown in Figure 4.13. In the first category, we include four different stimuli. For the cubicand square root stimuli, the OPCPs facilitate the identification of the different patterns com-pared to PCPs, because of the visible correspondence to the scatterplot space. Additionally,the double spread and sinusoidal stimuli, have a similar appearance when shown in the den-sity PCPs. However, the OPCPs allow to see that these are different patterns. Finally, forthe second category, it is also easier to identify the multiple relations between the two datadimensions - or data clusters - when employing the OPCPs, as depicted in Figure 4.13.
■ Discernibility of data outliers. We use two synthetic stimuli, for which the dimensions arelinearly correlated, as shown in Figure 4.14. In addition to this, the second stimulus containssome outliers. By overlaying the OPCPs on the density PCPs, we enhance the main patternin the data, which is a linear relationship, without obscuring the outliers.
■ Discernibility of noise-obstructed data structures. We created two stimuli with initially nocorrelation between the two dimensions, as shown in Figure 4.15. In addition to this, a struc-ture with a linear relationship between the dimensions was then added to the second stimu-

Single Relationships Multiple Relationships 

Scatterplot Density PCPs OPCPs Scatterplot Density PCPs OPCPs 

      

      

      

      

      

square root 

cubic 

double spread 

sin 

Figure 4.13: Examples showing that the OPCPs allow the discernibility of (multiple) patterns or clustersin the synthetic stimuli.
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Scatterplot Density PCPs OPCPs 

   

 
  

Figure 4.14: Examples showing that the OPCPs enable the discernibility of outliers in the syntheticstimuli.

Scatterplot Density PCPs OPCPs 

   

   
 

Figure 4.15: Examples showing that the OPCPs enable the discernibility of noise-obstructed structuresin the synthetic stimuli.

lus. In density PCPs, this structure is hidden. By overlaying the OPCPs on the density PCPs,we can visually enhance the obstructed data structure and recover the underlying relation.
4.5.2. Results with Multi-Variate Synthetic and Real Data

In a real-world analysis, PCPs are used to visualize multi-variate data. To additionally as-sess our approach, we employ more complex data with more realistic data patterns acrosstheir dimensions. Among these datasets, we included four well-known datasets from vari-ous databases. The employed datasets are the apartments dataset from the database ofTU Braunschweig [1] with 2,290 data points, the Venus dataset from the database of theXmdvTool [4] with 8,784 data points, the Out5d dataset from the database of the Xmdv-Tool [4] with 16,384 data points and the household dataset from UCI repository [164] with
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Venus (8,784 datapoints) 

  
 

Out5d (16,384 datapoints) 

   
 

household (2,075,259 datapoints) 

  

Figure 4.16: Application of OPCPs to multi-variate synthetic or real data obtained from variousdatabases [1, 4, 164].

2,075,259 data points. Figure 4.16 shows the results of using OPCPs to represent the abovementioned datasets. The OPCP advantages discussed in section 4.5.1 are again apparent inthese cases.
In the apartments dataset, especially between the first two data dimensions, multipledata patterns are emphasized. They are alsomore discernible when using OPCPs, as shownin Figure 4.16 - a. This also occurs between the second and third dimension of the samedataset, as depicted by Figure 4.16 - b. In this dataset, OPCPs are also able to bring forwardoutliers – for example, between the second-third and third-fourth data dimensions, whichwere not easily discernible in the density PCPs, as can be seen in Figure 4.16 - c.
In the Venus dataset, the OPCPs facilitate the identification of distinct patterns – forexample, three patterns between the second and third data dimension, as depicted in Fig-ure 4.16 - e. In addition to this, OPCPs allow to visually enhance the multiple small clustersbetween the first two dimensions, which is shown in Figure 4.16 - d, as well as outliers be-tween the third and fourth data dimension that are not visible in the respective density PCPs,presented in Figure 4.16 - f.
In the Out5d dataset, pattern identification becomes easier throughout all dimensions,especially in parts of the representation, where the patterns are obstructed by noise. Anexample of this is visible in Figure 4.16 - g,h,i, in the last three dimensions of the data.
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Finally, in the household dataset, between the first two dimensions, but also betweenthe third and fourth dimensions of the data, patterns that were not visible in the traditionaldensity PCPs are brought forwardwith the use of OPCPs. This is demonstrated in Figure 4.16- j,k. Especially, in Figure 4.16 - k, there are two main patterns in the data, which appearas a single pattern in the density PCPs. Also, between the last two data dimensions thereare several outliers, which are significantly enhanced with the OPCPs, as can be seen inFigure 4.16 - l.
■ Advantages of the O-Brushing. Based on the added benefits of OPCPs, it is expected thatO-Brushing will facilitate the selection of the respective data structures in the OPCP space, incomparison to state-of-the-art brushing methods, which act in the PCP space. In this work,we compare our proposed O-Brushing to methods, such as the lasso brush, the angularbrush and the composite slider brush. Examples of the use of O-Brushing are shown inFigure 4.12 and Figure 4.17.

  

(a) (b) 

Figure 4.17: Examples showing that the OPCPs allow the selection of (a) outliers and (b) noise-obstructed structures in the data.

4.5.3. Performance

The performance of our approachwas tested on several datasets from various databases [1,4, 135, 164]. The datasets vary between 1,000 and 2 million data points. The test was con-ducted on an Alienware Aurora R4 with an Intel Core i7-4820K @ CPU 3.70GHz Processor,16GB RAM and NVIDIA GeForce GTX 780. The performance results are depicted in Fig-ure 4.18. The system is implemented on the GPU and enables interactive brushing. TheO-Brush and O-Prober can be employed for almost real-time data-driven selection.

4.6. Evaluation
To test our approach with respect to the state-of-the-art, we conducted a user evaluation.We used the implemented interactive prototype, which enables visualizing data with den-sity PCPs and OPCPs, as well as data selection with all five brushing techniques: compos-
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Figure 4.18: Performance times of OPCPs for multi-variate synthetic or real data from variousdatabases [1, 4, 135, 164].

ite slider brushes, classical lasso brush [112], angular brushing [111], as well as our two O-Brushing approaches.The evaluation was designed based on the paper of Lam et al. [159] and consisted oftwo main parts. The first part was a controlled user study to measure User Performance(UP) [159] with the OPCPs and O-Brushing, against density PCPs and traditional brushing.For this part, we performed three experiments, which are described in detail in the follow-ing subsections. The second part consisted of answering a questionnaire to measure UserExperience (UE) [159], using Likert scales, ranking, and open questions.
We employed 16 participants, with various backgrounds: Computer Science (11, out ofwhich 5 fromComputerGraphics and4 fromVisualization), Electrical Engineering (3), Physics(1) and Biomedical Engineering (1). Most of them (9) had preliminary knowledge of PCPs, al-though only one participant had worked with PCPs before. Before the evaluation, we gave ashort introduction, we demonstrated the functionality of the prototype – for example, howto perform data selections with each method –, and we allowed participants to use it, untilthey felt confident with it. In average, people spent around 5minutes on the prototype beforethe experiment.

4.6.1. First Part: User Performance

We performed three experiments. The first experiment aimed atmeasuring the performanceof users in discerning patterns, outliers, and data structures obstructed by noise using den-sity PCPs or OPCPs. We created two comparable, two-dimensional synthetic datasets percase, and we visualized them with both representations. Then, we showed static images ofthe representations to the users in a randomized order, and we asked them to perform tasks,
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such as identifying and pointing out patterns in the data, outliers and noise-obstructed datastructures. For each one of the static images, we measured the time that users needed togive a conclusive answer and accuracy of their answers. Since the data were synthetic, wealready knew the exact number of the required structures in the data. Thus, every wrong orunidentified pattern was penalized in the accuracy measurement.
The second experiment aimed at measuring user performance in selecting specific pat-terns, outliers, and noise-obstructed data structures, with state-of-the-art brushing or O-Brushing. We created a two-dimensional synthetic dataset per case. We showed staticimages to the users, explaining which part of the data needed to be selected. Then, weasked them to perform a selection of the previously specified data part, using only one ofthe brushing techniques at a time, in a random order. All tasks were possible with all meth-ods. Again, we measured time, accuracy, and number of interactions, or number of clicks,required for task completion.
The third experiment aimed at measuring performance with multi-variate, complex dataand tasks. We created two comparable five-dimensional synthetic datasets, using the PCDCtool [34]. Then, we designed a set of questions, which were related to identifying and/orselecting data patterns, outliers and noise-obstructed structures. The users were asked toapply traditional brushing to one of the datasets with PCPs, and O-Brushing to the otherdataset with OPCPs to perform the given tasks. The order of the dataset and approach,as well as their combination, was alternated randomly, to reduce bias from learning. Wemeasured completion time, accuracy and number of interactions, or clicks, required fromthe user for the task completion.
The outcomes of the statistical analysis of the experiments are summarized in Fig-ures 4.19 - 4.21, at the end of this chapter. The first and third experiment were analyzedwith paired t-tests, while the second was analyzed with ANOVA and Tukey’s HSD test.
The results of the first experiment (Figure 4.19) indicate that identification of patterns,outliers and noise-obstructed structures is more accurate with OPCPs than with PCPs (ρ <

0.01). Especially, in case where a structure is obstructed by noise in the data, the OPCPswere much more accurate (µ = 1,σ = 0) than PCPs (µ = 0.06,σ = 0.25). The distinction ofnoise-obstructed structures is also faster (ρ < 0.05) in OPCPs: users required half the time torecognize these kinds of structures in the data with OPCPs than with PCPs. For pattern andoutlier detection, there is no conclusive result for the time performance, but the accuracy issignificantly improved with OPCPs.
The outcome of the second experiment (Figure 4.20) shows that O-Brushing is fasterand more accurate (ρ < 0.01), in all cases. For pattern and outlier selection, O-Brushing alsorequires significantly less interactions (ρ < 0.05). From Tukey’s HSD test, it results that thereis no statistically significant difference between the performance of users when using theO-Brush or the O-Prober. Based on this test, the overall ranking of the different brushingtechniques for the three investigated tasks results as: the two variants of O-Brushing, angularbrushing, composite brushing using sliders and lasso brushing.
The results of the third experiment (Figure 4.21) demonstrate that our approach is moreaccurate than the state-of-the-art approach, for the four given tasks. The combined use ofOPCs with O-Brushing had an average accuracy of 0.96 for all tasks, while traditional PCPswith standard brushing only 0.75. In this experiment, there were no indications that pattern
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discernibility requires less time with OPCPs. However, for the other three tasks the use ofOPCPs and the proposed O-Brushing makes a big difference in performance times. For ex-ample, for pattern selection our approach requires half the time of the traditional approach.Overall, there is an indication that when selection is involved, our approach is also signifi-cantly faster and requires less interaction (ρ < 0.05).
4.6.2. Second Part: User Experience

The second part of the evaluation consisted of conducting a survey. First, we asked usersto grade PCPs and OPCPs and, also, the five previously used brushing methods, using Likert
scales. The outcome of the statistical analysis of the experiments is summarized in Fig-ure 4.22. From the statistical analysis, it resulted that the PCPs were easier to understand,but the OPCPs were considered significantly easier to use (4.13), more useful (4.44) and alsomore suitable for the identification of patterns (4.44), outliers (4.38) and noise-obstructeddata structures (4.31), compared to traditional PCPs. Moreover, the composite sliders andO-Brushing were considered easier to use and useful, while the easiest to understand werecomposite sliders and the O-Prober. The sliders and O-Brushing were considered most suit-able for pattern selection, while for outlier and obstructed structure selection only O-Brushingwas preferred.

The next part of the questionnaire consisted on ranking the two representations usingthe same scale and the five brushing methods. The OPCPs were ranked significantly higher(8.31) than the PCPs (5.81) (ρ < 0.05), while the O-Brush and the O-Prober were ranked sig-nificantly higher (8.25 and 8.29, respectively) than the sliders (6.50), the lasso (4.81) and theangular brushing (5.25) (ρ << 0.01).
The questionnaire was concluded with open questions. The participants replied that theOPCPs can be very strong in structure detection in the data, especially when there is a lot of

overlap in the data. However, the OPCPs take more time to get used to and might require
some training for naive users. Also, finding simple correlations across dimensions can be
easier sometimes with PCPs only. O-Brushing makes it easier to select patterns locally, but
O-Prober could be improved by using also different shapes, other than the rectangle. Mostusers commented that our approach supported themmore in the identification and selectionof patterns and outliers, in particular. For simple cases, due to the fact that OPCPs requireprior familiarization and training, theymight be less suitable. However, for cluttered data, theadvantages are straightforward.
4.7. Discussion
The results of the application of OPCPs on synthetic and real datasets presented in sec-tion 4.5, as well as the evaluation results of section 4.6, brought forward a number of limita-tions and raised several points for discussion.

Firstly, the proposed OPCPs are a visual enhancement of PCPs that enables the discerni-bility of patterns, outliers and noise-obstructed structures in the data. In the paper of Holtenet al. [123], it is stated that combining scatterplots with PCPs can result in significant per-formance gains for the users. In many papers, the combination of PCPs with scatterplotsis limited to having multiple linked views, where interactive linking and brushing can reflectselections from one representation to the other. However, in this case, users need to switch
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between windows and use their mental memory for data exploration and analysis – for ex-ample, when the user performs an operation and sees the result in another window.
Our OPCPs, instead, are not aiming at substituting scatterplots or at using linked scatter-plot views. They focus on giving a better understanding of the data represented by PCPs, byintegrating in a seamless way the two representations in one, combining their benefits andreducing the memory limitations that result from switching between the two separate rep-resentations. We consider that a comparison between scatterplots linked to PCPs againstOPCPs is out of the scope of this work, as the latter is a visual enhancement of PCPs andnot a new representation on its own. Still, if a user would consider it necessary, OPCPs couldbe linked to additional scatterplots. In this case, it would make sense to investigate a com-parison between scatterplots linked to PCPs, and scatterplots linked to OPCPs.
Additionally, from our evaluation it resulted that the interpretability of the patterns mightnot be straightforward. Our approach requires a certain level of familiarization with the en-hancement. However, during the evaluation, the users were able to identify patterns moreaccurately than with traditional PCPs. Also, the cognitive load induced by the use of OPCPsis not so significant, to slow down the analysis of the data. As it can be seen in the eval-uation results, in the vast majority of the tasks, the time needed to perform an operationusing OPCPs and the related O-Brushing is significantly less than the time needed to per-form the same operation with state-of-the-art techniques. This is a first indication that theinterpretability of patterns in OPCPs is not compromised. In a future additional evaluation, itwould be interesting to research this further.
Moreover, there was no evidence so far that the use of OPCPs might be distractive forthe user or interfering with bundle tracking. OPCPs are a new visual enhancement that re-quires some training, as pointed out by users. However, in our interactive tool the appearanceof OPCPs can be adjusted by fine-tuning the σ and γ values to make the enhancement asprominent as the user would like. Also, there is always the option to adjust the color andopacity of the OPCP segments, to interfere less with the underlying PCPs and the polylinebundles. In the user evaluation, we included tasks where bundle tracking was necessary.In these cases, the users could perform the tasks without problems. However, for a moreconclusive answer to this point, a more extensive study would be required.
For the brushing functionality, in the interactive version of our tool, the users can selectin which of the two spaces – PCP space or OPCP space – they would like to brush. Inthe OPCP space, the two proposed O-Brushing methods can be employed, while in the PCPspace, state-of-the-art brushing, such as angular or lasso or composite brushing, can beused. As some users stated during the evaluation, having the possibility to choose the spaceto perform selections on the data is useful in different occasions: for example, if the userneeds to perform selections based on the range values of some dimensions, state-of-the-art brushing methods are more appropriate and more straightforward to use. However, ifspecific patterns, or outliers or structures in the data need to be selected, then O-Brushing ismore efficient.
To conclude with, we foresee some limitations of our approach. First, OPCPs requiresome familiarization, as they are not immediately intuitive. Additionally, they require a widerspacing between the dimension axes as compared to traditional PCPs in order to be effec-tive. Moreover, the OPCPs should be accompanied by PCPs, to preserve context and con-nectivity across dimensions. Finally, the O-Prober could improve by using free-hand shapes
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or a scribbling interface instead of the predefined rectangle. This would enable easier, fasterand more accurate selection of specific patterns with OPCPs, similarly to the shape-basedmethod proposed by Muigg et al. [179].

4.8. Conclusions and Future Work
Parallel Coordinate Plots exhibit overplotting, which results in a cluttered view on the data.Therefore, discerning the underlying data information and selecting interesting patterns canbecome difficult. We proposed a new technique, the Orientation-Enhanced Parallel Coordi-nate Plots, to improve the view and discernibility of patterns in otherwise cluttered PCPs.We achieved our goal by visually enhancing parts of each PCP line with respect to its slope,hereby incorporating information from scatterplots in the representation [123].

Compared to the state-of-the-art, our approach is simple and provides better discernibil-ity of data patterns, especially when there are multiple overlapping patterns or when thereare outliers and structures, obstructed by noise. We evaluated our approach with severalsynthetic and real-world datasets. One of the main advantages of OPCPs is that they allowa new and versatile selection method, the Orientation-Enhanced Brushing. Brushing in theOPCPs space enables an efficient selection of individual data structures involving a reduceduser interaction when compared to the state-of-the-art selection tools in PCPs. On the otherhand, OPCPs require more training, compared to PCPs.
A direction for future work includes employing color transfer functions in the OPCPs forbetter discrimination of the different data patterns, or even clustering. Moreover, it wouldbe interesting to extend the evaluation of our proposed visual enhancement, but also of therelated brushing method, to cover the points discussed in section 4.7. Finally, the extensionof the O-Prober to other shapes should allow easier, faster, and more interactive selectionsof data patterns.

4

62



4.8. Conclusions and Future Work

 

Figure 4.19: Results for the experiments conducted as part of the evaluation, for the first experimentof the User Performance (UP) part (performance in discerning patterns, outliers, and data structuresobstructed by noise using density PCPs or OPCPs) with two datasets (D1, D2). The small white circlesdenote outliers in themeasurements. The asterisks denote a statistically significant difference (ρ <0.05)between the measurements, as it resulted from our statistical analysis using a paired t-test.
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Figure 4.20: Results for the experiments conducted as part of the evaluation, for the second experi-ment of the User Performance (UP) part (performance in selecting specific patterns, outliers, and noise-obstructed data structures, with state-of-the-art brushing or O-Brushing). The small white circles de-note outliers in the measurements. The asterisks denote a statistically significant difference (ρ <0.05)between the measurements, as it resulted from our statistical analysis using ANOVA and Tukey’s HSDtest.
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Figure 4.21: Results for the experiments conducted as part of the evaluation, for the third experimentof the User Performance (UP) part (performance with multi-variate, complex data and tasks). The smallwhite circles denote outliers in the measurements. The asterisks denote a statistically significant dif-ference (ρ <0.05) between the measurements, as it resulted from our statistical analysis using a pairedt-test.
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Figure 4.22: Results for the experiments conducted as part of the evaluation, for the User Experience(UE) part. The asterisks denote a statistically significant difference (ρ <0.05) between the measure-ments, as it resulted from our statistical analysis using ANOVA and Tukey’s HSD test.
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5
Visual Analytics for theExploration of Imaging Modeling

Well, I must endure the presence of a few caterpillars,
if I wish to become acquainted with butterflies.

Antoine de Saint-Exupéry (1900 - 1944), The Little Prince

In this chapter, we present a novel technique for the representation, exploration and visual
analysis of variations in imaging features, derived by means of pharmacokinetic modeling.
Our approach supports the exploration of variations in the derived features, across modeling
choices, in a single combined view. Particular emphasis is given on the association of obser-
vations from the feature space to patient anatomy. Chapter 5 is based on the paper:
■ Raidou, R.G., van der Heide, U.A., van Houdt, P.J., Breeuwer, M. and Vilanova, A., 2014. TheiCoCooN: Integration of Cobweb Charts with Parallel Coordinates for Visual Analysis of DCE-MRI Modeling Variations. Proceedings of the Eurographics Workshop on Visual Computingfor Biology and Medicine (VCBM 2014), pp. 11-20 [227].



5.1. Abstract

5.1. Abstract
Efficacy of radiotherapy treatment depends on the specific characteristics of tumor tissues.To determine these characteristics, clinical practice uses Dynamic Contrast Enhanced (DCE)Magnetic Resonance Imaging (MRI), as already described in Chapter 2. DCE-MRI data isacquired and modeled using pharmacokinetic modeling, to derive per voxel a set of param-eters that are indicative of tissue properties. However, different pharmacokinetic modelingapproaches can be employed – thus, making different assumptions and resulting in param-eters with different distributions or even in different parameters. A priori, it is not knownwhether there are significant differences under different modeling assumptions, and whichassumption is best to apply. Therefore, clinical researchers need to know at least how differ-ent choices in modeling affect the resulting pharmacokinetic parameters and the locations,where parameter variations are occurring more frequently .

In this paper, we introduce the iCoCooN: a visualization application for the explorationand analysis of model-induced variations in pharmacokinetic parameters. We designed avisual representation, the Cocoon, by integrating in a perpendicular setting, Parallel Coordi-nate Plots (PCPs) with Cobweb Charts (CCs). PCPs display the variations in each parameterbetween modeling choices, while CCs present the relations in a whole parameter set, foreach modeling choice. The Cocoon is equipped with interactive features to support the ex-ploration of all data aspects, in a single combined view. Additionally, interactive brushingallows to link the observations from the Cocoon to the anatomy of the patient.
As part of this work, we conducted evaluations with experts and also with general users.The clinical experts judged that the Cocoon, in combination with its features, facilitates theexploration of all significant information and especially enables them to find anatomical cor-respondences for their observations from the feature space. The results of the evaluationwith general users indicate that the Cocoon produces more accurate results, compared toindependent small multiple views.

5.2. Introduction
Asmentioned in the early chapters of this dissertation, the efficacy of radiotherapy is hypoth-esized to depend on the specific characteristics of tumor tissues. Tumor characterizationrequires the use of different imaging modalities, among which Dynamic Contrast Enhanced(DCE) Magnetic Resonance Imaging (MRI). These are time series of three-dimensional im-age volumes, which reflect the absorption of a contrast agent by tissues as a function oftime after injection. After DCE-MRI data acquisition, clinical practice uses one of the estab-lished models to derive a set of output parameters per voxel, which is indicative of tissuecharacteristics. However, different modeling approaches require different assumptions orchoices. Depending on these choices, the resulting parameters might present different val-ues or might be fundamentally different.

It is difficult to decide beforehand whether different assumptions or choices lead to sig-nificant parameter differences and which assumption leads to a better description of thetumor tissues. Therefore, it is valuable for clinical researchers to explore the variability inthe parameter values, as given by the different alternatives. In this way, they can identifywhich anatomical regions are affected more by the modeling choices and whether this has
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an impact on the final clinical decision and treatment. Apart from exploring variations inthe parameters independently, it is also important to know how the relationships betweenparameters change. Still, these relationships are complex and the effect of different assump-tions on DCE-MRI modeling is difficult to predict. To the best of our knowledge, there is notool that allows this kind of inspection.
In this paper, we introduce a new application: the iCoCooN (Integrated Cobweb Chartsand Parallel Coordinate Plots for Visual ANalysis of DCE-MRI Modeling Variations). It is avisualization tool for the exploration and analysis of variability in the parameter values thatresult fromdifferent choices during DCE-MRImodeling. As part of the iCoCooN, we designeda new representation: the Cocoon. For this, we integrated Parallel Coordinate Plots (PCPs)with Cobweb Charts (CCs), which are also called Star or Spider Plots, Radar Charts or Kiviatsin literature. In this way, we manage to simultaneously show different significant aspects ofthe data and to provide a more effective exploration. The interactive features of iCoCooNfacilitate data exploration and improve anatomical interpretation.
After the design, we conducted an evaluation of iCoCooNwith clinical experts, where weperformed two case studies, with patient data. Due to the limited amount of field experts, weconducted an additional usability study with non-experts, to increase the statistical powerof our evaluation. Our work presents the following contributions:
• The iCoCooN is a new interactive application that enables the visual analysis of DCE-MRI modeling variations and, especially, the association of the observations from theparameter space to the patient anatomy.
• The Cocoon is a visual representation within the iCoCooN, which results from the in-tegration of PCPs with CCs. It enables the exploration and analysis of the DCE-MRImodeling information in a single combined view.
• The evaluations demonstrate the potential of the iCoCooN for the analysis of DCE-MRImodeling variations.
The remainder of this chapter is organized, as follows: Section 5.3 summarizes the nec-essary clinical background information. Section 5.4 provides an overview on previous work.Section 5.5 is the core of this chapter, where the design of our proposed approach is pre-sented and discussed. Section 5.6 presents the results of our evaluations. Finally, Section 5.7concludes the chapter with a discussion and propositions for future work.

5.3. Clinical Background
Dynamic-Contrast Enhanced (DCE) Imaging is a commonly usedMRI technique in cancer di-agnosis. The basic concepts of DCE-MRI data have already been described in Chapter 2. Asa short reminder, these are 4D data, which depict the absorption and washout of a contrastagent (CA) in tissue over time, based on the idea that this process happens differently, in dif-ferent tissues. Usually, pharmacokinetic (PK) models [153, 257, 272] are employed to deriveper voxel a set of PK parameters, indicative of tissue characteristics, as shown in Figure 2.8(Chapter 2).

Each PK model contains a number of assumptions or crisp choices [61, 152, 197, 283],which may affect the values of the resulting parameters, as shown in Figure 2.9 (Chapter 2).
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Clinical researchers do not know a-priori whether there are significant differences amongmodels or their assumptions, and which is the optimal to apply. Therefore, it is valuable forthem to investigate how the derived PK parameters behave with different modeling choices.In this way, they can explore the impact of these choices on the precision of the treatmentoutcome. The current practice for this exploration has been shown in Figure 2.9 (Chapter 2).Here, the so-called PK parameter maps are explored visually side-by-side, making the wholeprocedure time consuming and limited in insight. More specifically, in a real-world analysis,clinical researchers are interested in performing the following tasks, at a voxel level:
• Identification of Variability (T1) – How does each one of the PK parameters varyacross different modeling choices?
• Identification of Relations (T2) – What kind of relations develop within each of the PKparameter sets?
• Comparison of Behaviors (T3) – How modeling choices affect the relations withineach of the PK parameter sets?
• Detection of Patterns (T4) – How modeling choices affect patterns within the data?
• Association to Anatomical Reference (T5) – What is the anatomical location of spe-cific interesting behaviors or features?

5.4. Related Work
In this section, we present the most relevant work related to the iCoCooN. The explorationand analysis of perfusion parameters that characterize the shape of the DCE-derived en-hancement curves and their correlation with the data has been presented in a survey ofexisting applications, by Preim et al. [218]. Yet, model-induced variability of PK parametershas not been addressed by any of these applications. The minimization of uncertainty in ki-netic PETmodeling parameters has been addressed in the work of Nguyen et al. [186], whichallows the exploration of variabilities in the parameters. However, the capabilities to showrelations between parameters and the effect of variability on these are limited.

Combining PCPs with CCs has also been tackled in other applications. In TemporalStars [187], discrete multiples of radial graphs, with each axis representing a variable, areset along a central time axis to describe variation with time. This representation is usefulfor comparing different star glyphs, or for monitoring time evolution of the variables. As anextension, the 3D Kiviat [273] combines variable axes circularly arranged to a central timeaxis and a surface rendering around the 2D Kiviats for each time step to show the evolutionof the 2D Kiviats in time. In this way, 3D Kiviats show correlations between attributes, whilepreserving the focus on time evolution.
The visualization proposed by Fanea et al. [83] also employs a combination of PCPs andStar Glyphs in a single configuration, to address clutter in the former. Each Star results fromPCP polylines unfolding around the central axis and depicts a data item or a data dimen-sion, thus maintaining the total number of dimensions. The PCPs of this visualization donot provide additional dimensions with additional information or insight in data relations or
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patterns. Finally, in VisLink [56], inter-relationships between multiple visualizations can beinteractively explored, with the form of multiple 2D layouts positioned in space and linkedtogether to show data associations.
Our approach combines specific attributes of the previous work with new ones, to ac-commodate all the requirements of our application, asmentioned in Section 5.3. We keep theStar Glyphs for the exploration of relations and behaviors in each parameter set [83, 187, 273],but we provide additional dimensions with PCPs for the exploration of trends and relationsin each one of the parameters across these different choices. In this way, the PCPs provideadditional information and are not restricted to time representation [187, 273] or to linkingmultiple representations [56]. Finally, we incorporate functionality to link observations fromthe parameter space to the anatomical space, which is not provided in any previously pub-lished work.

5.5. The Design of the iCoCooN
After DCE-MRI acquisition, different output parameters are derived per voxel, through PKmodeling. At this point, different establishedmodels and/or several assumption alternativescan be considered. In order to visualize all data aspects, as described in Section 5.3, weemploy the workflow proposed in Figure 5.1.

For the visualization of each one of the PK parameters across the different choices, wedecided to employ PCPs [128]. This representation allows the user to visualize multiple datadimensions in limited space and to detect trends and patterns. In our case, each line in thePCPs corresponds to a location in the medical volume and each dimension to a PK param-eter derived from different modeling choices, as depicted in Figure 5.2. This is a suitablechoice for the identification of model-induced variability in each of the PK parameters.
For the visualization of eachmodeling choice, we decided to employ CCs [50]. This com-pact iconography representation combines the advantages of PCPswith glyphs, for the easydetection of patterns among different plots [143]. This is based on the human perceptualability to easily discern shape differences. In the present application, each line in the CCscorresponds to a location in the medical volume and each dimension to a PK parameter de-
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Figure 5.1: Workflow considered for the construction of the iCoCooN. With dark grey, we denote the fiverequirements discussed in Section 5.3, for the visualization and exploration of the required data aspects.
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Figure 5.2: Configuration of Cocoon from perpendicular integration of PCPs and CCs. Here, we considerfour PK parameter sets (PK 1-4), from three different modeling assumptions (Choice 1-3).

rived from onemodeling choice, as depicted in Figure 5.2. It is a proper choice for comparingqualitatively a whole PK parameter set against another, or for locating relations, similar anddissimilar behaviors or outliers in a parameter set.
Using a single PCP to encode the PK parameter values, and an additional discrete axisfor the different modeling choices, would not be an appropriate option. This solution wouldadd clutter in the representation, due to an increasing number of overlapping lines from thedifferent modeling choices. Although this limitation could be solved with the technique pre-sented in Chapter 4, an additional issue with this solution is that it would only provide anoverview on global shifts in the parameters, disregarding spatial relationships between pa-rameter sets. Therefore, for visualizing and linking both intra- and inter-model information,both PCPs and CCs are needed. However, if many variables are involved in the exploration,independent multiple PCPs and CCs might be visually cumbersome, due to the amount ofwindows. For these reasons, we decided to create a new representation, the Cocoon, fromthe perpendicular integration of PCPs and CCs in a single 3D view with orthographic projec-tion [180].
With the 3D Cocoon, we facilitate the exploration, by conveying different views of thedata in an equal context. This is also one of our main differences with respect to previouswork [56, 83, 186, 187, 218, 273]: the PCPs of the Cocoon are not linking multiple CC repre-sentations, but they show additional dimensions of the data. In this way, we facilitate linkingbetween parameters and modeling choices in a compact view, without forcing the user touse his memory during tasks, as in the case of the independent small multiples.
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Figure 5.2 depicts the concept behind the configuration of the Cocoon, when we havefour parameters to compare across three assumptions. For our application, we need toshow a limited number of different modeling assumptions and a maximum of six indepen-dent parameters, which is the maximum number of parameters encountered in the two-Compartment ExchangeModel [257], previously described in Chapter 2. The optimal numberof parameters is four, but for more than four parameters in the CCs, the user can selectivelyswitch on and off axes in the representation. Therefore, the scalability of the Cocoon is ade-quate for this concrete application, and we consider out of the scope of this paper to studyhigher dimensionality. Figure 5.3 shows an implementation of the Cocoon for the conceptof Figure 5.2.
At this point, we needed to address three main issues with respect to the Cocoon: thecomplexity of interaction, eventual perception constraints due to limited short termmemory[206] and clutter [64, 112, 180]. For the first issue, we facilitate interaction by reducing thedegrees of freedom. Not all orientations of the Cocoon are sensible, so the user can rotatethe Cocoon only around the latitudinal and longitudinal axes, represented in Figure 5.2 by xand y, to adapt the view. For the second issue, the specific tasks in our application do notrequire to rely on short term memory. However, the user can still selectively show the inde-pendent multiple PCPs and CCs, to clarify information from the Cocoon. The small multiplePCPs and CCs are linked to the Cocoon and viceversa [180, 298].
For the last issue, we increase the visibility of the polylines of the Cocoon using low alphavalues, but also a colormap based on the lines density, as shown in Figure 5.3. The densitycolormap enables better discernibility of overlapping bundles, giving an impression of textureand a first idea about the variability of the data. For example, high density lines that highlyvary throughout the assumptions may indicate that the assumptions have a strong impact

Figure 5.3: An implementation of the Cocoon for four PK parameters (Ktrans , ve , vplasma and kep [271])
and three assumptions (IndAIF, PopAIF and ParAIF). In the zoomed view, a density colormap is employedfor better line visibility. Here, red denotes very low density or outliers, yellow low density and white highdensity.
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on parameters. On the other side, very low density lines that highly vary throughout theassumptions may indicate outliers. Other methods to improve visibility and reduce clutter,such as the ones described in Chapter 4, could have also been employed, but adjustmentsto suit the 3D design of the Cocoon should be first considered.
Clinical researchers usually look at specific combinations of PK parameters, which weoffer as the default view in the axes configuration. To improve the view and to increase visi-bility further, we use a number of interaction features. Axes reordering often affects positivelythe view and the ability to see relations and trends in the data [293], while scaling allows topull apart dense parts of the representation for better discernibility. Although automatic al-gorithms for axes reordering can be helpful, given the dimensionality of our application, theywere not considered further.
Additionally, band coloring allows the user to extend a primitive clustering, based on thevalues of one dimension of the Cocoon, to all. We employ a divergent colorblind safe col-ormap fromColorBrewer [44], in order to differentiate between low, medium and high param-eter values. Figure 5.4 - a shows how band coloring aids the rough detection of trends in thedata, visualized as color bands. Moreover, brushing allows the users to explore, analyze anddetect interesting trends and relations by selecting areas or values of specific interest in theCocoon [143, 295], as presented in Figure 5.4 - b. Finally, linking the brushed observationsto the medical data, by highlighting the corresponding regions in a 2D slice viewer and a 3Dmodel, establishes correspondence to the patient anatomy, as shown in Figure 5.4 - c, d.

■ We implemented the iCoCooN in Python as a DeVIDE module [32], employing the Visual-ization Toolkit (VTK) [2].

5.6. Evaluation
In order to assess the value of the iCoCooN, we conducted an evaluation, inspired by thearticle of Lam et al. [159]. It consists of two parts. First, we performed an evaluation ofthe iCoCooN with clinical researchers. Then, we conducted a general evaluation to test theusability and effectiveness of the Cocoon and to increase the statistical power of the eval-uation, given the limited availability of field experts. For the second part, we abstracted thetasks from the clinical field to a more general domain, so that they could also be performedby non-experts.
5.6.1. Evaluation with Clinical Researchers

In order to evaluate whether the designed visualization meets its requirements, we con-ducted individual evaluations with intended users. We included four field experts from twodifferent institutions (Netherlands Cancer Institute and Aarhus University Hospital), repre-senting two types of clinical researchers: two clinical physicists and two biomedical engi-neers. As a proof of concept, we used two cases. First, we employ a prostate tumor case,where clinical researchers want to explore and analyze the effect of different clinically estab-lished choices of arterial input function (AIF) [61, 152, 198] within the same model on the PKparameters and their in-between relationships. Second, we use a cervical tumor case, whereclinical researchers want to explore and analyze how the parameters and their in-between re-lationships vary when derived using three different establishedmodels [153, 257, 272]. These
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datasets were provided by the clinical researchers and are described in Table 5.1.
The evaluation consisted of four phases. The third phase was task-specific, while the otherswere general and aimed at clarifying three broader aspects:

• Does the proposed Cocoon offer new understanding in the data, in comparison tocurrent practice and in comparison to the independent multiple PCPs and CCs? If yes,how? If no, why?
• Do the features (axes reordering, scaling, band coloring, brushing and linking with re-spect to the anatomy) of the Cocoon contribute to the visualization and facilitate cog-nition? If yes, how? If no, why?
• Does brushing and linking contribute to the exploration and interpretation of the data?If yes, how? If no, why?
In the first phase of the evaluation, we simulated the visual environment for the explo-ration of the PK parameter space in prostate and cervical data. In this phase, we were in-terested in obtaining an initial opinion on the individual features of the iCoCooN. This part

Figure 5.4: The interactive features of the iCoCooN. (a) Band coloring on the vplasma axis of the first
AIF for the identification of trends in the data. The zero values of vplasma for the first AIF (brown lines),
correspond to the middle values of Ktrans , in the circle. The legend shows the employed colormap. (b)Brushing the Cocoon. Cyan brush in PCPs and magenta in CCs are employed to reduce occlusion dueto overlapping polylines and glyphs. (c) Visualization of the brushed bundles from (b) only. (d) Linkingto 2D anatomy and to 3D model.
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Table 5.1: Description of the datasets used in the evaluation with clinical researchers. We work on thewhole prostate region, but only on the specific tumor region in the cervix, due to the high anatomicalvariability of the organ between individuals.
DCE-MRI data (4D) Modeled data (3D) 

Resolution 

(voxels) 

Voxel size 

(mm3) 

Time 

resolution 

(s) 

ROI size 

(voxels) 

Modelling 

choices 
PK maps  

PK maps 

resolution 

(voxels) 

PK maps 

voxel size 

(mm3) 

Prostate 

dataset 

256×256× 

20 for 120 

timepoints 

1 × 1 × 3 2.5 

80×80×20 

(usual 

prostate 

size) 

3 AIF 

alternatives 

4 3D maps 

per 

choice 

256×256× 

20 (as in 

DCE-MRI) 

1×1×3  

(as in 

DCE-MRI) 

Cervix 

dataset 

176×176× 

20 for 120 

timepoints 

2.273 × 

2.273 × 3 
2.5 

33×33×18 

(specific 

tumor size) 

3 different 

models 

3, 4 and 6 

3D maps 

per model 

176×176× 

20 (as in 

DCE-MRI) 

2.273× 

2.273 × 3 

(as in DCE-

MRI) 

was also used as training, so the tool was initially operated by the first author, while the testsubject first observed a demonstration and then explored the functionality. We asked thetest subjects with a questionnaire to comment on the clarity and potential usefulness ofeach one of these features, but also to quantify their value using a grading scale (1−5). The
second phase required from the test subjects to grade (1−5) the ability to identify variationsand relationships in the data, but also to relate them to the anatomy and pathology of thepatient. The third phase required a more detailed hands-on exploration of the data, aimingat evaluating the insight provided by the iCoCooN. In this phase, the test subjects operatedthe tool themselves and they were asked to explore the data in the iCoCooN and to analyzetheir observations, as they would do in a real case, performing the tasks of Section 5.3. Inthe last phase, they evaluated the tool as a whole, based on their experience, commentingalso on the strengths, limitations and missing features of the iCoCooN.

First Phase: the iCoCooN Features

In the first phase, the test subjects evaluated the features of the iCoCooN individually, fol-lowing a questionnaire. The quantitative results from this evaluation are summarized in Ta-ble 5.2, with a convention of 1 for negative to 5 for positive. All features of iCoCooN receivedscores above 4, apart from two cases with a neutral grade (3), where the subjects com-mented that they needed to form a more concrete opinion by performing actual tasks.
Using a questionnaire, we also asked for general comments on each one of the features.First of all, the Cocoon was considered understandable and relatively easy to use. The testsubjects confirmed that it enables the identification of variations, relations and trends in themultidimensional data in a combined view, even for parameters that do not seem to havean obvious association in the independent multiple views. The restricted manipulation of

the Cocoon in space is according to the test subjects appropriate. Yet, the Cocoon requirestraining for learning how to obtain the most adequate view and to interpret the conveyedinformation. They were inclined, though, to say that there is no need to additionally inspectthe independent multiples. The independent multiples might be used selectively, only fordetails-on-demand or for easier tasks that involve single parameters. However, they statedthat they needed to confirm this impression with a more exploratory task.
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Table 5.2: First phase of the evaluation: Evaluation of the features of iCoCooN by the four clinical re-searchers, using a grading scale (1=negative, 5=positive).
#1 #2 #3 #4

Cocoon Concept 3 4 4 4

Cocoon Manipulation 5 4 5 4

Cocoon instead of Small Multiples 5 3 4 4

Scaling/Reordering 4 5 5 4

Band/Density Coloring 4 4 5 4

Brushing/Linking 4 5 5 5

The advantages of reordering and scaling the Cocoon axes are also straightforward fordata interpretation, while band coloring provides a visual context of how the values of oneparameter behave with respect to the rest and aids the detection of basic patterns in thedata. The application of the density colormap was considered useful for distinguishing over-lapping lines and for deciding on the importance of the variations, relations or trends. Thisfeature requires training, but was regarded as easy to learn. Finally, according to the testsubjects, currently there is no tool with brushing and linking functionality for their purposes.They described it as potentially easy to learn and use – an appropriate and appealing fea-ture for data exploration, especially for relating observations from the Cocoon to the patientanatomy.
Second Phase: Information Identifiability

In the second phase, the test subjects had to grade (1-5) the ability to identify specific infor-mation using the iCoCooN, namely the variability and relations or trends, and the ability torelate findings from the iCoCooN to anatomy. The quantitative results from this evaluationare summarized in Table 5.3, with a grading convention of 1 for easy to identify to 5 for diffi-cult. All but one gradings were below 2, indicating that the test subjects considered the threetasks easy. In only one case, the relation to the anatomy received a neutral grade (3), as thetest subject explained that he would need to interact with the Cocoon more, to form a moreconcrete opinion.
Table 5.3: Second phase of the evaluation: Evaluation of the ability to identify information in iCoCooNby clinical researchers, using a grading scale (1=easy, 5=difficult).

#1 #2 #3 #4

Ability to identify variability 2 2 1 2

Ability to identify relations in the features 2 1 2 2

Ability to identify relations to anatomy 2 1 2 3
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Third Phase: Case Studies

In this phase, the test subjects used iCoCooN for the exploration and analysis of a prostatedataset and a cervical dataset from the DR THERAPAT project, as they would do in a realcase, executing the tasks of Section 5.3. The patient-specific findings presented below areobservations of the clinical researchers.
■ Case study – Prostate. The test subjects were interested in exploring how the four PKparameters of the extended Tofts model (Ktrans, ve, vplasma and kep) [272] vary across three
different AIF choices (Individual, Population-based and Parker-based AIF) [61, 152, 198]. TheAIF is used as an input assumption to the model and there are different options for itsshape [152]. The behavior of the parameters for the different AIF choices, presented thesemajor patient-specific findings:

• Identification of Variability (T1) – The Ktrans parameter, which relates to the tissuepermeability, remains highly unaltered throughout the different AIF choices, as shownin Figure 5.5 - a:1. Minor changes in the distributions are reflected by changes in thedensity colors. The vplasma, which relates to the blood plasma volume, presents sig-nificant variations throughout the AIF choices, depicted in Figure 5.5 - a:2.
• Identification of Relations (T2)– Lower and slightly decreasing ve, which relates to thevolumeof the extracellular extravascular space, is associated to slightly increasing kepand lower values of Ktrans, as presented in Figure 5.5 - a:3.
• Comparison of Behaviors (T3) – Although the general behavior of the parameter setsseems stable across the AIF choices, the differences in the density colors of the CCsreflect slight changes in Ktrans, vplasma and kep, which can be seen in Figure 5.5 - a.
• Detection of Patterns (T4) – The highest values of Ktrans are related to high values ofkep and ve in all three AIF choices, as shown in Figure 5.5 - b:1. This is also related tovalues of vplasma that are highly variable between the AIF choices, visible in Figure 5.5- b:2.
• Exploration and Anatomical Reference (T5) – Low ve and low Ktrans regions reflectthe necrotic core of the tumor and some outliers at the border of the prostate, whichis depicted in Figure 5.5 - a:3,4.

■ Case study – Cervix. The test subjects explored how the application of different models(Tofts model: TM, Extended Tofts model: ETM and Two-Compartmental Exchange model:2CXM) [257] affects the behavior of the respectively derived PK parameters in the tumor.The first model results in two parameters (Ktrans and ve). The second has three parameters(Ktrans, ve and vp). The third gives five parameters (Ktrans, ve, vp, Fp and PS) [257]. Anopposite Akaike information criterion (AICc) is additionally included to each PK set. The AICcrelates to the relative quality of fit of each model. High values of AICc mean high relativequality. The test subjects identified the following major patient-specific findings:
• Identification of Variability (T1) – The Ktrans parameter does not present significantchanges despite the application of different models, apart from slight decreases be-tween the ETM and the 2CXM, as can be seen in Figure 5.6 - a:1. This, together with
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(a)

(b)

Figure 5.5: Exploration and visual analysis of a prostate tumor casewith iCoCooN during the third phaseof the evaluation with clinical researchers.
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high and stable AICc in the TM and ETM models, is an indication that these modelshad a reasonable fit. This finding can be seen in Figure 5.6 - a:2.
• Identification of Relations (T2) – In the 2CXM, high AICc is highly correlated with highflow Fp and permeability-surface area product PS, as depicted in Figure 5.6 - b.
• Comparison of Behaviors (T3) – Regions with lower Ktrans and lower ve present lowervp in the ETM and 2CXM, as shown in Figure 5.6 - a:3. In the ETM model, vp presentsa big spread. This is bigger than in the 2CXM, as presented in Figure 5.6 - a:4,5. Thisvariability in the vp values of the 2CXM is related to the slight variability in Ktrans values,which is visible in Figure 5.6 - a:5.
• Detection of Patterns (T4) – In regions, where the Ktrans and the ve values are low,the AICc values do not present significant changes across the three models. This isshown in Figure 5.6 - a:2,3. This finding means that clinical researchers expect thatthey will all give similar classifications.
• Exploration and Anatomical Reference (T5) – A usual indication of malignancy is thecombination of low ve and low Ktrans. This is the necrotic core of the tumor, shown inFigure 5.6 - a:6, which has the worst responses to treatment. In these parts, themodelthat fits better is TM, which is confirmed by slightly higher AICc values in the Cocoon.

Fourth phase: the iCoCooN Overall

In the last phase of the evaluation, the test subjects commented on the iCoCooN overall and,mainly, on its strengths, limitations andmissing features. According to their experience, theyjudged the application as useful: the Cocoon in combination with its features provides thenecessary information and the user requirements are met. They were also asked to com-pare the tool to current clinical practice, namely, the slice-based inspection of all alternativeparameter maps. To that, they commented that current practice is mainly manual and men-tal work, which hampers the identification of variabilities and relations in the data, since itrequires from them to go through the multiple slices of all the parameter maps. Instead, theCocoon is versatile in showing multiple dimensions in one view and in aiding their investiga-tion. Thus, it enables them to see the consequences of each modeling choice, to performand analyze selections and see their exact relation to the anatomy.
Although the first results of the evaluation are promising, they also exposed some limi-tations. The iCoCooN is a tool that needs training and time to learn. This is also supportedby the statements of the test subjects in the previous phases of the evaluation. They agreedthat once the user becomes familiar with the visual mapping of the dimensions, the explo-ration and analysis is faster and easier than with current practice. In order to improve thisfurther, semi-automation of the data exploration and analysis would be required. Moreover,the iCoCooN misses the functionality for the inspection of the related enhancement curves,in order to quantitatively see the absorption of the contrast agent in the tissue. This wouldgive additional information on the physical meaning of the visualized data and their patterns.
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(a)

(b)

Figure 5.6: Exploration and visual analysis of a cervical tumor case with iCoCooN during the third phaseof the evaluation with clinical researchers.
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5.6.2. Usability and Effectiveness Evaluation

Our application is built for a specific target group and, so far, we have only conducted userstudieswith a limited amount of experts. In order to strengthen our evaluation, we decided toperform a controlled study with non-experts, particularly for the usability and effectivenessof the Cocoon, compared to independent multiples. For this, we translated the clinical tasksof Section 5.3 to two domains more accessible to general users. The generalization of thetasks is described in Table 5.4. As we are outside the clinical domain, linking to the anatomy,which was already positively judged by clinical researchers, is not tested here.
Table 5.4: Translation of clinical tasks to tasks with the synthetic datasets, for the controlled study.

Clinical Study (with experts) Controlled Study (with general users) 

Data 

Dimensions 

A number of PK parameters for different 

modeling assumptions. 

A number of parameters from different 

measurements (e.g. in weather forecast 

from different weather stations). 

Identification of 
Variability (T1) 

Identify which of the PK parameters remains 

unaltered/presents variability throughout 

the different modeling assumptions. 

Identify which of the parameters remains 

unaltered/presents variability throughout 

the different measurements. 

Identification of 
Relations (T2) 

Find a relationship or trend between two or 

more parameters throughout the different 

modeling assumptions. 

 

Find a relationship between two or more 

specific parameters throughout the 

measurements. 

Comparison of 

Behaviors 
(T3) 

In which of the assumptions do we 

encounter a specific behavior of two or 

more parameters? 

In which of the measurements do we 

encounter a specific behavior of two or 

more parameters? 

Detection of 
Patterns (T4) 

Find a specific pattern in the parameter 

behaviors. How does it change throughout 

the assumptions? 

Find a given pattern in the parameter 

behaviors. How does it change throughout 

the measurements? 

Exploration 

e.g. Which assumption do you trust more 

for each zone of the tumor based on all the 

parameters? 

e.g. Which measurement do you choose if 

you demand specific characteristics? 

For the remaining tasks, we created two synthetic, but realistically sized datasets usingthe PCDC tool [34]. Sincewe focus on evaluating the Cocoon for our concrete application, weuse similar dimensions to the ones of our case. Exploring the limits of scalability of the rep-resentation is not expected to be of interest in our application. Therefore, it was consideredout of the scope of this paper and was not tested further.
We had 15 test subjects: 8 females and 7 males, between 23 and 44 years old. All ofthem had normal vision, with or without glasses and none of them was colorblind. Theirbackground included electrical engineering (4), computer sciences (3), biomedical engineer-ing (2), mechanical engineering (2), chemistry (2), hydraulics engineering (1), and mathe-matics (1). They described their computer expertise as medium (9) to high (6). Only two test
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subjects had previous familiarity with PCPs and CCs.
First, we gave them a small introduction to explain the reasoning behind the study and topresent notions such as PCPs, CCs and the Cocoon. Secondly, we demonstrated the basic

functionality of the Cocoon. Thirdly, we did some first exercises, until the test subjects wereconfident with the visualizations. Fourthly, we conducted two experimentswith the syntheticdatasets. For each one of the experiments, the test subjects needed to perform the fivetasks given in Table 5.4 as fast and accurate as possible, once using only the independentmultiples and once only the Cocoon. We exchanged the order of the two representationsboth between the experiments and across users, to avoid bias. For all tasks, we measuredcompletion times and correctness of answers, which were known to us. Finally, we askedthe test subjects to complete a small survey, consisting of a grading scale (1−5), an overallranking (1−10) and open questions.

Results of the Evaluation with General Users

The completion times and correctness for the five tasks of the two experiments, as wellas the gradings of the test subjects are summarized in Tables 5.5 and 5.6, respectively. Inthese tables, we color-encoded their statistically significant difference, as it resulted fromt-tests analysis. For the more demanding tasks, i.e. comparison of behaviors, detectionof patterns and exploration, the observations from the Cocoon were more correct than theindependent multiples in both experiments (p < 0.05). The time difference was in favor ofthe independent multiples, but not statistically significant between the two representations(p>0.05), except for the variability task in the second experiment. Additionally, there is astatistically significant difference between the gradings in the two representations in favorof the Cocoon, which was judged more suitable for the more demanding tasks and for theidentification of relations task (p < 0.05). Also, it was considered less overloading than theindependent multiples (p ¿ 0.01). Both representations, were considered comparably use-ful, easy to use and understand (p > 0.05). In the overall ranking, the Cocoon comes first witha difference of 1.67 points (p = 0.0012), while only two test subjects ranked the independentmultiples higher. Nine test subjects commented that they would not need the independentmultiples at all, on top or instead of the Cocoon. The rest commented that the independentmultiples could be useful and faster in certain instances, such as simple tasks, for compar-ison of few parameters or for beginners.
In their general comments, the test subjects stated that when higher dimensionality isinvolved in the tasks, they preferred the Cocoon, because they could check everything in asingle, compact view (The Cocoon offers compact information giving a more intuitive under-

standing of complex relations. With the independent multiples, I had to compile all the infor-
mation from multiple windows in my mind first). They also stated that Cocoon made themmore attentive, efficient and eventually more accurate (I felt that I could be faster with PCPs.
However, I realized that I was jumping easily to conclusions and making more mistakes, be-
cause I was not paying attention to the multiple relations that affected my observations). Yet,choosing the most effective view is time demanding and requires training (I needed to think
and learn which was the most effective view. Getting the correct view of the Cocoon takes
time, The Cocoon has a higher learning curve, but can provide more information at a glance
with adequate training).
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5.7. Conclusions and Future Work
In this chapter, we presented the iCoCooN: a visualization tool that aids clinical researchers toexplore and analyze how different choices in modeling affect the parameter space derivedfrom modeling DCE-MRI data. The contribution of our work lies within the design of theCocoon that allows users to explore the required DCE-MRI data aspects in a single combinedview. The interactive features of the tool facilitate the exploration and interpretation of thedata and, especially, the correspondence to anatomy.

The value of the iCoCooN for our application was confirmed by an evaluation with clini-cal experts. An additional evaluation with general users indicated that the Cocoon producesmore accurate results compared to the independent PCPs andCCs, especially formore com-plex tasks. At any case, adequate training of the users is essential. The evaluations alsoprovided feedback towards future work. The tool can still improve by reducing interactionworkload and time for adjusting the view. In addition to this, reducing clutter in the Cocoonwith lines illumination or bundling [123] or the incorporation of OPCPs (Chapter 4) could fur-ther be considered. Finally, although the tool can be extended to other similar applications,scalability needs to be examined by additional evaluations. First indications show that iC-oCooN has good potential of use for the easier exploration and analysis of model-inducedvariations in DCE-MRI data.5
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Table 5.5: Results from the evaluation with general users. We present the mean (µ) and standarddeviation (σ) of completion times (t in s) and task correctness (cor r , 0=wrong to 1=correct) for thetwo experiments. Bold indicates lower time and higher correctness, while color relates to statisticallysignificant difference (dark green: p < 0.01, green: p < 0.05, orange: p > 0.05).
Cocoon Independent Multiples 

First 

Experiment 

Variability (T1) 55.67 31.35 1.00 0.00 31.47 26.26 0.97 0.13 

Relations (T2) 46.80 30.90 1.00 0.00 46.87 30.01 1.00 0.00 

Behaviors (T3) 61.60 25.04 0.87 0.35 56.00 35.99 0.40 0.57 

Patterns (T4) 93.67 39.52 0.73 0.46 82.73 45.14 0.33 0.49 

Exploration 66.47 26.95 0.97 0.13 79.27 36.59 0.73 0.32 

Second 

Experiment 

Variability (T1) 24.60 9.92 1.00 0.00 23.60 9.68 0.80 0.17 

Relations (T2) 46.87 27.22 0.93 0.26 38.60 30.67 0.93 0.26 

Behaviors (T3) 41.60 14.21 1.00 0.00 45.20 25.51 0.73 0.46 

Patterns (T4) 77.73 34.29 0.93 0.27 77.00 33.47 0.67 0.49 

Exploration 38.53 17.18 1.00 0.00 44.40 27.49 0.87 0.23 
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Table 5.6: Results from the evaluation with general users. We present the mean (µ) and standarddeviation (σ) of gradings (1−5) and the overall rankings (1−10) for the two representations. Bold indicateshigher grading, while color relates to statistically significant difference (dark green: p < 0.01, green: p <
0.05, orange: p > 0.05).

Cocoon Independent Multiples 

Characteristics 

Easy to Use 3.87 0.74 4.33 0.62 

Easy to Understand 3.73 0.80 4.13 0.74 

Useful 4.13 0.74 3.87 0.74 

Suitable for (T1) 4.13 0.83 4.20 0.68 

Suitable for (T2) 4.20 0.68 3.73 0.70 

Suitable for (T3) 4.47 0.74 3.87 0.99 

Suitable for (T4) 4.27 0.70 3.53 0.83 

Suitable for Exploration 4.73 0.59 2.73 1.03 

Not Overloading 4.27 0.70 2.27 1.03 

Overall Ranking 8.13 1.36 6.47 0.99 
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6
Visual Analytics for theExploration of TissueCharacterization

My name is Sherlock Holmes.
It is my business to know what other people don’t know.

Sir Arthur Conan Doyle (1859 - 1930), The Adventure of the Blue Carbuncle

Chapter 6 is divided into two parts. In the first part (Part I), we propose a visual analysis tool
that enables clinical researchers to identify, explore and analyze the tissue characteristics of
distinct intra-tumor regions. The second part (Part II) is an extension of the application of this
visual analysis tool, with the purpose of enabling a more insightful design of tissue classifiers.
The latter was performed outside of the field of prostate cancer to demonstrate the breadth of
applications that can be addressedwith the proposed tool. Chapter 6 is based on the following
publications:



Part I:
■ Raidou, R.G., Van Der Heide, U.A., Dinh, C.V., Ghobadi, G., Kallehauge, J.F., Breeuwer, M. andVilanova, A., 2015. Visual analytics for the exploration of tumor tissue characterization. InComputer Graphics Forum (CGF), Vol. 34, No. 3, pp. 11-20 [226].
■Vilanova, A., Raidou, R.G., and Pezzotti, N., 2015. Visual Analysis for Hypothesis Generationin Medical Imaging Research. Proceedings of the 9th MedViz Conference (MedViz 2015),pp.11-12 [289].
■ Raidou, R.G., Moreira, M.P., van Elmpt, W., Breeuwer, M. and Vilanova, A., 2014. Visual an-alytics for the exploration of multiparametric cancer imaging. In IEEE Conference on VisualAnalytics Science and Technology (VAST) 2014, pp. 263-264 [225].
Part II:
■ Raidou, R.G., Kuijf, H.J., Sepasian, N., Pezzotti, N., Bouvy, W.H., Breeuwer, M., and Vi-lanova, A., 2016. Employing Visual Analytics to Aid the Design ofWhiteMatter HyperintensityClassifiers. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016:19th International Conference, Proceedings, Part II, Springer International Publishing, pp. 97-105 [223].
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6.1. Abstract

6.1. Abstract
Tumors are heterogeneous tissues consisting of multiple regions with distinct characteris-tics. Characterization of these intra-tumor regions can improve patient diagnosis and en-able a better targeted treatment, where radiation doses are chosen adequately for eachregion. Ideally, tissue characterization should be performed non-invasively, using medicalimaging data to derive per voxel a number of features, indicative of tissue properties. How-ever, the high dimensionality and complexity of this imaging-derived feature space prohibitseasy exploration and analysis – especially when clinical researchers require to associateobservations from the feature space to other reference data, such as features derived fromhistopathological data. Currently, the exploratory approach used in clinical research consistsof juxtaposing these data, visually comparing them and mentally reconstructing their rela-tionships. This is a time consuming and tedious process, from which it is often difficult toobtain the required insight.

We propose a visual tool for the easy exploration and visual analysis of the feature spaceof imaging-derived tissue characteristics. In addition to this, the tool enables knowledge dis-covery and hypothesis generation and confirmation, with respect to reference data usedin clinical research. We employ, as central view, a reduced 2D embedding of the imaging-derived feature space. Multiple linked interactive views provide functionality for the explo-ration and analysis of the local structure of the feature space, enabling linking to patientanatomy and other clinical reference data. We performed an initial evaluation with ten clin-ical researchers. All participants agreed that, unlike current practice, the proposed visualtool enables them to identify, explore and analyze heterogeneous intra-tumor regions and togenerate and confirm hypotheses, with respect to clinical reference data.

6.2. Introduction
As described in Chapter 2, tumors are heterogeneous tissues, enclosing multiple regionswith distinct characteristics. Incorporating these distinct tissue characteristics informationinto radiotherapy planning can play an important role in tumor diagnosis and in designingmore effective treatment strategies. For example, better targeted radiotherapy planning,where distinct intra-tumor tissues are irradiated with tailored doses, can be achieved.

Currently, intra-tumor tissue heterogeneity is investigated by studying histopathologicaldata acquired from biopsies. To substitute histopathology, clinical researchers need to as-sociate histopathological findings, such as aggressiveness or resistance of a part of the tu-mor, to features derived from imaging data. For example, Dynamic Contrast Enhanced (DCE)and Diffusion Weighted (DW) Magnetic Resonance Imaging (MRI) are employed in tumoranalysis to derive per voxel, using mathematical models, features indicative of tissue char-acteristics. In addition to histopathology, clinical researchers often employ in their analysis
supplementary clinical data that they use as reference, such asmaps that predict high-risk tu-mor zones or maps depicting tumor control probability. These data also need to be exploredin association with the imaging-derived features.

Moreover, the derivation of tumor tissue characteristics from imaging data is based oncomplex mathematical models [257]. Different modeling approaches make different as-sumptions, resulting in features with different distributions, as presented in Chapter 5. A
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priori, it is not known whether different alternatives in modeling present significant differ-ences or which option leads to better results. Additionally, all modeling approaches intro-duce model-fitting inaccuracy in the derived features, as described in Chapter 5. Exploring
variability and incorporating inaccuracy induced by different modeling approaches, with re-spect to anatomical or clinical reference data, can have significant impact on the final clinicaldecision and treatment.

However, the high dimensionality and complexity of the imaging-derived feature space,along with the model-induced variability and inaccuracy, makes exploration a difficult task.The structure of this feature space is also not fully comprehended and, in state-of-the-artclinical research workflow, there is no easy and insightful way to link observations fromhistopathology or clinical reference to features derived from imaging.
In this chapter, we introduce a visual analysis tool for tumor tissue characterization. Wemainly focus on knowledge discovery and hypothesis generation and confirmation, by link-ing imaging-derived tissue characteristics to anatomical and clinical reference data. In ourapproach, we employ as central view, a reduced embedding, which maps the feature spaceof imaging-derived tissue characteristics into a 2D information space. Multiple linked inter-active views provide functionality for the exploration and analysis of the local structure ofthe feature space, enabling the user to retrieve information on distinct intra-tumor regionsand to associate observations between the feature space and clinical reference data.
The contribution of this work is the design and implementation of a visual tool for theexploration of tumor tissue characterization. To the best of our knowledge, there is no othertool to serve this purpose. The proposed visual tool incorporates the following components:
• It supports the identification and exploration of intra-tumor regions, which have dis-tinct imaging-derived tissue characteristics.
• It facilitates the exploration and analysis of the feature space structure in relation topatient anatomy.
• It enables the association of observations from clinical reference information to thefeature space and vice versa.
• It allows the exploration and analysis of model-induced variability and inaccuracy ofthe feature space.
The remainder of the first part of this chapter is organized as follows: Section 6.3 in-cludes all the necessary background information. Section 6.4 provides an overview on pre-vious work, and Section 6.5 is the core of this chapter, where our proposed approach ispresented and discussed. Section 6.6 presents the results of our user evaluation and theconducted case studies. Finally, Section 6.7 concludes the chapter with a discussion andpropositions for future work.

6.3. Clinical Background
Several imaging modalities are used in tumor analysis and diagnosis. In this dissertation,we focus on prostate and cervical tumors, which are investigated using MRI data, such asDCE and DW images, which have been already presented in Chapters 2 and 5. However, our
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approach can be easily generalized to include other modalities, such as Computed Tomog-raphy (CT) or Positron Emission Tomography (PET). In this work, we will employ the tissueproperties that can be derived from DCE-MRI data using one of the established pharma-cokinetic (PK) models [257], as well as from DWI to derive the apparent diffusion coefficient(ADC) [256]. These tissue properties need to be explored and analyzed, and the distinctintra-tumor regions that these features form, need to be identified.
Additionally, clinical researchers require to associate findings in the imaging-derived fea-ture space to observations from reference data and vice versa. This data might be anatom-ical images, such as T2-weighted MRI scans, or derived clinical data. The latter can be, forexample, derived from linear regression models predicting high-risk tumor zones [106], orhistopathological data that are obtained invasively from patient biopsies and can reveal in-formation on tumor aggressiveness or resistance [82]. As already described in Chapter 2,Gleason Scores (GS) are assigned to delineated tumor tissue foci based on their micro-scopic appearance. For example, high GS tumors are more aggressive and have a worseprognosis [82]. To substitute invasive histopathology, information such as the GS need to beassociated with non-invasive, imaging-derived features.
In current clinical research, the exploration and analysis of the feature space of imaging-derived tissue characteristics is conducted using a simplistic slice-based technique, shownin Figure 2.9 (Chapter 2). The values of each imaging-derived feature are encoded with acolormap [139]. Then, these so-called parameter maps are juxtaposed, manually inspectedslice-by-slice and mentally compared and analyzed. The cross-sectional analysis of theimaging-derived features with clinical reference data is also done in a similar way. This ap-proach has high memory demands, as it requires from the user to mentally reconstruct re-lationships and patterns in the data and it is sub-optimal in insight.
Clinical researchers require an exploratory tool that allows them to perform the followingtasks:
• To identify and explore intra-tumor regions with distinct imaging-derived tumor tissuecharacteristics. (T1)
• To analyze and understand the structure of each distinct intra-tumor region and, then,to compare these intra-tumor regions. (T2)
• To discover relations between the feature space of imaging-derived tumor tissue char-acteristics and clinical reference data. Also, to generate and confirm hypotheses thatcan associate these two. (T3)
• To identify, explore and analyze the impact of variability or inaccuracy, in the derivationof tumor tissue characteristics from imaging data. (T4)

6.4. Related Work
Several systemshave beenproposed for the exploration and visual analysis of feature spacesderived from medical imaging. The most similar to our field of application were proposedby Preim et al. [218], Glasser et al. [99] and Fang et al. [84], as well as our own previouswork [227] that was presented in Chapter 5. However, these papers are mainly focusing onthe exploration and analysis of perfusion parameters or on the distinction of tumors from
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healthy tissues. None of these applications addresses intra-tumor tissue characterizationbased on imaging-derived features or cross-analysis with clinical reference and histopatho-logical data.
Our approach is centered around a dimensionality reduced view, namely a 2D embed-ding that preserves local structure in the feature space and that allows visual analysis ofclusters and their intrinsic feature characteristics. For this reason, we reviewed also the lit-erature related to visualizations employing dimensionality reduction techniques. Some ofthese previous approaches have also been discussed in detail in Chapter 3.

■ Dimensionality reduction. Traditionally employed approaches for 2D projection of featurespaces include the Grand Tour [15], XmdvTool [295], WEAVE [103] and SimVis [72, 189], asdescribed in Chapter 3. These frameworks visualize high-dimensional datasets through pro-jections combined with a number of linked techniques for the visualization of the underlyingfeature space. However, they all support the visualization of 2D projections of the multidi-mensional data after the selection of two specific variables from the entire feature space.As explained also in Chapter 3, user selection of two specific variables is not an appropriatechoice for our case as it requires prior knowledge about the data and their eventual rela-tionships. In addition, none of these systems supports linked brushing or selection from aspatial view – the anatomical or clinical reference space, in our case – to an abstract view.Cluster analysis visualization is also not possible.
Frameworks to overcome some of these limitations were proposed by Blaas et al. [23],Steenwijk et al. [261], Jeong et al. [133], Choo et al. [52], Ingramet al. [127] and Poco et al. [207].Most of these techniques were presented in detail in Chapter 3. They all integrate projectiontechniques with multiple information visualization views and bi-directionally linked scientificvisualization views, to enhance data exploration. Nevertheless, the previously mentionedwork is not fully applicable to our case. Even if all applications enable to identify clusters andto explore the respective feature space of the data, none of them supports incorporation ofvariability and inaccuracy in their analysis. Especially, they do not enable to cross-analyzethe feature space with clinical reference data and histopathology, for knowledge discoveryand hypothesis generation and confirmation.

■ Visual analysis of clusters. We aremainly interested in visualizing clusters that are presentin the multidimensional feature space of the data, as identified by the user, but also in visual-izing the feature characteristics of each cluster and their inbetween relationships. There arevarious methods for visual analysis of clusters, of which the most relevant to our work areH-BLOB [259], Narcissus [114], SmallWorlds [287], but also the frameworks proposed by Seoand Shneiderman [247], Linsen et al. [166], Glasser et al. [98] and Turkay et al. [281]. How-ever, in some of these frameworks, the visual complexity of the visualizations makes themunsuitable for cluster visualization of large data sets. Also, in all previously mentioned workno information is provided about the structure of a cluster and other metrics, such as thequality of separation of two clusters.
To sum up, there are several systems that are able to manage feature spaces similar toours. There are others that employ projections and multiple views in their approaches andseveral that facilitate visual analysis of clusters. However, to the best of our knowledge, thereis no visual tool incorporating all the required functionality for our field of application.
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6.5. Visual Analysis of Tumor Tissue Characterization
After the acquisition of the imaging data, tumor tissue characteristics are derived frommed-ical images. However, the dimensionality and complexity of this imaging-derived featurespace does not allow the easy visual exploration and data-driven analysis. The proposedvisual tool aims at satisfying the specific exploratory needs of clinical researchers, workingon tumor tissue characterization. Therefore, our design choices are oriented to fulfill theirrequirements, as described in Section 6.3.

Our visual tool consists of three mutually linked components, as illustrated in Figure 6.1.A 2D embedding of the feature space forms the central view in our visual tool. This viewis complemented by an anatomical view of a clinical reference space and multiple linkedinteractive views for the visual analysis of clusters.
The first requirement is the identification and exploration of distinct intra-tumor regions

with similar tissue characteristics (T1). An option for the completion of this task could beto employ a scatterplot matrix to visualize all imaging-derived features. As already men-tioned in Chapter 3, this would allow only pairwise comparison of the features. However,relations between features in different intra-tumor regions are expected to be more com-plex. To incorporate information from the feature space of tumor tissue characteristics inone simple view that enables visual exploration of all features, dimensionality reduction isrequired. In this way, we map the high dimensional imaging-derived feature space (N-D) to alower dimensional space (2D). This is performed as part of a pre-processing step and severaldimensionality reduction techniques could, therefore, be used.
In our approach, we choose to employ t-Distributed Stochastic Neighbor Embedding (t-SNE) [286]. t-SNE has the ability to map data from a high dimensional feature space intoa 2D embedding space, preserving the local structure of the initial N-D space. In this way,the embedding can be represented in a simple 2D scatterplot, shown in Figure 6.2 - a, thedimensions of which do not have a direct association to the initial features. In this embed-
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Figure 6.1: General profile of the proposed visual tool. The core of the tool consists of three components(all denoted in grey), linked to each other (links denoted with dotted lines).
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Figure 6.2: Visualizations used for the identification and exploration of distinct intra-tumor regions withsimilar tissue characteristics (T1). (a) The 2D embedding of the feature space. (b) The representationof the anatomical space. (c) The density plot of the embedding to aid the visibility of visual clusters.

ding, each high dimensional data point is embedded in an abstract 2D space, in such waythat the resulting 2D data points plotted nearby represent N-D data points with similar valuesin the high dimensional feature space. In our case, nearby 2D data points in the embeddingrepresent volumetric positionswith similar imaging-derived tissue characteristics, while vox-els with dissimilar tissue characteristics are plotted further apart. We remark that the voxellocation is not used in the embedding – only the imaging-derived features.
To provide context from the embedding map to the anatomical space, we apply a 2D

colormap [35], to the points of the embedding, based on the position that they have in the 2Dscatterplot. Then, this 2D colormap is propagated in the formof an overlay on the anatomicalimages, as shown in Figure 6.2 - b. The 2D embedding map also supports interactive selec-tion of regions of points, which we call visual clusters. An example of this kind of selection isshown in Figure 6.2 - a, in purple. When one visual cluster is selected, a color is assigned toit and this color is used coherently in all views to represent it. To visualize the selections, wedid not employ transparency in the points for Focus+Context (F+C), because the visualiza-tion of the whole space is equally important, throughout the whole exploratory process. Weuse color, instead, to enable multiple selections. The association between the two spaces,performed through brushing and linking, provides also an evaluation of the localization of thevisual clusters selected in the embedding space.
In some cases, visual clusters in the 2D embedding are not well-defined, or overlappingpoints may give a misleading representation of the space. For these reasons, we introduce
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a dual-view in the scatterplot, to depict also the point density, as illustrated in Figure 6.2 - c.Hereby, the exploration can be guided by the density peaks, which might reflect the locationof densely populated visual clusters. To intuitively depict high density regions versus lowdensity, we employ the heated body colormap [35].
The embedding provides a view on a reduced abstract 2D space, as the dimensions ofthe embedding do not have a direct relation to the imaging-derived features. Yet, clinical re-searchers need to be able to link back to this feature space and analyze the underlying high

dimensional feature structure of the identified intra-tumor regions (T2). This part is achievedwith several linked interactive views, which hold complementary information and are inter-actively updated when the user selects one or more visual clusters in the embedding.
Two initial interesting aspects of the underlying data are the distributions of the featuresof the selected regions and the pairwise correlations among these features, which we visual-ize respectively with boxplots and a simplified color-coded scatterplot matrix (SPLOM) [47],as shown in Figure 6.3 - a,b. These representations were chosen, as they are intuitive andwell-known to the intended clinical users. For a simplified correlation view, we abstractthe SPLOM by calculating and visualizing directly Pearson’s correlation ρ, instead of all thepoints. We color-code the calculated correlation value to the divergent red-to-blue colormap[35] to show the range from ρ =−1 (red) to ρ =+1 (blue), as presented in Figure 6.3 - b.
To identify relations that go beyond two dimensions of the selected visual clusters, weadditionally use parallel coordinate plots (PCPs) [128], as depicted in Figure 6.3 - c. PCPs areversatile in representingmultiple dimensions in a single view and are commonly used to eas-ily detect patterns, trends and outliers. In our design, PCPs can be either straight or curvedpolylines, rendered with low opacity for clutter reduction and improved readability. They alsosupport bi-directional brushing and linking to the embedding, to establish connection withthe high dimensional space. As a common way to link observations from different windows,colors are used coherently to denote in all views the same visual cluster.
For the easy comparison and assessment of the feature characteristics of distinct intra-tumor regions, we employ an additional view on the selected visual clusters. In this view, weprovide information on the validity of each visual cluster, visualizing three commonly usedinternal validity measures: cohesion, separation and the average silhouette coefficient [265].

Cohesion (W SS) is a measure of how closely objects are related within a visual cluster andis measured by the within sum of square distances to the mean feature vector:
W SS = ∑

x∈C
(x−m)2 (6.1)

where C is the selected visual cluster, m the mean feature vector of the visual cluster and
x a feature vector element of the visual cluster [265]. Separation (BSS) reflects how distinctor well-separated a visual cluster is from another, using the between visual clusters sum ofsquare distances:

BSS =∑
i
|Ci |(m−mi )2 (6.2)

where Ci are the selected visual clusters, mi their respective mean feature vectors, |Ci | the

6

96



6.5. Visual Analysis of Tumor Tissue Characterization

ρ : -1                    0                    +1

Boxplots:

Features Distributions

Simplified SPLOM: 

Features Correlations

Parallel Coordinate Plots: Beyond 2D

(a) (b)

(c)

Figure 6.3: Visualizations used to analyze the underlying structure of the features of the each intra-tumor region (T2). (a) Boxplots are employed to show the distribution of features, (b) SPLOMs depictthe correlations between features and (c) PCPs illustrate relations beyond two dimensions of the data.

size of visual clusters and m is the overall mean feature vector [265]. The average silhouette
coefficient (s) combines the notion of cohesion and separation:

s = BSS −W SS

max(BSS,W SS)
(6.3)

The average silhouette coefficient ranges between 0 and 1, but it is usually interpreted inan ordinal way. Values between 0−0.25 denote bad-defined visual clusters, 0.26−0.5 weakclusters, 0.51− 0.75 reasonable clusters and 0.76− 1 stand for excellent clusters [265]. Aninitial option for the visualization of these indices would be a table, which would, however,need sequential analysis and be time-consuming, especially for the comparison of morethan two clusters. For this reason, we abstract these numbers to glyph attributes in a 2Dview, as shown on Figure 6.4 - a. First, we abstract each visual cluster to a sphere, whichis an intuitive encoding for a group notion. The color of each sphere is used for the easydistinction of multiple visual clusters and is the same as the color used in all other views, foreach visual cluster.
Cohesion is mapped to the area and opacity of each sphere. As presented in the legendof Figure 6.4 - b, small and opaque spheres depict firm and coherent visual clusters, while
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Figure 6.4: Cluster analysis view for comparison and assessment of two distinct intra-tumor regions
(T2). On the left side (a,b), internal validity measures of each cluster are encoded and presented tothe user. On the right side, (c) LDA allows the user to identify which features contribute most in theseparation of two visual clusters.

large and transparent spheres depict incoherent, cloudy-like visual clusters. Transparency isneeded to avoid occlusion and to emphasize the coherent visual clusters. Hereby, to preservecontext despite the combined use of size and transparency, we force aminimum limit in bothvisual encodings.
For the separationbetween two visual clusters, we considered twoalternatives: encodingits value to the distance of the spheres or using an additional glyph in-between the spheres.The first option results in a cluttered view, where small spheres were often included or evenhidden by the larger ones. Thus, we position among each pair of spheres a double-endedarrow glyph, whose thickness encodes the separation of the two visual clusters. Thin arrowsdepict well-separated visual clusters giving the illusion of distance, while thick arrows depictbadly-separated visual clusters, as shown in the legend of Figure 6.4 - b. We also force aminimum limit in the arrow thickness.
The choice of the double-ended arrow allows the incorporation of the silhouette coeffi-

cient in the visualization. In this glyph arrow, each end belongs to one visual cluster of thepair and the color encodes the value of the coefficient, using a luminance color scale. Thisis presented also in the legend of Figure 6.4 - b.
For a more detailed comparison of the visual clusters in the feature space, it is also nec-essary to show themost prominent features that differentiate them. At this point, we perform

6

98



6.5. Visual Analysis of Tumor Tissue Characterization

a Linear Discriminant Analysis (LDA) [22] between each pair of visual clusters. This is usedto calculate the vector that maximizes the linear separation between the means of theseclusters, while it minimizes the variance within each cluster. For each pair of clusters, wealso obtain the separation histograms resulting from the projection of the high dimensionalfeature space of the visual clusters on the separation vector. We initially overlay the separa-tion vector as text over the separation arrows of the visual cluster validity representation, asshown in Figure 6.4 - a.
A more intuitive and faster-to-perceive choice is to visualize the separation vector in aseparate view as a stacked bar, to showwhich feature or combination of features contributesmore to the separation. As we also want to show how good this separation is for each visualcluster pair, we use a matrix-like configuration to additionally show the distribution and thepairwise cluster projected histograms. This view can help to identify whichmultiple featurescontribute to the separation of clusters, as depicted in the bottom right side of Figure 6.4 - c.The colors in the histograms are used for visual cluster distinction and are consistent to thecolors employed in all views, while the colors in the stacked bar are used for the distinctionof the different features.
The association of the feature space with the anatomical or clinical reference space and

vice versa (T3) is one of the most important aspects for clinical users. Without the clinicalreference context, users would not able to generate and confirm hypotheses. For anatom-ical inspection, the visual tool provides functionality to slice through any kind of volumetricimaging data and a linked 3D view of the organ where the tumor is located. To enable si-multaneous inspection of clinical reference data, we need another 2D slice-based view. Theanatomical and clinical reference views are bi-directionally linked to the embedding space.Selections in one space are reflected in the other.
Linking the feature space to the anatomical or reference space is performed as describedin (T1). Linking the clinical reference space to the feature space is possible in two ways: by

color-encoding or brushing. In the first case, the entire discretized regions of the referencedata can be reflected on the embedding, with the use of a qualitative colormap [35] to matcheach distinct region of the reference to the respective embedding points, as depicted in Fig-ure 6.5 - a. In the second case, specific regions of interest can be interactively brushed in thereference space and linked to the other views, as illustrated in Figure 6.5 - b.
Finally, the easy exploration of the effect of modeling-induced variability and incorporation

of measurements of model-induced inaccuracy (T4) are also required. For variability, the vi-sual tool enables side-by-side visualization of multiple linked 2D embedding maps, namelyone per feature space. Different models result in different feature spaces and embeddings.Therefore, direct comparison of embedding spaces based on positions is not meaningful.To preserve context across multiple embedding maps and to link the points of the embed-ding map to their volumetric position in the anatomical space, we decided to use a simplevisualization. For example, visualizations which would require to trace lines across maps,would be too complex and clutter the view. In our design, one map is used as reference.Then, the position-based 2D colormap discussed in (T1) is used to retain the information ofthe 2D position of each point across the multiple embedding spaces, as shown in Figure 6.6- a. All interactions in one map or in the anatomy are reflected on all maps, to strengthen thelink between the different spaces.
For inaccuracy, clinical researchers are interested either in exploring regions with low
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Figure 6.5: Linking the anatomical/clinical reference to the feature space (T3) using (a) color-encodingand (b) selection. The reverse linking has been already presented in Figure 6.2.

accuracy to explain why inaccuracy occurs or in restricting their analysis to regions withhigh accuracy. To simplify this, we employ a double slider that allows to selectively visualizeaccuracy ranges in the embedding. To enhance the visualization, points of the embeddingmap within the selected accuracy range are visualized as firm, opaque and with well-definededges, if they have high accuracy, while lower accuracy points are transparent andwith blurryedges, as illustrated in Figure 6.6 - b.
■ Implementation. The entire user interface of the proposed visual tool is depicted in Fig-ure 6.7. We implemented the visualization tool in Python as a DeVIDEmodule [32], employingthe Visualization Toolkit (VTK) [2], matplotlib and scikit-learn. The design of the visual toolat this point requires a large number of windows, each one of which is needed to show aspecific complementary data aspect. The interface cannot be simplified drastically, given allthe tasks that we want to accommodate. Yet, we enable users to selectively manipulate theprofile of the tool and to selectively show the most useful representations for their specificexploratory tasks.
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Figure 6.6: Visualizations for the easy exploration of the effect of (a) variability and (b) inaccuracy (T4).
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Figure 6.7: The entire interface of our proposed visual tool, for the exploration and analysis of tumortissue characteristics.

6.6. Evaluation
In order to assess the value of our visual tool, we performed an evaluation, inspired by thepaper of Lam et al. [159]. The evaluation was performed with ten domain experts from threedifferent institutions (Netherlands Cancer Institute, Aarhus University Hospital and MAAS-TRO Clinic): three women and seven men. The group of participants included two researchphysicists, three medical physicists, four biomedical engineers and one computer scientist,
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who works on the automatic classification of tumor tissue. All participants have normal vi-sion, fivewith and fivewithout glasses, and nobody is colorblind. They ranked their computerexpertise as intermediate to high and all have a high expertise in tumor tissue characteriza-tion. Four of the participants were already familiar with the visual tool, as they were activelyinvolved in its design. In our results, we will treat these four participants separately from therest, to remove eventual bias.
Before the evaluation, we gave an introduction to the visual tool, where we explainedbasic notions and main components. We simulated the visual environment for the explo-ration and analysis of the high dimensional feature space of tumor tissue characteristics, asthe clinical researchers would do under real-life circumstances. At this point, the visual toolwas initially operated by the first author, while the clinical researchers observed the demon-stration of the individual components. Nevertheless, they could also operate the visual toolthemselves anytime to better understand the functionality.
The first part of the evaluation included two case studies, which required hands-on ex-ploration of the data, aiming at analyzing the actual relevance of the insight provided bythe visual tool, as it would occur in real clinical research settings. Each of the four tasksof Section 6.3 was performed with the thinking-out-loud method, as the clinical researchersexplained and reasoned on the findings in the data. In the second part, the participants an-swered a questionnaire.

6.6.1. Case Studies

In this section, we present the analysis performed by the evaluation participants, during thecase studies.
■Case study: Prostate tumor. In this case, data from a patient with advanced prostate tumorwere employed. DCE-MRI and DW-MRI data were acquired. From these, four pharmacoki-netic parametersmaps (Ktrans, kep, ve, vp) [257] and the additional ADCmapwith a b-value of
1000, were respectively derived. Afterwards, t-SNE was applied to obtain a 2D embedding ofthe six-dimensional feature space. This case consists of two subcases, where two differentclinical reference data were used:

• A linear regression model [106] predicting four prostate risk zones (high to low riskzone).
• Gleason Scores (GS) retrieved from histopathological data that reflect the aggressive-ness of the tumor foci based on theirmicroscopic appearance. To obtain the latter, thepatient was scanned and thereafter, the prostate was resected and histopathologicalslices were prepared and registered to the imaging data.
The results of the first case are summarized in Figure 6.8. Here, two distant, well sepa-rated regions of points were initially identified in the embedding map for further exploration,as shown in Figure 6.8 - a. Linking to the clinical reference data shows that region 1 corre-sponds to part of the high risk zone of the prostate, while region 2 corresponds to part of thelow risk zone, as depicted in Figure 6.8 - b. Using the cluster analysis view of Figure 6.8 - c,the abstraction of region 1 shows that it is more coherent than region 2, but also that the tworegions are well separated from each other. The joint histogram of the two regions, in the up-per right view of Figure 6.8 - d, also shows this separation, which ismainly due to a combined
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effect of three parameters (kep, Ktrans and ve), as it results from the vector of linear separa-tion. This is also confirmed by the different patterns and relationships between the imaging-derived features of the two regions, as shown by the parallel coordinates of Figure 6.8 - e andthe correlation matrix view of Figure 6.8 - f. The evaluation participants commented that thefindings of this part of the analysis correspond to their theoretical knowledge [257].
When the analysis is done by color-coding the points in the projection maps based onthe four discrete risk zones, as illustrated in Figure 6.8 - g, the low risk cluster 1 is partiallyseparated from the rest, but it is incoherent. Also, the two highest risk clusters 3 and 4 arereasonably coherent, despite some dispersion in the map, but not well-separated from eachother. The employed risk prediction statistical model is built based on the same featurespace as the one employed in the current analysis. Thus, the results from the analysis shouldbe matching the model, but they do not. This can be an indication that the model is not ableto detect potential sub-clusters in the high risk zones. To cross-check that this is not causedby inaccuracies during the derivation procedure of the features from the imaging data, highvalues of the goodness of fit, relating to model accuracy, were selected.
In the second subcase, presented in Figure 6.9, the analysis was done using the GS

Figure 6.8: Case study of a prostate tumor patient, using as a clinical reference a linear regressionmodel [106] predicting the prostate risk zones.
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retrieved microscopically from the histopathology [82]. In this case, the analysis was per-formed by going from the reference data to the embedding space. There are two regionsin the histological data: GS3 and GS4, where higher GS corresponds to more aggressive tu-mor. We color-code the points of the embedding map with respect to the GS region thatthey correspond. The points of the two GS regions did not correspond to well-defined, sepa-rated visual clusters in the embedding space, which is an indication that the specific featurespace is not able to reflect the GS system. However, the visual tool could be used to detectadditional imaging-derived features that reflect GS in a better way.

Figure 6.9: Case study of a prostate tumor patient, using as a clinical reference Gleason Scores (GS)retrieved from histopathological data that reflect the aggressiveness of the tumor foci based on theirmicroscopic appearance [82].

■ Case study: Cervical tumor. In this case, data from a patient with an advanced cervixtumor were employed. Three different modeling approaches were used to derive pharma-cokinetic parameters from DCE-MRI data. The employed pharmacokinetic models were theTofts model (TM), the Extended Tofts model (ETM) and the Two-Compartment ExchangeModel (2CXM)[257].
The first model results in two features (Ktrans and ve), the second, in three (Ktrans, veand vp), and the third in five (Ktrans, ve, vp, Fp and PS) [257]. The Akaike information criterion(AICc) that relates to the quality of fit of each model is included as an extra dimension ineach feature space.
For each one of the derived feature spaces, we computed a 2D embedding map. Asclinical reference, we used segmented data that depict the three regions of the tumor: theperiphery, the center and the in-between region. In literature [139], it has been hypothesizedthat different models perform better in different tumor regions and our visual tool was usedfor validation.
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Initially, the three embedding maps need to be compared. By colorcoding the pointsbased on the TM, it appears that the 2CXM behaves differently than the other two models,as shown in Figure 6.10 - a. For example, the region denoted in the red box is consistentin the ETM and TM, despite the fact that the cluster position is different across maps, asdepicted in Figure 6.10 - a. However, in the 2CXM map, this visual cluster does not exist, asthe points are spread. This is a confirmation to the theory that the 2CXM in some cases isunnecessarily complex and thus may produce inaccurate results.
Then, two regions were selected, as illustrated in Figure 6.10 - b. From the anatomy,based on the theoretical hypothesis [139], region 1 represents the areas where the simplestmodel, the TM, should fit better. On the other hand, region 2 represents areas where the ETMmodel fits better. For region 1, this is supported by the ETMembeddingmap: the correspond-ing visual cluster presents a split, as shown in Figure 6.10 - b.
Similar observations can be drawn for the points of region 2 that also form awell-definedregion in the ETM map, but present a bigger spread in the TM map. These observations arealso validated by the parallel coordinates, visualizing the values of the features in Figure 6.10- c. To compare the underlying structure of these two regions, we use the cluster analysisview of Figure 6.10 - d, fromwhich we identify that the visual clusters are well separated fromeach other in both ETM and TM maps. The coherence, though, is better in the map of betterfit: region 1 in TM and region 2 in ETM.

6.6.2. Interviews with Clinical Researchers

After the case studies, the participants were asked to complete a questionnaire. First, weasked four questions, related to the four main tasks of Section 6.3. Each question requiredan open answer, but also grading using Likert scales (1−5) for the perceived effectiveness,perceived efficiency and perceived satisfaction. In order not to compromise the results, weseparate in our statistical analysis the four people involved in the design and the other sixwho were not involved.
It was found that the two groups had in most cases comparable results. The measuredvariables received high scores, as summarized in Figure 6.11. The scores of the variabilityand inaccuracy incorporation tasks were slightly lower than the other three, as some of theparticipants noted that they would like to use the inaccuracy component more, before givinga conclusive answer. One participant graded the efficiency of the second task lower, becausehe stated that the interpretation of the cluster analysis view takes time when the user is notfamiliar with the employed representations. The others considered that the representationsadopted in the multiple views of the visual tool were intuitive.
The participants were also asked to compare the visual tool to what they are currentlyusing and to evaluate the visual tool, as a whole, by discussing its suitability, strengths, limi-tations and missing features. In comparison to the currently employed approach, they com-mented: it is a much more elegant approach than what I am currently using. It is very intuitive

and versatile., continuing: I can learn more about the data and discover more about it, than
with the current approach.. They also said: I think the tool can help us to explore the feature
space better., and concluded that: The information provided by this tool is very interesting and
once collected for a wider population, it can be used to train a model based on more relevant
features that provide a better separation of tissues.
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Figure 6.10: Case study of a cervical tumor patient, explored for three different modeling ap-proaches [257].
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6.7. Conclusions and Future Work

All participants agreed that the visual tool is overall understandable and easy to learn.They also agreed that the suitability of the visual tool wasmainly for data exploration, knowl-edge discovery and hypothesis validation or generation. Suitability for decisionmakingmightcome as a result of the previous, after better familiarization with the visual tool. The strongfeatures of the visual tool – and also what the evaluators liked more about it – are the multi-ple interactive linked views on the data, the link between anatomy and feature space and theincorporation of inaccuracy in the analysis, even if the latter received a lower mean grade.
According to the evaluation participants, a missing feature or limitation of the visual toolis that it currently does not provide functionality for viewing simultaneously the PKparametermaps in a supplementary slice-based view, which is still important for clinical users, due tofamiliarity. Finally, some of the users commented that the areas of interest do not alwayscorrespond with descriptive density variation areas in the 2D embedding. Therefore, it is notalways obvious how to define the selection boundaries in the embedding.

6.7. Conclusions and Future Work
The current exploratory approach for tumor tissue characterization based on imaging is timeconsuming, making it difficult to obtain the required insight. In this chapter, we proposed avisual tool that enables clinical researchers to perform easy exploration and visual analysisof the feature space of imaging-derived tissue characteristics, and to discover new knowl-edge, with respect to reference data used in clinical research. We employ, as central view,a 2D embedding of the feature space, linked to multiple interactive views. These views pro-vide information concerning the structure of the feature space and relations to anatomicaland clinical reference information. We performed an initial evaluation with ten clinical re-searchers, who confirmed the usefulness of the visual tool in their analysis, as it opens newpossibilities in the exploration of the feature space and provides access to new insight in thedata. We illustrated this with two case studies performed during the evaluation.

A direction for future work includes the extension of the application to allow meaningfulfollow-up or inter-patient analysis. It would also be interesting to extend the visual tool or togeneralize its functionality for other applications, where also a higher number of features isinvolved. An example of this is demonstrated in Part II of this chapter. Finally, the incorpo-ration of embedding precision information in the analysis would also lead to more reliableobservations. The proposed visual tool is a promising basis for clinical researchers to iden-tify, explore and analyze heterogeneous intra-tumor regions and particularly, to generate andconfirm hypotheses, with respect to clinical reference.
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Figure 6.11: Schematic representation of the evaluation results, for each one of the tasks of Section 6.3.
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6.8. Abstract

6.8. Abstract
The previously proposed Visual Analytics tool can be employed in many different applica-tions. Among these, it can be used to aid the design of tissue classifiers and to increase theunderstanding of their behaviors. We demonstrate this outside the field of prostate tumortissue characterization.

Accurate segmentation of brain white matter hyperintensities (WMHs) is important forprognosis and disease monitoring. To this end, classifiers are often trained – usually, usingT1 and FLAIR weightedMR images. Incorporating additional features, derived from diffusionweighted MRI, could improve classification. However, the multitude of diffusion-derived fea-tures requires selecting the most adequate. For this, automated feature selection is com-monly employed, which can often be sub-optimal.
In this work, we propose a different approach, introducing a semi-automated pipelineto select interactively features for WMH classification. The advantage of this solution isthe integration of the knowledge and skills of experts in the process. In our pipeline, theVisual Analytics system proposed in Part I [226] is employed, to enable a user-driven featureselection. The resulting selected features of our approach are the intensities from T1 andFLAIR images, Mean Diffusivity (MD), and Radial Diffusivity (RD) – and secondarily, CS andFractional Anisotropy (FA). The next step in the pipeline is to train a classifier with thesefeatures and compare its results to a similar classifier, used in previouswork with automatedfeature selection. Finally, Visual Analytics is employed again to analyze and understand theclassifier performance and results.

6.9. Introduction
White matter hyperintensities of presumed vascular origin (WMHs) are a common findingin MR images of elderly subjects. They are a manifestation of cerebral small vessel disease(SVD) and are associated with cognitive decline and dementia [196]. Accurate segmenta-tion of WMHs is important for prognosis and disease monitoring. To this end, automatedWMH classification techniques have been developed [10]. Conventional approaches includeraw image intensities from T1 and FLAIR weighted MR images, but recently, it has been sug-gested that diffusion MRI can improve the segmentation [155, 169]. Multiple features can bederived from this imaging modality. Thus, careful feature selection is required.

In this work, we propose a semi-automated approach, to aid the design of WMH classi-fiers. Our novelty is the introduction of a user-driven, interactive pipeline that provides newinsight into the entire classification procedure, especially in the identification of an adequatefeature list and the outcome analysis. Up to now, the knowledge and cognitive skills of ex-perts have not been intensively involved in the process. In the first step of our pipeline, weemploy the Visual Analytics system [226], which was presented in Part I of this chapter. Us-ing this system, expert users select interactively the most important features. In the second
step, the resulting feature list is used to train a classifier for WMH segmentation. The perfor-mance and results of this classifier can be analyzed and interpreted in the final step of thepipeline, again using Visual Analytics. To the best of our knowledge, involving users throughvisual analysis and interaction in an entire pipeline for feature selection, classification andoutcome evaluation for WMH structures, has not been addressed before.
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6.10. Materials and Method

The remainder of the second part of this chapter is organized, as follows: Section 6.10 isthe core, where the novel pipeline for feature selection, classification and outcome evaluationfor WMH structures is presented. Section 6.11 presents the results of using our proposedapproach. Section 6.12 concludes with a discussion on several points with respect to ourproposed pipeline, along with propositions for future work.

6.10. Materials and Method
6.10.1. Subjects and MRI Data

We used the subjects of the MRBrainS13 challenge [177], with additional manual WMH de-lineations. Subjects included patients with diabetes and matched controls. The cohort in-cluded 10 men and 7 women, with an age of 71±4 years. All subjects underwent a stan-dardized 3 T MR exam, including a 3D T1-weighted, a multi-slice FLAIR, a multi-slice IR,and a single-shot EPI DTI sequence with 45 directions. All sequences were aligned withthe FLAIR sequence [148]. The diffusion images were corrected for subject motion, eddycurrent induced geometric distortions and EPI distortions, including the required B-matrixadjustments, using ExploreDTI [161].
The dataset includes T1, FLAIR and IR weighted images, as well as the following diffu-sion features: Fractional Anisotropy (FA), Mean Diffusivity (MD), Axial Diffusivity (AD), RadialDiffusivity (RD), the Westin measures CL , CP , CS [304], and MNI152-normalized spatial co-ordinates [148, 88]. This exact dataset has been previously reported in a study of Kuijf etal. [155] for the investigation of the added value of diffusion features in a WMH classifier.Since we could have access to the exact same data and we share the same goal, we will usethis previous work of Kuijf et al. as a baseline for the evaluation of our results.

6.10.2. Method

In this section, we describe our new pipeline for the user-driven, interactive selection of fea-tures that can differentiate WMHs from healthy brain tissue. Our pipeline consists of threesteps, depicted in Figure 6.12. First, the data are interactively explored and analyzed by expertusers, using our tissue characterization system [226], which was presented in the previouspart of this chapter. From this step, we obtain through interaction and visual analysis a listof features, adequate for WMH detection. These features are subsequently used to train aclassifier. After classification, the system is used again to evaluate and better understandthe classification process and outcome.
■ Feature Selection using Visual Analytics. Our previously described Visual Analytics sys-tems [226] is employed to interactively explore the data of each one of the available subjects,as shown in Figure 6.13. Initially, t-Distributed Stochastic Neighbor Embedding (t-SNE) [286]is used to map the high-dimensional feature space of each subject, which was describedin Section 6.10.1, into a reduced 2D abstract embedding view, preserving the local structureof the feature space. Spatial coordinates are excluded, as we are interested in preservingsimilarities in the feature space, whereas the voxel positions could introduce bias.

In the resulting embedding view, which is presented in Figure 6.13 - b, close-by 2D datapoints reflect voxels with similar behavior in the high-dimensional feature space. Therefore,
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Subject Data Our Visual Analytics Tool Feature Selection Classification Evaluation 

Figure 6.12: The pipeline proposed for the user-driven feature selection, classification and outcome eval-uation for the segmentation of White Matter Hyperintensities (WMHs).

 

(a) Anatomy Views (b) t-SNE Embedding View (c) Multiple Interactive Views 

Figure 6.13: Our proposed Visual Analytics system [226] during the exploration of the data of a subjectfrom the MRBrainS13 challenge [177]. The three main components of the system are denoted.

voxels from structures with similar imaging characteristics are expected to be grouped to-gether in the embedding, in so-called visual clusters. The availability of manual delineationsof theWMHs as ground truth data allows to associate visual clusters from the feature spaceto anatomy, and vice versa, as depicted in Figure 6.13 - a.
When aWMH-containing visual cluster is interactively selected, its intrinsic feature char-acteristics can be explored. This can be conducted, for example, against other structuresof the brain, or against WMHs voxels that are not within the selected visual cluster. Then,several linked views, such as the ones depicted in Figure 6.13 - c, are interactively updatedwith complementary data information. This includes feature distributions and correlations,multidimensional data patterns, cluster validity analysis and information on features that
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help separating visual clusters from each other, as given by the weights of the separationvector of Linear Discriminant Analysis (LDA). In this way, features suitable for the detectionof WMHs are interactively identified.
For example, for the subject of Figure 6.13, two visual clusters have been selected in thet-SNE of the middle view. As depicted in the anatomical views, one corresponds to theWMHcore, highlighted in green, and the other to the periphery, highlighted in purple. Together,they represent the biggest part of the structure. Still, several small parts are missed. Theseparation vector, resulting from LDA between the two visual clusters containing the WMHsagainst the rest of the brain, is extracted. From the weights of this vector, features adequatefor differentiating the detected WMHs from the rest of the brain are identified. This analysisis subject-specific and has to be performed on a single-subject basis. When all subjects havebeen explored, the user decides on the most overall suitable feature list.

■ Classification. In this step, many different classification approaches could be followed, butcomparing all would be out of scope, for this work. Recently, Kuijf et al. [155] presented an ap-proach forWMHclassification, using the same set of diffusion features. To evaluatewhetherour user-driven feature selection outperforms automated feature selection, we adopt a simi-lar classification approach, as in the previous work of Kuijf et al. The list of features resultingfrom the system is used to train a k-nearest-neighbor classifier for WMH segmentation. Fordifferent feature combinations, several classifiers are trained with k = 50, 75, or 100, and theneighbor-weighted is either uniform or distance-based [155].
■ Evaluation of Classification. In many cases, classifiers are treated as black boxes, andusers do not have actual insight into the achieved result. With this step, we want to providea way for evaluating and understanding both the results of the classifier and the classifieritself. To this end, we import the binary masks resulting from the classification, which con-tain the detected and the missed WMHs, into our Visual Analytics system [226]. The usercan interactively explore the high-dimensional feature space of the two regions of the mask,and generate hypotheses about why the classifier failed to detect parts of the WMHs, withrespect to the imaging features.

6.11. Results
In this section, we present the results from each step of our proposed pipeline, for featureselection, classification and outcome evaluation for WMH structures in the subjects of theMRBrainS13 challenge [177].
■ Feature Selection using Visual Analytics. In most of t-SNE embeddings of the subjects, themajority of voxels of the WMHs are grouped together in one or two visual clusters, similar tothe case depicted in Figure 6.13. From selecting these visual clusters, we could identify thatfor subjects with two visual clusters, these either correspond to the core and the periphery,or to anterior and posterior WMHs. For large WMHs (top 50%), the visual clusters of theembedding identify 84-98% of the structures. For the rest, the visual clusters can at leastdetect the core, with a minimum detection percentage of 54%.

The multiple interactive linked views of the system show that there are comparable be-haviors, within all cases of visual clusters, especially for larger WMH structures. As men-tioned before, the cluster analysis view of the system provides the separation vector, result-
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ing from LDA between the visual cluster containing most of WMHs and the visual cluster ofthe rest of the brain. Table 6.1 depicts, for all investigated subjects, the weights of separationfor these two visual clusters.
In all, but three cases, T1, FLAIR, RD andMD aremore important and have a considerableweight. For bigger WMHs, CS and FA also become important. The contribution of otherfeatures such as AD,CL ,CP and IR seems not significant. Considering also the (cor-)relationsbetween diffusion features, we decide on the overall set of features for the classifier: MD, RD,

Table 6.1: The most important features for each subject, as resulting from the weights of the LDA sep-aration vector, performed for the detected visual clusters of WMH voxels against the rest of the brain.The second column denotes the size of WMHs in voxels. The third column shows the percentage ofWMHs detected by visual clusters in our Visual Analytics tool. The other columns represent features,and their weights are color encoded per row. The resulting feature list is the set MD, RD, T1 and FLAIR(then, CS and FA).

Negative High Positive High 

Weight Weight

Low

Weight
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T1 and FLAIR–and secondarily,CS and FA.Here, we add theMNI152-normalized coordinates(x , y , z) to better represent the brain volume and to suppress non-WMH structures.
■ Classification. Based on the results of the system, the following four combinations offeature sets si ∈ S are chosen for our k-NN classifier:

• s1: MD, RD, T1, FLAIR
• s2: s1+ (x , y , z)
• s3: s1+ CS , FA
• s4: s3+ (x , y , z)
For each classifier trained on a feature set si ∈ S , we measure the sensitivity and Dicesimilarity coefficient (mean± standard deviation), as shown in Table 6.2. These measure-ments are performed with respect to the available manual delineations of the WMH struc-tures. Furthermore, our results are compared to the feature sets fi ∈ F , previously used byKuijf et al. [155]:
• f1: T1, IR, FLAIR
• f2: f1+ (x , y , z)
• f3: f1+ FA, MD
• f4: f2+ FA, MD
• f5: f4+ CL , CP , CS , AD, RD
The results of Table 6.2 demonstrate that our proposed Visual Analytics-guided featureselection can achieve similar or slightly better performance than the automated feature se-lection presented by Kuijf et al. [155]. The two best performing feature sets of Kuijf et al. used8 ( f4) and 13 ( f5) features, while our current two best methods use less features, with com-parable results. Our approach allows to discard CL , CP , AD and IR, which do not contributein the classification, hereby saving scanning and computational time.

■ Evaluation of Classification. To evaluate the classification outcome, we introduce the re-sults of the two best performing classifiers, s2 and s4, into the Visual Analytics system. Oneof the goals is to explore and analyze the parts of the WMHs that are missed, but also tounderstand better how these classifiers work and how they can be improved. From an initialinspection, it results that classifier s2 is restricted to the core of the WMHs, while s4 detectsan extension of it. The WMH core is always detected by both classifiers, as it has consistentimaging characteristics and is well-clustered in the t-SNE embeddings. In subjects with big-ger WMHs, s4 misses only small or thin structures and part of the periphery. In subjects withsmaller WMHs, there is a tendency to miss periphery parts and posterior structures moreoften than the anterior. For bigger WMHs, the core differs in T1, MD, RD with the missedstructures. Also, the latter are not as good clustered in the t-SNE embeddings as the core,indicating that they are not coherent in their imaging characteristics. As WMHs becomesmaller, the influence of T1 becomes less strong, while MD and RD seem to become moreimportant.
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Table 6.2: Sensitivity, Dice similarity coefficient (SI, higher is better) and number of features for theclassifiers, trained on combinations of features si ∈ S (top, from our Visual Analytics-driven approach)and fi ∈ F (bottom, from the work of Kuijf et al. [155]), with respect to the available manual delineations.
Our Visual Analytics-driven approach

S Sensitivity (%) Dice SI Features
s1 64.8 ± 0.2 0.460 ± 0.003 4
s2 76.2 ± 0.4 0.560 ± 0.005 7
s3 66.3 ± 0.2 0.471 ± 0.004 5
s4 76.6 ± 0.5 0.576 ± 0.004 8

Automated approach of Kuijf et al. [155]
F Sensitivity (%) Dice SI Features
f1 59.7 ± 0.2 0.349 ± 0.001 3
f2 73.4 ± 0.4 0.536 ± 0.005 6
f3 67.8 ± 0.3 0.411 ± 0.003 5
f4 77.2 ± 0.4 0.565 ± 0.004 8
f5 75.2 ± 0.6 0.561 ± 0.003 13

6.12. Discussion and Conclusions
We proposed a user-driven pipeline for aiding the design of classifiers, focusing on WMHsegmentation. Using Visual Analytics and employing the cognitive skills of an expert user,we initially identified the list of features (MD, RD, T1, FLAIR, and secondarily, FA and CS ) thatare suitable for the separation of WMHs. Then, this list was used for WMH classification. Inrespect of previous work [155], our results are comparable. Yet, our results are not achievedthrough a trial-and-error approach, but after a justifiable and understandable, interactive fea-ture selection.

Additionally, our approach requires less features, which allows to skip several imagingsequences, making the feature calculation less computationally intensive and time consum-ing. For example, we concluded that CL , CP , AD and IR can be omitted, which saves valuablescanning time (IR: 3:49 min).
After classification, we evaluated the classifier outcome in our proposed Visual Analyticssystem. The periphery is constantly missed. Thin and small structures can be missed dueto partial volume effect, while the MNI152-normalized spatial coordinates can influence theseparation of posterior or anterior WMHs. For certain subjects, the missed structures haveintrinsically different imaging characteristics.
In this case, more features, such as texture or tensor information, should be further in-vestigated. The performance of the classifier could be further improved by adding additionalpost-processing, to remove false positive detection, which was not performed here, to becomparable to Kuijf et al. [155]. Also, it would be interesting to investigate what happenswhen our Visual Analytics-selected features are used with more sophisticated classificationalgorithms.
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In the entire pipeline, the user interacts and guides the analysis. This has the advantagethat the cognitive capabilities of the user, which are not easily automatized, can be includedin feature selection. However, the results are user-dependent and it remains important toanalyze the bias introduced by the user. Although t-SNE is widely used [9] for understandingand exploring high dimensional data, errors can also be introduced due to its use.
Adding more features for exploration in the Visual Analytics system, such as texturalfeatures or information from tensors, could give interesting results. However, certain visu-alizations of our system do not scale well to a high number of features. Therefore, newvisualizations would be needed to tackle hundreds of features. Finally, evaluating the useof the pipeline with a user study, to define its general usefulness, is another point for futurework.
Nevertheless, employing Visual Analytics in the design of classifiers provides potentialfor better understanding the data under exploration, and for obtainingmore insight into clas-sifiers and the frequently exploding set of imaging features.
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7
Visual Analytics for theExploration and Assessment ofSegmentation Errors

Errors are portals to discovery.

James Joyce (1882 - 1941), Ulysses
In this chapter, we present a Visual Analytics solution for the exploration and assessment of er-
rors occurring during themodel-based segmentation of pelvic structures. Our focus is on how
Visual Analytics can contribute towards the prediction of the performance of segmentation
algorithms. Chapter 7 is based on the paper:
■ Raidou, R.G., Marcelis, F.J.J., Breeuwer, M., Gröller, E., Vilanova, A., and van de Wetering,H.M.M., 2016. Visual Analytics for the Exploration and Assessment of Segmentation Errors.Proceedings of the Eurographics Workshop on Visual Computing for Biology and Medicine(VCBM 2016), pp. 193-202 [224].



7.1. Abstract

7.1. Abstract
Several diagnostic and treatment procedures require the segmentation of anatomical struc-tures from medical images. However, the automatic model-based methods that are oftenemployed may produce inaccurate segmentations. These, if used as input for diagnosis ortreatment, can lead to sub-optimal results for the patients. Currently, experts working on thedevelopment of these segmentation algorithms cannot easily perform an analysis to predictwhich anatomic regions are more prone to inaccuracies, and to determine how to improvetheir algorithms.

In this chapter, we propose a visual tool to enable experts, working on model-based seg-mentation algorithms, to explore and analyze the outcomes and errors of their methods. Ourapproach supports the exploration of errors in a cohort of pelvic organ segmentations, wherethe performance of an algorithm can be assessed. Also, it enables the detailed explorationand assessment of segmentation errors in individual subjects.
A usage scenario is employed to explore and illustrate the capabilities of our visual tool.To further assess the value of the proposed tool, we performed an evaluation with five seg-mentation experts. The evaluation participants confirmed the potential of the tool in provid-ing new insight into their data and employed algorithms. They also gave feedback for futureimprovements.

7.2. Introduction
Several diagnostic and treatment procedures require the segmentation of anatomical struc-tures from medical images. This can be either performed manually, semi-automatically, orautomatically. In manual segmentation, medical experts inspect 2D imaging slices one-by-one, and delineate structures. As this procedure can be time consuming, automaticmethodsare preferred and, therefore, a lot of effort is being invested in algorithm development. Still,automatic algorithms cannot account for all cases, and may perform sub-optimally.

Experts working on automatic segmentation algorithms can relatively easily detect theerrors. However, even for them, it is not trivial to understand why or how inaccurate out-comes are produced. Exploring and assessing segmentation errors can provide experts withnew knowledge about the performance of their algorithms. For example, it can help themto predict the anatomic locations and circumstances under which errors occur. Moreover, itcan aid them in confirming or generating hypotheses about their methods and, on the longterm, it can allow them to improve their segmentation results. Even if segmentations cannotbe improved, it still remains important to be aware of potential inaccuracies. Disregardingthis information might affect diagnosis or treatment, if the latter are based on erroneoussegmentation outcomes.
As proof-of-concept, we consider the automatic model-based segmentation of pelvicstructures [239], used as input to radiotherapy planning for prostate tumors. Planning sucha radiotherapy procedure requires the accurate segmentation of the prostate and the organsat risk that need to be spared during irradiation. Also in this case, segmentation errors oftenoccur, and need to be explored and assessed. In current practice, this is not feasible on a pa-tient basis, as it can only be done if golden standard segmentations are available. Therefore,new means for the exploration and analysis of segmentation errors need to be devised.
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7.3. Model-Based Segmentation of Pelvic Organs

Our contribution is a visual tool that allows experts working on algorithms for model-based segmentation of pelvic structures, to explore and assess the outcomes and errors oftheir methods. Our approach incorporates the following two capabilities:
• It supports the exploration and assessment of errors in a cohort of pelvic organ seg-mentations. These segmentations result from applying the same algorithm to severalsubjects. With this, experts inspect the general performance of the algorithm.
• It facilitates the detailed exploration and assessment of segmentation errors in thepelvic organs of individual subjects. With this, experts can identify the specific detailsabout the performance of the algorithm, concerning each subject of the cohort.

To the best of our knowledge, there is no other tool with the comprehensive functionality thatour work offers. Although we demonstrate our visual tool on a specific case, our methodscould be generalized to other applications, and fit to other segmentation algorithms.
The remainder of this chapter is organized, as follows: Section 7.3 includes all the nec-essary background information. Section 7.4 provides an overview on previous work, andSection 7.5 is the core of this chapter, where our proposed approach is presented and dis-cussed. Section 7.6 presents the results of a usage scenario, while Section 7.7 presents theresults of our user evaluation. Finally, Section 7.8 concludes the chapter with a discussionand propositions for future work.

7.3. Model-Based Segmentation of Pelvic Organs
As described in Chapter 2, radiotherapy planning requires the accurate segmentation of theprostate and all the surrounding organs at risk, such as the bladder, rectum and seminalvesicles. For the segmentation of the involved pelvic organs, shown in Figure 7.1, automaticmodel-based methods are often employed [76, 239].

In the present work, we consider the algorithm of Schadewaldt et al. [239], for the seg-mentation of pelvic structures in CT images. In this method, structures are considered tohave a known general shape. Training data are used to build probabilistic models that ex-plain the shape variation of each structure. These models are used as prior information,and are positioned in the volume. Then, they are iteratively adapted to the boundaries ofthe structure of interest [76], using a combination of rules. These rules describe how to usefeatures, such as gradient magnitude, which have been learned from training data. Differentfeatures might be employed for different organs, or parts of these. More details about thealgorithm can be found in the papers of Schadewaldt et al. [239] and Ecabert et al. [76].
Although the selected segmentation method is robust, it is not always accurate. Yet,the resulting inaccuracies might be propagated to the radiotherapy dose administration tohealthy organs, with unwanted side effects [300]. Our collaborating experts from PhilipsHealthcare in Hamburg, working on the segmentation of these pelvic structures, need toexplore, understand, and assess the segmentation results, as well as their respective inac-curacies. To this end, they generate, using their in-house algorithm [239], segmentations offour organs – prostate, bladder, rectum, seminal vesicles – and their interfaces, in the formof triangulated meshes. Meshes from different subjects have a triangle-to-triangle corre-spondence.
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Figure 7.1: The anatomy of the pelvic structures involved in this work. Image generated using
ZygoteBodyTM.

Additionally, ground truth for each subject is available from delineations of pathologists.Correspondence between the ground truth and the segmentation outcomes has been es-tablished, as described in the paper of Schadewaldt et al [239]. From the ground truth, oursegmentation experts computed four local quality measures per triangle [239]. These are:
• The target error, which is the point-to-point distance from a triangle in the resultingmesh, to the target location in the ground truth data, measures in mm.
• The features response, which indicates the strength of a number of algorithm featuresat the target location.
• The weighted features response, which is the feature response, inversely weighted bythe distance to the target.
• The triangle area, measured in mm2.
The above mentioned measures are indicative of segmentation accuracy and are exten-sively used by our intended users. For example, a trianglewith high target error is expected tohave low feature response, meaning that the selected features are not strong enough to at-tract the triangle towards the correct target position. Dramatic changes in the triangle areascan be another sign of erroneous segmentations.
Moreover, feature response profiles are computed by our collaborating segmentation ex-perts per triangle, after the adaptation of each mesh. As shown in Figure 7.2, the provideddata of the profile of each triangle result into a number of discrete point values. These val-ues are located along a ray parallel to the normal of the triangle, centered to the adaptation
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7.3. Model-Based Segmentation of Pelvic Organs

 

Figure 7.2: Response profile (cyan) of a triangle, after mesh adaptation, centered at the adaptationlocation (black) and parallel to the normal (red). There is also a latent peak, denoted with the cross.

location of each triangle. Each of these values indicate the strength of the features-rulesthat were used for the adaptation at each index position of this ray, and they relate to theabove mentioned feature responses and target errors. During adaptation and profile com-putation, neighboring triangles are influencing each other, as well. For this, profile inspectionin triangle neighborhoods, or in groups with similar response, can give a better idea of thereliability than individual triangles. In such an inspection, the number and locations of peaks– in essence, the local maxima – are important. Multiple peaks could indicate locations withhigh feature responses that are competing during the adaptation. Non-centered peaks couldalso be an indication of inaccuracy.
After a discussion with our collaborators, it resulted that they currently do not have anintuitive and easy-to-use way to obtain new insight into their segmentation outcomes withrespect to the computed local quality measures, and the response profiles. They pointed outa number of tasks that they are interested in performing:
• For the full cohort of subjects:

– Explore the distribution of local segmentation errors and response profiles (T1-a).
– Identify anatomical locations (organs or part of these) where the algorithm per-forms consistently (T1-b).
– Identify subjects that are special cases (T1-c).

• For an individual subject:
– Explore the distribution and anatomical location of the different local qualitymeasures (T2-a).
– Discover relations between local quality measures (T2-b).
– Identify response patterns, for reliability evaluation (T2-c).

7

123
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7.4. Related Work

Visual analytics for the exploration of segmentation outcomes has been addressed in sev-eral recent papers. Among them, there are frameworks for the analysis of the impact of
parameters on segmentation algorithm outcomes, such as in the work of Torsney et al. [274]and Fröhler et al. [90]. Also, there is recent work on shape variability analysis [42, 149, 117].However, the focus of these two categories is not on evaluating the employed segmentationalgorithms and their results.

Another category comprises comparative visualization, which rather deals with the qual-itative or visual evaluation of two segmentation outcomes. Busking et al. [41] proposed vi-sualizations for the comparison of two surfaces, using different kinds of visual or graphicalvariables. In other papers, simple overlays [94] or extensions of checkerboard visualizationson 2D imaging slices [170, 240], but also side-by-side comparisons of 3D volumes have beenused [5]. Visual variables, deformations, glyphs [317] and combinations of these have alsobeen employed [194]. Specifically for mesh comparison, MeshLab [53] and PolyMeCo [253]have been proposed. Most of these papers refer to comparing two subjects, or one subjectwith a reference.
Comparison of multiple subjects was only recently tackled by Schmidt et al. [241]. In thiswork, a visual tool for the comparison of meshes is proposed, enabling the interactive explo-ration of their differences. This tool is meant for evaluating meshes generated by differentalgorithms with respect to a reference mesh and it is not fully applicable to the data thatwe are dealing with. It does not allow to explore and compare any local quality measuresalong with response profiles, which are necessary for our application. Additionally, it is lim-ited to evaluating the visual quality of the resulting shapes. This is predominantly done inuser-selected regions, which need to be interactively inspected.
For the evaluation of the segmentation process andoutcome von Landesberger et al. [290]visualize the progress of quality during the segmentation of one organ. This approach en-ables the analysis of the segmentation process, but it is limited to one subject. Later, theyimprove this by proposing a method to show the distribution of quality values globally andto select cases with high or low quality values for a detailed inspection [292]. This strategystill does not allow the comparison of local quality measures across all subjects. In a morerecent paper [291], von Landesberger et al. present a system for assessing and comparingsegmentation quality across multiple datasets. A drill-down approach from an overview ofa group of subjects to a detailed view of user-selected cases is employed.
As follow-up, Geurts et al. [96] propose a method for the visual comparison and evalu-ation of 3D segmentation algorithms. The goal is to determine the best segmentation al-gorithm, among different alternatives. To this end, they investigated both global and localapproaches. Both previousworks [291, 96] are similar to ours, but they are not fully applicableto our available data and tasks. This especially holds for the tasks related to the explorationof the segmentation response and the relations between local quality attributes. Table 7.1shows schematically which requirements are (not) fulfilled by the most relevant previousrelated work.
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7.5. Visual Analytics for the Exploration and Assessment of Segmentation Errors

Table 7.1: Requirement analysis concerning our application, for the tasks defined by the intended usersand described in section 7.3 (X: fulfilled; x : not fulfilled; o: partially fulfilled, or profile response notfulfilled; -: non-applicable).
 

Compatibility 

with Data 

Multiple 

Subjects 

Compatibility with Tasks 

(T1-a) (T1-b) (T1-c) (T2-a) (T2-b) (T2-c) 

Parameter Space Visualizations   - - - - - - 

Shape Variability Visualizations   - - - - - - 

Earlier Comparative Visualizations   - - - - - - 

[SPA*14]    o o    

[vLAA*13]         

[VLBK*13]         

[vLBB15]   o      

[GSK*13]   o  o  o  

Our proposed approach         

7.5. Visual Analytics for the Exploration and Assess-
ment of Segmentation Errors

The segmentation algorithm [239] is applied on imaging data from a cohort of subjects.Then, the respective triangulated meshes are generated, along with the measures describedin section 7.3. Our approach enables the exploration and analysis of these measures usingthe components shown in Figure 7.3:
• The exploration of the full cohort of subjects.
• The exploration of an error hierarchy to detect special subject cases.
• The exploration of an individual subject.

 

 

(T1-a,b) 

Exploration of 

Full Cohort 

(T1-c) 

Exploration of 

Error Hierarchy 

(T2-a,b,c) 

Exploration of 

Individual Subjects 

Cohort Average 

Subjects 

Organs 

P B R V P B R V P B R V 

Figure 7.3: The three main components of our approach, together with the tasks from section 7.3 thatthey address. The abbreviations denote the different organs (P: prostate, B: bladder, R: rectum, V: seminalvesicles).
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7.5. Visual Analytics for the Exploration and Assessment of Segmentation Errors

7.5.1. Exploration of the Full Cohort

When exploring the full cohort of segmentation outcomes, segmentation experts initiallyneed to explore the distribution of local segmentation errors and the respective responseprofile values (T1-a). Visual comparison of individual outcomes, though, may be time con-suming, but also limited due to perception and screen space constraints [96]. For this reason,we decided to provide an overview at the triangle level. As mentioned in section 7.3, the in-dividual subjects of the cohort have a triangle-to-triangle correspondence. Thus, at eachtriangle position, we compute the mean and the standard deviation across all subjects, ofboth the target error and the response profiles.
For the target errors, mean and standard deviation are plotted in a scatterplot, whereeach data point represents one triangle location, as depicted in Figure 7.4. Data points in thescatterplot are renderedwith a lowered opacity, to reduce clutter fromoverlapping points andas a density indication. We call this representation a confidence scatterplot, as it can provideinformation about three main regions of confidence based on the values of the mean andthe standard deviation of the target error, as shown in Figure 7.4.
To convey additional information about the distribution of the mean and the standarddeviation of the target error across the triangles of the mesh, we denote the first, secondand third quartile of the respective distributions. In a confidence scatterplot, points with lowmean and low standard deviation represent triangles where the algorithm performs system-atically well. Points with high mean and low standard deviation represent triangles wherethe algorithm performs systematically poorly. Finally, points with high standard deviationcorrespond to uncertain areas. This is related also to task (T1-b).

  

Q1 Q2 Q3 

Q1 

Q2 

Q3 poor  good  

uncertain  

  

  

Figure 7.4: Confidence scatterplot of the mean error µ against the standard deviation σ, of the targeterror of all subjects. We denote the three areas of performance (good performance: ↓µ ↓σ, poor perfor-mance: ↑µ ↓σ, uncertain performance: ↑σ) (T1-a). Three selections are made for good (green), poor(magenta) and uncertain (cyan) performance, and links to the anatomy are shown (T1-b). Q1−Q3indicate the three quartiles.
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7.5. Visual Analytics for the Exploration and Assessment of Segmentation Errors

For the response profiles a different approach is followed. As already mentioned in sec-tion 7.3, the reliability of the algorithm can be assessed from the inspection of profiles intriangle neighborhoods, and especially for triangles with similar response profiles. To thisend, the peaks, namely the local maxima, are considered. A region of triangles with single-peaked response profile is more likely to be accurate than a region with multiple peaks. Oneoption to illustrate this would be to reduce the mean profile information to a single scalar,representing the number of peaks. However, this would not convey the entire informationabout the mean profiles. For this, we retrieve clusters of mean profiles with a similar shape.These clusters can then be represented and visualized by an average profile.
Several clustering approaches can be employed [132]. However, determining a-priori theoptimal value of clusters can be difficult and time consuming. For this reason, approachessuch as k-means were discarded. For our application, we consider it more suitable to usea hierarchical clustering method. The computation of clusters with similar mean profiles isdone, using an agglomerative hierarchical clustering method [297]. Initially, the number ofclusters is equal to the number of triangles. This is followed by a phase, where iteratively thetwo most similar clusters are merged. Once a cluster is created, a representative, averageprofile is used in the next iteration. Clustering is performed with the similarity S between twonormalized profiles p and q being:

S(p, q) =∑
i

1−|p[i ]−q[i ]| (7.1)

where i is the index location of each triangle profile.
In this way, twomean profiles with close-by peaks are assigned a higher similarity score,than two mean profiles with peaks further apart. After all iterations are finished, this algo-rithm results in a dendrogram, which can be interactively browsed. For visualization pur-poses we employ a collapsible profile tree metaphor, with the root being the average repre-sentative profile of all triangles. This can be expanded, revealing all underlying depth levelsof clusters. The user can inspect the contents of the clusters interactively, without requiringto define a-priori the preferred number of clusters.
Each representative profile from a cluster is depicted in a one-dimensional visualization,also shown in Figure 7.5. In this visualization, the values at each index position of the repre-sentative profile are normalized to the range [0..1]. Each value corresponds to one square andis mapped linearly to a single hue, sequential color scale. In Figure 7.5, peaks are depictedin bright orange, while black denotes local minima. The size of the squares is inversely re-lated to the standard deviation of a representative profile at each of the index positions. Inessence, smaller squares indicate larger standard deviations, while bigger squares indicatesmaller standard deviation. This encoding was inspired by the work of Höllt et al. [122].
After the exploration of errors and profile responses, segmentation experts need to iden-tify whether their algorithm presents coherent behavior. For example, they need to identifythe anatomic locations where their algorithm systematically fails or succeeds at a voxel level

(T1-b). To this end, we enable brushing and linking both in the confidence scatterplot, anddirectly on the average referencemesh of the cohort. In this way, we establish a link betweenthe anatomy and the computed target errors, as depicted in Figure 7.4. Brushing and linkingis also applied from the profile tree to the scatterplots, which can be seen in Figure 7.5. Also,
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7.5. Visual Analytics for the Exploration and Assessment of Segmentation Errors

 

Figure 7.5: Profile tree visualization for the exploration of the clustering of profile responses (T1-a). Themean (encoded with the color of the squares) and the standard deviation (encoded with the size of thesquares) are depicted for the 21 values (squares) of each representative profile (row). Three selections(purple, green, blue) are made to show the link to the anatomy (T1-b).

selections in the confidence scatterplot are followed by visualizing the respective averageprofile. In this way, all components are linked.
7.5.2. Exploration of the Error Hierarchy

The next required step is to provide an overview on the hierarchy of errors in the full co-hort, and allow segmentation experts to identify subjects that are special, interesting cases
(T1-c). For this, we employ a collapsible, undirected tree graph, to show an overview of theaverage target error and standard deviation in the full cohort. An example of this graph isillustrated in Figure 7.6.

The root of the tree represents the full cohort, which can be expanded to display thedifferent subjects. These can be further expanded to depict the different organs. The sizeof the node encodes the magnitude of the average target error, while the magnitude of thestandard deviation of the target error is encoded in the opacity of the node, but also in ahalo around the circumference, as shown in Figure 7.6. To increase legibility, the nodes aresorted based on the average target error at each depth level. Also, to save screen spacenodes of the tree that are not interesting for the analysis can be interactively collapsed. Thisrepresentation summarizes the distribution of target errors in the cohort, across all patientsand their respective organs. From this, users can be guided to select individual subjects thatneed further exploration in the next stage.
7.5.3. Exploration of Individual Subjects

Our tool fulfills also the requirement for a detailed exploration of segmentation errors in indi-vidual subjects. The first step involves a qualitative exploration of the resulting segmentationwith respect to the imaging slice data. This qualitative exploration is shown in Figure 7.7. Thisexploration can give an initial indication of the outcome of the segmentation, as it shows theintersection of the resulting mesh with the imaging data. For the exploration of the distribu-tion and anatomical locations of the different local quality measures (T2-a), histograms areemployed, as depicted in Figure 7.8. Here, interactive selections provide a link to anatomy.
Discovering relations between local quality measures is also necessary (T2-b). For this,we initially enable the pairwise inspection of two measures, directly on the mesh surface.This is done by color encoding one local quality measure with a reduced heated body col-
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7.5. Visual Analytics for the Exploration and Assessment of Segmentation Errors

 

Figure 7.6: Exploration of the error hierarchy in the cohort using a collapsible tree graph representation
(T1-c).
 

axial plane sagittal plane coronal plane 

Figure 7.7: Qualitative exploration of the intersection of the segmented mesh with the imaging slicedata (T2-a) (red: bladder, orange: prostate, yellow: seminal vesicles, white: rectum).
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7.5. Visual Analytics for the Exploration and Assessment of Segmentation Errors

 

Figure 7.8: Interactive exploration of the distribution of local quality measures (T2-a). Selections in thehistograms provide a link to the anatomy (orange).
 

(a) (b) 

Figure 7.9: Discovering the relations between local quality measures. (a) Comparison of twomeasures,with color encoding and glyphs, directly on the mesh surface. (b) Multi-dimensional visualization oflocal quality measures in a scatterplot matrix, where selections (blue, purple and green) provide a linkbetween different scatterplots, and also to the anatomy (T2-b).

ormap and a secondmeasurewith line glyphs, along the normal of each triangle of themesh,as presented in Figure 7.9 - a. The size of the glyphs encodes the magnitude of the measure,at each triangle position. Still, this representation limits the exploration of relations to onlytwo dimensions, while glyphs may introduce occlusion. To overcome this, a scatterplot ma-
trix (SPLOM) is employed, as depicted in Figure 7.9 - b. The SPLOM was preferred over othermulti-dimensional representations, e.g., parallel coordinate plots, due to the previous famil-iarity of the intended users. Brushing and linking in the scatterplot matrix facilitates findingand analyzing relations and patterns across multiple quality measures.
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Figure 7.10: Profile tree visualization for the exploration of the clustering of profile responses of anindividual subject (T2-c). Selections (cyan, purple) enable a link to the anatomy and the local qualitymeasures.

Finally, the identification of patterns in the algorithm response enables segmentation ex-perts to evaluate the algorithm reliability for each individual subject (T2-c). To this end, weuse the same approach as the one proposed for the cohort exploration. Initially, we retrieveclusters of profiles with similar behavior, using the same hierarchical clustering method, asin task (T1-c). Then, a similar profile tree metaphor is employed. Here, each representativeprofile is depicted in a one-dimensional visualization that highlights the peaks of the pro-file clusters, as shown in Figure 7.10. As we have only one subject, the standard deviationencoding is not necessary. Interaction is employed to enable browsing the clustering hierar-chy. Also, if a cluster is selected in the profile tree, the respective quality measures and theanatomical location are highlighted in the SPLOM and the mesh, respectively, as shown inFigure 7.10.
■ The application was developed in WebGL, using Three.js [3] and D3.js [29]. It is compatiblewith all browsers and platforms.

7.6. Usage Scenario Results
In this section, we elaborate on a usage scenario. Our purpose is to illustrate the functionalityand some initial results that were achieved with our proposed visual tool. This usage sce-
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7.6. Usage Scenario Results

nario has been guided by our collaborating segmentation experts, based on their previousknowledge and expectations. It was used to explore their data and to confirm hypothesesabout their algorithm.
7.6.1. Dataset

The dataset employed for this usage scenario consists of a cohort of eight subjects. Theexplored data consisted of:
• CT volumetric data for all eight subjects, with dimensions 320×320×120 and a spatialresolution of 1.563×1.563×1.000mm.
• A reference (average) mesh and the meshes of the eight subjects, each containing

11,606 triangles with a triangle-to-triangle correspondence and organ labels.
• The respective local quality measures per triangle, as described in section 7.3.
• The profile response data per triangle. In this case, the profile responses consist of 21scalar values at each triangle location.

7.6.2. Exploration of the Full Cohort

For the exploration of the full cohort, the average reference mesh is employed, together withthe mean and standard deviation of the target error, and the mean and the standard devia-tion of the profile responses per triangle. Initially, the distribution of the local segmentationerrors and profiles (T1-a), and also their anatomical correspondence (T1-b) are explored.In Figure 7.4, we illustrate in the confidence scatterplot the mean target error against thestandard deviation at each triangle position, for the full cohort. From this, we can divide thealgorithm performance into three categories: good, poor and uncertain. The good (green)and poor (magenta) categories are much less dispersed than the uncertain one.
Throughbrushing and linking, we can identify the anatomic regions of goodperformance,which correspond to the prostate and its very adjacent surfaces. In Figure 7.4, we denotesome selections in green, which are the parts where the algorithm achieves high precisionand high accuracy. Poor performance can be seen mainly in the seminal vesicles, shown inFigure 7.4 with magenta, which can be explained by the fact that seminal vesicles are smallstructures that may be hard to discern, and also are highly variable in shape. These are theparts, where the algorithm achieves low accuracy, but high precision. The rest, which is thebiggest part of the bladder and also the top half of the rectum belong to the uncertain per-formance category. In particular, triangles of the bladder or the rectum that are further awayfrom the prostate, denoted in cyan, are more uncertain. They have a low accuracy and lowprecision. This might be related to the high variability in the shape of these two organs. Anadditional reason for this might be that the employed algorithm produces segmentationsused for radiotherapy planning in patients with prostate tumors. This is expected to affectstructures closer to the prostate. Thus, the segmentation algorithm might be promotingbetter results for parts closer to the prostate.
The profile exploration in Figure 7.5 shows interesting results as well. Despite the factthat some triangles have an unusual profile response, where the peak was not centered.
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These triangles are highlighted by the purple, green and blue selections. Still, these trianglesmanage to achieve a low target error, as they are influenced by neighboring triangles.
7.6.3. Exploration of Error Hierarchy

By exploring the error hierarchy in the tree graph (T1-c), we can identify the subjects and or-gans, where larger errors appear. From the representation illustrated in Figure 7.6, we identify
Patient18 as the subjectwith larger errors, andPatient3 as the subjectwith smaller errors. For
Patient18, the segmentation of the bladder has the largest error, while the interface betweenthe bladder and the prostate seems to be well-segmented. For Patient3, the segmentationof all organs and their interfaces has small errors. Patient8 is also another interesting case,where most of the organs have a high error. Here, the bladder and the interface between theprostate and the seminal vesicles segmentations have the highest errors, as depicted in Fig-ure 7.6. From this exploration, we can select which subjects need to be explored individually,in more detail.
7.6.4. Exploration of Individual Subjects

In this section, we provide two usage scenarios, where we explore individually two cases –
Patient18 and Patient3 – identified previously as the worst and best results, respectively.
■ First case – Patient18. For this subject, the segmentation outcome had the largest error.An initial qualitative exploration of the intersection of the segmented mesh, with respect tothe imaging slice data (T2-a), as illustrated in Figure 7.7, indicates the locations where thealgorithm had a bad performance. The prostate contour, denoted with white in the coronalslice in the middle view, seems to be well aligned with the borders of the organ on the CTslice. However, the bladder, shown in red, is not. The tip of the bladder has been missed andalso a distal shift is visible.

The histograms in Figure 7.8 (T2-a) show a large peak in the distribution of feature re-
sponse measure at the zero value, but also at the maximum value. The first peak indicatesthat for many triangles no suitable feature could be discovered, and that there may havebeen a problem with the feature selection. The respective triangles are located at the top ofthe rectum and on the tip of the bladder, denoted in Figure 7.8 with orange. The second peakcorresponded to well-segmented triangles.

Upon inspection of the feature response against the triangle areameasure (T2-b) in Fig-ure 7.9 - a, we see that the tip of the bladder corresponds to a low feature response, denotedwith the red color, and to low triangle area values, denoted with smaller-sized glyphs. Weconfirm this also in the SPLOM, shown in Figure 7.9 - b. Several clusters are easily identifiedwhen plotting the twomeasures, in the scatterplot in the fourth column and third row. Theseclusters include one with low response values (blue), one with low triangle area (green) andone cluster in the middle (purple). Selections provide insight into the physical location ofthese clusters, as can be seen in Figure 7.9 - b, revealing interesting information. The purplecluster corresponds to the areas at the sides of the bladder that presented the distal shift, inthe previous qualitative exploration. The blue cluster corresponds to the wrongly segmentedtip of the bladder and top of the rectum, and the green cluster corresponds to the well seg-mented regions of the bottompart of the rectum and the prostate. This exploration suggestsa lack of strong features in the bladder and top of the rectum.
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The profile information of this subject is also investigated (T2-c). Several triangles high-lighted in Figure 7.10 are triangleswhere the feature response profile did not contain any peakclose to themiddle, denoted by cyan and purple. In practice, it is acceptable if a triangle has afeature response profile without peaks, as long as most of the neighbors do not present thissame behavior. The position of neighboring triangles can positively influence the position ofa triangle. In our case, these cyan and purple triangles add up to a total of 4,590, which isalmost 1
3 of the mesh and they seem to form in their majority coherent regions. Therefore,an absence of peaks in these profiles indicates that no information was available on how tomodify the triangles location and that the current location of the triangle is not supported byany of the selected features.

■ Second case – Patient3. For this subject, the segmentation outcome had the smallest er-ror. An initial qualitative exploration of the intersection of the segmented mesh with respectto the imaging data (T2-a) showed that the segmentation outcome matches well the bor-ders of the organs in the slices, as presented in Figure 7.11 - a. The histograms (T2-a) showalarge peak in the distribution of the feature responsemeasure at the zero value, but also at themaximum value (second row, left). The first peak indicates that for some triangles no suit-able feature could be discovered, while the second peak corresponded to well-segmentedtriangles with a high feature response, as shown in Figure 7.11 - b with orange.
In the SPLOM (T2-b), the majority of points has a low triangle area, but there are severaldata points - triangles, with an outlier behavior, as denoted in Figure 7.11 - c, with green. Uponselecting those data points for further exploration, they correspond to the triangles on the topand the bottom of the rectum. We are also interested in seeing which parts of the meshescorrespond to a low feature response, as shown in Figure 7.11 - c, with blue. These partsare few and scattered around the mesh. They have mostly a target error smaller than 4mm(second row, fourth column).
Another approach to investigate the segmentation quality is to select triangles on themesh and inspect the attribute value distributions in the scatterplots. Figure 7.11 - d shows aselection containing the prostate and a small part of the adjacent organs and, also, a selec-tion far away from the prostate, on the rectum (green). The scatterplots show the distributionof the selected triangles mapping the feature response against the triangle area and the tar-get point distance. The majority of triangles far from the prostate (blue) have both high andlow triangle area. The selection on the rectum (green) has low triangle area. As mentionedbefore, dramatic changes in these values indicate segmentation errors. The profile infor-mation of this subject is also investigated (T2-c). Only few triangles (1,231) have a profilewithout a peak in the middle. These are almost 1

10 of all triangles, and they are evenly spreadthrough the whole mesh. This is presented in Figure 7.11 - e, with the cyan and magentaselections.

7.7. Evaluation
To assess the value of our visual tool, we designed an evaluation, inspired by the paper ofLam et al. [159]. The evaluation was performed with five experts, working on developingsegmentation algorithms. The group of participants included one professor in the field ofMedical Image Analysis, three research scientists in the field of Image Processing and one
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(a) (b) 

(c) 

(d) 

(e) 

Figure 7.11: Usage scenario for a subject, where the algorithm has a good performance (Patient3). (a)Exploration of the intersection of the mesh with imaging slice data. (b) Exploration of the distributionsof the quality measures and link to the anatomy (orange). (c) Exploration of relations between qualitymeasures and link to the anatomy. (d) Selections directly on the mesh (green and blue), and explorationof corresponding quality measures. (e) Profile response exploration, and link to the anatomy.

scientist in the field of Computer Science. We did not include clinical experts, as they are notthe intended users of our tool. Their experience with segmentation algorithms varies fromseven years (for two people) to more than twenty years (for one person). All of them havealso a radiological background. Four evaluators are male and one is female. They all havenormal vision, two wear glasses and nobody is colorblind.
The evaluation had to be conducted remotely, and the participants were not able to in-teract with the tool. During the session, we demonstrated step-by-step the visual tool, usingdata provided by the experts and well-known to them. We demonstrated the main com-ponents of the tool, simulating the visual environment for the exploration and analysis ofsegmentation errors. The evaluation participants followed the demonstration. They couldinterrupt at any moment to make exploratory requests, such as selections and interactionsthat could help them analyze and understand their observations. We allowed them to dis-cuss with each other these observations, but not their opinion on the tool.
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To document their opinion on the demonstrated visual tool, they completed a question-naire. This consisted of two parts. The questions of the first part were related to the tasks,presented in section 7.3. We divided task (T1-a), to evaluate separately the visualizationsemployed for the error distributions and for the profile responses. Each question required anopen answer, and also rating in a seven-point scale [−3..+3]. We evaluated four aspects:
• Utility (Does it do what it is meant to do?)
• Perceived Usability (Would I be able to learn and use it?)
• Appeal (Do I like it?)
• Overall Feeling (How do I feel about it, in general?)
The second part of the questionnaire included several questions regarding strengths,limitations, missing features of the tool and proposals for improvement.

■ Ratings. Figure 7.12 summarizes the results of the first part of our evaluation. There wasno correlation with respect to the experience level of the evaluation participants. Most ofthe evaluated aspects ranked on the positive side of the scale (≥ 1), while only two receiveda neutral grade (0). All aspects have a median value of at least two, apart from one thathas a median of one. The lower values were all documented for the profile response part oftask (T1-a, profiles) and were all given by the same person. The error distribution partof task (T1-a, errors) and the error hierarchy exploration (T1-c) were, in general, ratedhigher than the rest.
■ Open Answers. The above mentioned ratings are in agreement with the open answers ofthe first part, and also with the second part of the questionnaire. The evaluators consideredthe tool to be overall intuitive and potentially easy to use. One evaluator commented that it is
a light-weight web-based tool, whichmakes it highly optimized for model-based segmentation
analysis, due to the involved large data. The feature that received most positive commentswas the dynamic selection of triangles on the meshes, on the scatterplot and also their in-between link, i.e., (T1-a, errors), (T1-b), (T2-a) and (T2-b). Yet, for the selection on themesh, an evaluator commented that he would like to have visual feedback for the selections.Another appreciated featurewas the tree graph, for exploring the error hierarchy in the cohort
(T1-c). One evaluator commented that he would actually like to use it, to explore a muchlarger cohort of segmentation outcomes.
■ Feedback for Improvement. Most of the participants gave feedback about improving thecohort profile response part (T1-a, profiles). First, they commented that the visualiza-tion of the cohort profile responses takes some time to understand. It does not allow tochange the similarity measure, apart from the mean values during clustering. One partici-pant commented that the representation for the profiles in the cohort can be even reworkedto be presented as an average curve, with a confidence band that denotes variability. Thisis in contrast to the positive opinion that the evaluators expressed for the individual profileresponse part (T2-c), which was considered more intuitive and rated much higher. Anotherparticipant disliked, in particular, the glyphs used in task (T2-b). These limitations were pro-posed as points for future work, along with a simultaneous visualization of multiple profile
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Figure 7.12: Rating results for the first part of our evaluation, for each of the tasks of our proposed tool.The scale range is [−3..+ 3], but we only received answers higher than 0. With the additional verticallines, we denote the median of each rating.
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data. Also, functionality for annotating observations and for making a report from these,along with captured screenshots was proposed as future work.

7.8. Conclusions and Future Work
We introduced a visual tool to enable experts, working on algorithms for the model-basedsegmentation of pelvic organs, to explore and analyze the outcomes and errors of theirmeth-ods. Our approach supports the global exploration of errors in a cohort of pelvic organ seg-mentations, where the performanceof the algorithmcanbe assessed. Also, it enables the ex-ploration and assessment of segmentation errors for individual subjects. We demonstratedthe functionality of our tool with a usage scenario. Also, we performed an initial evaluationwith five segmentation algorithm researchers, who confirmed the exploratory value of thetool, and gave feedback for future improvements.

A direction for future work includes improving the functionality for the exploration of theprofile responses in the cohort. Adding functionality for the comparison of different aspectsof the data, such as the local quality errors and profiles of different subjects, is also impor-tant. Exploring the impact of parameters used in the segmentation, and also the relation ofthe shapes of the various organs to the algorithm performance would be another interest-ing enrichment. An additional evaluation to quantify the experience of the user is needed,and should be conducted in the future. The proposed visual tool is a promising basis forsegmentation experts. It allows them to gain more knowledge on the performance of theirsegmentation algorithms, and to determine strategies to improve their segmentation results.
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8
Visual Analytics for theExploration of Variability in DosePlanning Alternatives

Mr. Scott, there are always alternatives.

Mr. Spock, Star Trek

In this chapter, we present a Visual Analytics solution for the exploration of variability, in an
ensemble of alternative radiotherapy dose plans. Our approach provides capabilities for the
exploration and analysis of the impact of adjustments from the previous steps of the pipeline
on the final dose planning outcome. Chapter 8 is based on the short paper:
■ Silva, P., Raidou, R.G., and Vilanova, A., 2016. Visualization of Variability in RadiotherapyDose Planning. Proceedings of the 10th MedViz Conference (MedViz 2016), pp.63–66 [252].



8.1. Abstract

8.1. Abstract
As already mentioned at the beginning of this dissertation, radiotherapy is currently able tooffer improved tumor control andminimized radiation-induced toxicity. However, parameter-izations, choices and assumptions during the earlier steps of radiotherapy planning pipelinemay have an impact on the resulting dose plan. Although it is not known a priori which ofthese assumptions or parameter settings lead to better results, it is valuable for clinical re-searchers to understand their effect on the final dose plan.

In this chapter, we present an initial Visual Analytics framework, for the interactive explo-ration and analysis of the variability in an ensemble of possible dose plans. The proposedframework consists of multiple linked views, to allow for detailed, user-driven variability as-sessment. A usage scenario is employed to illustrate the usefulness of the framework forunderstanding the effect of adjustments in the previous steps of the pipeline to the final plan-ning outcome. In addition to this, an initial discussion with domain experts provided us withfeedback on the developed framework.

8.2. Introduction
To ensure the success of radiotherapy treatment, dose planning needs to be performed inadvance. In the steps of the radiotherapy planning pipeline before the actual dose planning,different assumptions, choices and/or parameterizations can be made, resulting in differentdose plans. In clinical practice, one particular strategy is chosen based on clinical knowl-edge and guidelines, and a single dose plan is performed and followed. However, in clinicalresearch it is necessary to analyze and evaluate all possibilities. As it is not known a-prioriwhich of the assumptions or parameter settings lead to better results, it is valuable for clini-cal researchers to understand how the different assumptions and parameterizations affectthe final result. Therefore, there is a need for a solution that would enable clinical researchersto identify the relationship between adjustments of parameters or potential choices in theprevious steps of the radiotherapy pipeline and the impact on the planning outcome.

Although multiple studies have been performed to assess the variability at certain stepsof the pipeline [45, 260, 312], only few approaches explore the impact of this variability on thefinal dose plan [278], mainly due to a lack of suitable tools. In the present chapter, we presenta visual analysis framework that enables clinical researchers, working in radiotherapy doseplanning, to interactively explore and analyze the variability in an ensemble of possible doseplans, each resulting fromadifferent adjustment in the planning pipeline. With the aid of visu-alization, the user is able to gain insight into the effect of these adjustment on the variabilityacrossmultiple dose plans at two levels: firstly, based on the radiotherapy dose iso-contoursacross the dose plans, also referred to as iso-doses, and, secondly, directly at a voxel level.
The remainder of this chapter is organized, as follows: Section 8.3 includes all the neces-sary background information. Section 8.4 provides an overview on previous work, and Sec-tion 8.5 is the core of this chapter, where our proposed approach is presented and discussed.Section 8.6 presents the results of a usage scenario and the feedback we received from aninformal discussion with our intended users. Finally, Section 8.7 concludes the chapter witha discussion and propositions for future work.
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8.3. Clinical Background

8.3. Clinical Background
A radiotherapy dose plan indicates how much radiation dose should be delivered, at whichlocation of the body of the patient. It consists of a dose distribution, shaped according to thesize of the target volume of the tumor to be treated. A commonway to display and evaluate aradiation dose distribution is through the use of the so-called iso-dose lines, which representpoints or zones in the body of the patient that receive equal doses of radiation [300]. Anexample of a radiotherapy dose plan and the employed iso-doses is presented in Figure 8.1.

Figure 8.1: An example of a radiotherapy dose plan and the employed iso-doses, indicating how muchradiation dose should be delivered, at which location of the body of the patient.
Outside of the radiation therapy application field, an equivalent of an iso-dose line is an

iso-contour. An iso-contour, or simply contour, is a curve connecting points that have thesame particular value of a function [242]. Inside the volume of the data of the patient, aniso-contour can be defined as:
f (x, y, z) = c (8.1)

where c is the iso-contour value, iso-value or iso-dose level, and (x, y, z) is a particular posi-tion in the volume. This equation divides the volume into inside and outside regions of thecontour. In the former, the values are higher than a specific iso-dose level ( f (x, y, z) > c), whilethe latter contains values lower ( f (x, y, z) < c) than the iso-dose level.
The process of creating a dose plan can be subjective to variability, due to the differentassumptions, parameter settings and choices that can be made along the entire planningpipeline, as presented in Chapter 2. Among all these, the most significant would be imag-ing inaccuracies, errors in dose calculations, different parameter values in image analysis,target misalignment during image acquisition, and contouring variability [260]. Dependingon all these assumptions and choices, the final dose plan might be substantially different.Therefore, these assumptions and choices might have an impact on the final treatment of
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the patient. In this work, we will refer to the resulting set of possible dose plans as ensemble
of dose plans, and each dose plan will be called an ensemble member.

As mentioned before, clinical researchers are interested in investigating the impact ofdifferent choices, assumptions or parameterizations on the resulting dose plan, and espe-cially how these adjustments relate to the induced variability in the dose planning outcomes.They are interested in investigating how the different dose plans vary within one or more iso-dose levels (contour-based approach), but they also require more localized information onthe variability (voxel-based approach).
At a contour-level, clinical researchers need to know whether specific adjustments in-duce high or lowvariability in the outcomeof the dose planning, whether this variability is con-sistent throughout the whole plan or more/less prominent for specific dose levels and, also,whether specific adjustments result into significant differences in the outcome. At a voxel-level, it is more interesting to identify regions where the dose plans present higher/lowervariability and, also, how the dose distribution is shaped for specific regions of interest. Inparticular, the following tasks are relevant for the exploration of the variability in an ensembleof radiotherapy dose plans:
• At an iso-dose level (contour based approach):

– Exploration of iso-dose variability – How different are the dose plans in relationto a particular iso-dose? (T1)
– Comparison of iso-dose variability –Howdoes the variability between dose planschanges for different iso-doses? (T2)
– Dose plan outlier detection – Along the iso-doses, are there any dose plans thatsignificantly differ from the rest? (T3)

• At a voxel-level (voxel-based approach):
– Global overview – Where are the (regions of) voxels with higher (dis)agreementbetween dose plans? (T4)
– Localized view – Given a (region of) voxel(s), what is the distribution of dosesamong the dose plans? (T5)

8.4. Related Work
In radiotherapy, a common tool to evaluate different dose plans involves the use of dose-volume histograms (DVHs) [300]. A dose-volume histogram is a plot that indicates whichpercentage of a structure receives a certain dose. As an extension to DVH, Trofimov etal. [278] proposed the concept of DVH bands to enable the visualization of variability in theoutcome of a treatment plan. However, all DVH-related approaches are able to provide onlyglobal information – not at a contour or voxel level – lacking also in providing spatial infor-mation, with respect to the anatomy of the patients. Rudimentary juxtaposition approachesare often used to add spatial information. These are sub-optimal in insight, as they requirefrom users to use their memory to visually compare the different plans.
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8.5. Visual Analytics for the Exploration of Dose Planning Variability

Outside of the radiation therapy application field, a standard visualization technique forexploring iso-contour distributions in ensemble data employs spaghetti plots [70]. In theseplots, the contours of all ensemble members are simultaneously rendered in a single repre-sentation. This representation may suffer from clutter, while it does not facilitate trend oroutlier detection. Enhancements of spaghetti plots have already been presented in Chap-ter 3 [85, 216, 238], but they are not fully applicable to our case, especially due to their com-plexity.
To deal with multiple three-dimensional surfaces, Busking et al. [41] and Alabi et al. [5]proposed several methods that allow their comparison. More recently, Demir et al. [67] usedscreen-space silhouettes instead of solid surfaces to explore the variability in ensembles ofiso-surfaces in an interactive way. Other similar approaches have also been discussed inChapter 7. Still, these approaches are limited to a small number of ensemble members, andcan easily suffer from occlusion and visual clutter. Methods, such as the ones presented inChapter 3 for the probabilistic visualization of iso-contours [203, 209, 210, 211, 212], havealso been vastly employed.
Finally, Whitaker et al. [305] presented an approach, which requires the quantification andvisualization of statistical properties on the size, position, shape and structure of ensemblesof iso-contours or iso-surfaces. Through the use of non-parametric statistical methods, themethod quantitatively shows the variability of the contours, in a way that resembles the de-scriptive statistics of conventional boxplots. This includes the mean, median, outliers, andthe envelopes containing the 50% and 100% of the ensemble members. The contour boxplotwas extended to 3D, for visualizing the variability in ensembles of iso-surfaces [228].
Overall, several visualization and exploration methods have been developed in other ar-eas of application. Most of them are suitable for the contour-based aspect of our approach,while others are more appropriate for a voxel-based analysis. In our approach, these visu-alizations will be employed and enhanced to fulfill the specific needs of our dose planningapplication.

8.5. Visual Analytics for the Exploration of Dose Plan-
ning Variability

As already mentioned, the proposed approach comprises two main components, as shownin Figure 8.2: the contour-based and the voxel-based component.
8.5.1. Contour-Based Analysis of Variability

The contour-based approach, which is presented in Figure 8.3, aims at providing means forexploring the variability in an ensemble of dose plans, at one or multiple iso-dose levels. Itincorporates the following three sub-components:
■ Exploration and analysis of iso-dose variability (T1). At a contour-level, the goal is to beable to identify major trends and outliers in an ensemble of iso-doses. We use an adaptationof the contour boxplot method [305]. Instead of using the original contour boxplots visual-ization, we use opacity to encode the band depth value. As a result, iso-doses with high banddepth are encoded into high opacity, while iso-doses with low probability are encoded into
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8.5. Visual Analytics for the Exploration of Dose Planning Variability

low opacity. Identically, the same concept is applied to the bands: the 50% band, since itcontains the 50% of deepest iso-doses, is encoded into higher opacity, while the 100% bandis encoded into lower opacity. Additionally, the median iso-dose is rendered thicker and witha different color, while the outliers are kept dashed, as shown in Figure 8.3 - a. At the sametime, the method must be compatible in a situation where multiple iso-doses are displayedsimultaneously. In the present case, a maximum number of three simultaneous iso-doseswas considered. The decision was to use yellow, red, and blue. Alpha blending is used toshow the overlap of different iso-dose bands.
■ Comparison of variability along iso-doses (T2). The goal of the second component is toprovide an overview of the variability, so that the user can identify and compare, immediately,which iso-doses have higher or lower variability. Also, it is possible to pick interesting dosesand interactively explore them, using a bar chart visualization, as shown in Figure 8.3 - b.The horizontal axis represents the discrete iso-dose levels, while the vertical axis representsa probability that is indicative of the variability at every iso-dose. This component is linkedwith (T1).
■ Outlier detection (T3). In this part, the goal is to compare the dose plans through their iso-doses in a global way. In thisway, it is possible to identify which dose plans differ significantlyfrom the rest along the range of iso-doses. Every iso-dose of the ensemble has an associatedband depth value, which we encode through a heatmap with a gray scale colormap. Iso-doses with high probability are mapped to white, while iso-doses with low probability areencoded to black, as shown in Figure 8.3 - c. When hovering the mouse on the heatmap,tooltips appear with detailed information on the underlying cell.

Voxel-based Approach

• Global dose and variability 
overview (T4)

• Local exploration of dose 
distribution (T5)

Contour-based Approach

• Exploration and analysis of     
iso-dose variability (T1)

• Comparison of variability along 
iso-doses (T2)

• Outlier detection (T3)

Ensemble Data

Dose Plan 1 … Dose Plan NDose Plan 3Dose Plan 2

Figure 8.2: The two components (contour-based and voxel-based approach) of our proposed VisualAnalytics framework for the exploration of dose planning variability.
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(a)

(b) (c)

Figure 8.3: Illustration of the contour-based approach at an isodose level of 90 Gy, for an ensemble of9 simulated plans. (a) Contour boxplot representation: the high opacity yellow band is the 50% band,the low opacity yellow band is the 100% band, the dashed yellow line corresponds to outliers and themagenta line to the median iso-dose (T1). (b) Bar chart visualization, which encodes the variability atevery isodose: here, higher probability indicates lower variability (T2). (c) Heatmap visualization, wheredarker grey corresponds to lower probability, i.e., to outliers (T3).

8.5.2. Voxel-Based Analysis of Variability

The voxel-based approach, which is presented in Figure 8.4, aims at providing means forexploring the variability in an ensemble of dose plans, within one ormore anatomical regions,at a localized voxel-level. It incorporates the following two sub-components:
■ Global dose and variability overview (T4). At a voxel-level, the goal is to be able to identifyvoxels or regions with higher or lower variability. To show the dose magnitude, we calculatean average dose plan by computing themean at every voxel. To show variability, we calculatethe standard deviation at every voxel. For a general overview of these two facets of the datawe employ a 2D color map, as shown in Figure 8.4 - a.

Also a scatterplot, depicted in Figure 8.4 - d, is employed. Every point in the scatterplotrepresents a voxel from the data, and is represented by the mean in the horizontal axis, andthe standard deviation in the vertical axis. From this representation, voxels with lower/highervariability with respect to a specific dose level can be discovered. To diminish clutter frompoint overplotting, datapoints in the scatterplot are renderedwith higher opacity. Additionally,to help locating dense regions, a bi-variate kernel density plot overlaid on top of the scatter-plot was used as an additional visualization method. Still, the scatterplot only is not able toprovide any kind of spatial information. To overcome this limitation, we employ brushing andlinking from the scatterplot to the anatomy of the patient, illustrated in Figure 8.4 - c.
■ Local exploration of dose distribution (T5). Additional visualizationmethods were incorpo-rated to dynamically explore the distributions at every voxel. Based on 2D slices, we enable
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(a)

(d)(c)

(b)

Figure 8.4: Illustration of the voxel-based approach. (a) Colormapping ofmean radiation dose value. (b)Inspection of the distribution at a particular voxel position, as selected in (a). (c) Anatomical referencefor voxels that were selected in the scatterplot. (d) Scatterplot with overlaid KDE and selected points inyellow. (T4) is accomplished with the views (a,c,d), while (b) is related to (T5).

the user to interactively probe the voxels and get a detailed notion of the underlying distribu-tion of values, as shown in Figure 8.4 - b. The resulting visualization depicts a simultaneouscombination between a kernel density estimation (KDE) and a rugplot, where the KDE curveprovides an indication where the value density is greater. We also enable a region of interest(ROI) selection: instead of considering a single voxel, a ROI can be selected, and the distri-butions are displayed for every voxel inside the region.
■ We implemented the proposed approach in Python as a DeVIDE module [32], employingthe Visualization Toolkit (VTK) [2].

8.6. Evaluation
In this section, we present a usage scenario of our proposed approach with simulated data.The presented usage scenario is meant for demonstration purposes only, and no clinicalobservations should be inferred from it, as it is based on artificial data. In addition to this, wepresent the outcome of an initial informal discussion with clinical researchers.
8.6.1. Usage Scenario

The simulated dataset consists of 9 dose plans. One of the dose plans is from an actualprostate cancer patient, depicting a real dose distribution. The remaining dose plans weresimulated from the original plan. All dose plans contain the same dimensions (256×256×24
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voxels) and spacing between voxels (1mm ×1mm ×1mm). An additional MRI scan data setis used, to provide anatomical reference for the prostate and adjacent organs.
Startingwith the contour-based approach, the user first can inspect the bar chart overviewto get a quick notion of the variability in the iso-doses, as shown in Figure 8.5 - b. At everyiso-dose, variability is inferred through the probability or band depth value. Here, for dosesranging from 70 to 76 Gy we denote a higher probability, as iso-contours are relatively con-sistent, with low variability. On the other hand, probability reaches a minimum value at 80Gy, which indicates this dose value is associated with higher variability. Additionally, it is in-teresting to notice the behavior of variability along the iso-doses: variability is lower for lowerdoses, while higher doses are associated with a higher variability.
After being provided with an overview, the user can pick up three doses in the bar chart,which are directly reflected on the adjacent operation view and on the anatomical views.In this case, the doses selected were 75 Gy, 80 Gy, and 85 Gy, as shown in Figure 8.5 - b.For 75 Gy, the dose plans are relatively consistent, as illustrated in Figure 8.5 - a. The widthof the 100% band is relatively small, which indicates there is low variability in the positionof the iso-contours. This might indicate that the simulated adjustments that generated theensemble of the dose plans do not have a big impact on the dose planning outcome for the75 Gy iso-dose. Themedian iso-contour, with magenta color, is identified as belonging to theoriginal dose plan (dose plan 0), as the hovering balloon suggests. Thus, in this case, theoriginal dose plan is considered the most representative of the ensemble for a dose of 75Gy. On the other hand, it can be seen that one of the iso-contours is considered an outlier,depicted through a dashed line, as shown in 8.5 - a. The difference between the median andthe outlier can be further explored, using the heatmap.
On the other side, for 90 Gy, the use of the contour boxplot reveals a higher degree of vari-ability among the dose plans, as Figure 8.3 suggests. This might indicate that the simulatedadjustments that generated the ensemble of the dose plans result in a dramatic variability inthe dose planning outcome for the 90 Gy iso-dose. In the axial plane, one can immediatelyidentify thicker bands, compared to 75 Gy, as shown in Figure 8.5 - a. In contrast with 75 Gy,it is possible to detect a significant outlier. Additionally, the probability values are relativelylower, as it can be seen by the heatmap of Figure 8.5 - c. Overall, the dose plans significantlydisagree more in 90 Gy, as opposite to 75 Gy.
Additionally, it is possible to compare the different dose plans along the range of iso-doses. This is accomplished through the heatmap visualization, as shown in Figure 8.3 - cand Figure 8.5 - c. It can be observed that, along the iso-doses, dose plans 0 (original) and 6are the most representative samples among the ensemble, with higher probability than therest, as the colormap suggests. Dose plans 1 and 7 are also closer to dose plans 0 and 6, forlower doses. However, as the dose increases, their probability decreases significantly. Lastly,dose plans 2 and 5 are mostly associated with low probabilities along the iso-doses. Thismeans that these dose plans are more likely to be considered outliers, since their respectiveiso-contours are quite different from the remaining iso-contours in the ensemble. Here, theheatmap view offers the possibility of comparing dose plans along the iso-dose range.
Regarding the voxel-based approach, a different kind of insight is provided. Using thecolor encoding in the slice viewer, it is possible to quickly locate regions of higher dose orlower dose. Yellow regions that are corresponding to high radiation dose, are located in theright lateral lobe of the prostate, as depicted in Figure 8.4 - a. Concerning the distribution plot
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(a)

(b) (c)

Figure 8.5: Illustration of the contour-based approach at an isodose level of 75 Gy, for an ensemble of 9simulated plans. (a) Contour boxplot representation (T1). (b) Bar chart visualization (T2). (c) Heatmapvisualization (T3).

of Figure 8.4 - b, the voxel highlighted with the blue box in Figure 8.4 - a, has a more spreadout distribution, ranging between 90 and 110 Gy approximately, as shown in Figure 8.4 - b.
In the scatterplot, the overlaid KDE shows a high density of doses around 80 Gy, as pre-sented in Figure 8.4 - d. Brushing voxels with higher standard deviation, highlighted withyellow, belong mostly to the boundaries of the dose plan, as denoted in Figure 8.4 - a, c. Thissuggests that such locations should be analyzed thoroughly, as these are the locations ofhigher variability.

8.6.2. Informal Discussion with Clinical Researchers

An initial informal discussionwith domain expertswas conducted in order to get feedback forthe developed solution. The group of participants included three medical physicists, work-ing in radiotherapy dose planning. Two of the participants work at the Netherlands CancerInstitute, while the third participant is with the Aarhus University Hospital.
At the beginning, the participants were given a small demonstration of the framework,where the main functionalities and components were shown interactively. The participantsobserved the demonstration and started a useful discussion with respect to the demon-strated visualizations.
Regarding the contour-based approach, they commented that it is an interesting method

for visualizing variability across treatment plans. One participant appreciated the presenceof interactivity for exploring the variability along the doses. Although the discussion partici-pants do not currently incorporate this kind of analysis in their work, they mentioned it canbe useful in a situation where it is interesting to tune parameters and see how they affect
the dose planning result. Furthermore, all participants suggested ideas that could be incor-
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porated in the future, such as employing Pareto fronts [300] or the DVH [278] as additionalviews on the variability. Concerning the voxel-based approach, all participants agreed thatcurrently there are nomeans of performing a voxel-level analysis, and the proposed approachemploys interesting methods, with the potential of providing insight into more details.
Overall, the participants agreed that the proposed framework provides an interesting toolto study variability. Currently, this aspect has not been extensively explored and incorporatedinto the dose planning process. Therefore, it might be an interesting approach to be consid-ered in the future. The main strong point of the framework lies on the fact that it enables aninteractive exploration of variability at a contour-level as well as a voxel-level, which was notpossible before.

8.7. Conclusions and Future Work
We introduced a visual framework for the interactive exploration and analysis of variabilityin radiotherapy dose planning. It allows to visually assess the variability across multiplepossible dose plans, as a result of different assumptions, parameter settings and choicesthat can be taken during the planning pipeline. The core aspect of the framework is the abilityof providing insight on the variability at two different levels: through the iso-contours acrossthe dose plans anddirectly at a voxel level. An initial, informal discussionwith domain expertsresulted in a positive feedback for the developed framework, who considered the integrationof both perspectives an enrichment to the analysis process and amore complete perceptionof the underlying variability.

Points for futurework include amore thorough evaluation, whichwould validate the initialobservations of the domain experts. In addition to this, the incorporation of assumption orparameter sensitivity analysis directly into the framework would be an interesting improve-ment, which would enable to connect the previous steps planning pipeline with the doseplanning variability visualization process. For example, it would be interesting to link thepharmacokinetic modeling step (Chapter 5) to see how different modeling choices affectthe outcome of the dose planning, or how adjustments in the segmentation step (Chapter 7)propagate to the end of the pipeline. Such enhancements would require, though, to adaptseveral of the visualization techniques used. In this case, more scalable techniques or otherapproaches that would reduce the dimensionality of the involved data are required.
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9
Visual Analytics for theExploration of Tumor ControlProbability Modeling

Almost all human life depends on probabilities.

Voltaire (1694 - 1778)

In this chapter, we propose a visual tool that enables clinical researchers working on TCP
modeling to explore the information provided by their models, to discover new knowledge and
to confirm or generate hypotheses within their data. Chapter 9 is based on the paper:
■ Raidou, R.G., Casares-Magaz, O., Muren, L.P., van der Heide, U.A., Rørvik, J., Breeuwer, M.and Vilanova, A., 2016. Visual Analysis of Tumor Control Models for Prediction of Radiother-apy Response. In Computer Graphics Forum (CGF), Vol. 35, No. 3, pp. 231-240 [221].



9.1. Abstract

9.1. Abstract
As already described in Chapter 2, statistical models are often employed in radiotherapyresearch in order to quantify the probability that a tumor is effectively treated with a givenradiation dose. These statistical models are called tumor control probability (TCP) models.Recently, TCPmodels started incorporating additional information from imagingmodalities.In this way, patient-specific properties of tumor tissues are included, improving radiobiolog-ical accuracy. Yet, the employed imaging modalities are subject to uncertainties, which mayhave a significant impact on themodeling outcome. At the same time, TCPmodels are sensi-tive to a number of parameter assumptions. Currently, uncertainty and parameter sensitivityare not incorporated in the analysis, mainly due to time, human and computational resourceconstraints.

In this chapter, we present a visual tool that enables clinical researchers working on TCPmodeling, to explore the information provided by their models, to discover new knowledgeand to confirm or generate hypotheses within their data. Our approach incorporates the fol-lowing four main components. First of all, it supports the exploration of uncertainty and itseffect on TCP modeling. Moreover, it facilitates parameter sensitivity analysis to commonassumptions and enables the identification of inter-patient response variability. Finally, it al-lows starting the analysis from the desired treatment outcome, to identify treatment strate-
gies that achieve it. To evaluate our proposed approach, we conducted a study with nineclinical researchers. All participants agreed that the proposed visual tool provides betterunderstanding and new opportunities for the exploration and analysis of TCP modeling.

9.2. Introduction
During radiotherapy planning, different treatment strategies can be followed, each consid-ering several assumptions or choices. Examples of these assumptions include dose esca-lation, uniformity or non-uniformity of tumor irradiation, the amount of the received dose,and eventual fractionation of the treatment, which is the division of the total radiation intosmaller doses per session over a period of time. In clinical practice, one specific treatmentstrategy is chosen among these alternatives, based on clinical experience and guidelines.Still, in clinical research, the goal is to thoroughly evaluate all possibilities. In this way, moretargeted treatments can be designed and provided to clinical practice. To simulate and eval-uate the effects of a specific strategy, clinical researchers employ Tumor Control Probability(TCP) models [302].

Conventional TCP models are statistical models that quantify the probability that a tu-mor is effectively controlled or treated, given a specific radiation dose. In plain words, TCPmodels aim at answering the question: What is the probability Y that a tumor is treated with
this strategy, given a dose X ? For example, Figure 9.1 depicts three different outcomes of aspecific TCP model, each from a specific radiotherapy treatment strategy. In this case, byproviding a total treatment dose of 77 Gy, the first strategy results in 88% probability of treat-ing the whole tumor, while the other two have a lower treatment probability response of 63%for the second strategy, and 31% for the third strategy.

In the last years, patient-specific tissue characteristics from imaging modalities startedbeing included in planning. This has influenced also TCP modeling, where additional per
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Figure 9.1: An example of the resulting TCP curves for a given dose, with three different radiotherapytreatment strategies. By providing a total dose of 77 Gy, the first strategy results in 88% probability oftreating the whole tumor, while the other two have a lower treatment probability response of 63% and
31%, respectively.

voxel information – in essence, properties indicative of tumor characteristics – are beingincorporated [266]. In this way, clinical researchers can predict more accurately the tumortreatment probability at a voxel level, by adding radiobiological information in their statisticalmodels, for example, from Diffusion Weighted (DW) MRI.
So far, several interesting aspects of TCP modeling are not incorporated in clinical re-search, due to complexity, lack of human and computational resources and time constraints.First of all, imaging modalities are subject to uncertainties with significant impact on themodel outcome and the simulated treatment response [140]. Additionally, there are manydifferent TCP models and different parameter assumptions in each one of them [258, 302].Usually, these assumptions are educated guesses, and awareness on the sensitivity of themodels is important.
Moreover, TCPmodeling is often applied to entire patient cohorts, to investigate the inter-

patient response variability. This knowledge can help clinical researchers to design morerobust treatment strategies. Finally, clinical researchers are interested in exploring and an-alyzing their data in a reverse manner. Practically, they need to be able to answer also thequestion: given a target treatment outcome for a tumor, identify the radiotherapy strategy(-ies)
to achieve it? In this work, we introduce a visual analytics approach to extend the explorationof TCPmodeling, to cover also these topics that are currently not possible to be incorporatedin the analysis.
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Our contribution is the design and implementation of a visual tool that enables clinicalresearchers to explore the information provided by their TCPmodels, to discover knowledgeand to confirm or generate hypotheses within their data. As far as we know, there is no othertool to serve this purpose. Our approach incorporates the following four main components:
• It supports the quantification and exploration of imaging-induced uncertainty and itspropagation to TCP modeling.
• It facilitates exploring and analyzing the sensitivity of TCPmodels to different assump-tions and parameter variations.
• It enables identifying and exploring inter-patient response variability, within cohorts.
• It allows, given a targeted treatment outcome, to identify the treatment strategies orparameters that would achieve it.
The remainder of this chapter is organized, as follows: Section 9.3 includes all the nec-essary background information. Section 9.4 provides an overview on previous work, andSection 9.5 is the core of this chapter, where our proposed approach is presented and dis-cussed. Section 9.6 presents the results of our evaluation. Finally, Section 9.7 concludes thechapter with a discussion and propositions for future work.

9.3. Clinical Background
In the last years, radiotherapy research aims at designing more effective and better targetedtreatments, to be applied in clinical practice. For the simulation and evaluation of all differ-ent treatment strategies, TCP models are being built [302]. Conventional TCP models areusually regression models that summarize empirical knowledge about the effect of radia-tion to tumors, representing the probability that a tumor is effectively treated with a specificdose [258, 302].

To achieve a more targeted treatment, tailored to the patient-specific tumor tissue char-acteristics, information from imaging modalities was recently incorporated to TCP model-ing [266]. In this way, properties indicative of tissue characteristics were included to improvethe radiobiological accuracy of modeling at a voxel-level [266]. In this work, we employ anovel TCPmodel that involves DW-MRI [48]. This in-vivo imaging technique measures quan-titatively the water diffusion per voxel, from apparent diffusion coefficient (ADC) maps, andis employed to identify high-density tissue like tumors [25].
This ADC-based TCP model is subject to uncertainties [140], often due to calculationrestrictions in the clinical setting or due to magnetic field inhomogeneities [25]. Althoughwe are considering a specific TCP model, uncertainties are present in all modalities andour proposed approach could be extended also to them. These uncertainties need to bequantified and propagated into modeling to identify their effect on the prediction outcome.More details about the source, quantification and propagation of uncertainty in the employedTCP model are discussed in Section 9.5.
Additionally, all TCP models, including ADC-based ones, incorporate a number of differ-ent parameter assumptions. For example, in the explored TCP model, researchers make
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assumptions for the amount of dose or fractionation, when quantifying the per voxel celldensity from ADC maps, or when selecting values for parameters that model the survivaland death of tumor cells after irradiation [48]. Still, it is not known which choices lead tobetter results, as well as what is the effect of different alternatives. Thus, the parametersensitivity of the model needs to be incorporated in the analysis. In state-of-the-art clinicalresearch, the ADC-derived uncertainty and the model sensitivity to parameter assumptionsare not considered yet, as they cannot be explored with the existing tools. This is furtherobstructed by the fact that the evaluation and analysis of TCP models is usually applied tocohorts of patients, to account for inter-patient response variability.
Finally, the current TCP modeling workflow is based on the question: What is the prob-

ability that a tumor is controlled, given a specific dose? Yet, clinical researchers have notmanaged to find an easy and insightful way to answer the inverse: Which radiotherapy deliv-
ery strategy can achieve a specific target treatment?

After an extensive discussion with clinical researchers working on TCP modeling, wedefined together themost relevant open tasks for their research, which are also summarizedin Figure 9.2:
• Quantification and interactive exploration of the ADC-induced uncertainty and its prop-agation to TCP modeling (T1).
• Exploration and analysis of the assumption-induced TCP model sensitivity (T2).
• Identification of inter-patient variability to radiotherapy treatment response (T3).
• A new bi-directional TCP modeling workflow (radiotherapy strategy ↔ Predicted ordesired outcome) (T4).

 
RT Strategies 

Prediction of Treatment 
Response Imaging 

Uncertainty 

TCP  
modeling 

Parameters 

Figure 9.2: The proposed visual analytics approach for the prediction of radiotherapy treatment re-sponse in TCP Modeling. With grey, we denote the four requirements (T1-T4) described in Section 9.3,which are our contributions to the workflow employed in clinical research.

9.4. Related Work
There are several frameworks that cover topics similar to ours. To the best of our knowledge,there is none for the exploration of TCP modeling. In this section, we review the literature,
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related to the tasks mentioned in Section 9.3.
■ Visualizing Uncertainty. Uncertainty visualization literature is vast [27, 136]. It can beroughly divided into the followingmain categories: visualizations using visual variables, suchas color [105, 115], brightness [71], fuzziness [160], or texture [30]; visualizations that adaptthe basic geometry to represent uncertainty [105, 316] or surrounding volume [202, 209, 203];visualizations with additional graphical variables, such as glyphs [215, 237, 243]; and visu-alizations employing animations [168]. The selection or combination of these approachesis not limitless and must be done in regard to the data, avoiding clutter. In our case, weneed to visualize not only the inherent uncertainty of the imaging data itself, but also how itpropagates and affects the outcome of the TCP model. Therefore, several of the previouslymentioned approaches need to be carefully adapted to suit our application.
■ Analyzing Parameter Sensitivity. Parameter sensitivity is often connected to forecastingor prediction models. A conceptual framework for parameter sensitivity analysis was pre-sented by Sedlmair et al. [246]. Other examples of systems for exploring multi-dimensionalparameter spaces are the Ensemble-Vis [216], Noodles [238], OVis [120, 121] and the ap-proach of Berger et al. [20]. Visualizations for parameter sensitivity analysis were also pro-posed for medical applications [33, 219, 274]. Most of them employ multiple views in aninteractive environment, where linking and brushing enables exploration and analysis. Yet,none of these frameworks can be used directly for our purposes.
■ Studying Cohorts. In many cases, patients are not analyzed individually. Previous work incohort visualization mainly focuses on the comparative analysis of shape variability [42, 118,241]. Recently, Steenwijk et al.[261], Zhang et al.[318] and Klemm et al.[149, 150] proposedinteractive visual analysis of cohorts that goes also beyond shape analysis. However, thesemethods assume that the structure of interest has spatial correspondence between patientsand can be compared after matching. This is not valid for tumors. In our case, we needto treat each tumor in the cohort as an entity that we can compare to the rest, while stillconsidering and visualizing the within-cohort heterogeneity.
■ Redesigning the workflow. Several visualizations for redesigning the usual workflow in aspecific application field have been proposed [37, 55, 69]. Inspired by these strategies, weadapted their approaches to fit our requirements.

9.5. Visual Analytics for the Exploration of Tumor Con-
trol Probability Models

The proposed visual tool aims at satisfying the specific exploratory needs of clinical re-searchers working on TCP modeling, as described in Section 9.3. Our visual tool consists ofthe four main components (T1-T4), illustrated in Figure 9.2.
9.5.1. Quantification and Interactive Exploration of Uncertainty and its Propagation to

TCP Modeling

The ADC-based TCP model [48] aims at incorporating cell density (CD) information. This isa common measure in tumor tissue characterization, referring to the number of tumor cellswithin a volume. The first step in the ADC-based TCP model requires the calculation of CD
9
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from the ADC values [48]. Among all approaches employed to quantify CD from ADC values,our clinical collaborators chose two for visualization:
• The sigmoid approach, where CD is modeled as a sigmoid function of the ADC val-ues [48].
• The Gibbs approach [97], which is based on experimental data. In this approach, anumber of prostate samples were scanned. Subsequently, their ADC values were re-trieved from imaging, while their respectiveCDvalueswere identified fromhistopathol-ogy, as shown in Figure 9.3. From these (ADC, CD) data points, Gibbs et al. establisheda linear relationship between the two dimensions, as shown in Figure 9.3, with the reddotted line. This linear relationship was described by Gibbs et al., as:

C D = 2.1 ·10−3− ADC

3 ·10−5
(9.1)

Both approaches – the sigmoid and the Gibbs approach – are affected by uncertainty.In the first case, only the uncertainty of the ADC, calculated below, is present, while in thesecond case, there is an additional uncertainty in the experimental set-up that was used todetermine the relationship between ADC and CD [97].

 

C
e
ll 

D
e
n
si

ty
 (

C
D

) 

Apparent Diffusion Coefficient (ADC, 10-3 mm2/s) 

Figure 9.3: Data set extracted from the experiment of Gibbs et al. [97]. The dataset is illustrated withthe points, and the linear relation between ADC and CD is shown with the red line. This relationship iswithout uncertainty. Incorporating ADC uncertainty results in a set of linear fits, shown with the greyscale. Here, dark grey denotes higher probability, and light denotes lower probability.
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Uncertainty in ADC maps is usually measured through experimentation in each clinicalinstitution, specifically for their specific scanning set-up [140]. Our clinical collaborators fromthe Netherlands Cancer Institute and from Aarhus University Hospital have modeled thisuncertainty by experiments, as the probability that an ADC value m is measured in imaging,given a quantitative real value r . This is given by a probability density function p(m|r ), whichis a Gaussian distribution with a standard deviation σ dependent on the real value r . Weare interested, though, in quantifying the probability p(r |m) that the real ADC value r hasoccurred given m. From Bayes’ rule we obtain:
p(r |m) = p(r ) ·p(m|r )

p(m)
= p(r ) ·p(m|r )∫

r p(r ) ·p(m|r )dr
(9.2)

where p(r ) is the prior probability of the value r . This is assumed to be uniform: p(r ) = 1
R ,where R is the range of possible values. Since the standard deviation of p(m|r ) dependson the value r , the calculation of p(r |m) is not trivial and was approximated analytically,using Taylor expansion. The analytical calculation was done in MATLAB and it resulted to bea skewed Gaussian, dependent on the measured value m:

p(r |m) =Q(m) · 1

r
·exp

(
− (m − (1+µ) · r )2

2 · (σ · r )2

)
(9.3)

where Q(m) is a polynomial of 12th degree of the measured value m, resulting from the ap-proximation. For generalization, p(r |m) could also have been calculated numerically.
The previously calculated uncertainty in ADCmaps is propagated in the calculation of theCD. The two approaches for CD quantification from ADC mentioned above, are influencedby ADC uncertainty in a different way:
• In the sigmoid approach, where CD is modeled as a sigmoid function of the ADC, theuncertainty of the ADC is directly propagated to the CD calculation. Hence, the CDuncertainty C D(r |m) is a function of p(r |m).
• In the initial experiment of Gibbs et al. [97] no uncertainty was taken into account. Inthis empirical approach, the CD values are obtained from histopathology and, hence,have no uncertainty. However, ADC uncertainty is present and needs to be included,affecting also the relationship between ADC and CD. To quantify this, we randomlysample the ADC uncertainty distribution of each data point of Figure 9.3. Then, wetake 2million sets of samples andwe calculate all fits, as well as their respective prob-abilities. These are given by the product of the probability functions of the data pointsamples. All generated fits can be seen in Figure 9.3, where the grayscale colormapdenotes the probability of each one of the fitted lines, where white is the least proba-ble and black themost probable. From the generated fits, we obtain the CD probabilityfunction C D(r |m).
The remaining steps of the TCP model are mathematical equations [48], which do notinclude additional uncertainties and use the CD value as input. Therefore, for the sigmoid ap-proach, the uncertainty in the TCPmodel will depend directly on the ADC uncertainty p(r |m),while for empirical Gibbs approach, it will depend on the CD uncertainty C D(r |m).
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For the interactive exploration of the uncertainty, our users are initially interested in hav-ing a global overview on the regions of the prostate that are most subject to ADC and CDuncertainty. To simultaneously explore the two uncertainties, we employ a 2D colormap [35].In this visual representation, we encoded the per voxel difference between themost probablereal ADC value r and the measured value m, as shown in Figure 9.4:
ADCdi f f = ar g max{p(r |m)}−m (9.4)

In the present case, this difference is always positive and its magnitude depends on themeasured ADC values. Therefore, we decided to map it to the luminance dimension of thecolormap, as shown in Figure 9.4. Also, we encoded the per voxel difference between themost probable real CD value – after the propagation of the ADC uncertainty – and the valuemeasured as proposed by Gibbs et al. in the literature, as illustrated in Figure 9.4:
C Ddi f f = ar g max{C D(r |m)}−C DGi bbs (9.5)

This difference is mapped to a divergent hue dimension of the colormap, as both positiveand negative values are possible. No transparency is employed in the colormap. Other ap-proaches, such height fields, were considered, but a discussion with the users showed thatthe colormap was easier to understand and use.
In addition to color-encoding, we enable users to probe the prostate and interactivelyexplore the entire probability density distributions for the ADC and CD values per voxel, de-picted in Figure 9.4. With this dual visualization, the user has an overview on the uncertaintyat a prostate level, and locally at the voxel level. Finally, when the user performs TCP mod-eling, the uncertainty is propagated also to the model outcome, as described before, andvisualized on the resulting TCP curve as a density band, presented in the zoomed view ofFigure 9.4.

9.5.2. Exploration and Analysis of the Assumption-induced TCP Model Sensitivity

In this part, we use twomain components. First, the clinical researcher adds a finite numberof combinations of TCP parameter sets, for the calculation of the respective TCP models.This is consistent with the traditional way of exploration of TCPmodeling, where one ormoreTCP models are compared to each other. In this case, each combination of TCP parametersets is encoded to the visualizations depicted in Figure 9.5 - a, which we call pianola plots,inspired by the scrolls used by the musical instrument.
In the example of Figure 9.5, the clinical user has added three parameter sets, depictedby the three white planes. Each row of a pianola plot is a parameter. The first parameter cdis the cell density calculation approach, which is a categorical variable that defines whichapproach is used for the calculation of CD. It can either take the value empirical or sigmoid,or others, if available. This is encoded with a dot located in the middle or the end of the firstrow, respectively. The rest of the parameters are radiobiological parameters of the modelwith continuous values, which can take values in known and pre-defined ranges. For these,
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the selected value for each parameter is encoded in the location of each one of the scribbledlines.
The user can also explore the effect of varying one or more parameters continuously,through a range. This is denoted with a box instead of a line, the width of which depicts thedesired range of values. An example of this case is given for parameter α in the second setof Figure 9.5 - a. To intuitively link these sets to the respective TCP curves, the scribbles ofeach pianola plot are assigned a different hue. In this way, the user can easily detect theeffect of different parameter choices on the TCP curves, as illustrated in Figure 9.5 - b.
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Figure 9.4: Component of our proposed approach, which enables the quantification and interactiveexploration of the ADC-induced uncertainty and its effect on TCP modeling (T1).
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Figure 9.5: Component of our proposed approach, which enables the exploration of the parameter-induced TCP model sensitivity (T2), for three different approaches ( 1©- 3©). (a) The pianola plots areemployed, to intuitively link the chosen parameter sets to the respective TCP curves. (b) The respectivecurves of each parameter set.

With the current workflow, TCP models can be explored only globally. Although TCPcurves can be extracted per voxel, clinical researchers currently calculate the expected av-erage response of the whole tumor to a given dose, and they only analyze the whole tumorTCP curve. They are not able to perform a voxel-based exploration, to detect whether thereare specific parts of the tumor that behave differently than the rest, and to analyze why thishappens. To enable this, we provide a functionality to probe the TCP curve. This can be ei-ther conducted for a TCP value, and identify the linked required dose per voxel, as presentedin Figure 9.6, or for a specific dose and identify the linked achieved TCP per voxel. The latterrelates also to task (T4).
To provide direct anatomical context, the linked variable is encoded with a heated-bodycolormap on the imaging slices of the patient, as shown in Figure 9.6. When the user hasemployed several TCP modeling approaches, we visualize also the variability in the respec-tive dose or TCP value, due to the effect of these alternatives, using circular glyphs [28]. Anexample of the employed glyphs is illustrated in Figure 9.6. The size of the glyphs denotesthe per voxel variability and the blue color is chosen to be complementary to the underlyingheated-body colormap. Circular glyphs were chosen, as they preserve visibility on the under-lying color-encoded values. This design also helps identifying the relation between valuesand variability.

9.5.3. Identification of Inter-patient Variability to Treatment Response

The exploration and analysis of the performance of a specific radiotherapy strategy is usuallyevaluated in a cohort of patients. For example, it is interesting for clinical researchers to knowhow much the per voxel achieved TCP, or the required dose of their patients varies withina cohort. Within-cohort variability is important, as it can determine whether a treatment
9
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Figure 9.6: Component of our proposed approach, which enables to probe themodel curve at a specificTCP value, to inspect the required dose per voxel, depicted with the heated-body colormap, and therespective variability at each voxel position, encoded to the size of the circular glyphs (T2).

strategy is robust enough to treat different patients, and whether it can aid the design ofbetter treatment strategies.
The identification of inter-patient variability to treatment response is linked to (T2): theuser probes the TCP curve for either the TCP response or the dose, as shown in Figure 9.6,and the other variable is calculated for the whole cohort, also for multiple TCP modelingapproaches, as described in (T2). We provide functionality, with which the users can explorethe distributions of the calculated dose or TCP, or multiple sets of these, from multiple TCPmodeling approaches. Subsequently, they can partition the cohort of patients, to identifypatients that behave similarly throughout different TCP modeling approaches.
To illustrate our approach for the partitioning, we employ the example depicted in Fig-ure 9.7. Here, distributions of dose, required for achieving a specific TCP level, have beencalculated for four patients, through three different parameter settings in TCPmodeling. Weare interested to form groups of patients with similar response patterns, along different pa-rameter settings. For this, we cluster the patients based on the spreads, determined by thedistribution dispersion, in each set of distributions. We quantify the dispersion of each dis-tribution, using the median absolute deviation (M AD). This is a robust measure of disper-sion [235] and can be described as:

M AD = medi ani
(∣∣Xi −medi ani (Xi )

∣∣) (9.6)

where Xi is the distribution of the dose for a specific TCP level, or the distribution of TCPvalues for a specific dose level. In essence, the M AD is the median of the absolute devia-tions of the distribution data Xi , from their median. After calculating all M AD measures of
9
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the distributions, we employ a k-means clustering algorithm on the vectors of M ADs, cal-culated per person. This specific clustering algorithm was chosen, due to its simplicity andcomputational efficiency.
In our approach, the user interactively selects the number of clusters k. To aid the ad-equate selection of the number of clusters, we employ an additional cluster analysis view.For this, we use a visualization employed in our previous work [226]. In this work, the goalof the visual cluster analysis view was to help users decide whether the visual clusters arewell-defined. This is similar to our present goal and we decided to adopt again the samestrategy in our system. In this approach, every cluster is mapped to a sphere. For each clus-ter, we provide internal validity information on the cohesion and separation [226], but also onthe inter-patient and inter-assumption variability.
Cohesion is a measure of intra-cluster similarity, while separation is a measure of inter-cluster dissimilarity. For these two measures, we employ the same encoding, as in our pre-vious work [226]: small and opaque spheres describe high cohesion within a cluster, whilelarge and transparent spheres depict low cohesion. Also, thin arrows denote well-separatedclusters giving the illusion of distance, while thick arrows stand for less separated clusters.The inter-patient and inter-assumption variability are encoded in the size of the two dimen-sions of a box, located at the core of each sphere. These encodings are shown in the legendof Figure 9.7.
With the cluster analysis view, the users interactively change the number of clusters,while following the graphical changes on the glyphs, and decide the most satisfactory re-sult, based on the visual optimization of the cluster view. The users interactively partitionthe patient cohort, inspecting the achieved TCP response, while at the same time, they canidentify how much the sub-cohorts of responses vary. An automatized initial selection of agood cluster size or number of clusters would be an interesting future extension.

9.5.4. Bi-Directional Design of TCP Modeling Workflow

With the introduction of (T4), we enable clinical researchers to start their workflow from thedesired outcome, to identify and compare the strategies that achieve it. For this, the userdefines an acceptability range for the desired TCP outcome, by sketching it on a canvas, asshown in Figure 9.8. Then, all the acceptable parameter combinations that can achieve thisare computed, using a brute-force search. The user is presented with these combinations,using a heatmap matrix, depicted in Figure 9.8. In this matrix, every column correspondsto an acceptable combination, and every row to one of the parameters. In the last row, wepresent also the quantified uncertainty that is introduced by each one of these combinations,calculated in the same way, as in (T1).
The colormap denotes the range of values for each parameter. The user can interactwith the matrix and threshold values that are not plausible or interesting for the analysis, oreven select combinations based on their uncertainty, as illustrated in Figure 9.8. Probing andlinking is employed for the inspection of the TCP curve of each combination. The functional-ity of (T4) is expected to open newways of exploration and analysis for clinical researchers,as up to now the workflow was done in one direction. Now, the inverse is possible too.

■ Implementation. We implemented the visual tool in Python as a DeVIDE module[32], usingthe Visualization Toolkit (VTK) [2], numpy, scipy, matplotlib and scikit-learn.
9
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Figure 9.7: Component of our proposed approach, which enables to partition a patient cohort based onTCP treatment response (T3). The cluster analysis view (bottom panel), adapted from [226], is used forthe visual optimization of clustering.9
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Figure 9.8: Component of our proposed approach, which enables to reverse the workflow in TCP mod-eling (T4). In this case, we start from the desired outcome, to define which treatment strategies canachieve it.

9.6. Evaluation
To assess the value of our visual tool, we performed an evaluation inspired by the paper ofLam et al. [159]. The evaluation was performed with nine domain experts from two clini-cal institutions (Netherlands Cancer Institute and Aarhus University Hospital). The group ofparticipants included three physicists, five medical physicists and one biomedical engineer.Their field experience varies from medium level (<5 yrs) to very high level (>10 yrs). Two ofthe participants were actively involved in the design of our tool. Both of them have a veryhigh level of experience in the field of TCP modeling.

All participants were involved in the first part of the evaluation. We demonstrated thevisual tool, where we showed the main components, simulating the visual environment forthe exploration and analysis a TCPmodelingworkflow. The evaluation participants observedthe demonstration andwere involved in an active discussion about the various visualizations.Then, they completed a questionnaire.
The second part was conducted only with the two participants involved in the design ofthe tool and the analysis was performed with data already familiar to them. For a deeperunderstanding on the insights that the tool provides, we performed a case study with hands-on exploration. Each of the four tasks of Section 9.3 was performed with the thinking-out-loud method, as the clinical researchers explained and reasoned on findings in the data. Atthe end, we asked them to complete again the same questionnaire as before, to see whethertheir opinion was affected by interacting with the tool. 9
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9.6.1. Interviews with Clinical Researchers

During the interviews, the participants completed a questionnaire. The first questions wererelated to the main tasks of Section 9.3. Each question required an open answer, but alsograding using Likert scales (1−5) for the perceived effectiveness, efficiency and satisfaction.To avoid compromising the results, we separated in our analysis the two people involved inthe design from the other seven. Half of the tasks were graded higher by the first groupand the other half by the second, but overall the two groups had comparable results withoutsignificant difference. Also, we separated our analysis based on level of experience, as itpossibly indicates different user categories, performing different tasks. Again, the resultswere comparable among the different groups.
All measured variables received high scores, as shown in Figures 9.9 and 9.10, with aminimum average grade of 4. Uncertainty (T1) and Sensitivity (T2) received high grades.Partitioning (T3) received lower grades, but not lower than 3, as presented in Figures 9.9and 9.10. This was explained by the fact that participants wanted to see additional infor-mation on the data, when partitioning their cohorts. After the case study of the followingsection, the two participants involved in the design recompiled the questionnaire. For theefficiency of (T1) and effectiveness of (T3), the grades improved. This is interesting, asthese two participants consist half of our group with very high experience, who had initiallygraded (T3) lower than all the others. This could be an indication that after hands-on ex-ploration, this task became clearer to them. Overall, the results between the two rounds areconsistently high.
The nine participants were also asked to compare the visual tool to what they are cur-rently using and to evaluate the overall usefulness of our tool. They commented that theycurrently, do not have any other means of analysis, apart from looking at individual graphs.

Figure 9.9: Schematic representation of the evaluation results, for each one of the tasks of Section 9.3.Here, the evaluation participants have been split into two groups: the ones that were involved in thedesign of the visual analytics tool and the others that were not. The horizontal axis represents the gradereceived in each case, while the vertical axis represents the number of participants that assigned thespecific grade.
9
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Figure 9.10: Schematic representation of the evaluation results, for each one of the tasks of Section 9.3.Here, the evaluation participants have been split into three groups, based on their experience. The hori-zontal axis represents the grade received in each case, while the vertical axis represents the number ofparticipants that assigned the specific grade.

For them, the framework requires training and a level of familiarization, but it removes a sig-
nificant overhead from the analysis, giving important input. More specifically, the uncertaintypart (T1) provides directly understandable and quantitative feedback, while with sensitivityanalysis (T2) they can perceive directly the influence of the dose prescription. For the cohortpartitioning part (T3), there were mixed opinions. According to the evaluation participants,it raises a lot of questions about the subgroups of the cohorts. It could be themost important
clinical application, but it should be done also based on other variables, or also for intra-tumor
regions. Reversing the workflow (T4) can have great potential.

All participants agreed that the visual tool is overall understandable and useful. Thestrong features of the visual tool are the ability to perform a voxel-based analysis, espe-cially, the probing and linking functionality in the TCP curves and the view on the variabilityfrom the different modeling approaches (T2), as well as the workflow reversing task (T4).Improvement proposals were mostly related to cohort partitioning (T3).
9.6.2. Case Study

For the case study, ADC data from a cohort of 11 locally advanced prostate tumor patientswas used. The ADCmapswere derived with a b-value of 1000 and have a size of 256×256×24voxels and a resolution of 0.97×0.97×3.6.
During the task of uncertainty (T1), it was noticed that CD might be overestimated inliterature, as visualized by the dominant purple color in the slice view of Figure 9.4. Somevoxels, highlightedwith the green color, have been noticed to be sometimesmis-delineationsof voxels that belong to the bladder or to the urethra. In the rest of cases, like in Figure 9.4,these are locations in the prostate that should be checkedmore thoroughly. Less uncertaintyis expected within tumors, due to lower ADC values. The effect of the uncertainty on the TCP

9
167



9.7. Conclusions and Future Work

was also found to be interesting: it reaches almost 5% of the TCP for the empirical approach,at D50%, i.e., the dose required for achieving 50% control only in the tumor location. This isdenoted in Figure 9.11 - a, with the purple curve. The TCP uncertainty is 2.5% for the sigmoidapproach, as shown in Figure 9.11 - a, with the orange curve.
During the exploration of sensitivity (T2), four examples of parameter sets were ex-plored. The first two are empirical approaches with the same radiotherapy strategy, but theydiffer in the αV ar parameter, which is the inter-patient variability in the survival rate of tumorcells. The third is a sigmoid approach with the same radiotherapy strategy. The last is an ad-ditional empirical approachwith a range ofα between 0.17 and 0.21, which is a radiobiologicalparameter indicating the survival rate of tumor cells. In the resulting TCP curve graph, thereare indications that the sigmoidmodel might predict tumor control with a lower dose, i.e, thecurve is more to the left, than the respective empirical, depicted in Figure 9.11 - b. Also, whenthe αV ar is neglected, then the model suffers less from uncertainty, as shown in Figure 9.11- b. For ranging α, the effect on the TCP is more prominent. In this case, probing the TCPat 70% shows that a dose ranging between 43 and 82 Gy is required within the tumor only.The variability between the four models, though, is large for the whole tumor, as illustratedin Figure 9.11 - b.
For cohort partitioning (T3), after probing the TCP at 70%, we obtain the dose distribu-tions per patient, as presented in Figure 9.11 - c. Patient 8 seems to have a different behavior.His TCP curve, shown in Figure 9.11 - c, with the dotted TCP curve, is on the right side of theaverage curve, which means that to achieve a 70% TCP, he requires a higher dose, as he isa patient with a much larger tumor. After interactive clustering, the visually optimal clusteranalysis view is achieved with two clusters, where patients behave similarly in terms of TCPcurves, e.g., the ones in the blue cluster are all on the right side of the average curve.
In reversing the workflow (T4), patient 8 was explored to check whether a more satis-fying strategy can be identified. A wide range of acceptable TCP is drawn, as in Figure 9.8.More than 200 different combinations are identified, as seen by the columns of the heatmapmatrix. On first sight, it seems that the sigmoid approach (Figure 9.8 - heatmap, first row,purple section) may be less sensitive to changes in parameters than empirical (Figure 9.8- heatmap, first row, white section), as less combinations are computed for the sigmoid.Also, this approach may suffer less from uncertainty (Figure 9.8 - heatmap, last row), as therange of uncertainties does not go up to the maximum value of uncertainty, indicated bythe deep purple color. By redefining the acceptable limits for the parameters and the uncer-tainty, only 24 different combinations are preserved, as shown in Figure 9.8. According tothe evaluators, (T4) functionality could be helpful to determine the suitability of this patientfor a specific therapy. However, for this, no conclusions can be made, as it would also re-quire the involvement of oncologists, and a more extensive study. The examined cases aremeant to demonstrate the use of the visual tool, not as an actual analysis with direct clinicalinferences.

9.7. Conclusions and Future Work
In this work, we proposed a visual tool to enable clinical researchers to explore and analyzedifferent aspects of the TCP modeling workflow. We tackled the quantification and interac-tive exploration of uncertainty and its propagation to TCP modeling, parameter sensitivity
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Figure 9.11: Results from the case study with the two clinical researchers that were involved into thedesign of our approach. 9
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analysis of TCP models, cohort partitioning based on treatment response and a novel func-tionality for enabling also a reverse workflow. Nine clinical researchers evaluated and con-firmed the usefulness of the visual tool, as it opens new possibilities and provides access tonew insight in the data. We illustrated this also with a case study.
A direction for future work includes improving the partitioning of the cohorts to enableclustering also based on other attributes, and also linking to intra-tumor tissue characteris-tics [226]. In this way, more meaningful inter-patient analysis can also be performed. Theproposed visual tool is a promising basis for clinical researchers to gain more knowledgeon their complex TCP modeling processes, to explore the data from the models in a moreinsightful way and to generate and confirm new hypotheses.
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10
Conclusion

It seems impossible, until it’s done.

Nelson Mandela (1918 - 2013)



10.1. Summary

10.1. Summary
As radiotherapy technology focuses on providing a more personalized treatment based onthe specific intra-tumor tissue characteristics of each patient, the integration of all availablepatient- and tumor-specific knowledge from the distinct steps of the radiotherapy pipeline, isrequired. Current limitations in the exploration and analysis of the involved information canbe overcome, by employing solutions from the field of Visual Analytics.

The goal of this dissertation was to present visualization solutions, which are able tointegrate the information from all steps of the radiotherapy planning pipeline, in order to fulfillthe need of clinical researchers to interactively explore and analyze their data, to derive andunderstand information from them, and to formulate or confirm hypotheses, with respectto their findings. Each of the previous chapters addressed one step of the tumor-tailoredradiotherapy pipeline, providing strategies to tackle the specific needs of clinical researcherswith respect to their data and processes.
The present work reached two main advancements. First, in radiotherapy research, weaccomplished to provide solutions and tools for clinical researchers, which address their ex-ploratory needs at all steps of the tumor-tailored radiotherapy planning pipeline. Involvingclinical experts through visual analysis and interaction in the workflow of the entire radio-therapy pipeline had not been tackled before, and our proposed Visual Analytics solutionsaddress specific tasks that could not be conducted with previously existing tools. The de-velopment of these new interactive and investigative tools has now empowered clinical re-searchers with new exploratory possibilities.
In visualization research, wemanaged to expand the field of Visual Analytics to support anew clinical domain. As discussed in previous chapters, although there are numerous waysof visualizing multi-dimensional and complex data, none of them was fully applicable to thedata and processes of radiotherapy planning. Our contribution to the field of Visual Analyt-ics is a compound of applications tailored to a specific step of the pipeline, to the involveddata and to the requirements of clinical researchers. With our work, we presented our user-centered viewpoint on how visualization applications should be designed, implemented, andlater evaluated. All proposed approaches promote the integration and combination of thestrengths of human perception for exploration and analysis, together with semi-automatedmethods, with the purpose to increase the understanding in otherwise complex data andprocesses.
More in particular, Chapter 4 proposed the Orientation-Enhanced Parallel CoordinatesPlots (OPCPs), a novel method for the representation and exploration of multi-variate andmulti-dimensional data. The proposed technique contributes towards the enhancement ofthe – otherwise cluttered – display of the data, emphasizing the underlying patterns andimproving the discernibility of outliers, or data structures that may be obstructed by noise orother data patterns. The OPCPs technique can be used in several steps of the pipeline, butalso outside of this domain in other broader applications.
In Chapter 5, we presented a visualization solution that aids clinical researchers to ex-plore and understand how different choices in modeling may affect the parameter spacederived from modeling DCE-MRI data. As part of this Visual Analytics tool, we designed anew interactive representation, the Cocoon, that allows users to explore all required DCE-MRIdata aspects in a single combined view. The interactive features of the tool facilitate the ex-
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ploration and interpretation of the data and, especially, the correspondence of observationsfrom the feature space to the patient anatomy.
Tissue characterization has been addressed inChapter 6, wherewe contributedwith aVi-sual Analytics system that enables the easy exploration and analysis of the high-dimensionalfeature space of imaging-derived tissue characteristics. This visualization solution enablesthe identification of distinct intra-tumor regions, the understanding of tumor heterogeneity,new knowledge discovery within the data, as well as hypothesis generation and confirma-tion, with respect to reference data used in clinical research. Although this work has beendeveloped around the specific topic of intra-tumor tissue characterization, we additionallydemonstrated a generalized use of the proposed system, namely aiding the design of braintissue characterization classifiers and understanding their behavior and outcomes.
In Chapter 7, we addressed the segmentation step of the radiotherapy planning pipeline.In particular, we addressed the need for a Visual Analytics solution that allows the explorationand assessment of potential errors in the segmentation of the prostate and the surroundingorgans at risk. With this solution, we enabled the visual analysis of errors in themodel-basedsegmentation of the involved pelvic structures, andmade the first step towards understand-ing the prediction of the performance of the employed segmentation algorithms.
Chapter 8 presented a Visual Analytics solution for the exploration and analysis of thevariability in an ensemble of radiotherapy dose plans. Several assumptions or different pa-rameterizations in the previous steps of the pipeline may result into different dose plans. Inorder to examine the impact of those assumptions or parameterizations on the final plan-ning outcome, and to visually assess the variability across multiple possible dose plans, wedesigned a framework that enables the exploration and visual analysis of dose variability atan iso-contour level and at a voxel level.
Finally, the exploration and visual analysis of tumor control probability (TCP) modeling,often employed for the evaluation and prediction of the outcome of a radiotherapy treatment,was tackled in Chapter 9. Here, we proposed a visual tool to enable clinical researchersto explore and analyze different aspects of the TCP modeling workflow: the quantificationand interactive exploration of uncertainty and its propagation to TCP modeling, parametersensitivity analysis of TCP models, cohort partitioning based on treatment response and anovel functionality for enabling also a reverse workflow.
All in all, our work is a promising basis, which offers new exploratory possibilities forresearchers working on the complex processes and data, present at all steps of the patient-and tumor-tailored radiotherapy pipeline. Nevertheless, it has also revealed a multitude oftopics for future research, which are discussed in the upcoming section.

10.2. Discussion and Directions for Future Research
A thorough discussion and specific recommendations for topics that might be interestingfor future research have already been provided at the end of each previous chapter. In thepresent section, we would like to present our own perspective, with respect to a number ofgeneral lessons learned in the course of this work, as well as several general points thatcould be considered for future research.

With respect to the representation and exploration ofmulti-variate andmulti-dimensional
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data, it is clear that our approach addresses a specific topic: the reduction of clutter ina specific multi-dimensional representation, the PCPs. Yet, there is a multitude of multi-dimensional representations, which can and should be carefully employed, depending onthe tasks that need to be fulfilled and the data aspects that need to be brought forward.Each one of the existing multi-dimensional representations has its strength and limitations.However, as already discussed inmany instances of this dissertation, scalability, concerningthe number of data points and the number of data dimensions, is a quite often reoccurringproblem, in all of them. In our opinion, strategies to address the scalability issue should bedevised. A future direction could include the investigation of simple enhancement solutionsaround existing representations, such as the one proposed within the OPCPs (Chapter 4),opposed to the usual tendency of developing complicated solutions.
In our specific application, as well as in the majority of clinical applications, the oftenexploding number of features that can be extracted from imaging modalities makes it im-peding to consider additional strategies, which employ dimensionality reduction and datamining. Such strategies have been successfully exploited in this dissertation, in particularfor tissue characterization. Visual Analytics strategies, such as the framework proposed inChapter 6, can be a very promising basis for a number of clinical applications, supportingclinical researchers to explore and analyze their data. Yet, the results of the incorporated di-mensionality reduction techniques may be not entirely understood, or it may not be feasibleto achieve results on-the-fly. The latter implies that the users might be required to wait untilthe completion of the employed algorithm, every time that they need to redefine it, which isnot always optimal for the analysis workflow. To this end, the field of Progressive Visual An-

alytics, where partial results of an algorithm can be produced and interactively explored andanalyzed, may be beneficial. Future research towards this direction would be an interestingenhancement to our current work.
Designing and employing Progressive Visual Analytics solutions can additionally enablethe incorporation and exploration of (im-)precision of the employed processes into the anal-ysis. This, together with the integration of the uncertainty, induced by the parametrization ofthe chosen dimensionality reduction techniques, would lead to more reliable observationswithin the data. For example, this could be interesting for the tumor tissue characterizationstep or for the exploration of the effect of adjustments in the pipeline on the final dose plan-ning outcome. This kind of solutions may, furthermore, allow the extension of a number ofapplications to enable meaningful follow-up or inter-patient analysis. In essence, we expectthat this research direction can help clinical researchers to explore, analyze and deliberate,with respect to the progression of a disease, or to treatment response, also regarding differ-ent groups of individuals. From this, diagnosis, prognosis and treatment may significantlybenefit. From a visualization point of view, follow-up and inter-patient analysis would be avery challenging topic, due to the implicated dimensionality and complexity of the data, anddue to the fact that anatomic correspondences are not ensured. Smart strategies to addressthese two key-points need to be devised.
Moving forwards, from the imaging and characterization step of the radiotherapy pipelineto the next steps of registration and segmentation, several points have emerged. Concern-ing the former, our dissertation did not extend to any aspects of the registration processesinvolved in the radiotherapy planning pipeline. However, the registration aspect is crucial, asit might compromise the subsequent steps of the pipeline. The propagation of potential un-certainty from the registration phase to the rest of the pipeline, as well as the exploration of
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the impact of inaccuracies to the final outcome, should definitely be taken into considerationin future research. This should be conducted together with the exploration of the effect ofinaccuracies or errors of the segmentation phase to the final dose planning result. In thesegmentation step, it is also important to find solutions for the investigation of the relationof the shapes and sizes of the various organs to the algorithm performance.
In the tumor control probability modeling phase, we foresee that the proposed visual toolcan be a promising basis for clinical researchers to gain more knowledge on their complexmodeling processes. In particular, it opens new directions for clinical research, by provid-ing new ways of exploring and interacting with the data, for example by allowing clinicalresearchers to start from the desired outcome to explore the feasibility of the strategies re-quired to achieve it. Using this tool, in retrospective, to evaluate treatment prognosis in a bigcohort study, would be an interesting future enrichment. To this end, more meaningful inter-patient analysis would be required, which can be achieved by associating this step to thespecific intra-tumor characteristics of each group of patients. From a visualization aspect,this would also be a very demanding and worthwhile topic for future research.
In general, the integration of the different solutions, to explore and analyze the accumu-lation and propagation of the uncertainty from one step of the radiotherapy pipeline to thefinal outcome, is an additional important next step. In our current work, our contribution tothat was the incorporation of the imaging-induced uncertainty into tumor control probabilitymodeling, but there is still a lot to be done towards this direction. This should also take intoconsideration the uncertainties that may occur during the actual delivery of the treatment, inorder to provide a complete overview of the potential inaccuracies in the final dose plan andtheir potential impact on the treatment and prognosis of the patients. At this point, additionalnon-imaging patient-specific characteristics of the patients should also be incorporated inthe analysis, which would be very interesting for future visualization research.
To conclude, we have proposed a number of Visual Analytics solutions, meant to beemployed by clinical researchers. Still, visualization solutions for clinical users, such asdosimetrists or radiologists, should also be designed. This kind of solutions has a fundamen-tal difference with the proposed approaches: they are not meant for exploration, knowledgediscovery and hypothesis generation, but for hypothesis confirmation and decision making,instead. From this point of view, we foresee two important aspects that can positively con-tribute to successfully develop this kind of visualization solutions. First, compliance withtools that the users are already familiar with should be achieved. To this end, the standard-ization and automatization of the analytic processes would be required, and the amount ofrequired interaction would need to be carefully evaluated and, eventually, minimized. Sec-ondly, as these solutions would mainly aim at supporting – not replacing – decision making,they should also be carefully designed to be adequate for routine use, to be task-orientedand intended to improve the accuracy, efficiency and effectiveness of the involved clinicaldecision process. Adequate evaluation of these systems would also be required.
This dissertation has described solutions from the field of Visual Analytics, which aim atincorporating the information from the distinct steps of the radiotherapy planning pipeline,along with eventual sources of uncertainty, into comprehensible visualizations. These ap-proaches contribute towards the interactive exploration, visual analysis and understandingof the involved data and processes at each step of the radiotherapy planning pipeline, creat-ing fertile ground for future research in radiotherapy planning, but also in Visual Analytics.
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