
Dynamic and Probabilistic
Point-Cloud Processing

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften

eingereicht von

Dipl.-Ing. Reinhold Preiner
Matrikelnummer 0430380

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer

Diese Dissertation haben begutachtet:

Prof. Dr. Marc Alexa Prof. Dr. Robert Sablatnig

Wien, 24. August 2017
Reinhold Preiner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Dynamic and Probabilistic
Point-Cloud Processing

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Dipl.-Ing. Reinhold Preiner
Registration Number 0430380

to the Faculty of Informatics

at the TU Wien

Advisor: Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer

The dissertation has been reviewed by:

Prof. Dr. Marc Alexa Prof. Dr. Robert Sablatnig

Vienna, 24th August, 2017
Reinhold Preiner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Dipl.-Ing. Reinhold Preiner
Murlingengasse 56/4, 1120 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 24. August 2017
Reinhold Preiner

v

Acknowledgements

First, I would like to thank my PhD supervisor Prof. Michael Wimmer, who channeled
my career into research and hired me as a university assistant after my master studies.
He has been a distinguished group leader and a continuous source of professional advice.
Thanks to Prof. Werner Purgathofer, the head of the institute, who led it in an exemplary
manner and created the prerequisites for a positive working environment. Thanks to our
technicians Andreas Weiner, Stephan Bösch-Plepelits, and Simone Risslegger, who created
the technical prerequisites for any work that has been done. And to the administrative
staff, Tammy Ringhofer, Max Höfferer, and especially Anita Mayerhofer-Sebera, the
heart of the institute. I couldn’t have done my research without my co-authors Stefan
Jeschke, Oliver Mattausch, Murat Arikan, and Prof. Tamy Boubekeur. I also want to
thank Claus Scheiblauer, Martin Knecht, Thomas Auzinger, and Stephané Calderon for
their invaluable help and input to my research work. I have also been grateful to get the
chance to collaborate with my colleagues from the ICGA Visualization group, especially
Johanna Schmidt, Gabriel Mistelbauer and Eduard Gröller.

My research was funded by the Austrian Research Promotion Agency (FFG) through
the FIT-IT project “Terapoints” (no. 825842), the EU FP7-ICT project “Harvest4D”
(no. 323567), and the Austrian Science Fund (FWF) grant P24600-N23. Thanks to the
people and institutions who freely provided the 3d models and 3rd-party tools used in
this thesis, including the University of Konstanz, Hui Huang, Robert Sumner and Jovan
Popovic from the Computer Graphics Group at MIT, Clark Mills and the Smithsonian
Digitization Project 3D Lab, Matthew Berger, and many others.

It is an honour to me to have Prof. Marc Alexa and Prof. Robert Sablatnig as reviewers
for this thesis.

To my family, especially my parents, in-laws, and grandparents, for all the support over
the years. To my friends; those I met in Vienna, for making me enjoy the time of my
PhD studies on countless occasions; and those I have known long before, for keeping up
the connection throughout the years. Most of all, to my beloved wife Margarete, who
provided me with the emotional and motivational support during the past years. I would
not be here without you.

vii

Kurzfassung

Das Scannen physikalischer Objekte mittels 3d-Scanner ist in den letzten Jahren zu
einer alltäglichen Aufgabe geworden. Diese Geräte tasten die Oberfläche dreidimensio-
naler Objekte ab und geben die Abtastpunkte, auch Punktwolke genannt, aus. Diese
Punktwolken weisen charakteristischerweise ein gewisses Rauschen, unabgetastete Ober-
flächenregionen (Löcher), und statistische Ausreißer auf. In der Computergrafik befasst
sich das Gebiet der Oberflächenrekonstruktion mit dem Problem der Konvertierung dieser
rohen Punktdaten zu einer sauberen, vereinfachten Repräsentation, die sich besser für
die Anwendung verschiedenster Operationen sowie die Darstellung des Objektes eignet.
Manche der entwickelten Methoden zielen auf die direkte Darstellung einer geschlossenen
Oberfläche basierend auf einer gegebenen Punktwolke ab, benötigen aber oft auch gewisse
Vorverarbeitungsschritte, um Oberflächendarstellungen von hoher Qualität zu erzielen.

Die ständig steigenden Datenraten aktueller 3d Scanner haben es kürzlich möglich ge-
macht, dynamische, bewegte Objekte in Echtzeit zu scannen. Diese hohen Abtastgeschwin-
digkeiten erfordern neue leistungsfähige Rekonstruktionsalgorithmen, die die gescannten
Daten in Echtzeit verarbeiten und in hoher Qualität darstellen können. In dieser Arbeit
beschäftigen wir uns daher mit der Entwicklung verschiedener Techniken zur schnellen
Verarbeitung und Darstellung solcher unstrukturierter, dynamischer Punktwolken, die aus
verschiedenen Quellen zu einem Computer gestreamt werden können. Im Zuge dieser Ar-
beit erforschen wir probabilistische Ansätze zur Beschleunigung aktueller punktbasierter
Operationen, und verwenden ein Wahrscheinlichkeitsmodell der 3d-Punktdaten, um eine
effiziente Methode zur probabilistischen Oberflächenrekonstruktion und -representation
zu entwickeln.

Wir entwickeln ein GPU Rendering-Framework, das die jeweils notwendigen Berechnun-
gen zur Oberflächenrekonstruktion in situ, d.h. zum Zeitpunkt des Renderns, durchführt,
und sich dabei auf eine minimal notwendige Teilmenge der Punktdaten, also die im
Viewport sichtbaren Punkte, beschränkt. Dazu befasst sich der erste Teil dieser Arbeit
mit einem grundlegenden Problem der meisten Rekonstruktionsverfahren, der schnellen
und effizienten Suche der räumlichen Nachbarpunkte in einem großen, unstrukturierten
und ungeordneten Punktdatensatz. Die Verfügbarkeit der lokalen Nachbarn eines jeden
Punktes ist essenziell für die Herstellung der lokalen Konnektivität zwischen den Punkten,
für die Beurteilung der lokal umgebenden Geometrie der zu rekonstruierenden Oberfläche,
sowie für die Anwendung von Filteroperationen, die die Qualität der Daten und somit der

ix

resultierenden Oberfläche verbessern. Im zweiten Teil erweitern wir diesen Ansatz und
beschreiben ein verbessertes Verfahren, das eine Rekonstruktion mit beliebigen Band-
breiten erlaubt und eine stabilere und insgesamt gleichmäßigere Oberflächendarstellung
ermöglicht.

Im dritten Teil konzentrieren wir uns auf das Problem von Rauschen und Ausreißern in
den Punktdaten, und entwickeln eine neue Methode, die ein schnelles, detailerhaltendes
Resampling solcher dynamischer Punktwolken erlaubt. Hierzu beschreiben wir die Daten
durch eine reduzierte Gaußsche Mischverteilung (Gaussian Mixture Model), die eine viel
kompaktere Beschreibung der Daten und somit auch schnellere Operationen auf diesen
erlauben. Wir zeigen, dass diese Methode nicht nur die Geschwindigkeit, sondern auch die
Genauigkeit und Qualität aktueller Resamplig-Operatoren verbessert. Basierend auf den
beobachteten Vorteilen dieses Wahrscheinlichkeitsmodells für punktbasierte Operationen
erforschen wir im letzten Teil dieser Arbeit einen neuen Ansatz, um auf solchen reduzierten
Wahrscheinlichkeitsmodellen eine glatte, durchgehende Oberfläche zu definieren. Wir
entwickeln hierfür ein gänzlich probabilistisches Rekonstruktionsverfahren, und zeigen,
dass wir detailreiche Oberflächen in äußerst speichereffizienter Weise darstellen können,
während die Geschwindigkeit unseres Verfahrens aktuelle Methoden übertrifft.

Abstract

In recent years, the scanning of real-world physical objects using 3d acquisition devices
has become an everyday task. Such 3d scanners output a set of three-dimensional points,
called point cloud, sampling the surface of an object. These samples are typically subject
to imperfections like noise, holes and outliers. In computer graphics, the field of surface
reconstruction is concerned with the problem of converting this raw point data to a clean,
more usable and visualizable representation. Some of the developed techniques aim at
directly rendering a closed surface from such a point cloud, but also require certain
precomputations to produce images of high quality.

The ever-increasing acquisition rates and data throughputs of even low-cost scanner
hardware have recently made it possible to capture dynamic and animated objects
in real time. These high-speed acquisition capabilities call for new high-performance
reconstruction algorithms that are able to keep up with these acquisition rates and allow
an instant high-quality visualization of the real-time captured data. In this thesis, we
pick up on this problem and develop various techniques that allow a fast processing and
visualization of such raw, unstructured and potentially dynamic point clouds, which
might be streamed to our computer at real-time rates from any possible source. In
the course of our work, we investigate probabilistic methods that allow achieving a
significant acceleration of state-of-the-art point-based operators, and use statistical
models of 3d point sets to develop a fast technique for probabilistic surface reconstruction
and representation.

We develop a GPU point-rendering framework that performs any reconstruction compu-
tations required for a high-quality visualization instantly, i.e., on the fly at render time,
and only on a necessary minimal subset of the data, i.e., the points visible on the screen.
To this end, the first part of this thesis addresses a basic problem common to almost
any surface-reconstruction technique, which is the fast and efficient search for spatial
neighbors in an unstructured and unordered large collection of points. Knowing about a
point’s nearest neighbors is an essential prerequisite for establishing local connectivity,
assessing the shape of the surrounding surface, and applying filter operations for improv-
ing the quality of the geometric data and thus the resulting surface. In the second part,
we improve on this direct reconstruction and rendering technique and present a more
elaborate method that allows working at arbitrary reconstruction bandwidths, improves

xi

on the temporal stability of the rendered image, and produces a surface rendering of
increased smoothness.

In the third part, we focus on the problem of noise and outliers in the input data,
and introduce a novel technique that allows for a fast feature-preserving resampling of
unstructured dynamic point sets at render time. To this end, we describe the point
cloud by a sparse probabilistic Gaussian mixture model, which allows for a much more
compact representation and thus much faster operations on the spatial data. We will
show that this technique significantly improves on the speed and even on the accuracy
and quality of a feature-preserving point-set resampling operator. Based on the observed
computational benefits of this probabilistic model, the final part of this thesis investigates
a new way of defining a smooth and continuous surface solely based on a sparse Gaussian
mixture. We will develop an entirely probabilistic reconstruction pipeline, and show that
we can describe a feature-rich surface in a highly memory-efficient way while obtaining a
reconstruction performance that can compete and even improve on the state of the art.

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Prelude . 1
1.2 Scope of this Thesis . 2
1.3 Challenges in Dynamic Point Rendering and Reconstruction 5
1.4 Contributions . 6

2 Related Work 11
2.1 Dynamic High-Quality Point Rendering 11
2.2 Robust Point-Cloud Processing . 12
2.3 Modeling Point Clouds with Gaussian Mixtures 13
2.4 Surface Reconstruction and Representation 14

3 Interactive Screen-Space Triangulation 19
3.1 Introduction . 20
3.2 Challenges . 21
3.3 Algorithm Overview . 22
3.4 Nearest neighbor search . 23
3.5 Normal estimation . 25
3.6 Triangulation . 25
3.7 Search radii update . 26
3.8 Results . 27
3.9 Conclusion and Limitations . 32

4 Auto Splats 35
4.1 Introduction . 36
4.2 Overview . 37
4.3 Parallel Splat Communication . 38
4.4 Neighborhood Computation . 40

xiii

4.5 Surface Fitting . 44
4.6 Auto Splat Rendering . 45
4.7 Results and Discussion . 47
4.8 Summary . 52

5 Continuous Locally Optimal Projection 57
5.1 Introduction . 58
5.2 A Review of the LOP Operator . 59
5.3 Motivation and Overview . 61
5.4 Gaussian Mixture Density Computation 61
5.5 Continuous LOP in Gaussian Mixtures 65
5.6 Weighted CLOP . 69
5.7 Accelerating Repulsion . 70
5.8 Robust Normal Computation in Mixtures 71
5.9 Implementation . 75
5.10 Evaluation and Results . 76
5.11 Limitations . 84
5.12 Summary . 85

6 Gaussian Kernel-Product Surfaces 89
6.1 Introduction . 90
6.2 Motivation and Overview . 91
6.3 Gaussian Mixture Computation . 94
6.4 Probabilistic Triangulation of Gaussians 95
6.5 Kernel-Product Surfaces . 98
6.6 Results and Discussions . 105
6.7 Summary . 116

7 Conclusion 117
7.1 Résumé . 117
7.2 Epilogue . 118

A Virtual Scanning Parameters 121

B HEM Algorithm Outline 123

C Derivation of the Kernel-Product Expectation 125

List of Figures 127

List of Tables 129

Bibliography 131

Curriculum Vitae 141

CHAPTER 1
Introduction

1.1 Prelude
In the field of computer graphics, the representation, processing and rendering of virtual
objects (we call them models) plays a central role in a wide range of applications. For
the purpose of virtual preservation, exploration and study of objects in archeology and
building history, or computer-aided applications in urban planning and architecture,
to name just a few, the models of interest are mostly virtual representations of real
three-dimensional objects and scenes that have been captured using different kinds of
3d-scanning devices or stereo-photogrammetric techniques.

In general, the fundamental representation of the geometry information outputted by
such acquisition devices is a set of 3d point samples of the surface of a scanned object,
optionally augmented with additional sample attributes like surface normal estimates,
color, or even rough connectivity estimates that are inferred based on the scanner’s
point of view. Such 3d point sets (also called point clouds) offer various computational
advantages due to the simplicity of their representation.

However, raw point clouds also come with several drawbacks, making them unsuitable
for direct use in many applications: Firstly, individual point samples do not represent a
closed continuous surface that could be directly rendered or would allow an analytic or
discrete differential geometric reasoning. Second, the spatial information of their samples
is often subject to blur, noise, and non-covered regions (holes) due to physical limitations
of the various acquisition processes. And third, point clouds sampling a surface often
contain a lot of redundant information, especially in large planar regions, and can thus
exhibit a large memory footprint for storing the data.

In the past decades, a plethora point-processing techniques have therefore been developed
in order to filter, denoise or resample such point sets, or render smooth continuous
surfaces based on enriched point data. Alongside – and often based on – these methods,

1

1. Introduction

a vast amount of work has been published in the field of surface reconstruction, aiming at
the definition of a continuous surface based on the point samples, and/or their conversion
to a different surface representation like polygon meshes. Most of these methods require
a considerable computation time, even for moderately sized point clouds.

The increasing data throughputs of nowaday’s acquisition devices have recently opened up
the possibility of performing the acquisition in real time. Currently available cheap low-
fidelity sensors like the Microsoft Kinect can stream several hundreds of thousands of depth
values per frame at 30 Hz, resulting in a throughput of several million three-dimensional
point samples per second. These real-time acquisition rates and ever-increasing data sizes
call for an on-the-fly processing and rendering of dynamic 3d data from moving real-life
objects, which still poses a huge challenge for current high-quality point-processing and
reconstruction methods. Common applications for these kinds of online point-processing
techniques can be found in various fields like the film industry, rapid prototyping, virtual
and augmented reality, and others.

The research work presented in this thesis focuses on the development of fast and efficient
high-quality techniques for point-based processing, rendering, and surface reconstruction,
that allow for the fast processing of dynamic point clouds, pushing the performance
limits of current methods from the offline to the interactive domain. In particular,
we introduce new probabilistic approaches to point-cloud processing and surface
reconstruction, which outperform state-of-the-art methods in speed and accuracy, and
allow for new compact surface representations that drastically reduce the required storage
memory footprint.

1.2 Scope of this Thesis

In the following, we will give a brief overview of the computational paths and involved
data representations in point-cloud processing and surface reconstruction that are most
relevant in the scope of this thesis. We will then identify the computational challenges
that represent the motivation to the work presented in this thesis. A simplified illustration
of the most important computational pathways in classic point-based reconstruction is
shown in Figure 1.1.

Point-Based Processing

This field involves computations that operate on a per-point basis and have point sets as
input and output. These computations normally precede any point-based visualization
or surface-reconstruction processes, and aim at transforming, filtering and enhancing the
raw point data obtained by a scanner. At the initial acquisition process, most 3d-scanning
devices perform depth sensing from a stationary point of view, which means that multiple
scans from different positions and angles are necessary in order to cover the entire surface
of an object. This results in a number of disconnected partial point clouds that have to
be aligned to a common global shape in an initial registration step. Physical inaccuracies

2

1.2. Scope of this Thesis

POINT CLOUD PROCESSING

Splatting

RENDERING

SURFACE
RECON-

STRUCTION

Polygon
Rasterization

InterpolationModel Fitting

Parametric Surface

Polygon Mesh

Denoising
Filtering

Resampling

Point Cloud

Normal
Computation

Implicit Surface

Discretization

Implicit Approximation

Discretization
Ray Casting

Real Object Point Splats

Acquisition /
Registration

Coverage
Estimation

Parametric Model

TessellationParametric
Approx.

Figure 1.1: Possible computational paths in classic point-based processing, reconstruction,
and rendering.

of the acquisition device and computational errors in the registration process are common
sources of noise and outlier points, which disturb the sampled signal and can corrupt
the consecutive reconstruction results. In many cases it is therefore beneficial to apply
denoising, filtering or resampling operators to the data in advance in order to produce a
clean point set.

An important class of further point-based processing is the computation of additional
geometric attributes like surface normals or surface coverage estimates for each point.
Especially per-point surface normals are important for lighting and shading computations
in point-based rendering, but are also essential for most consecutive surface reconstruction
techniques. In fact, many surface reconstruction methods also require a consistent
orientation of these normals, for instance to allow to consistently interpolate between
them, or to establish a sense of sidedness with regard to the surface. Surface coverage
estimates are used to specify the approximate fraction of the surface a particular point
sample is locally covering with respect to its distance to its neighbor points. This
information is particularly important for direct point-rendering techniques, where a
watertight surface is often rendered by “splatting” surface elements of non-zero area to
the screen. The estimate itself can be given as a scalar radius, or an elliptical disc that
more accurately describes the local coverage of anisotropic regions. Different splatting
techniques either use box, circular or elliptical splat primitives, are either rendered as
screen-aligned billboards or 3d geometry oriented with a surface normal, and use different
ways of blending in order to obtain both a closed and a smooth surface rendering.

3

1. Introduction

Surface Reconstruction

This term refers to methods that aim at producing an explicit or implicit representation of
a continuous, closed surface based on the given input point samples. The continuity order
(smoothness) of the resulting surface thereby depends on the choice of representation
as well as the method of computation itself. One of the most widely used surface
representations in CG applications are polygon meshes, which discretize smooth surfaces
by manifold vertex-edge graphs representing piecewise linear, C0 continuous surfaces.
From early on, graphics hardware has been optimized to render mesh-based surfaces
using polygon rasterization. Similar to point clouds, the importance of polygon meshes
has also led to the development of a large number of mesh-based processing techniques
like re-meshing, simplification, and discrete counterparts of geometric and differential
operators, which however lie outside the scope of this thesis. A direct way of generating
meshes from point clouds is the interpolation of neighboring points. In this case, the
points themselves are chosen as the vertices of the resulting mesh, and their connectivity
is inferred based on heuristic geometric reasoning, like the well-known Delaunay criterion.
These methods are however highly sensitive to noise and insufficient sampling in the
point data.

A common alternative class of methods that acknowledge the noisy, imperfect nature of
the point samples is their approximation by a (smooth) implicit surface. Based on the
positions and optionally normals of the point samples, these methods define particular
kinds of signed or unsigned distance functions F (x) over R3, and define the surface to
be the iso-surface of the zero set F (x) = 0. F can be defined as superimposition of
stationary atomic functions like radial basis functions (RBFs) centered in the points, or
by using a moving weighting kernel that dynamically alters the influence of each sample
based on the evaluation point x, as is the case for the family of moving least-squares
(MLS) methods. The shape and smoothness of the resulting surface, its sensitiveness to
the presence of noise and outlier points and the preservation of features are influenced
by the size and shape of the involved weighting kernels. Most implicit reconstruction
methods additionally employ oriented sample normals for the definition of F to also
achieve a good approximation in the gradient domain. Through discretization, smooth
implicit surfaces can again be converted to a piecewise linear mesh, for instance using the
popular Marching Cubes algorithm, which polygonizes the points of intersection between
the iso-surface and the edges of a regular grid. However, the analytic definition of these
surfaces also allows for a direct visualization by ray casting, where the surface is found
via one-dimensional numerical root-finding along individual view rays that are intersected
with F .

A given polygon mesh can also be converted into a smooth surface by explicitly inter-
polating or approximating its vertices by a smooth 3d vector function f(u, v), resulting
in a parametric surface. The underlying control mesh thereby determines the topolog-
ical structure of the resulting surface and provides vertices as anchor points for the
parametric functions. These functions normally only define smooth surfaces for partial,
two-dimensional mesh patches that allow a bijective mapping to the surface. For more

4

1.3. Challenges in Dynamic Point Rendering and Reconstruction

complex surfaces of higher genus, a global mapping is therefore often infeasible or not
possible without the appearance of singularities. This leads to different strategies for
decomposing surfaces into patches and blending or joining these patches at their common
border, which further results in different continuity orders at patch borders and corners.
Examples are Bezier and spline surfaces, but also subdivision surfaces, where smooth
surfaces are obtained by applying a recursive subdivison rule to the input mesh. Similarly,
the predefined topological structure of the underlying mesh allows for an efficient mesh
refinement, or tessellation, using a given parametric surface definition. Nowaday’s graph-
ics hardware performs this tessellation on the fly during rendering in order to rasterize
smooth surfaces.

Finally, to define a surface we can fit predefined parametric models to the point data by
optimizing a reduced set of model parameters with respect to a certain error function.
These models can be geometric priors, which allow to use prior knowledge about the
shape or its parts in the reconstruction and to convert the resulting model again to a
corresponding mesh representation. For the sake of completeness, it should be noted
that some implicit reconstruction methods also inherently employ simple geometric or
algebraic priors like planes or spheres for a local approximation of a surface. However,
parametric models can also be probabilistic models, which are fitted to the point data and
provide a simplified description of their probability distribution through a small number
of statistical parameters. Although a direct conversion of such a representation to an
explicit surface definition is not obvious and straightforward as for parametric geometry
priors, we will show later in this thesis that this conversion can be efficiently established
and yet lead to fast reconstruction timings and even a highly memory-efficient parametric
surface representation.

1.3 Challenges in Dynamic Point Rendering and
Reconstruction

In the following, we highlight the most important challenges for dynamic point-cloud
visualization and point-based reconstruction that represent the motivation for the research
results presented in this thesis.

Direct Visualization of Dynamic Point Data. The high-quality rendering of a
point cloud as a smooth, closed surface generally requires a reconstruction of this surface
in some of the above-mentioned forms, which is still a very time-consuming process. In
particular, a complete reconstruction of a surface, for instance as a mesh, is not feasible
if dynamic point clouds should be visualized directly from a scanner feed or during
editing operations in real time. An alternative approach is to visualize point clouds
directly through splatting. High-quality splatting techniques, however, still require a local
reconstruction of the surface, by computing an elliptical surface element that represents
the local tangent plane and the surface coverage in each point. These computations
involve expensive spatial neighbor queries in the point data, which collect the neighboring

5

1. Introduction

points required to assess the local shape of the surface around a given query point. These
queries are normally accelerated by employing spatial search structures like octrees or
kd-trees. In case of dynamic scenes, these trees would have to be rebuilt in each new
frame, which means a considerable computational overhead, even when performed on
the GPU. Therefore, performing sufficiently fast local neighbor queries for an on-the-fly
reconstruction of point splats is the key difficulty for the problem of high-quality dynamic
point-cloud rendering.

Efficient Noise Removal. Faced with noisy point data, we wish to apply robust,
feature-preserving point-filtering techniques that minimize the filter bias. Most of them,
however, again require expensive neighbor queries or even iterative operations on each
single point, which poses an additional problem when intended for an on-the-fly application
to a dynamic point stream.

Efficient Surface Reconstruction and Representation. One general problem in
surface reconstruction from large point clouds is the bad performance- and memory
scalability of state-of-the-art reconstruction techniques. For instance, smooth implicit
surfaces are defined on the entirety of input points and thus require the storage of
the whole input data set in order to represent or recreate the surface. Resampling or
subsampling a point set allows reducing its memory footprint, but also comes with a
certain information loss, leading to a degeneration of features in the surface. Converting
such a surface to a polygon mesh allows for a strong reduction of its memory footprint as
well, but only represents a discretized version of the original surface. A scalable definition
and representation of a continuous surface, which remains time- and memory-efficient even
for large data sets, is therefore still a challenging problem in point-based reconstruction.

Dependency on Normals. Another limitation of many surface-reconstruction meth-
ods is their dependency on consistently oriented surface normals for the points. These
are, however, not always available, and can also not be guaranteed to be consistently
computed due to noise, insufficient sampling, or a principal non-orientability of the
sampled surface. On the other hand, methods that do not make use of reliable per-point
normal information often exhibit robustness problems in the reconstruction of the local
surface shape, especially in the presence of noise, thin sheets and high-curvature regions,
where ambiguous interpretations of the local point data can lead to artifacts and possi-
ble surface discontinuities. Robustly reconstructing surfaces for geometrically complex,
non-orientable raw point data therefore remains an open problem for state-of-the-art
reconstruction methods.

1.4 Contributions

In this thesis, we will present a number of techniques that address the above-mentioned
challenges and have contributed to the state of the art in the different point-based

6

1.4. Contributions

processing stages shown in Fig. 1.1. We categorize them into four main contributions,
described in the following chapters:

Interactive Screen-Space Triangulation (Chapter 3)

In this chapter, we address the fundamental core problem of any online reconstruction of
local surface information for direct high-quality point rendering, which is the efficient
execution of spatial neighbor queries. We develop a rendering technique that performs
the nearest-neighbor search for each visible point on screen at render-time using the
programmable GPU rasterization pipeline. By drawing for each point quads of particular
sizes in screen space, we establish an information exchange of neighboring points in world
space, which allows for an indexing of neighboring points and thus a subsequent local
reconstruction of the surface in real time. To render a piece-wise smooth, closed surface,
the umbrellas of local one-ring neighbors are triangulated for each point and rasterized
by blending their depth, color and normal information to different frame buffers, which
allows for applying subsequent deferred shading. This technique of rasterized neighbor
queries therefore represents the cornerstone for an output-driven in-situ reconstruction
of unordered, raw dynamic point clouds, superseding the need for the dynamic creation
of spatial search data structures. The method was published in the following Technical
Report:

• Reinhold Preiner and Michael Wimmer. Interactive screen-space triangulation for
high-quality rendering of point clouds. Technical Report TR-186-2-12-01, Institute
of Computer Graphics and Algorithms, TU Wien, April 2012.

Auto Splats (Chapter 4)

Based on the screen-space neighbor queries developed in Chapter 3, this chapter presents
a technique for a dynamic computation of point normals and splats at render-time. This
allows for a high-quality splat-based rendering of a continuous, smooth surface from a
stream of raw, dynamic point clouds. The technique extends on the previous method by
actually computing the k-nearest-neighbors in world space via an iterative range search
in screen space. This alleviates the view-dependency of the reconstruction, and thus
makes the resulting image stable under camera movement. Moreover, instead of explicitly
indexing the neighbors for each point, the necessary accumulative operations for the
normal and splat computations are all embedded in the rasterization of screen-space
quads that carry a point’s spatial information over to its neighbors. Like for the previous
contribution, the advantage of this automatic splat-computation technique is its output
sensitivity, since splats are only reconstructed for the visible part of a scene. The results
of this work were published in

7

1. Introduction

• Reinhold Preiner, Stefan Jeschke, and Michael Wimmer. Auto Splats: Dynamic
point cloud visualization on the GPU. In Proceedings of Eurographics Symposium on
Parallel Graphics and Visualization, pages 139–148. The Eurographics Association,
May 2012.

Continuous Locally Optimal Projection (Chapter 5)

In this chapter, we introduce an efficient technique that allows the integration and
dynamic execution of a resampling stage in the online GPU splat-computation framework
introduced in the previous chapter. Our method accelerates a previously offline robust
L1 resampling operator by converting the input point cloud into a sparse probabilistic
representation and transferring this operator to the continuous probabilistic domain. To
this end, we efficiently compute a Gaussian mixture model describing the probability
distribution of the input points by a strongly reduced number of anisotropic Gaussian
components. This strong reduction of spatial entities allows for a significant easing of
the computational effort for the required spatial neighbor queries, making our method
several times faster than its discrete counterpart and even eligible for online execution.
Therefore, we are now able to dynamically resample points and compute normals and
splats based on the cleaned, simplified data entirely in screen-space and at interactive
framerates for any given stream of dynamic point data. The method was published in

• Reinhold Preiner, Oliver Mattausch, Murat Arikan, Renato Pajarola, and Michael
Wimmer. Continuous projection for fast L1 reconstruction. ACM Transactions on
Graphics (Proceedings of ACM SIGGRAPH 2014), 33(4):47:1–47:13, August 2014.

Gaussian Kernel-Product Surfaces (Chapter 6)

Finally, this chapter follows the advantageous properties of Gaussian mixtures to ex-
press large point data by a sparse, memory-efficient set of Gaussians, and develops a
novel surface definition based on this probabilistic model. To this end, we introduce a
probabilistic triangulation procedure for a set of anisotropic Gaussians modeling points
sampled from a surface, and develop a novel parametric interpolation of these Gaussians
that produces a continuous smooth surface. We show that due to the sparse probabilistic
model, both the required surface reconstruction timings and the memory footprint of
the resulting surface representation, i.e., a mesh of Gaussians, are several times lower
than those of state-of-the-art surface-reconstruction techniques. Furthermore, since our
method is only based on Gaussian mixtures computed from raw points, it is independent
from the availability of preprocessed oriented normals. A manuscript describing this
reconstruction technique has been authored and submitted for publication by Reinhold
Preiner, Tamy Boubekeur and Michael Wimmer.

8

When you think outside the bun, it’s scary out there
There’s also lots of stinky poo.

But sometimes when you go outside of your comfort zone
You might find something brand new.

— Tenacious D

CHAPTER 2
Related Work

In this chapter, we will review previous work that relates to the contributions of this
thesis listed in the previous chapter, and discuss their properties and limitations that
have led to the development of the novel techniques presented in the following chapters.

2.1 Dynamic High-Quality Point Rendering

Point-based rendering has been an intensively researched topic in the past two decades,
and has been subject to an excellent book [GP07] and several surveys on this field [Gro09,
KB04]. Early algorithms dealt almost exclusively with the problem of rendering models
that already contain complete information about point orientation and extent, which led
to the introduction of surfels (surface elements) as point-based surface- and rendering
primitives [PZvBG00], and to the development of related rendering algorithms. Ranging
from explicit splat rasterization and blending [RPZ02, BWK02, BK03, BSK04, BHZK05]
to screen-space pull-push interpolation for reconstructing closed surface images [MKC07,
MOC08, RL08, DRL10], these methods all share the disadvantage that they rely on
the precalculation of point normals and splat radii, making them unsuitable for direct
online application on a dynamic point stream. Other screen-space image-reconstruction
methods lift the requirement for precalculated normals: Diankov and Bajcsy [DB07]
applied erosion and dilation operations to fill holes, but only achieve limited image
quality. Kawata et al. [HK04] base their reconstruction on a downscaled image, which is
not applicable to input with varying point densities due to a user-provided, fixed grid
size. Gobetti and Martin [GM04] and Wimmer and Scheiblauer [WS06, SZW09] also
abandoned the requirement of precalculated normals and allowed visualizing huge point
clouds in their layered respectively instant points systems. Both methods mainly focus
on the aspect of rendering huge point clouds that do not fit into graphics memory or even
main memory by using clever hierarchies. While the former basically relies on a dense
enough sampling to avoid holes in the reconstruction, the latter provides a heuristic to

11

2. Related Work

render quad-shaped splats to obtain a closed surface. However, such quad splats do not
allow for smooth interpolation and are prone to artifacts if not viewed head-on, which
significantly limits the obtainable image quality.

In this thesis, we aim at a high-quality splat rendering [BHZK05], by reconstructing
splats from a dynamic stream of unorganized points at render-time. A standard approach
for per-point splat estimation is to compute each point’s k nearest neighbors and fit
a plane into the neighboring points [HDD+92]. For these methods, the performance-
critical part is the computation of the k-neighborhood for a large number of points,
which mostly requires spatial acceleration data structures like grids or trees. Various
techniques have been developed to perform KNN-Search interactively, mostly by utilizing
modern graphics hardware [ZHWG08, PLM10, QMN09, LTdF+09, GDB08, JGBZ10].
While these approaches are able to reach fast peak performances, their efficiency mostly
depends on carefully chosen parameters, which only perform well up to a certain data size
due to hardware limitations (number of threads per block, shared memory occupancy,
etc). In Chapters 3 and 4, we will progressively develop means for performing a local
splat reconstruction of dynamic point streams in screen-space, allowing for an instant
high-quality splat rendering.

2.2 Robust Point-Cloud Processing

Almost any application based on point clouds, be it point-based rendering, measuring, or
surface-reconstruction, requires or benefits from a prior consolidation or improvement of
the data, either in form of denoising, filtering, or enrichment by additional geometric
attributes like normals. Simple denoising techniques peform an inherent smoothing
of the signal, e.g., by performing a moving least-squares (MLS) approximation of the
data [Lev98]. These methods are generally very efficient, but typically come with a
smoothing bias that degenerates high-frequency features.

Robust Denoising. Feature-preserving MLS methods have been proposed, which
either find explicit piecewise smooth surface patches through repetitive forward searches
[FCOS05] or again depend on preprocessed oriented normals for an iteratively reweighted
robust alignment [OGG09], making them infeasible for an online execution on dynamic
point data. Particularly attractive for robust online denoising is the Locally Optimal
Projection (LOP) operator [LCOLTE07], which resamples a raw input point set without
putting too many constraints on the nature of the data, i.e., it does not require a well-
defined surface parametrization, nor a surface that can be locally well approximated by a
plane, and also does not depend on per-point normals as additional input. LOP attracts a
number of resampling points (particles) to the local median of the input points and employs
repulsive inter-point forces to achieve a balanced spacing between these particles. The
algorithm is related to the Weiszfeld-algorithm for finding the L1-median [HAT11], which
is known to be statistically robust against a theoretical amount of up to 50% of outliers.
Although LOP is highly parallelizable because of its local support, the original algorithm

12

2.3. Modeling Point Clouds with Gaussian Mixtures

is still relatively expensive for interactive applications, since solving Weiszfeld’s problem
of finding the spatial median requires an iterative approximation of the L1-minimum.
Various variants of LOP have been proposed. Weighted LOP (WLOP) [HLZ+09] deals
with unevenly sampled point clouds by taking into account a local density measure
which relaxes the attractive forces in denser regions and hence reaches more evenly
distributed points. Kernel LOP (KLOP) [LXJF13] reduces the computation cost of
LOP by subsampling the point cloud using a kernel density estimate (KDE). While this
reduction achieves a decent acceleration, reducing the number of discrete input samples
also constrains the number of usable resampling particles [LCOLTE07], thus the general
reconstruction quality deteriorates quickly for a small number of kernels. In Chapter 5,
we will introduce a method that describes the whole KDE of a point set by a Gaussian
mixture, which enables us to perform a continuous LOP resampling at high particle rates
using only few Gaussian components.

Robust Normal Computation. Another fundamental problem for further point
rendering or surface reconstruction is the estimation of normals for a given point set.
Basic approaches use some form of local plane fitting [HDD+92], but noisy point sets
with outliers and possible sharp features again require more robust normal estimations.
Mitra et. al [MNG04] analyzes error bounds on normals estimated in noisy point
cloud data. Robust approaches range from inscribing empty balls [DS06], smoothing
and outlier removal [HLZ+09], global L1 norm optimization [ASGCO10] to randomized
Hough transforms [BM12]. Moreover, robust statistics-based methods have been shown to
achieve superior results in the presence of outliers [KSNS07, LSK+10, ZSW+10, OGG09].
We will show that the continuous LOP operator described in Chapter 5 can be directly
adopted to achieve an equally efficient computation of L1-robust per-point normals.

2.3 Modeling Point Clouds with Gaussian Mixtures

Gaussian mixtures are probabilistic models that describe the probability distribution of
large, complex multivariate data by a superposition of a sparse, tractable set of Gaussian
components. This model has been used for the abstraction/simplification of large data
in various scientific fields like image segmentation [GNN10], object recognition [Vas98]
and rendering [WBKP08, JRJ11], but also for registration [JV11, DMKF16] and filtering
[CB14] in point-based processing. A popular method for computing a mixture that
represents a given set of input points in the sense of maximum likelihood is Expectation-
Maximization (EM) [DLR77], which iteratively optimizes the model parameters of a
predefined number of Gaussian components. A faster, hierarchical EM variant (HEM)
proposed by Vasconcelos [Vas98] performs this parameter optimization in the process of
an agglomerative clustering of a set of base Gaussians.

Gaussian pdfs have also been used for the extraction of curves and surfaces, where they
describe data representing a one- or two-dimensional manifold [SG07, LLP+10]. For
example, Suessmuth et al. [SG07] found the ridge surface of a dense Gaussian mixture by

13

2. Related Work

evaluating differential geometric quantities of its pdf on a regular grid and contouring the
ridge via marching cubes. To avoid the triangulation of secondary spurious ridges, which
appear from its differential geometric definition, they started at a significant maximum of
the pdf and traced the primary ridge from there. This method depends on the assumption
that the pdf ridge to be extracted forms one continuous patch, which only applies to
mixtures exhibiting a sufficiently dense set of Gaussians. Therefore, they convolve the
Dirac distribution of the input point set with a Gaussian kernel, resulting in a mixture
containing one Gaussian per point. However, such dense mixture representations are
not very efficient, and for very large data become infeasible. Therefore, we would rather
describe the data by a more sparse, compact mixture of larger, anisotropic Gaussians
we obtain from EM or HEM. However, with increased compression of the mixture, its
Gaussian components gain anisotropy, which quickly breaks the continuity of the pdf
ridges, making ridge-based surface reconstruction unfit for such scenarios. In Chapter 6,
we therefore develop a reconstruction technique that defines a surface over sparse, strongly
compressed Gaussian mixtures, employing a pseudo-manifold parametrization over a
triangulation of their Gaussian components.

2.4 Surface Reconstruction and Representation

Surface reconstruction from point clouds has been a major research topic for over 20
years. Berger et. al [BTS+14] recently gave a comprehensive overview over the current
state of the art.

Implicit surface reconstruction methods rely on the intermediate estimation of
a smooth implicit surface, from which an isocontour mesh can be extracted using
the many variants of marching cubes [LC87] or dual contouring [JLSW02]. Implicit
methods range from locally fitting tangent planes [HDD+92], using Radial Basis Func-
tions [CBC+01], partition-of-unity blending [OBA+03], explicitly inferring point orien-
tations for unorganized raw point clouds [MDGD+10], up to a binary inside/outside
indicator function as in the widely used Poisson Reconstruction methods [KBH06, KH13].
Most of these methods assume that the surface can be oriented based on the in-
put samples, or even that these surface samples come with estimated or measured
normal vectors. Moreover, geometry may be inferred far away from the sampling
if needed. Point Set Surfaces (PSS) [ABCO+01, ABCO+03, AK04] and their vari-
ants [AA04, GG07, AA09, OGG09, GAB12] aim at providing geometry processing
primitives such as sampling, filtering and reconstruction, directly from unorganized
point clouds, without defining an explicit topological space nor estimating a global
volume of the input shape. Typically formulated through a moving least squares (MLS)
optimization [LS81, Lev98, Lev03], these models exploit a space-projection procedure
that often relies on normal vectors associated to each sample. This typically implies
dense enough sample sets for inferring a reasonable orientation estimation, which may
optionally be enriched with anisotropic support functions aligned to principal curva-
tures [AA06, WZK05] or rated regarding the local tangent-space fit quality w.r.t. the

14

2.4. Surface Reconstruction and Representation

likelihood of each sample [PMG04]. Unfortunately, even local PSS models become im-
practical when significantly increasing the sample count, and are typically sensitive to
outliers due to their least-squares (L2) formulation.

L1-based reconstruction techniques have gained a lot of attention over the past
years in many fields, as they are known to be less sensitive to the presence of outliers.
For surface reconstruction, methods have been proposed that use recent advances in
robust statistics [FCOS05, OGG09]. These methods are theoretically able to faithfully
reconstruct a surface as long as there are less than 50% outliers (the breakdown point).
Other methods perform a global minimization on the orientation of the input normals,
using ideas from compressed sensing and sparse signal recovery [ASGCO10]. However,
while these algorithms are of high quality, due to their global nature they are often
extremely slow, do not scale well to large data or require special assumptions on the
input data, e.g., assuming data consisting of several planar elements.

Interactive reconstruction has become an increasingly important topic since the
introduction of real-time 3D acquisition devices. The seminal KinectFusion algorithm
[IKH+11] builds a complete volumetric model of the environment by integrating range
data over time into a 3d grid. The data can then be used for tracking and rendering
by raycasting the implicit surface in the grid, but it only handles a limited amount of
dynamics in the scene. For dynamic point sets, Zhou et al. proposed a method to build
a GPU kD-tree in each frame to perform range queries for a per-frame computation of
the k-nearest neighbors [ZHWG08], as well as an efficient way to interactively sample
points into an octree structure and extract an implicit surface [ZGHG11]. To obtain high
resolution and thus high reconstruction quality, the octree should tightly enclose the
scene. However, for many real-world applications, this is not easily possible, especially
considering large scanned data sets.

Point-based triangulation. A more combinatorial reconstruction strategy relies on
the extraction of a 2-manifold set from 3d triangulations (e.g., Delaunay). Such methods
come with guarantees [ACK01, DG06] but do not cope well with noisy input, and are
robust only under certain sampling conditions, which are not always easy to meet with
real-world data. A more flexible approach consists in greedily and locally generating
connectivity among samples. For instance, lower-dimensional meshing techniques [GKS00,
LP03] or front-propagation methods [CSD04] typically work well on dense enough data
sets, are able to capture non-manifold regions, and are usually extremely fast to compute.
In Chapter 6 we will show that such a front-propagation based triangulation method
is well-suited for an efficient triangulation of points carrying local shape-descriptor
information, such as anisotropic Gaussians.

Directly related to the problem of surface reconstruction is the question of how to
represent the final reconstructed geometry in a suitable way. For example, in implicit
surface reconstruction, a smooth shape is defined in a lossless manner by the entirety of
the input points themselves. However, its evaluation requires a projection of individual

15

2. Related Work

point samples to this surface, which is inefficient in general. On the other hand, a
triangulation of such surface samples to a piecewise-linear mesh results in a simplified,
easier-to-use representation, but only gives a lossy approximation of the original smooth
surface. In Chapter 6, we triangulate a sparse set of anisotropic Gaussians sampling
a surface in order to reconstruct its topology. This, however, results in a particularly
coarse approximation of the surface.

Parametric surfaces allow defining smooth shapes over such coarse meshes by spec-
ifying smooth geometry functions that are parameterized over individual mesh faces.
Besides the choice of the used geometry function defining surface patches over a local
parametric domain, a fundamental problem is the continuous parametrization of the
mesh itself. Hormann et al. [HPS08] give an overview of different classes of approaches.
Different strategies for global parametrization have been developed, but produce singu-
larities or require a segmentation into several easier-parameterizable patches for surfaces
of higher genus. Grimm and Hughes [GH95] introduced the concept of parametric
pseudo-manifolds, which allow defining smooth surfaces of arbitrary topology by blending
atomic surface patches parameterized over individual partial mesh domains, so-called
charts. Each parametric point on such a chart maps to a point on an abstract topological
manifold, where bijective transition maps define the consistent registration of regions
where the images of these charts overlap. One of the benefits of this concept is the clear
decoupling of the topological and the geometric description of the surface. Existing
approaches use different chart parameterizations, transition functions and geometry
functions, thereby exhibiting different properties of continuity and smoothness. In their
seminal paper, Grimm and Hughes constructed Ck surfaces with B-splines using different
charts and transition functions for vertices, edges and faces. Later, unified charts over
quadrangular sub-meshes have been used [NG00, CNPGVA02]. Ying and Zorin [YZ04]
were the first to achieve C∞-smooth, non-singular surfaces based on polynomial patches
by using a simple star-shaped chart layout over quad complexes, which pose a significant
advantage over widely used Catmull-Clark subdivision surfaces [CC78]. For triangular
base meshes of arbitrary topology, Gu et al. [GHQ06, GHJ+08] proposed manifold
spline surfaces based on an affine atlas, which, however, requires an explicit patching
of regions around singular points in the mesh. Rational Ck-surfaces for triangle meshes
have been proposed, using circular charts decomposed into different subcharts in overlap
regions [VJK08, VJ09]. Siqueira et al. [SXG+09] constructed non-singular C∞-surfaces
for triangle meshes based on Bezier-patches, using much simpler charts over individual
mesh umbrellas. Since we can easily replace the geometry function of these surfaces
by any custom shape definition, this method is an ideal candidate for defining surfaces
based on local probabilistic descriptors like Gaussian distributions, given that a manifold
triangulation and the definition of a suitable geometry function based on such Gaussians
is possible. In Chapter 6, we therefore construct manifold surfaces over a triangulation
of Gaussian mixture components similar to Siqueira et al. [SXG+09], but define the
geometry using a novel Gaussian interpolation technique.

16

Neighbors, neighbors, neighbors, neighbors
Have I got neighbors?

— Rolling Stones

CHAPTER 3
Interactive Screen-Space

Triangulation

Figure 3.1: Possible surface visualizations of a raw 3d point set sampling a truck containing
the main source of sugar for the work on this thesis. Left: Screen-aligned box splats with
heuristic splat sizes. Right: Point-cloud rendering using a screen-space triangulation
method.

19

3. Interactive Screen-Space Triangulation

POINT CLOUD PROCESSING

RENDERING

SURFACE
RECON-

STRUCTION

Splatting
Model Fitting

Parametric Surface

Implicit Surface

Discretization

Implicit Approximation

Discretization
Ray Casting

Point Splats

Coverage
Estimation

Parametric Model

TessellationParametric
Approx.

Polygon
Rasterization

Interpolation

Polygon Mesh

Point Cloud

Denoising
Filtering

Resampling

Normal
Computation

Acquisition /
Registration

Real Object

Figure 3.2: We present a real-time point-cloud visualization pipeline that performs a
weak interpolation of raw input point attributes in screen space, allowing us to obtain a
dense surface image using triangle rasterization.

3.1 Introduction

In this chapter, we aim at developing a rendering technique that produces an instant
high-quality surface visualization for a dynamic stream of raw, unprocessed 3d point data.
One of the predominant problems of current point-based rendering techniques is their
dependency on preprocessed data like point radii or normal estimations. In many cases,
however, neither the time nor the resources for such a preprocessing are available. For
example, real-time acquisition devices are able to stream 3d point data at real-time frame
rates, requiring processing and rendering methods to be performed on-the-fly without
relying on offline preprocessing tasks. On the other hand, in the case of huge point
clouds that already occupy a large amount of memory and need to be handled in an
out-of-core visualization framework, the generation of additional attributes like normals
or splats is often not intended, as this would require a significant memory overhead for
such large datasets. Moreover, more sophisticated out-of-core spatial data structures
allow the upload of subsets of the data at different density levels, which cannot always
be easily addressed only by a single surface-coverage estimate per point. We therefore
strive for a point-rendering method that only relies on raw 3d point data (optionally
attributed by color information), and runs at interactive framerates independent from
the source of a dynamic 3d point-cloud stream, e.g., a real-time scanner or an out-of-core
point-rendering framework.

20

3.2. Challenges

The most widely used approach for rendering dense surfaces based on raw points is the
rasterization of individual point primitives of non-zero area, which have to be suitably
scaled to provide sufficient overlap to produce a hole-free surface. Typical primitive
shapes are disk or box splats, which have to be rendered as screen-aligned billboards if
no preprocessed normal information that could be used for an appropriate alignment
is available. While such rendering methods can already give a good visual impression
of a closed surface, their results typically suffer from poor display quality due to the
non-smooth composition of the individual splats, especially for surfaces viewed edge-on.

In order to address both the quality and the efficiency requirements stated above, we
develop in this chapter a rendering technique that uses the graphics hardware to produce
a high-quality reconstruction of the color, normal and depth image associated with the
current camera view directly in screen space, which can then be used for further deferred
shading. Instead of rendering screen-aligned splats as surface primitives, we first project
the points onto the screen, and then compute a weak triangulation of neighboring point
samples through efficient screen-space operations using the GPU rasterization pipeline.
This results in individual triangle fans per point, which can be blended into the frame
buffer using polygon rasterization (see Figure 3.2).

This method allows preserving small-scale details and silhouettes, while colors between
available samples can be interpolated in order to produce a much smoother reconstruction
than what would be possible with screen-aligned splats, as shown in the comparison
in Figure 3.1. Our algorithm is especially suitable for in-situ high-quality visualization
of big datasets like 3D-scans, making otherwise time-consuming preprocessing steps to
reconstruct surface normals or point radii dispensable.

3.2 Challenges

When computing a local triangulation of a sparse set of points in screen space at render
time, we have to address the following problems:

Efficient nearest-neighbor search. Any point-based reconstruction method that
establishes a connectivity between local neighbors has to find the point samples within
a certain neighborhood range. Most methods typically employ precomputed spatial
acceleration structures like octrees or kd-trees for efficiently performing these neighbor
queries, which we cannot afford if they have to be performed on-the-fly on dynamically
changing data. Therefore, a key problem for our method is to address each point’s nearest
world-space neighbors for triangulation after projection to the screen. Since we have
to expect a sparse, unstructured distribution of the points’ projected texture locations,
we also cannot rely on any particular lookup pattern. Our solution is to employ the
screen-space grid as search structure provided by the graphics hardware, and to rasterize
conservative splats covering the projected search region of each point to achieve these
neighbor queries in parallel via per-fragment operations on the output textures.

21

3. Interactive Screen-Space Triangulation

Dense Depth, Normal and Color Bu�ers

Reprojection +
Depth-Culling Search Radii Update

Triangulation
+ Blending

Color + Depth Data Visibility Rasterized Neighbor Queries Per-Point Normal Estimation

Deferred Shading

Figure 3.3: Overview of the rendering and feedback loop of screen-space triangulation.

Correct visibility. Another problem is that a screen-based surface reconstruction from
a perspective image of a sparse point cloud requires correct visibility in order to avoid
holes or incorrect rendering of actually occluded surface parts. However, determining
correct visibility already requires a reconstructed surface or depth image for an accurate
depth culling of occluded points. To tackle this problem, we make use of the temporal
coherence between consecutive frames by reusing depth information from the previous
frame via reprojection [SJW07]. Inaccurate visibility in parts of the scene that appear in
a new frame due to rotation or disocclusions are thereby quickly resolved in subsequent
frames.

3.3 Algorithm Overview

Our general approach is to first project a dynamic stream of unorganized, colored point
data onto the screen and store their information in framebuffer-sized textures, and then
start the reconstruction of a color image, a screen-space normal map and a depth map
from there. The main steps of our method are outlined in Figure 3.3.

In the first step, the colored point-cloud data is rendered with z-buffering into screen-
space textures, where they are stored at their projected pixel locations. This way, the
front-most point mapped to a pixel will remain in the output texture and contribute to
the following reconstruction. In the second step, we use the reprojected information from
the depth image of the previous frame to perform depth culling on the currently projected
points, thus obtaining a progressively better visibility information over time. At the same
time, we also update the neighbor search radii of each individual point, which are also
maintained in a screen-space texture. The next step performs a screen-space neighbor
search for each visible point in the frame buffer. This step consists of two passes, after

22

3.4. Nearest neighbor search

R2A2

A1R1
G1 B1

B2 G1
R2 G2 B2 A2

R1 G1 B1 A1

Neighbor Tex 2

Neighbor Tex 1

Figure 3.4: Storage layout for the nearest neighbors in the 8 surrounding screen-space
sections of a point.

which we retrieve the screen coordinates of up to 8 nearest neighbors per point. Using
the inherent connectivity information of these nearest neighbors, we can then perform
a normal-estimation pass on the points. Finally, this connectivity is used to perform
a local triangulation of each point’s neighbors using the geometry shader, resulting in
surface-covering triangle fans that interpolate the estimated normals and per-point color
attributes stored in the screen-space textures. This results in three dense output buffers
containing the color, depth, and the normal channels that can be used for further deferred
shading.

In the following, we will describe individual steps of this rendering algorithm in more
detail. Note that except for the first pass, which renders the point data into the frame
buffer (object-pass), all remaining steps are screen-space passes that efficiently operate
only on those pixels that contain a conservative subset of the visible point information.
For convenience, we will refer to such pixels as “points”.

3.4 Nearest neighbor search

In order to perform a suitable triangulation of the points in the framebuffer, each point
has to be able to address its world-space nearest neighbor points. Collecting a list of
the k nearest neighbors for each point in parallel would require expensive A-buffering
operations [YHGT10], which we try to avoid here. Instead, we simplify the problem by
searching for only one nearest neighbor in k individual subspaces around each point. In
our implementation, we use 8 subspaces, storing up to 8 neighbors per point. To this
end, we subdivide the screen-space region around each point into 8 sectors, as shown
in Figure 3.4, and use two RGBA textures to store the ID of the framebuffer pixel that
contains the respective nearest-neighbor point for each of this sections. Unique pixel IDs
are obtained by linearizing the framebuffer grid.

We use a method similar to Van Kooten et al. [vKvdBT07], who rasterize screen-space
splats in a particle system to distribute information from a point to all its neighbors
within a given influence radius. In our technique, neighbor retrieval is performed via
two passes, rasterizing for each point a splat that conservatively covers the projection

23

3. Interactive Screen-Space Triangulation

Q
P1

d1

(a)

Q

P2 d2

(b)

Q

d2

(c)

Q

P2 ID2

(d)

Q

(e)

Figure 3.5: Two-pass neighbor search procedure. (a), (b) In the first pass, both P1 and
P2 lie in the same section of Q, thus writing their distances d1 and d2 to the same texture
channel. (c) Since d2 < d1, the distance d2 remains in the section. (d) In the second pass,
each point looks up the stored value in its respective channel. Since P2 finds that the
stored distance equals its own, it stores its ID at the respective texture channel of Q. (e)
Finally, Q stores the nearest neighbor IDs for each section in its two neighbor textures.

of a point’s world-space search ball. We use a vertex buffer object (VBO) containing
the uv-coordinates of each point stored in the framebuffer, and pass it through a vertex
shader to draw splats associated with each point. This way, we are able to exchange
information between each point and the framebuffer pixels storing its neighbors within
its search ball by performing respective texture writes in the fragment shader.

Figure 3.5 illustrates this two-pass nearest-neighbor computation for each section of a
point Q that lies within the search ball of several points Pi. In both passes rendering
the query splat of a point Pi, the fragment shader handling the pixel of Q first looks
up its world-space position from the texture. If Q lies outside the world-space search
radius of Pi, Q is discarded. Otherwise, it performs a write operation to the output
texture channel that corresponds to the sector of Q in which Pi is located. In the first
pass, the fragment shader writes the world-space distance di = ||Pi − Q|| (Fig. 3.5a
and 3.5b), where we enable per-channel minimum blending using the OpenGL command
glBlendEquation(GL_MIN). This way, the rasterization hardware leaves the lowest
distance value per channel in the render target texture, which corresponds to storing the
point’s distance to its nearest neighbor per section (Fig. 3.5c). In the second pass, all
query splats are rasterized again. In the fragment shader, each Pi tests its world-space
distance di against the minimum value stored in the respective section, and writes its
pixel ID if it finds to be the nearest neighbor in this section (Fig. 3.5d). This time, with
additive blending enabled, different neighbors of the same point can safely concurrently
write their IDs to different texture channels by simply setting the shader output of the
remaining channels to zero. After this second pass, each point holds the IDs of the
nearest world-space neighbors within each screen-space sector of its search ball in the
two neighbor textures (Fig. 3.5e). This mechanism can be referred to as a per-point
radial visibility test. The image associated with the third step in Figure 3.3 visualizes
the rasterization overdraw of the neighbor query splats for the pyramid scene, where
the brightness of a pixel corresponds to the number of fragment shader invocations from
neighboring query splats.

24

3.5. Normal estimation

Q

(a)

Q

(b)

Figure 3.6: (a) Example triangulation of a point Q and its neighbors. The geometry
shader generates a triangle fan in circular order of the sections. (b) To avoid triangle
overlaps, circularly consecutive neighbors spanning an angle ≥ π are not triangulated.

In the subsequent steps, each point in the screen is able to lookup its neighbors’ IDs and
map them back to their actual screen coordinates, thus allowing access to their neighbors’
view-space depths, calculating their world-space positions by unprojection, and looking
up any additional neighbor information like their colors or estimated surface normals.

3.5 Normal estimation

After we have determined the pixel IDs of the nearest neighbor points, we perform a
fast screen-space normal-estimation pass. Contrary to the two previous neighbor search
passes, this is done by a simple per-pixel operation on the framebuffer. Since the neighbor
IDs of any point Q are stored in circular order in the neighbor textures, we are able
to reproduce the circular sequence of a screen-aligned triangle fan, in which Q is the
origin, as illustrated in Figure 3.6a. The normal associated with the point Q is then
chosen as the average face normal of the triangles produced by this fan. To avoid slivers
and back-flipped triangles, which would deteriorate the normal alignment, a triangle
is only considered if the opening angle between the two consecutive neighbors is lower
than π (Figure 3.6b). Note that since we are not able to reproduce any inside/outside
information, the normals are always oriented towards the viewer.

3.6 Triangulation

In the last step, we invoke the geometry shader to triangulate and rasterize the fans
spanned by the points and their surrounding neighbors. Again, we make use of the circular
order of neighbors in the screen-space sections, and rasterize only triangles with a valid
opening angle. In the geometry shader, the depth, color and normal attributes of each
point are read from their screen-space texture location and passed on to the rasterization
engine to be interpolated over the whole fan. The rasterized color and normal attributes of

25

3. Interactive Screen-Space Triangulation

Figure 3.7: Deferred shaded phong illumination of the pyramid point cloud model under
different light source positions (white spheres).

the rendered triangles are averaged by additive blending and a subsequent normalization
pass of the values. For the depth channel, we need to use minimum blending to obtain
a correct depth profile of the scene. However, the rasterization and interpolation of all
three attributes can be performed in one pass by choosing a suitable output-texture
storage layout and blending-function states. In our implementation, we write the 3-float
normal and color values to the RGB channels of two target textures and the depth value
into one of their alpha channels, and activate separate blending functions for the RGB
and the alpha channels via the OpenGL glBlendEquationSeparate command to
achieve a correct blending of these three attributes.

After this step, we obtain two screen-space textures containing the color, normal and
depth information of the scene, which can be instantly used for any further deferred
shading. Figure 3.7 shows a scene reconstructed with screen-space triangulation and
shaded under a dynamic light source.

3.7 Search radii update

In order to retrieve all appropriate nearest neighbors Pi of a point Q, these neighbors
have to use sufficiently large world-space search radii such that their query splats cover
Q and thus allow them to “register” as neighbors by writing their IDs to the neighbor
texture channels of Q (refer again to Figure 3.5). Determining the right search radius
for each individual point is therefore essential for the performance of our screen-space
triangulation technique.

The size of the search radii are constrained from two sides: Too small radii lead to points
not being addressed by all appropriate neighbors, while too large radii result in too large
query splats and thus in unnecessary rasterization overdraw, wasting computation time.
The optimal radius ri of a point Pi is thus the distance to the furthest point Q that has
Pi as nearest neighbor in one of its sectors. To find this optimum for each point, we

26

3.8. Results

perform an iterative adaptation that continuously optimizes the radii over the course of
a few frames.

Our solution builds on the assumption that all points requiring Pi to register as neighbor
are located within a finite vicinity around Pi and exhibit a unimodal distribution of
distances to this point. Based on this reasoning, our approach is to constantly evaluate
the distance fi of the furthest point to which Pi registered as neighbor, and increase ri
until fi no longer increases. In each frame, after we have performed the neighbor search
step and are able to lookup the coordinates of each point’s surrounding neighbors, we
determine fi by executing an additional GPU pass where each point Q writes for each of
its stored neighbors Pi the distance ||Q− Pi|| to the texture position of Pi. This is done
by employing the geometry shader to lookup the neighbor IDs of each point and emitting
a single vertex per neighbor that addresses their position in the screen. By activating
maximum blending, each neighbor Pi then ends up with the distance fi to the furthest
point Q to which it is a neighbor.

To assess the development of these furthest-registration distances fi for each point, we
always maintain the two most recent values from the last two frames in two separate
single-float textures. When projecting the points to the screen at the beginning of the
next frame, the last search radius ri, the last distance fi and the second-most recent
distance f ′i are used to update the search radius for the next frame by the following rule
set, which is parameterized by a user-defined maximum connection distance rmax:

1. if ri = 0, then Pi was not visible (occluded or outside the viewport) in the previous
frame, and its search radius is initialized to ri = rmax/2, and fi = f ′i = 0.

2. else, if fi > f ′i , the furthest-registration distance has increased, i.e., we previously
found a new point to which Pi is a neighbor. In this case, ri is further increased to
search for more distant points by setting ri = ri ∗ α,, with α > 1.

3. else, if fi = f ′i , ri is still increased as in 2 until either ri = rmax, or reaching a
threshold ratio ri/fi, where we assume that no farther point to register to will be
found and roll back the search range to the last furthest-registration distance, i.e.,
ri = fi + ε.

This results in a system of dynamic search radii that continuously strives for optimal
neighborhood ranges in dynamic scenes and converges to a stable parameter state in
consecutively static frames.

3.8 Results

3.8.1 Reconstruction Quality

In this section, we assess the quality of our direct point-cloud visualization technique
under various aspects, and compare them to direct point rendering using box splats,

27

3. Interactive Screen-Space Triangulation

Figure 3.8: A scanned pillar point cloud rendered using screen-aligned box splats with
heuristic density-based size [SZW09] (left), manually chosen optimal uniform splat size
(center), and our screen-space triangulation method (right).

which is the most commonly used method to obtain dense images when no additional
precomputed point attributes are available.

Texture quality. Figure 3.8 compares different renderings of an advertising pillar
point-cloud model. We compare box splats with both per-point density-based splat sizes
[SZW09] (left) and manually optimized globally uniform splat size (center) with our
screen-space triangulation method (right). While a density-based heuristic point size
aims at producing a conservative surface coverage, it is less suited for high-frequency
textures due to non-smooth splat overlaps. Adjusting the splats manually to a minimal
surface-covering size produces far better results, but is, however, not suitable for datasets
exhibiting varying point densities and still shows some box artifacts. The result of our
method is comparable to the manually adjusted result, but adaptively adjusts on the
local point spacing and notably improves on image quality by omitting box artifacts,
exhibiting a smoother reconstruction of texture.

Noisy data. The smooth blending of overlapping, world-space aligned triangles is
especially beneficial in point clouds exhibiting strong geometric and color noise. An
example is shown in Figure 3.9, which compares screen-aligned box splats with screen-
space triangulation in a view of a catacomb dataset that has been scanned under difficult
perspective and illumination conditions, resulting in significant color and geometric
noise. Our method preserves salient texture features like the writings on the wall to the

28

3.8. Results

(a) heuristic box splats (b) screen-space triangulation

Figure 3.9: Comparison of our approach and heuristic box-splatting a dataset exhibiting
strong color and geometric noise. Notice the reconstruction of the fine writings on the
wall.

(a) heuristic box splats (b) screen-space triangulation

Figure 3.10: A complex-geometry scan from a chandelier, rendered with with heuristic
splat sizes and with screen-space triangulation.

upper left and lower right of the image, where screen-aligned box splats fail due to noise,
incorrect splat orientation and non-smooth overlaps.

Silhouette quality. A major drawback of rendering box splats is the inherent appear-
ance of staircase artifacts at object silhouettes, which becomes particularly apparent
in the presence of fine geometric features like the strongly noisy chandelier shown in
Figure 3.10, which generally poses a difficult case for any reconstruction algorithm. Since
our technique only rasterizes valid triangles connecting exact world-space point locations
along camera-oriented subdivisions of a point’s the surrounding neighborhood, it is able
to produce much more detailed silhouette contours. However, as in any method, noise
and outliers can deteriorate the quality of the resulting contours as well.

Reconstructed normals. Essential for the quality of further deferred shading and
illumination results is the quality of the reconstructed normal map. Figure 3.11 compares
a box splatting of precomputed normal information of the Armadillo model point cloud

29

3. Interactive Screen-Space Triangulation

Figure 3.11: Comparison between preprocessed normals in a point splat rendering (left)
and the normal map computed on-the-fly by screen-space triangulation (right).

to a dynamically screen-space triangulated normal map. The false-color comparison
reveals that our method is able to faithfully reconstruct per-point normals in screen
space at a quality indistinguishable to precomputed normals. However, similar to the
color channel, the smooth blending of normals interpolated over a triangle fan results in
a much smoother normal map than discretely overlapping box splats.

A disadvantage of this approach roots in the limited number of neighbors that can be used
for the reconstruction of a local surface-covering triangle fan, as this basically constrains
the bandwidth of the filter that is achieved through interpolating overlapping triangle fans.
In point-cloud scenes exhibiting a noise level that is larger than the bandwidth achieved by
8 neighbors, we expect a noisy, not sufficiently filtered reconstruction. Figure 3.12 shows
the normal maps resulting both from precomputed and from dynamically triangulated
normals in a noisy scan of a cathedral. While our method produces much cleaner edges
and silhouettes than box splats, we observe a subtle noise level in the resulting normal
image on smooth surfaces, where a larger neighborhood would have had to be incorporated
for the reconstruction.

3.8.2 Performance

We have tested the performance of our dynamic point-rendering algorithm on a platform
with Intel Xeon X5550 2.67GHz CPU and GeForce GTX480 GPU with 1.5 GB video
memory. The cathedral and the catacomb scenes are large datasets that are managed by
an out-of-core point-streaming framework, dynamically streaming point-data nodes of a
layered octree hierarchy to the GPU depending on the current view frustum. Figure 3.13
breaks down the average frame-time consumption of the individual shader passes of our
algorithm for three different scenes. As expected, the general computation time of a
frame depends on the size of the point cloud, or more concretely, the number of points
stored in framebuffer textures and used for the reconstruction after projection. The
triangulation pass, which invokes the geometry shader to rasterize the individual triangle

30

3.8. Results

Figure 3.12: Comparison between precomputed normals (left) and screen-space triangu-
lated normals (right) in point clouds with strong noise.

fans, consumes the largest part of the frame time. However, for huge datasets like the
catacomb, where the screen is heavily saturated with pixels containing point information
after projection, the two neighbor-search passes rasterizing the query splats consume the
major part of the computation time. To assess the dependency of the performance on the
screen resolution, we measured each scene at two different viewport sizes of about 40%
difference. Characteristic of a screen-space algorithm, the graph indicates that larger
viewports affect the effort spent on the rasterization operations used for neighbor queries
and triangulation.

0

20

40

60

80

100

120

 800x600 1280x600 800x600 1280x600 800x600 1280x600

Triangulation

Search Radii Feedback

Normal Estimation

Neighbor Search Pass 2

Neighbor Search Pass 1

Project Points

Reproject Depth Map

Armadillo (173K) Pyramid (372K) Catacomb (1.9 G)

ms

17.6

27.6

41.0

82.7

106.1

24.8

Figure 3.13: Time consumptions of the individual SST shader passes in ms for three
scenes at different viewport sizes. Dataset sizes are given in parentheses.

31

3. Interactive Screen-Space Triangulation

3.9 Conclusion and Limitations
In this chapter, we have developed an interactive rendering technique producing dense
and smooth images from unprocessed point clouds given only their position and color
information. Our method works entirely in screen space, where it finds the nearest
world-space neighbors of each point, allowing for an on-the-fly normal estimation and
a subsequent rasterization of local triangle fans interpolating the attributes of the
neighboring points. Furthermore, we exploit temporal coherence between consecutive
frames to speed up the reconstruction and obtain a constantly improving visibility
information over time. The key contribution of this technique is a way of establishing
communication between locally neighboring points in parallel by rasterizing query splats
that cover the projection of a query ball in screen space and allow to exchange any kind
of information between neighbors.

As discussed in Section 3.8.1, a major limitation of our rendering method is its limited
maximum number of nearest neighbors, which constrains the filter bandwidth in scenes
of strong noise. Arbitrarily increasing the number of subdivision sections in order to
enlarge the number of neighbors in our framework is neither feasible nor practical, since
first, this would require additional neighbor textures and heavily increase the workload
on texture memory transfers for writing and reading neighbor IDs per point, and second,
a triangulation of a circular order of neighbors can not be expected to produce desirable
triangle-fan shapes and silhouette contours.

Another drawback of our neighbor-search strategy is the use of a screen-aligned subdivision
pattern, which produces a different set of neighbors under different viewing angles. While
this simplified approach allowed us to obtain a usable set of neighbors in only two
neighbor-query passes, this view dependency can result in temporal flickering artifacts
under camera motion.

In the next chapter, we will address these issues and develop an alternative, enhanced
online reconstruction and rendering technique for dynamic unstructured point clouds
that lifts the above-mentioned restrictions and is able to produce surfaces of even more
improved smoothness.

32

Draw me a circle that’s perfectly round
One curving line
Simple and fine.

— Barbara Joan Streisand

CHAPTER 4
Auto Splats

Figure 4.1: Visualization of a dynamic point-cloud scene constisting of 1 Million points.
Raw 3d point data is streamed to the GPU, where our algorithm instantly reconstructs
elliptical surface-aligned splats that enable a high-quality rendering and illumination.
The complete frame is computed in 94 ms at a resolution of 1700×900 pixels.

35

4. Auto Splats

POINT CLOUD PROCESSING

RENDERING

SURFACE
RECON-

STRUCTION

Polygon
Rasterization

InterpolationModel Fitting

Parametric Surface

Polygon Mesh Implicit Surface

Discretization

Implicit Approximation

Discretization
Ray Casting

Parametric Model

TessellationParametric
Approx.

Splatting

Denoising
Filtering

Resampling

Point Cloud

Normal
Computation

Point Splats

Coverage
Estimation

Acquisition /
Registration

Real Object

Figure 4.2: We develop a real-time reconstruction pipeline that performs the computation
of normals and elliptical splat attributes for each point in screen space, enabling the
instant application of high-quality splat-rendering techniques to unstructured points.

4.1 Introduction
The screen-space triangulation technique developed in the previous chapter is able to
perform an instant parallel nearest-neighbor search of points in screen space, which is
the key for obtaining a local reconstruction of a surface for high-quality rendering on the
fly. However, its major limitations are the constrained number of nearest neighbors we
are able to store per point, and the view dependency of the reconstruction, which can
cause temporal instabilities of the triangulation under camera motion.

In this chapter, we lift these restrictions and develop a screen-space reconstruction
technique that can work at arbitrary bandwidths, is largely view-independent (up to the
projection of points to the screen), and in addition produces a much smoother surface.
Instead of blending piecewise-linear triangle fans based on a view-dependent, spatially
discretized neighborhood, we compute for each point correctly world-space-aligned surface
normals and elliptical splats based on the true K-nearest neighbors of each point, without
restriction on the size of K. These splats are used to perform elliptical weighted-average
surfel splatting [BHZK05], which smoothly blends the individual splats using weight
kernels of finite support. As these splats are automatically reconstructed in screen space
at render-time, they have been given the name “Auto Splats”. The resulting alternative
computation pipeline of this approach is illustrated in Figure 4.2.

In its core, this new methods builds on the same fundamental technique of establishing

36

4.2. Overview

an information exchange between points in the screen through rasterization of query
splats covering the projection of their neighborhood range. However, since in the previous
chapter we have observed that these rasterized query splats become the major performance
bottleneck for an increasing number of points, we significantly enhance their efficiency by
a specific utilization the Z-Buffer capabilities of the graphics hardware.

The key technical contribution of this chapter is the execution of a parallel true KNN
search, which determines a view-independent neighborhood for arbitrary bandwidths.
The main insight is that in order to fit an elliptical splat into the neighborhood of a
point, it is not necessary to explicitly store the individual neighbors themselves. Instead,
we employ the previously developed neighbor-query rasterization technique to directly
accumulate the necessary information from points within a particular radius that contains
exactly K neighbors of a point. In fact, we use the same technique to compute this
K-radius itself by performing an iterative range search.

In the following sections, we will describe this method and its implementation in detail,
analyze its quality and performance, and assess its KNN computation speed against an
online GPU kd-tree construction technique, which represents a comparable alternative
for performing fast KNN queries on dynamic data.

4.2 Overview
The input to the algorithm is a set of n 3D points S = {xi, yi, zi|i = 1..n} containing the
point positions of the current frame as well as optional per-point color data. In addition,
a parameter k defines the number of neighbors to take into account for splat normal and
radius estimation. This parameter defines a reconstruction bandwidth that adapts to
the local point density, and represents a trade-off between feature preservation and noise
reduction. Our method computes elliptical splats for each point, which can then be used
for a weighted-average blending of the surface as well as the associated color data.

The complete computation pipeline consists of four major phases, as depicted in Figure 4.3.
First, each point is projected to its 2D pixel position in the current output image, where
its 3D position and color information is stored. During this projection, the occupied
pixel positions are read back to a vertex buffer (VBO) using the GPU transform-feedback
capabilities. In the subsequent passes, this buffer is used to address the points in the
screen without having to reproject the whole point cloud again. In the next phase, each
screen point determines its KNN-radius rK , defining a minimal radial range containing
exactly k nearest neighbors (Section 4.4). Based on this radius, we perform a splat fitting
by computing a normal and a radius for each point (Section 4.5). Finally, the resulting
splats are rendered using state-of-the-art GPU splatting techniques to produce the output
image (Section 4.6). All computations are performed directly in screen space, utilizing
the common graphics pipeline and programmable shaders to efficiently process points
in parallel. In particular, the KNN search and normal and radius computation use a
tailor-made parallel algorithm for an efficient communication between neighboring points
in screen space, which will be described in the following.

37

4. Auto Splats

Figure 4.3: Overview of the main steps of the Auto-Splatting algorithm.

4.3 Parallel Splat Communication
A central building block of the KNN computation and surface estimation is establishing
an information exchange of points in the screen through rasterization of query splats.
We use these splats both to distribute information of a point to its neighbors as well as
to gather information from neighbors within a certain radius. Using these two operation
primitives allows us to iteratively compute the KNNs of each individual point.

Let P be a point in world space and r a radius defining a spherical neighborhood, such
that any point within r can be called a neighbor of P . This neighborhood projects to
a general ellipse on the view plane, which we approximate by a tightly covering 2D
neighborhood box, as shown in Fig. 4.4. This box is guaranteed to contain the projections
of all world-space neighbors of P . A naive way for P to gather information from its
neighbors is to carry out texture lookups for all pixels covered by this box. However, this
would be prohibitively expensive due to the large number of required lookups, especially
for large radii. Instead, we gather information from points within r by performing an
indirect distribution pass. In more detail, these two operations work as follows:

38

4.3. Parallel Splat Communication

Figure 4.4: Projecting the sphere (P, r) to the view plane reduces the search space for
the neighbors of P inside r to an elliptical region containing all points inside the frustum
that is defined by the ellipse. An inside-outside test with the sphere on each point in this
region yields the true neighbors of P .

Distribution. To pass information from P to all its neighbors within a radius r in
parallel, we assign this information to the rendered box splat. For each pixel containing
a point Q in this splat, we test whether ‖Q− P‖ < r to determine whether Q is a true
neighbor of P . If so, the assigned information is written to the respective pixel, otherwise,
the pixel is discarded.

Gathering. In several phases of our pipeline, we need to gather information from all
neighbors of P within r. To this end, each neighbor performs an indirect distribution
to write its information to the pixel of P . Since this is done for all points in parallel,
the radius of the sphere that defines the splat rasterized for a neighbor Q has to be the
distance to the furthest point that requires feedback from Q. We call this distance the
feedback radius rf . As before, each point P covered by the feedback splat of Q has to
test whether Q actually lies within its neighborhood radius r. If so, feedback information
from Q is written to the pixel coordinates of P .

Although the process of gathering is thus just an indirect distribution pass, the major
difference is that when performing an actual distribution, all neighbors within r are
actually addressed, whereas for an indirect distribution within a feedback radius rf , we
only write to those points having the feedback point as neighbor (which could actually
be just one of many points within rf). To determine rf for the neighbors of P , we
perform a distribution pass that writes the world-space distance ‖Q− P‖ to the pixel
of each neighbor Q. Using the MAX-blending state of the rasterization pipeline, each
point ends up with the distance rf to the furthest point for which it serves as neighbor.
Details on the usage of distribution and gathering for a parallel accumulation of neighbor
information will be discussed in Section 4.4.2.

Z-Buffer Utilization. To minimize the number of fragment threads required for splat
communication, we take advantage of the hardware’s Early-Z culling ability, which is
implemented in most modern GPUs. Within the screen region of a rasterized neighborhood

39

4. Auto Splats

zP zC zP‘ znear zfar

r

zD

Figure 4.5: P communicates with its neighbors within a range r by rendering a neighbor-
hood splat, which in screen space contains false positives A and D. By choosing a splat
depth of z′P , the depth test discards all splat fragments containing points with z > z′P .
Thus, D is Early-Z culled.

box, we only need the GPU to start a fragment thread for pixels that are occupied, i.e.,
those which actually contain a projected point. To achieve this, we create a depth mask
of the projected points in the z-buffer at the initial projection stage. When rasterizing
distribution splats, this depth profile causes empty pixels to fail the Early-Z test. This
allows the graphics hardware to not launch fragment threads for entire blocks of empty
pixels, which significantly speeds up the execution of these neighbor queries.

The remaining pixels in the neighborhood box contain both true neighbors (actually
within world-space range) and false neighbors, as depicted in Figure 4.4. To further
increase the efficiency, the depth buffer is set up in a way that allows the hardware to
discard about 50% of false neighbors at Early-Z. The concept is illustrated in Figure 4.5:
After the initial projection stage, the depth buffer contains the normalized depth footprint
for all visible points, and the depth value 1 for all empty pixels. When drawing the
neighborhood box for a given point P in the screen, we pass its fragments a biased depth
z′P = f(zP + r), where zP is the view space z-coordinate of P , r is the neighborhood
radius that defines its communication range, and f is a mapping from view-space depth
to clip space depth. Setting the depth comparison function to greater lets the z-buffer
cull all points at Early-Z that lie beyond the depth border represented by z′P , while
still maintaining Early-Z discards for empty pixels. Note that depth writes have to be
disabled during the whole splat-communication phase of the algorithm to maintain the
state of the initial depth footprint.

4.4 Neighborhood Computation
We define the k-neighborhood of a point P by the k-radius rk that encloses the k nearest
neighbors of P . Once this radius is found, we are able to perform distribute and gather

40

4.4. Neighborhood Computation

operations selectively on the KNNs in parallel. The k-radius rk is found by an iterative
range search in the non-continuous, monotonically increasing neighbor-count function
σ(r) over the radii r. Starting with an initial estimator r̃0, the number of points within
the current range of each iteration is determined and used to update the search range
until a radius r̃i is found that contains σ(r̃i) = k points.

4.4.1 Initial Estimator

Having a good estimator for the initial range r̃0 is critical for a fast convergence of the
iterative search. Our strategy is to automatically determine r̃0 individually for each
point, which is especially important for scenes with spatially varying point densities. In
contrast, the real-time kd-tree used by Zhou et al. [ZHWG08] to perform efficient range
queries on dynamic data requires the user to manually set r̃0 as a parameter, and needs
this r̃0 to be conservative , i.e., encompass rk to obtain correct results.

We again determine r̃0 directly in screen space: A low-resolution grid containing the
projected points is laid over the screen, and the number of points within each grid cell
is counted by performing an accumulation pass. For each frame, the grid resolution is
chosen individually based on the current point count in such a way that on average, k
screen points fall into one cell. For each grid cell, we choose r̃0 based on its point density.
Since we presume to operate on points that describe an object surface, we consider a
two-dimensional distribution of the points within a cell. For A being a cell’s pixel area
and n being the number of points in that cell, the average cell area covered by k points
is estimated by A k

n . The pixel radius rscreen of a circle covering the area of k points is
therefore given by

rscreen =

√
Ak

π n
.

The initial world-space estimator r̃0 of a point can then be derived by unprojecting
rscreen based on the point’s view-space depth. If the points in the cell describe one
single unwrapped surface, this estimator roughly gives their expected KNN radii. On the
other hand, if several depth layers are projected to the screen, like the front- and the
back-facing part of a closed object, the number of cell points will be too high, causing
the initial radius r̃0 to be smaller than intended. This is acceptable, however, since the
subsequent iterative range search will expand the radius in the next step.

4.4.2 Iterative Radius Search

The individual GPU passes performing the iterative k-radius search are depicted in
Figure 4.6. For each point, we use its initial estimator r̃0 as starting value for searching
the target value rk on the function σ(r). Similar to a histogram-based KNN search in a
kd-tree [ZHWG08], the search is performed using a multi-sampled bracketing approach
that iteratively narrows the location of rk by two bounding radii a and b, defining the lower
and upper bound, respectively. In every iteration, each point’s upper bound defines its

41

4. Auto Splats

Figure 4.6: k-radius search algorithm and textures used for data writes and reads. The
texture boxes show the stored main information and the used blend modes. After each
iteration, the number c of converged points is counted. Iteration is finished if c exceeds a
desired threshold tconv.

current neighborhood. The number of neighbors σi within this neighborhood is queried by
first performing a distribution pass to the neighbors to obtain the corresponding feedback
radius rf i. A following gathering pass with rf i-sized feedback splats then accumulates a
counter from each neighbor, yielding the current neighbor count σi. Instead of taking
just one neighbor-count function sample σi at b, multiple samples {sj |j = 1..m} are
taken at m regular steps between a and b. The total number of neighbors σi is therefore
represented by sm. To query multiple samples, m feedback counters are accumulated in
each gathering pass, stored in several target texture channels in the radius textures (we
use m = 4 in our implementation). Multisampling results in faster convergence since in
each iteration it significantly raises the chance to find rk and allows for a much tighter
narrowing of the bounds. Based on the current bounds ai, bi and the counter samples
{sj}, the adapted bounds ai+1, bi+1 for the next iteration are then computed. This
adaptation occurs in two phases:

Expanding. As long as σi < k holds, b is enlarged. The new upper radius bound
b is chosen by extrapolating the current neighbor count σi to k assuming a constant
two-dimensional point density. This linear relation between surface area and point count
yields the radius increase factor

α =
√
k

σi
.

42

4.4. Neighborhood Computation

Bracketing. For a point count σi > k, a and b are iteratively narrowed until a radius
with corresponding neighbor count sample sj = k is found. Bracketing is necessary to
ensure a view-independent reconstruction. Although a faster approach would be an
approximate nearest neighbor search that stops after the expanding stage and uses the
resulting neighbor count κ ≥ k for reconstruction, the view-dependent estimation of
r̃0 based on an image-space point distribution would lead to a different κ and thus a
different reconstruction under different views, resulting in temporal flickering artifacts
under camera movement.

Implementation Details. We use a single feedback texture TF and two radius textures
TR1,2 to store all required data. Besides the texture data shown in Figure 4.6, additional
data is stored and ping-ponged between TF and TR, e.g., the current radius bounds a
and b. Using separate blend functions for the RGB and the alpha channel, we achieve
accumulating {sj}, MAX-blending rf , and passing along the additional data at the same
time. To reduce fragment writes to a minimum, we do not actually feed back the counters
from every neighbor within b, but only from those located within the delta region between
a and b. To obtain the required counter samples {sj}, we also store the last neighbor
count at a and add it to the accumulated counters. If a point is already converged at the
beginning of a further distribution pass, a 1-pixel sized splat is drawn to pass along the
converged k-radius result at its own texture location until iteration is finished. Similarly,
if a point that accumulated a zero rf i is about to feed back, a 1-pixel splat is required to
pass along the point’s data. The number of converged points is efficiently counted using
GPU occlusion queries by looking up each point’s current data in the radius textures
and emitting a fragment if it is found to be converged.

4.4.3 Robustness

This section discusses some robustness issues that can arise due to noise, outliers and the
information loss that occurs when projecting the data to a reduced set of points on the
screen.

Outliers. Points in the framebuffer that have no neighbors in their immediate neigh-
borhood can appear due to outliers in the point data set or because their neighbors are
occluded by closer points in the depth buffer. In the expanding phase of the iterative
search for rk (Section 4.4.2), such points would continuously increase their search radius
r̃ without finding any neighbor. This would lead to huge screen splats when projecting
the search sphere onto the framebuffer, which could significantly impact performance.
In our approach, the classification of such points is generally undecidable, since during
iterative search we cannot distinguish between outliers with no real neighbors and points
belonging to a coarsely sampled surface whose neighbors have just not been found yet.
To reduce visual artifacts produced by outliers, we discard points with no neighbors after
a certain number e0 of expanding iterations. In our test scenes we found that e0 = 3 ∼ 4
is sufficient for a good reconstruction.

43

4. Auto Splats

Small Point Groups. Outlying point groups containing κ < k points represent a
similar problem as single outlier points. To prevent our system from expanding the
search radii up to k neighbors by bridging large gaps with no points, we further constrain
the radius expansion. In each search iteration, the distance dmax of the furthest current
neighbor is tracked. If the circular area defined by the expanding search radius r̃i grows
by a certain factor λ without finding a new neighbor, expansion is aborted and the
radius rk is clamped to the reduced κ-neighborhood rκ = dmax. In our scenes we used
λ = 4 to cover surfaces of moderately irregular point distribution while avoiding too large
gap-bridging splats.

4.5 Surface Fitting

The supporting plane of the splat attached to a point P is computed by fitting a plane
π to the set of points S = {xi|i = 1 . . . k} in a local neighborhood of P by using linear
regression [HDD+92]. A common method to find the parameters of π in the form
π : n · (x− x̄) = 0 is to compute x̄ as the mean

x̄ = 1
k

∑
i

xi (4.1)

of the point set S, and n as the eigenvector to the lowest eigenvalue of the scaled
covariance matrix

cov(S) =
∑
i

(xi − x̄)(xi − x̄)T . (4.2)

With the KNN radius rk at hand, this computation can be carried out in three steps in
our system (see Figure 4.3):

Mean Accumulation. First we perform a gathering pass that accumulates the mean
x̄ of the points in the neighborhood of P by ADD-blending each neighbor’s world-space
position as well as the counter value 1 for counting the number of accumulated values
(Equation 4.1). The latter is necessary since we cannot be completely sure that each
point has found exactly k neighbors in the KNN-radius computation pass before (see
also Section 4.4.3).

Covariance Accumulation. In a second gathering pass, we accumulate the terms
required for summing the covariance matrix from all neighbors (Equation 4.2). Each
neighbor contributes the symmetric matrix (x−x̄)(x−x̄)T , where the mean x̄ is calculated
by dividing the accumulated position by the counter value obtained in the previous pass.
Since the covariance matrix is symmetric, it is sufficient to accumulate only the 6 values
of its upper triangle matrix, which can be stored compactly within two render-target
textures.

44

4.6. Auto Splat Rendering

Eigensolving. A final per-pixel pass reads the covariance values and computes the
eigenvector to the smallest eigenvalue using a standard eigensolving procedure [Ebe11]
in a fragment shader program. This eigenvector defines the non-oriented normal of the
supporting plane of the splat. Since we do not intend to consistently reconstruct the
complete surface, but only the visible parts of the point cloud required for rendering, it
suffices to orient the normals towards the camera. We can also render elliptical splats by
additionally computing the remaining two eigenvectors, which represent the minor and
major axes of the ellipse. The root of the fraction of their two eigenvalues is used as the
proportion of their respective lengths [Paj03].

To determine the splat radius, we use a quick estimator based on the average area coverage
of the points in the local neighborhood. At k neighbors, the radius of a circle enclosing
the average area covered by each neighbor is defined by r =

√
rk2

k . We choose the splat
radius to be the average distance between neighboring points, which we approximate by
rsplat = 2r. For elliptical splats, this value is used for the length of the semi-minor axis.

4.6 Auto Splat Rendering

After we have computed the necessary per-point normals and splat radii, we use them to
perform high-quality surface splatting [BHZK05] to render the final surface. This method
employs three passes: An initial visibility pass producing a depth map, an attribute pass
using this depth map for proper occlusion culling and front-surface attribute accumulation,
and a final normalization and shading pass applying deferred shading. In the following,
we describe two extensions to the technique which improve the quality and speed of
rendering reconstructed splats.

4.6.1 Depth Refinement

Our reconstruction started with drawing all points as one-pixel sized point primitives.
The resulting image can contain regions of a dense distribution of points sampling a
foreground surface, while still exhibiting some holes where pixels from background surfaces
are visible. In such cases, most of the actual nearest neighbors of these background
pixels will be occluded by foreground pixels, leading to large neighborhoods during KNN
estimation, and thus to large reconstructed splats. This can lead to artifacts when they
extend beyond the silhouette of the foreground surface in the final rendering. Because
these points appear mostly in back-facing or occluded regions, we can get rid of most
of these artifacts by using vertex-based occlusion culling against the initial depth map.
However, since the depth map from the first visibility pass is rendered with those incorrect
splats, the visibility information in the depth map might be corrupt and we would miss a
number of surface points for rendering.

Therefore, we extend the usual surface splatting pipeline by an additional depth buffer
refinement stage that produces an improved depth map without artifacts. This is done
by two additional depth passes. First, all points in the screen are culled against the

45

4. Auto Splats

Figure 4.7: Comparison of a bunny model rendered with Auto Splats (left) and with
precomputed normals using the same normal and radius estimation procedure (right).

initial coarse depth map to render a new, mostly artifact-free depth map. Then, we cull
the points against this second map to remove possible holes and obtain a final refined
depth map, which is used as input for the attribute pass.

4.6.2 Grid Culling

In large scenes of high depth complexity we often face the situation that due to perspective
projection, the screen contains only a sparsely distributed set of visible foreground surface
points while being densely covered by points from an actually occluded background.
These cases can become very inefficient for our method, as we would spend most of the
frame time on reconstructing background splats that will not be visible anyway. To
improve efficiency in such large point clouds, we use an optional strategy similar to depth
peeling. We first apply an approximate culling technique based on the low-resolution
grid we have used to accumulate point densities for the initial KNN radius estimation
in Section 4.4.1. While accumulating point counts in this grid, we also determine the
depth di of the nearest point per grid cell i. For each cell, a culling plane is then defined
at depth d′i = di + si to set all cell points occluded by this plane, i.e., with view-space
depth zP > d′i, to passive state. Here, si represents the unprojected side length of screen
cell i in world space at depth di. Splat reconstruction (KNN search, fitting, visibility)
is then performed only for the remaining active points. However, the passive point set
is still used for communication with the active points, i.e., they are still involved in
the gathering passes of the KNN search and splat fitting to maintain a correct splat
reconstruction of the active set.

This approach provides a selective splat reconstruction of the majority of the visible
points on the screen, while skipping the unnecessary reconstruction of the bulk of actually
occluded points in large scenes of dense screen coverage, which can significantly reduce
the computation time. However, this approximate grid-culling technique will generally

46

4.7. Results and Discussion

Figure 4.8: Reconstruction quality in a scene exhibiting large differences in point density,
here showing a Stanford Bunny sitting on the head of another, larger Bunny (left top).
Surface-aligned splats can be computed for both the large-scale and the small-scale model
(left bottom). In the right image, splats were scaled down for better visibility.

classify a minor amount of visible points as culled, especially near silhouettes, where
surfaces are viewed at grazing angles. Therefore, we need to apply a second reconstruction
phase per frame to compute the splats for the remaining points. To this end, the depth
map obtained from the reconstruction of the initial active set is used to perform a much
more accurate culling of passive points, allowing us to quickly reconstruct the splats of
the remaining active points. For very large point clouds, the minor overhead incurred by
this additional reconstruction stage is easily outweighed by the reduced workload in the
first pass. We have observed a speed-up of up to 60% for our larger test scenes.

4.7 Results and Discussion

4.7.1 Reconstruction Quality

Figure 4.7 compares the reconstruction quality of Auto Splats with preprocessed normals
that were computed using the same neighborhood size and normal and radius estimation
procedure as used in our algorithm. Despite some minor artifacts due to information loss
at silhouettes, we observe a similar visualization. Since we are especially interested in the
algorithm’s behavior in scenes with point sets of strongly varying sample densities, we
placed two bunny models with a large difference in scale into the same scene, shown in

47

4. Auto Splats

Figure 4.9: A huge laser scan of a cathedral (470M points) rendered by an out-of-core
point renderer with Auto Splats. The renderer streams an amount of ∼10M points to
the GPU each frame.

Figure 4.8. Note that we reduced the splat radii in this image for a better visualization
of the reconstructed splats. Our algorithm correctly adapts the splat sizes to the
local point densities in world space, without relying on user input as in the method of
Zhou et al. [ZHWG08], where an accurate KNN computation and thus an artifact-free
rendering can only be performed if the user-specified initial radius estimator r̃0 is chosen
conservatively large enough for the entire scene, which is very inefficient for regions of
high point densities.

4.7.2 Performance

The performance of our system has been profiled for four different scenes (Figures 4.7,
4.13, 4.1 and 4.9) exhibiting different characteristics in the geometry and density of
the points. All measurements have been taken at a resolution of 1760x900 using a
GeForce GTX580 Graphics Card with 1536MB VRAM and an Intel i7-930 CPU with
2.8 GHz. Note that the Imperia statue shown in Figure 4.13 was rendered in portrait
format containing the full model. Figure 4.10 shows the required rendering times for the
test scenes at different neighbor counts and decomposes the frame computation times
according to the amount of time spent in each pass. The main part of the computation
time is spent in the KNN search stage. For the shown test scenes, our KNN search
requires about 7–10 iterations to converge for 99,9% of the points at k = 10. Moreover, as
depicted in Figure 4.11, we observe a characteristic convergence graph that is common to
all our test scenes, independent of the number of points. It can be seeen that in general,
6–7 iterations already provide a good quality.

48

4.7. Results and Discussion

Figure 4.10: Performance decomposition of the computation pipeline for different test
scenes and neighborhood sizes K at 99.9% convergence. The majority of the frame time
is consumed by the KNN search. Plane fitting takes about the same time as the final
splatting stage. The horses and the cathedral scene were drawn using grid culling.

%

1 2 3 4 5 6 7 8 9 10

Figure 4.11: Convergence behaviour of the k-radius search. The y-axis denotes the
percentage of unconverged points before each iteration.

We also compare the KNN-search performance of our method to using a dynamically
constructed GPU kd-tree [ZHWG08], which also allows reconstructing point-based models
on-the-fly. We reimplemented this method and analyzed its performance characteristics.
Since tree build-up parameters have not been reported by the authors, we provide a
best-case comparison for this alternative method. We profiled the tree build-up and
k-radius search using several parameter combinations (including the user-specified initial
range r̃0) for our test scenes. As suggested by the authors, we used a histogram resolution
of nhist = 32 and niter = 2 range search iterations. We picked the lowest achieved timings

49

4. Auto Splats

Points Pixels kdTree AS Speedup
Scene # # ms ms p.pt. ALL
Bunny 36K 34K 14 9 1,47 1,56
Imperia 546K 291K 95 37 1,37 2,57
Horses 1M 690K 169 117 1,00 1,44
Horses* 1M 690K 169 71 1,64 2,38
Cathedral 10M 1.3M - 264 - -
Cathedral* 10M 1.3M - 123 - -

Table 4.1: k-radius search times in ms at k = 10 achieved with Auto Splats compared to
a GPU kd-tree [ZHWG08] with supposed preknown ideal parameters. The horse and the
cathedral scene were measured both with* and without grid culling. The kd-tree times
represent time for tree build-up plus k-radius search. Speedups are listed per element
(p.pt), i.e., per point or pixel, and overall (all), i.e., taking into account the savings of
handling only visible points in Auto Splats.

that came reasonably close to the k-radius accuracy of 99,9% we use in our scenes and
compared them to the KNN-search timings of our Auto Splatting system (Table 4.1).
Note that since we assume dynamic scenes, the kd-tree timings include the time spent on
the tree build-up in each frame. In all scenes, our system outperforms the GPU kd-tree
variant. On the one hand, this is explained by the fact that our system performs the
search only on the reduced set of visible points. However, even when assuming the same
number of points by comparing the average time spent on the KNN-query per point,
Auto Splats provide a speedup over using GPU kd-trees (see the “p.pt.” column in the
table). Furthermore, note that the GPU kd-tree algorithm was not able to handle larger
scenes like the Cathedral.

4.7.3 Applications

Real-Time Scan Visualization. One application where our technique is especially
useful is the setup of real-world scanning sessions of static and dynamic content, possibly
using multiple scanners. We simulated such a setup, as depicted in Figure 4.12. A
dynamic object is scanned by up to four scanners, each providing a registered 3D point
cloud (assuming mutual scanner registration). In addition, each scanner simulates a
different amount of Gaussian noise. The auto-splatting technique allows us to display the
scanned surfaces with high quality in real time. This enables positioning the scanners for
optimizing surface coverage and minimizing occlusions in a scene, for example, during
a film sequence. Furthermore, we can apply helpful visualization techniques, like the
size of the K-neighborhood as shown in Figure 4.12, where the red end of the false-color
spectrum suggests too sparse sampling. Note that for such scenarios, we can turn off the
outlier removal of our system to not distort the result. In the future, real-time scanning
devices can be of increasing importance for obtaining fast but high-quality previews for
film, VR and AR applications.

50

4.7. Results and Discussion

Figure 4.12: A dynamic object scanned by three scanners.

Normal and Curvature Estimation Preview. Offline algorithms performing nor-
mal or curvature estimation on massive point datasets can require up to several hours of
processing time. However, the reconstruction quality of the hole dataset is not known
in advance and non-optimally chosen parameters that could require a recomputation
are often only recognized after the processing is finished. Our algorithm can be used
to provide an instant preview of the reconstruction of different parts of a data set by
an interactive walk-through. A user might wish to test different parameters for the k
neighborhood to find a smooth but still feature-preserving optimum, or wants to analyze
whether a certain parameter choice leads to uneven quality among the points. See
Figure 4.13b for an example of an instant visualization of curvatures.

Modeling Applications. Applications that allow the user to modify a point cloud
cannot rely on a lengthy preprocessing phase for normal-vector estimation. An example
is an application that allows archaeologists to modify a scene to experiment with different
reconstructions of an archaeological site.

4.7.4 Discussion and Limitations

The described method to locally reconstruct surfaces based on the points sampled to
the screen has many advantages. For example, there are practically no parameters that
influence the reconstruction quality (except for the neighborhood k), making the system
readily useful for many applications. On the other hand, because each pixel only stores
the front-most point, a number of points get lost. Generally, this is intentional, especially
in large or dense point clouds with high pixel overdraw where we only want to perform
computation on the the potentially small fraction of visible points in the front. However,
not storing a point can become a problem if either its splat would still contribute to

51

4. Auto Splats

(a) (b)

Figure 4.13: (a) Auto-Splatted image of a range scan of Imperia. (b) Closeup on a part
of the statue, visualizing the curvature estimates for the points. Like normals and splat
radii, curvature is dynamically computed from the KNNs provided by our algorithmn.

the final rendering, or it would contribute to the normal direction of a visible splat in
its neighborhood. This can happen, for example, at object silhouettes, where spatially
neighboring points can get rasterized to the same image pixel, leading to misaligned
splats. Another restriction is the inability of determining a correct splat orientation, as
this would require sequential or global computations on the point set that are too costly
for a real-time setup, for example, computing a minimum spanning tree in the weighted
K-neighborhood graph [HDD+92]. This can lead to wrongly illuminated splats, mostly
at silhouettes.

4.8 Summary

In this chapter, we have developed an improved screen-space algorithm for producing inter-
active high-quality visualizations from dynamic unstructured point clouds by performing
an on-the-fly splat reconstruction that allows for rendering smooth surfaces. The method
can be applied to point clouds from any source, including dynamic data streamed from
real-time scanners or spatial nodes of point data streamed from an out-of-core rendering
system. Our algorithm uses the frame buffer as search data structure for the necessary
nearest-neighbor computations, which comes with the advantage that we already obtain
a reduced subset of the possibly huge amount of points in the scene for reconstruction.
In contrast to the screen-space triangulation approach presented in Chapter 3, this algo-

52

4.8. Summary

rithm provides much smoother surfaces, can work on arbitrary reconstruction bandwidths,
performs an actual true KNN search and is thus view-independent. It further introduces
several performance optimizations by utilizing the hardware capabilities and reducing
the reconstruction workload to a necessary minimum. Nevertheless, since the true KNN
search requires several range search iterations to converge, its performance statistics
show that these quality improvements require a generally higher computational effort.
Still, we have shown that in each of our tests cases, our parallel KNN search technique
outperforms alternative dynamic KNN search techniques like the dynamically constructed
GPU kd-tree, even if the parameters required for the kd-tree are chosen favorably. Our
method, on the other hand, does not require manual parameter tuning, and even works
for very large scenes.

53

Basically, Probability
says that fate’s gonna side with me.

It’s been so long
on my shelf.

— Sugababes

CHAPTER 5
Continuous Locally Optimal

Projection

(d) our L1 reconstruction

(a) noisy point set

isoellipsoids

density

(c) Gaussian mixture

(b) previous L2 methods

small
kernel

large
kernel

Figure 5.1: Given an input point set (a), L2-based splat fitting (b) can produce noise or
oversmoothing. We efficiently compute a sparse Gaussian mixture (c) and apply a robust
Continuous Projection operator, which is up to 7 times faster than its discrete variant,
thus allowing for an interactive L1-based reconstruction (d) of unordered dynamic points.

57

5. Continuous Locally Optimal Projection

POINT CLOUD PROCESSING

RENDERING

SURFACE
RECON-

STRUCTION

Real Object

Acquisition /
Registration

Polygon
Rasterization

Interpolation

Parametric Surface

Polygon Mesh Implicit Surface

Implicit Approximation

Discretization
Ray Casting

TessellationParametric
Approx.

PROBABILITY
MODEL

Model Fitting

Parametric Model

Splatting

Point Cloud

Normal
Computation

Point Splats

Coverage
Estimation

Denoising
Filtering

Resampling

Figure 5.2: A specific kind of parametric model, i.e., a Gaussian mixture model, is fitted
to the input point cloud. This probabilistic representation of the data allow accelerating a
robust state-of-the-art L1 resampling operator in a way that enables on-the-fly execution
on dynamic point data.

5.1 Introduction

In the previous chapter, we have developed a screen-space technique for an on-the-fly
reconstruction of splats from a dynamic stream of unordered points, which allows us to
obtain an instant high-quality surface visualization. However, a major challenge that has
not been addressed so far is the robust performance of such a dynamic reconstruction
technique in the face of corrupt and noise-contaminated data, as is commonly given
in real-world scanning scenarios due to limited sensor accuracy, occlusions, imperfect
registration and other issues. Since standard splat fitting as discussed in Section 4.5
typically corresponds to a least-squares solution, it is sensitive to noise and outliers in
the data, producing significant noise artifacts when the reconstruction kernel bandwidth,
i.e., the neighborhood radius used for fitting a splat’s local support plane, is too small. A
straightforward way to address this problem is to increase this kernel bandwidth in order
to achieve a stronger noise-filtering effect. However, due to the L2-based nature of this
splat fitting, this also introduces a smoothing of salient features, which can significantly
degenerate the surface, as can be seen in the example of the thin limbs of the camel
model in Figure 5.1b.

In recent years, more robust surface reconstruction techniques have been developed that
can deal with defects like noise, outliers, holes or registration errors in the data, while

58

5.2. A Review of the LOP Operator

being much more feature preserving than simple L2-based methods. They are commonly
based on a robust L1-optimization approach and are able to produce high-quality output
despite strongly contaminated data. However, current L1 methods are typically too
expensive to achieve interactive reconstruction times for at least moderately sized point
sets, even for parallel implementations. Hence, due to their nature, they are designed for
quality rather than performance.

In this chapter, we introduce a highly efficient variant of the locally optimal projection
(LOP) operator [LCOLTE07], a L1-based resampling technique that robustly fits a set
of particles to a noisy point cloud by iteratively applying a system of attractive forces
defined by the input points. Characteristically, LOP requires high computational effort
for the iterative evaluation of all mutual forces between the particles and the discrete set
of points. Our approach computes a compact, continuous probability model describing
the distribution of the discrete input points, and reformulates this LOP operator to
be applicable to the resulting continuous representation of the point cloud’s attractive
potential field. This introduces an intermediate probabilistic stage to our dynamic
reconstruction pipeline, which allows for an efficient robust denoising prior to the normal
and splat computation stage (Figure 5.2). We use a Gaussian mixture model (GMM)
to describe the point cloud’s density in a geometry-preserving manner and show how to
compute an efficient analytic solution to the integral forces exerted on the particles by
each of its continuous components. By operating on a small set of Gaussians instead of the
large input point cloud, Continuous LOP (CLOP) achieves speedups of up to a factor of 7
over a comparable LOP implementation on the GPU. This makes a robust reconstruction
at interactive frame rates for moderately sized dynamic point sets possible (see Figure 5.1).
We also demonstrate that the same continuous formulation can be directly applied to the
spherical domain to efficiently compute locally robust point normals as well. Furthermore,
our continuous representation allows for robust point-cloud upsampling. Our results show
that despite its much faster computation, our continuous algorithm achieves better point
regularity and equal or even higher reconstruction accuracy than its discrete counterpart
and even high-quality variants like Weighted LOP [HLZ+09].

In the following, we will first review the discrete LOP operator, and then give an overview
of the GMM computation from unordered points and show how to transfer this operator
to the continuous probability density function of a Gaussian mixture.

5.2 A Review of the LOP Operator
The Locally Optimal Projection (LOP) Operator [LCOLTE07] fits a number of points
Q = {qi}i∈I (denoted as particles) into local medians of a point set P = {pj}j∈J , I and J
being the respective index sets. The algorithm performs a localized version of Weiszfeld’s
algorithm for finding the spatial median q = argmin

x
{Σj∈J‖x − pj‖} using a steepest

descent on the sum of Euclidean distances from all points pj . To extend the Weiszfeld
algorithm to multiple particles, LOP uses an isotropic, fast decaying localization kernel
θ(r) = e−r

2/(h/4)2 around each particle, which concentrates its influence onto its support

59

5. Continuous Locally Optimal Projection

radius h. Starting with an arbitrary initial particle set Q(0), LOP computes the target
particle positions Q by performing a fixed-point iteration

Q(k+1) = argmin
X={xi}i∈I

{E1(X,P,Q(k)) + E2(X,Q(k))} (5.1)

where

E1(X,P,Q(k)) =
∑
i∈I

∑
j∈J
‖xi − pj‖θ(‖qi − pj‖),

E2(X,Q(k)) =
∑
i′∈I

λi′
∑

i∈I\{i′}
η(‖xi′ − qi‖)θ(‖qi′ − qi‖).

Here, E1 is an energy term attracting Q towards the local medians of P , while E2 defines
a repulsive energy between the particles that strives for an equal distribution of the qi
over the approximated surface. θ denotes the localization kernel constraining both terms
to a finite influence radius, {λi}i∈I are weights balancing the particles’ attractive and
repulsive forces, and η is a repulsion function determining a distance-based repulsion
strength (we use η(r) = −r as suggested by Huang et al. [HLZ+09]). Eq. (5.1) leads to
the following formulation for the updates of each particle q(k)

i ∈ Q(k) in iteration k. The
first iteration acts as an L2 initializer for Q,

q
(1)
i =

∑
j∈J pjθ(‖pj − q

(0)
i ‖)∑

j∈J θ(‖pj − q
(0)
i ‖)

, i ∈ I, (5.2)

followed by the fixed-point iteration updates

q
(k+1)
i = F1(q(k)

i , P) + µ F2(q(k)
i , Q′i

(k)) (5.3)

F1(q, P) =
∑
j∈J

pj
αj∑

j′∈J αj′
(5.4)

F2(q,Q′i) =
∑

i′∈I\{i}
(q − qi′)

βi′∑
i′′∈I\{i} βi′′

(5.5)

where Q′i denotes the set of complementary particles Q\{qi}. The repulsion parameter
µ ∈ [0, 0.5) controls the balancing between the attractive forces F1 of the points pj and
the repulsive forces F2 from the neighboring particles qi. Both forces are defined as
convex sums over their respective neighbors, with pairwise weights

αj = θ(‖pj − q‖)
‖pj − q‖

, βi′ = θ(‖q − qi′‖)
‖q − qi′‖

∣∣∣∣∂η∂r (‖q − qi′‖)
∣∣∣∣ . (5.6)

Huang et al. [HLZ+09] proposed an improved, weighted version of LOP, referred to as
WLOP, that introduces additional balancing of these weights, allowing for a more uniform
distribution of the particles in regions of varying point density. We show in Section 5.6
that this additional balancing can be natively integrated into our analytic approach,
enabling us to actually perform analytic WLOP. However, for simplicity, we will refer to
our method as Continuous LOP (CLOP).

60

5.3. Motivation and Overview

5.3 Motivation and Overview

The formulation of Eq. (5.1) can be interpreted as a particle simulation of a set of
repulsive particles Q on an attractive background potential field Π, which is represented
by a discrete set of samples P . The computational effort of LOP scales with the number
|P | of points and the number |Q| of resampling particles to be processed in order to
evaluate all mutual forces in the system. As typically |Q| � |P |, the majority of the time
will be spent on the evaluation of the attractive forces from all points pj , which can be
seen as the carriers of the energy potential of Π. We therefore propose to reduce Π to a
more compact, yet still accurate representation, which allows evaluating the attraction
term much more efficiently.

In our method, we use a mixtureM of anisotropic Gaussians to represent the density of
the input points, where |M| � |P | (Section 5.4). We then derive an analytic solution for
the continuous attraction forces exerted by each individual Gaussian (Section 5.5). The
mixture is efficiently computed from the input points P by a constrained hierarchical
expectation-maximization procedure. This one-time effort easily pays off, considering
the reduced amount of density-representing entities to process during the following LOP
iterations (typically 10–20). In Section 5.6, we show how to extend our approach to
WLOP without additional cost. In Section 5.7, we exploit an inherent coherency in the
repulsive moments of the particles to also accelerate the evaluation of the repulsion term
over all LOP iterations. Finally, we extend our continuous formulation to the robust
estimation of normals (Section 5.8).

5.4 Gaussian Mixture Density Computation

In this section, we efficiently reduce the set P of unordered input points to a much more
compact mixture of GaussiansM = {ws,Θs} that reflects the density distribution of the
points. That is,M defines a probability density function (pdf) as a weighted sum of |M|
Gaussian components

f(x|M) =
∑
s

wsg(x|Θs), (5.7)

where the Θs = (µs,Σs) are the Gaussian parameters, ws their corresponding convex
weights, and g denotes the d-variate Gaussian pdf with

g(x|µ,Σ) = |2πΣ|−
1
2 e−

1
2 (x−µ)TΣ−1(x−µ). (5.8)

We demandM to be efficiently computable in parallel, and to ideally reflect the density
of P while minimizing the smoothing of the signal which LOP tries to reconstruct. To
this end, we use a constrained variant of hierarchical expectation maximization [Vas98],
which aims at optimizingM in the maximum-likelihood sense while trying not to destroy
characteristic information about the underlying geometry. Next, we will shortly review
the EM and hierarchical EM (HEM) algorithms, and then present a modified, constrained
variant of HEM to compute an accurate density estimate of the point cloud.

61

5. Continuous Locally Optimal Projection

5.4.1 Expectation Maximization in GMMs

An ideal density estimate M of an input point set {pi} is defined in a way such that
it maximizes the likelihood L(M) =

∏
i f(pi|M) of producing the set P under M.

Starting with an initial guessM(0), Expectation Maximization [DLR77] computes such
a maximum likelihood estimate (MLE) for mixture models by iteratively optimizing an
estimator of the parameters ofM until a local maximum of the objective log-likelihood
function Llog = log L(M) is found. It thereby uses a discrete distribution of posterior
responsibility probabilities ris for a fuzzy assignment of each point to each component,
and optimizes them along with the model parameters. This is done in an alternating
two-step procedure, which eventually converges to a local maximum of Llog:

E-Step: Given the current model parametersM, compute the expected responsibilities

ris = L(Θs|pi)ws∑
s′ L(Θs′ |pi)ws′

, L(Θs|pi) = g(pi|Θs) (5.9)

M-Step: Based on the new responsibilities, update the model parameters M′. For
Gaussian components, these are the points’ weighted means µs and weighted covariances
Σs with convex weights ris/

∑
i′ ri′s, and mixture coefficients ws =

∑
i ris/|P |.

5.4.2 Hierarchical EM

In contrast to classic EM, hierarchical EM performs only one initial EM iteration on the
complete input data, and then successively reduces the mixture by hierarchically applying
EM on Gaussians instead of points. HEM equips each input point pi with an initial
low-variance Gaussian Θ(0)

i , which results in an initial mixtureM(0) = {w(0)
s ,Θ(0)

s } with
initially equal component weights w(0)

s = 1/|P |. The component parameters Θ(l+1)
s of the

next level are then estimated based on those of the current level l by a modified EM step.
Since each Gaussian Θi represents wi = wi|P | points, HEM alters the likelihood function
L employed in the E-Step in Eq. (5.9) to incorporate wi representative “virtual samples”:

L(Θ(l+1)
s |Θ(l)

i) =
[
g(µ(l)

i |Θ
(l+1)
s) e−

1
2 tr([Σ

(l+1)
s]−1Σ(l)

i)
]wi

(5.10)

Given the responsibilities ris and the mixture M (l) of the current level, the model
parameters of the next higher level are again maximized by convex sums

w(l+1)
s =

∑
i

ris wi µ(l+1)
s =

∑
i

ωisµi

Σ(l+1)
s =

∑
i

ωis
(
Σ(l)
i + (µ(l)

i − µ
(l+1)
s)(µ(l)

i − µ
(l+1)
s)T

)
(5.11)

with convex weights ωis = riswi/
∑
i′ ri′swi′ . To initialize the mixture M(l+1) of each

next higher level before the hierarchical EM-step, we randomly subsample the setM(l)

(usually ∼ 33%).

62

5.4. Gaussian Mixture Density Computation

(a) (b) (c)

Figure 5.3: Gaussian Mixture on a signal with an outlier (top) and its LOP reconstruction
(bottom). Ellipses denote Gaussians’ one-σ-isodistances. (a) Initial mixture. (b) Level
M(1) of unconstrained HEM. (c) M(1) with constrained clustering radius. Standard
HEM tends to smooth the signal, while regularized HEM is more feature preserving, at
the cost of less component reduction.

5.4.3 Geometrically Regularized HEM

Since the maximum likelihood estimate of a Gaussian is a least-squares solution, thus
non-robust, an ordinary MLE of a Gaussian Mixture is inherently prone to bias the input
signal in a way that obliterates any subsequent robust reconstruction. Thus, without
any further consideration, a mere statistically optimal fit ofM could place a Gaussian
component in a way that blurs the information of outliers against which we want to
robustly reconstruct, as illustrated in Figure 5.3a and 5.3b. While there are alternative
distributions that provide a robust MLE, like the Laplace distribution, these cannot be
expressed in closed form and would thus require an expensive iterative approximation.
Instead, we improve the robustness of the Gaussian mixture by adopting a geometric
regularization to Hierarchical EM, which stems from the idea of agglomerative hierarchical
clustering to merge only those clusters which are closest under a given distance measure.
Restricting the set of neighboring components that are considered for merging to a
clustering kernel of finite radius ρ allows merging the energy mass of close-by Gaussians,
while leaving more distant clusters untouched (Figure 5.3c). This results in a regularized
hierarchical EM procedure, which strives for a maximum likelihood estimate under a
reinforced similarity constraint.

Dissimilarity Measure. To measure the distance between two Gaussians Θt and Θs

in R3, we use their Kullback-Leibler divergence

DKL(Θt‖Θs) = 1
2

(
dM (µt,Θs)2 + tr(Σ−1

s Σt)− 3− ln |Σt||Σs|
)

(5.12)

63

5. Continuous Locally Optimal Projection

and define ρ to be the maximum distance DKL(Θt‖Θs)max within which Θs is allowed to
merge other components Θt. Although DKL is a measure of relative entropy, it has an
intuitive geometric interpretation, as it accounts for both the scale-invariant Mahalanobis
distance dM between their centers as well as the deviation of their principal component
directions. Thus, DKL lets large anisotropic Gaussians continue clustering in the direction
of their largest variance, while smaller Gaussians, possibly representing outlier points,
are restricted to a small clustering radius.

Clustering Kernel Size. In contrast to previous authors [JRJ11, WBKP08], who
choose ρ to be the n-th globally smallest occurring distance between Gaussians, we try to
avoid such a global computation, but rather choose ρ to be a good compromise between
clustering efficiency (large, relaxed ρ), and geometric accuracy (small, restrictive ρ). To
provide an intuitive control over ρ, we suggest a free parameter α, so that ρ = α2/2, which
has a simple interpretation: If two Gaussians have equal covariances, thus presumably
representing similarly oriented geometry, Eq. (5.12) reduces α to a simple threshold of
the Mahalanobis distance of their centers. On the other hand, assuming the Gaussians
have coinciding centers, differently oriented covariances suggest a change in orientation
of the underlying surface, which α will segregate even more. In our experiments, α ≈ 2
has proven to give a good balance between clustering efficiency and accuracy.

Mixture Initialization. The initial mixtureM(0) needs to be defined in a way that
allows α to provide a similar regularization behavior throughout all levels of the hierarchy.
Placing an initial Gaussian at each point (µ(0)

i = pi) creates a simple kernel density
estimate of |P |, whose kernel bandwidth defines the extent of the covariances Σ(0)

i [Vas98].
A too small bandwidth requires a large α to allow any clustering at all, but also diminishes
the regularization effect in subsequent levels. On the other hand, a too large bandwidth
smooths the signal in advance, thus again increasing the reconstruction bias. To produce
a suitable initial density estimate, we first use a conservative kernel radius r (usually
2 ∼ 3 times a point’s nearest neighbor distance) to compute for each point an initial
anisotropic covariance matrix Σr, whose shape already reflects the local distribution
of the n points within the kernel. In a second step, Σr is scaled down such that its
unit-σ-ellipsoid fits its local nearest neighbor distances. This gives an initial covariance

Σ(0) = Σr
r

σmax 3
√
n

+ c I, (5.13)

where σmax is the square root of the largest eigenvalue of Σr, I is the identity matrix,
and c is a small trace bias giving Σ(0) a minimum extent. Figure 5.4 shows the feature-
preserving reduction of the mixture from Figure 5.1 over different hierarchy levels of
regularized HEM.

64

5.5. Continuous LOP in Gaussian Mixtures

(a) |M(0)| = 64K (b) |M(2)| = 13K (c) |M(4)| = 8400

Figure 5.4: Unit-σ-isosurfaces of the mixture Gaussians at the camel model’s front hooves
at different hierarchy levels for α = 2.1. Note how with successive levels, the main signal
components are merged, while the Gaussians modeling outliers remain unchanged.

5.5 Continuous LOP in Gaussian Mixtures
In this section we show how to apply the robust LOP operator to a mixture of Gaussians.
By reformulating the attractive force F1, we obtain our accelerated CLOP algorithm.

5.5.1 Reformulation of the Attraction Force

Eq. (5.4) concentrates the attractive energies of the potential field Π in singular points P ,
and defines F1 as a convex weighted sum over all points pj with corresponding weights αj .
AsM now continuously distributes these energies according to its density function (5.7),
we define a corresponding continuous force F1 by the convex sum over the integral
attraction of each single Gaussian, with convex weights ws accounting for the Gaussians’
relative point mass:

F1(q,M) =
∑
s

ws

∫
R3

x g(x|Θs)α(x)∑
s′ ws′

∫
R3 g(x′|Θs′)α(x′) dx′ dx (5.14)

where similar to Eq. (5.6), we define the weight α(x) = θ(δ)/δ, with δ = ‖x − q‖.
Additionally, each point x ∈ R3 is now weighted by the Gaussian density g of the
corresponding component Θs. As before, the integral over all weighted contributions is
normalized by the integral over all weights. Figure 5.5a illustrates the spatial weights
induced on the domain R3 by an anisotropic Gaussian Θs and a radial kernel α centered
at a particle q. Multiplying all occurring weights into a combined weight function

Ωs(x) = wsg(x|Θs)α(x) (5.15)

65

5. Continuous Locally Optimal Projection

Figure 5.5: Continuous attraction of a particle q from a Gaussian Θs. (a) Density of Θs

(blue) and kernel α (yellow) centered in q lead to (b) a product weight Ωs (black) with
infinite integral. (c) Approximation of α by a sum of 3 Gaussians (green) divides this
integral into 3 finite product Gaussians Ωsk (black). The sum of their means, convexly
weighted by their integrals, yields (d) the estimated mean of Ωs, which is the destination
point of q given by the integral attraction of Θs. Note the good approximation quality of
Ω̂s (d) compared to Ωs (b) with only 3 Gaussian summands.

defines the attraction step F1 as

F1(q,M) =
∑
s

∫
R3 x Ωs(x) dx∑

s

∫
R3 Ωs(x) dx . (5.16)

Figure 5.5b shows the form of the combined weight function Ωs for the generating
Gaussian Θs and kernel α. Note that the integral in Eq. (5.16) is not finite due to
a singularity at δ = 0 produced by its factor δ−1. However, in the basic Weiszfeld’s
algorithm as well as in LOP, a particle spatially coinciding with an input point (i.e.,
δ = 0) represents a singularity anyway, which is typically accounted for by removing the
point in question, or biasing the denominator δ−1 to some (ε+ δ)−1 to clamp the point’s
energy at δ = 0 to a finite peak. Following the same reasoning, we circumvent the infinite

66

5.5. Continuous LOP in Gaussian Mixtures

x

120

100

140

 60

 40

 80

 20

()x
()x

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0

(a)

k ŵk σ̂k

1 11.453 0.11772
2 29.886 0.03287
3 97.761 0.01010

(b)

Figure 5.6: (a) Plot of the original function α (dashed) and its approximation by a sum
of 3 Gaussians (solid) using the coefficients listed in (b). Note the finite peak of α̂.

integral by approximating the original weight function α by a sum of K Gaussians

α̂(x) =
K∑
k=1

α̂k(x) =
K∑
k=1

ŵk ĉk g(x|q, Σ̂k) (5.17)

(Figure 5.5c), which provides an integrable finite peak at δ = 0 while still exhibiting the
characteristic weight falloff of α. Eq. (5.17) gives the general d-dimensional formulation
for α̂k, where Σ̂k = σ̂2

kh
2I denotes its covariance, ŵk the (dimension-invariant) weight, and

ĉk = |2πΣ̂k|
1
2 compensates for the dimension-dependent normalization factor of the pdf g.

Since the Gaussian kernel is normalized by the LOP support radius h, the coefficients ŵk
and σ̂k of the model function (5.17) can be fitted by setting h = 1 and considering only
the normalized range δ ∈ [0, 1]. In our experiments, we observed that a sum of K = 3
Gaussians provides a sufficient approximation, as shown in Figure 5.6a. The coefficients
obtained using Levenberg-Marquardt optimization are listed in Figure 5.6b. Replacing α
by α̂ gives an estimator Ω̂ approximating the combined weight function (5.15) by

Ω̂s(x) = wsg(x|Θs)
K∑
k=1

α̂k(x) =
K∑
k=1

Ω̂sk(x). (5.18)

This comes with a convenient property: Since the product of two Gaussians is again a
Gaussian, Eq. (5.18) reduces the complete weight function Ω̂s to a sum of K product
Gaussians Ω̂sk, which we can again interpret as weighted Gaussian pdfs, with weights ωsk
and means µsk. Therefore, Equation (5.16) can now be expressed in closed form by

F1(q,M) =
∑
s

∑
k

∫
R3 x Ω̂sk(x) dx∑

s

∑
k

∫
R3 Ω̂sk(x) dx

=
∑
s,k ωskµsk∑
s,k ωsk

, (5.19)

which in the same way that Eq. (5.4) is a convex sum of 3D points pj , now becomes a
convex combination of the product Gaussians’ means µsk with weights ωsk. By applying
the identities for the integral and the expectation of a Gaussian product [PP12], we
derive these quantities as follows.

67

5. Continuous Locally Optimal Projection

Weight ωsk. Using Eq. (5.18), we obtain ωsk for the general d-dimensional case as

ωsk =
∫
Rd

Ω̂sk(x)dx = wsŵk ĉk

∫
Rd
g(x|Θs) g(x|Θ̂k)dx

= ws ŵk ĉk g(µs|q,Λsk)

= ws ŵk σ̂
d
k h

d |Λsk|−
1
2 e−

1
2 (µs−q)TΛ−1

sk
(µs−q) (5.20)

where we have introduced the covariance sum Λsk = Σs + Σ̂k.

Mean µsk. Evaluating the weighted mean in the numerator of Eq. (5.19) gives

ωskµsk =
∫
Rd

x Ω̂sk(x)dx = wsŵk ĉk

∫
Rd

x g(x|Θs) g(x|Θ̂k)dx

= ws ŵk ĉk g(µs|q,Λsk)(Σ−1
s + Σ̂−1

k)−1(Σ−1
s µs + Σ̂−1

k q)
= ωsk(Σ−1

s + Σ̂−1
k)−1(Σ−1

s µs + Σ̂−1
k q). (5.21)

Due to the expensive inversions in this formulation, we centralize the coordinate frame
in q to further simplify the mean

µsk = (Σ−1
s + Σ̂−1

k)−1(Σ−1
s (µs − q) + Σ̂−1

k (q − q)) + q

= Σ̂k(Σs + Σ̂k)−1(µs − q) + q

= σ̂2
k h

2Λ−1
sk (µs − q) + q. (5.22)

This way, the evaluation of both quantities requires only one matrix inversion of Λsk,
which already produces the term |Λsk|−1 required in ωsk as side product. The final
complete continuous attraction step is thus given by

F1(q,M) = q +
∑
s,k

σ̂2
k h

2 Λ−1
sk (µs − q)

ωsk∑
s′,k′ ωs′k′

. (5.23)

5.5.2 Initial Iteration

As shown in Eq. (5.2), LOP initializes its particle positions with the weighted mean of
the input points using the weight kernel θ. Its continuous variant

F (1)
1 (q,M) =

∑
s

∫
R3 xwsg(x|Θs)θ(δ) dx∑

s

∫
R3 wsg(x|Θs)θ(δ) dx =

∑
s ω

(0)
s µ

(0)
s∑

s ω
(0)
s

(5.24)

is similar to Eq. (5.14), except that it omits the term δ−1 and can thus be evaluated only
by the weight θ instead of K summands α̂k. Expressing θ(δ) by a scaled Gaussian pdf
cθ g(x|q,Σθ), with Σθ = (h2/32)I and cθ = |2πΣθ|

1
2 , gives the quantities for the initial

weight and mean as

ω(0)
s = ws cθ g(µs|q,Λsθ), µ(0)

s = 1
32h

2Λ−1
sθ (µs − q) + q, (5.25)

with covariance sum Λsθ = Σs + Σθ.

68

5.6. Weighted CLOP

Figure 5.7: Point sampling of Lena with density inverse proportional to image intensity
(74K points, left), its corresponding mixtureM(4) (5K Gaussians, middle) and CLOP
resampling (3700 particles, right). The top row shows the unweighted mixture, resulting
in an unevenly distributed resampling, while the bottom shows the desired, balanced
particle distribution built on initially weighted Gaussians.

5.6 Weighted CLOP

As the original LOP operator is very sensitive to regions of varying point densities,
Huang et al. [HLZ+09] proposed a weighted LOP operator (WLOP), which normalizes
the attractive force (5.4) over differently dense regions by adding for each point pj a
density-dependent weight vj = 1 +

∑
j′∈J\{j} θ(‖pj − pj′‖), so that

F1(q, P) =
∑
j∈J

pj
αj/vj∑

j′∈J αj′/vj′
. (5.26)

This additional weighting can be easily adopted in CLOP, without even changing its
integral formulations in Section 5.5. Since a Gaussian’s attractive potential is defined
by its weight ws, we can encode the balancing weights vj directly in the Gaussians
representing the pj in the initial mixtureM(0), by altering their initial weights to

w
(0)
j = (vj |P |)−1. (5.27)

This way, the attraction-determining weights wj of Gaussians that cluster points in dense
regions (large vj) will be relaxed more strongly than weights in regions of lower density.
Applying CLOP to such a weighted mixture thus results in a continuous equivalent of

69

5. Continuous Locally Optimal Projection

the weighted attraction in WLOP. As we can directly accumulate the sum (5.26) along
with the points’ covariances in the initial kernel pass (Section 5.4.3), this weighting can
be achieved in CLOP without any additional effort. Figure 5.7 recreates the Lena demo
from Huang et al. [HLZ+09], demonstrating the improved performance of CLOP when
using such weighted mixtures.

5.7 Accelerating Repulsion

The reformulation and continuous evaluation of F1 shown in the previous sections
accelerates the major part of the computational workload in a LOP iteration (5.1). As a
result, when using a larger number of particles, the discrete computation of the repulsion
forces becomes the bottleneck. In this section, we address this problem by two strategies.

5.7.1 Kernel Cutoff

A simple way to accelerate repulsion is to skip the evaluation of F2 (5.5) between particles
where the relative repulsive influence is very low. For higher particle counts, this applies
to all particles q with distance & h/2 to a repulsing particle q′, due to the Gaussian
kernel falloff weighting this repulsion exponentially lower than those from particles closer
to q. We have observed that simply cutting off the repulsion kernel at about half its
radius reduces the repulsion computation effort by ∼ 75%, while having a negligible effect
on the regularity of the final particle distribution. Note, however, that such a cutoff is
not applicable to the attraction force, as there it is crucial for the kernel to bridge the
gap between an outlier and the surface it should be projected to.

5.7.2 Repulsion Coherence

Another optimization exploits a coherence in the particles’ repulsive moments F2(q,Q′) in
Eq. (5.5), which we will here denote as Ṙ. We have observed that although the moment
Ṙ of each individual particle q is highly dynamic in both direction and magnitude,
the relative change in the overall system is generally low. To measure a particle’s
coherence of Ṙ between two iterations, we examine its relative change of magnitude
∆Ṙ(k) = ‖Ṙ(k)−Ṙ(k−1)‖

‖Ṙ(k−1)‖ , which can also be thought of as a scale-invariant error measure
when using Ṙ(k−1) to approximate Ṙ(k). Figure 5.8a shows the distribution of ∆Ṙ
for the face data set as it develops over different numbers of CLOP iterations. The
graphs indicate that the overall error ∆Ṙ is bounded and progressively reduces as CLOP
converges. After the first iteration, the repulsive moments of most particles do not
deviate more than ∼ 40%, and with successive iterations, hardly more than 10%. This
observation suggests that, under acceptance of the discussed error, a given Ṙ(k) can be
used as an estimator for Ṙ(k+1) in the next iteration. Therefore, we are able to reduce
the computation effort by another 50% alone by reusing the repulsion vectors in every
second CLOP iteration. We propose to still perform an actual repulsion computation in
the final iteration in case of an odd number of iterations.

70

5.8. Robust Normal Computation in Mixtures

standard interleaved

0.0 0.1 0.2 0.3 0.4 0.5

0

5

10

15

20

25

30

DR

D
en
si
ty

Iteration 1
Iteration 40

(a)

5 10 15 20 25 30 35 40

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Iteration

standard
interleaved

20% Particles

6% Particles

x

10
3

(b)

Figure 5.8: (a) Development of the distribution of ∆Ṙ for the Face model, from first
(black) to the last (blue) CLOP iteration. (b) Convergence of nearest-neighbor variances
σ for unoptimized (gray) and interleaved repulsion (red). The closeup visually compares
the resulting particle distributions.

Figure 5.8b plots the variance σ of nearest neighbor distances, measuring the regularity
of the point distribution [HLZ+09] for both unoptimized and interleaved repulsion and
different amounts of resampling particles. We observe that with a larger relative number
of particles (20%), an interleaved repulsion update hardly affects the convergence behavior
of σ. On the other hand, a lower number of particles (6%) allows them to move more
freely, leading to an oscillation of σ when correcting the repulsive moment only each
second iteration. However, the band in which it oscillates generally appears to drop
faster, which shows that in addition to a performance improvement, interleaved repulsion
actually leads to a potentially faster convergence in point regularity.

5.8 Robust Normal Computation in Mixtures

Having derived a robust projection operator for spatial data to accelerate the L1 point
resampling, we are interested in a similar speedup for locally robust normal reconstruction
methods [OGG09, ZSW+10]. In this section we show that our derivation of the continuous
attraction in Section 5.5 can be directly applied to the domain of unit normals to quickly
compute L1-aligned, unoriented normals for the particles obtained by CLOP.

71

5. Continuous Locally Optimal Projection

5.8.1 Spherical Weiszfeld for Normal Axes

The basic idea of our local L1-based normal alignment is to find the robust median
within a set of unoriented normals (normal axes) m∗j ∈ S2 of spatially neighboring points
pj , which can be roughly estimated using standard PCA. Similar to how Weiszfeld’s
algorithm iteratively approximates the spatial median of noisy points in R3, we can
use a spherical equivalent to find a spherical median nopt = argmin

n∈S2
{
∑
j∈J dg(mj ,n)} of

these noisy estimated point normal axes, which minimizes the sum of geodesic distances
dg(mj ,n) = cos−1 〈mj ,n〉max [BDGS05]. Here, mj represents the unit vector parallel to
the (bipolar) axis m∗j that minimizes the geodesic distance dg(mj ,n). Based on the above
definition, we can define a spherical Weiszfeld iteration that moves an initial estimator of
a particle normal n towards the median of neighboring point normal axes m∗j by

n′ =
∑
j∈J mj αj

‖
∑
j∈J mj αj‖

, αj = θ(‖pj − q‖)
dg(mj ,n) (5.28)

where θ localizes the median projection to point neighbors within a compact range as
before. Projecting the normal of each particle into the median of a set of point normals
mj produces the same computational effort as the LOP attraction term in Eq. (5.4).
We will therefore now introduce a fast continuous variant of the spherical Weiszfeld
algorithm, which corresponds to CLOP and operates on a spherical mixture distribution
of the unoriented point normals m∗j .

5.8.2 Spherical Mixture Distribution

Similar to how HEM reduces the input points to a mixture of continuous spatial distri-
butions, we reduce the set of estimated point normals mj to a set of wrapped normal
(WN) distributions, which can be thought of as normal distributions endlessly wrapped
around the unit circle [MJ09]. They give an approximate description of the Mises-Fisher
(vMF) distribution, which is a well established and exact model for a random variate
on S2. Nevertheless, considering a hierarchical clustering and doing calculus to obtain a
continuous formulation of a spherical Weiszfeld iteration, vMFs are hard to handle directly.
However, we can sufficiently simulate a vMF by rotating a one-dimensional wrapped
normal distribution Φ = (µ, ρ) around its mean µ on the unit sphere (Figure 5.9a). The
concentration parameter ρ defines the dispersion of the distribution and measures the
mean resultant length ρ = ‖

∑
j mj‖/n of a set of n unit vectors mj , increasing in value as

the dispersion decreases. ρ also relates to the variance of the standard normal distribution
by σ2 = −2 log ρ. In the following, we will use both ρ and σ2 in our derivations. The
pdf of Φ is given by

gw(x|Φ) = 1
σ
√

2π

∞∑
k=−∞

e−
1
2 (x−µ+2πk

σ
)2
. (5.29)

For reasonably concentrated distributions (variance bounded by 2π), the sum representing
the infinite wrapping of the distribution can be sufficiently approximated by the term

72

5.8. Robust Normal Computation in Mixtures

S2

(a)

n

s

sk

S2
s

αk

(b)

sk

tl
um

u

s t

n

n’

(c)

Figure 5.9: (a) Univariate WN distribution on the S2, creating a spherical normal
distribution by rotation. (b) Since both αk and µs are isotropic, their product µsk lies
on their common geodesic γs. (c) Weiszfeld step for nj defined by the weighted mean of
all µsk.

k = 0 ([MJ09] p. 50), which gives a standard normal distribution. Note that in Eq. (5.29),
µ and x represent angles on a great circle.

An ordinary HEM-like maximum-likelihood estimate of the set of Φs on the spherical
domain [BDGS05] is not sufficient for our needs, as it neglects the association of normals
mj to points pj required for the spatial localization kernel θ in Eq. (5.28). Therefore,
instead of computing a spherical mixture independent from the Gaussian point distribu-
tionsM, we assign a distinct WN Φs to each Gaussian Θs ∈M, and cluster them along
with the Gaussians during the HEM procedure described in Section 5.4, i.e., the normals
do not influence the computed responsibilities which determine the clustering. This leads
to a simple extension of the HEM clustering algorithm:

1. For each point pj , extend the initial mixtureM(0) by an initial WN distribution
Φ(0)
j = (mj , ρ

(0)), with ρ(0) = 1.

2. In the M-Step, update the MLE of Φs using the same spatial weights ris and w̄s
that cluster Θs.

We define the MLE updates for a next level WN Φ(l+1)
s by

µ(l+1)
s =

∑
i µ

(l)
i riswi

‖
∑
i µ

(l)
i riswi‖

(5.30)

[σ2
s]

(l+1) =
∑
i σ

2
i riswi∑
i riswi

− 2 log
(∥∥∥∥∥
∑
i µ

(l)
i riswi∑
i riswi

∥∥∥∥∥
)
, (5.31)

which is the spherically wrapped isotropic equivalent to the clustering of Gaussians in
Eq. (5.11). Since the log-argument in Eq. (5.31) is the mean resultant length ρ of WN

73

5. Continuous Locally Optimal Projection

means µ(l)
i , the complete second term gives the variance of these µ(l)

i . Thus, according to
Eq. (5.11), Eq. (5.31) defines the MLE of the variance [σ2

s]
(l+1) by the weighted sum of

level-l variances and the variance of the level-l means.

5.8.3 Continuous Spherical Weiszfeld in Mixtures

We will now show that the results for the continuous attraction F1 in Section 5.5 can
be directly applied to formulate a continuous spherical Weiszfeld (CSW) step. CLOP
defines the target position of an iteration step by a convex combination of expectations
E[Ω̂sk], where Ω̂sk are Gaussian weights defined in Eq. (5.18). On the unit sphere, those
weights are now accordingly defined by

Ω̂sk = ws gw(x|Φs) α̂k(x). (5.32)

where ws are the mixture coefficients ofM as before, gw is the (one-dimensional) pdf of
the WN distribution, and α̂k(x) is defined as in Eq. (5.17). The sought quantities µsk
and ωsk for computing E[Ω̂sk] can be obtained by wrapping the Euclidean arrangement
of the involved weights (Figure 5.5) onto the unit sphere (Figure 5.9). Although we
operate on the 2-dimensional domain S2, it is sufficient to evaluate these expectations
only along 1-dimensional geodesics, on which the wrapped normal distributions Φs are
defined. Due to the isotropic symmetry of the weighted Gaussian components gw and α̂k
in Eq. (5.32), the sought mean µsk always lies on the geodesic γs through the particle
normal n and the mean normal µs of the s-th mixture component (Figure 5.9b). This
allows us to evaluate µsk and ωsk using an angular parametrization on γs. This way, the
derived formulations for the mean and weight in Section 5.5 can be directly applied to
the 2-dimensional unit sphere setting d = 2:

Weight ωsk. The covariance sum Λsk defined in Eq. (5.20) now simplifies to an isotropic
bivariate matrix Λsk = λskI2 with diagonal entries λsk = σ2 + σ̂2

k h
2, and ωsk becomes

ωsk = ws ŵk σ̂
2
k h

2 λ−1
sk e

− 1
2
dg(µs,n)2

λsk . (5.33)

Mean µsk. Similar to the Euclidean case (5.22), we centralize the angular parametriza-
tion in the particle normal n. Then the relative mean of the product function Ω̂sk on γs
is defined by

dg(µsk,n) = σ̂2
k h

2 λ−1
sk dg(µs,n). (5.34)

Here we can use the same coefficients ŵk and σ̂k as in CLOP (Figure 5.6b). Since it
is not necessary to localize the median seeking of n on the unit sphere like LOP does
in Euclidean space, h can be safely relaxed to a conservative radius h = π. The actual
mean µsk can now be obtained by interpolating between µs and n on γs, i.e.,

µsk = µst+ n(1− t), (5.35)

74

5.9. Implementation

where Eq. (5.34) gives the interpolation factor

t = dg(µsk,n)
dg(µs,n) = σ̂2

k h
2

σ2 + σ̂2
k h

2 . (5.36)

Finally and analogously to the Euclidean case (5.19), the Weiszfeld iteration step is given
by the weighted sum of the resulting mean normals µsk, as illustrated in Figure 5.9c,

n′ =
∑
s

∑
k ωsk µsk

‖
∑
s

∑
k ωsk µsk‖

. (5.37)

5.9 Implementation
In order to achieve interactive reconstruction performance, we have used a screen-space
reconstruction technique performing rasterization-based GPU neighbor queries similar to
the methods developed throughout Chapter 3 and 4. All local kernel operations in the
main stages of the algorithm are executed by quad rasterization on the projected images
of the input point set P , the Gaussian component locations ofM, and the particle set
Q, which are all stored in screen-sized textures. The Gaussian mixture computation,
CLOP iterations, optional consecutive CSW (normal estimation) and final rendering
are performed in each individual frame based on the input points P projected to these
textures.

To obtain a more complete snapshot of the data for more thorough LOP computations, we
additionally extend the screen-space reconstruction approach from the previous chapters
by a straightforward A-buffering technique, which allows for a more memory-efficient
storage of the projected points in the screen. Instead of storing the front-most point
mapping to each pixel in one screen-sized texture, we subdivide the viewport into n× n
tiles of dimension w/n×h/n, where each tile represents a depth layer of reduced resolution.
When projecting the points to this texture in the initial step, we use the atomic-function
capabilities of current graphics hardware to concurrently fill the consecutive layers with
the points mapping to the same tile fragment. Since points that would be occluded in
a 1× 1 layout are now able to switch to another free pixel location, this allows storing
a higher number of points at the same texture space. In order to maintain a correct
addressing of all neighbors within a given radius of a point in this tiled layout, we modify
the query-splat rasterization such that one splat is emitted at the corresponding location
for each tile. We have found that in general, the reduced size of the tiles and the projected
query splats makes up in performance for the increased number of splats, and have used
tilings of n = 2− 3 in all our scenes.

For a full assessment of the performance of our system, we do not currently exploit
any frame-to-frame coherence. However, common temporal-coherence approaches could
accelerate our system even further [LXJF13]. Note that after normal estimation, we
simply orient the normals towards the camera when rendering the reconstructed point
cloud. Obtaining globally consistent normals would require global computations like
orientation propagation [HLZ+09], which are too expensive for an interactive setting.

75

5. Continuous Locally Optimal Projection

Timings
rel. to
WLOP
Frame

Lena Face Camel Garg. sm. Gargoyle
Model Lena Face Camel Garg. sm. Gargoyle
|P | 74K (74K) 84K (84K) 87K (87K) 77K (78K) 175K (302K)
|M| 5100 8100 7850 10K 32K
|Q| 3700 84K 72K 38K 107K
Iters 50 16 10 20 10
ms WLOP CLOP WLOP CLOP WLOP CLOP WLOP CLOP WLOP CLOP

Init 17 11 9 9 17 17 10 10 9 9
HEM 10 18 20 18 11
F1 161 19 837 77 379 33 423 54 981 167
F2 11 7 677 110 234 30 172 31 405 42

Total 189 47 1523 214 630 100 605 113 1395 229
SU F1 5.55 8.81 7.15 5.88 5.51
SU F2 1.57 6.15 7.80 5.55 9.64

SU Tot. 4.02 7.12 6.30 5.35 6.09

Figure 5.10: Model statistics and individual timings in ms. Speedups (SU) are given for
attraction (F1) and repulsion (F2) separately, as well as for the whole CLOP operator
compared to a corresponding WLOP GPU implementation. The top graphs give individual
timings of each processing stage normalized by the total WLOP time.

5.10 Evaluation and Results

5.10.1 Performance

All results in this chapter were produced on a PC with an Intel i7 4470K 3.5 GHz CPU
and NVIDIA GeForce GTX TITAN GPU. We used a framebuffer resolution of 1700×880
in all our performance tests. Fig. 5.10 summarizes statistics and performance measures
for the 5 tested models (Lena, Face, Camel, Gargoyle and small Gargoyle) and plots the
relative speedup of CLOP over WLOP. The given point set cardinalities |P | denote the

76

5.10. Evaluation and Results

(a) Input (b) WLOP (1523 ms) (c) CLOP (214 ms)

Figure 5.11: (a) Small-kernel splat reconstruction on the Face model showing heavy
registration errors. (b) After WLOP (16 iterations). (c) After CLOP with 10% Gaussian
components.

points left to operate on after A-buffer projection. The original number of input points is
given in parentheses. Note that since particle positions change over the CLOP iterations,
possible A-buffer overflows commonly slightly reduce the number of total particles that
finally remain for rendering. The listed particle counts |Q| therefore always denote the
average amount over all iterations. The performance numbers include individual timings
for creating the mixture model (HEM) and evaluating the continuous attraction compared
to the discrete attraction (F1), as well as the accelerated repulsion compared to the full
repulsion computation (F2). The Gargoyle and Camel point sets were generated with a
virtual scanning framework [BLN+13], using 16 to 18 individual scans. Its parameters
have been set to generate a realistic but relatively high level of noise and outliers. Details
on the used virtual-scanning parameters are given in Appendix A. All results were
produced with weighting enabled (WLOP vs. weighted CLOP) since it doesn’t incur
additional costs on either side. We observe an overall speedup of up to 7 times the WLOP
performance, while producing a practically indistinguishable reconstruction. Fig. 5.11
gives a visual comparison for the noisy face model, where CLOP outperforms WLOP by
a factor of 7. The results show that even when reconstructing the model with a large
number of particles (about the same as the input model), only a low number of Gaussians
(∼ 10%) are required to represent the input point cloud, leading to significant speedups
in the attraction evaluation (up to a factor of 9).

5.10.2 Reconstruction Quality

In this section, we analyze the reconstruction quality of our method in depth and evaluate
its accuracy against the original WLOP algorithm. To allow for an accurate evaluation
that is not biased due to the A-buffer based particle loss described above, we use an exact
reference implementation for all accuracy measurements. We will show that although our

77

5. Continuous Locally Optimal Projection

0

0.15

Er
ro

r (
%

 B
B

D
ia

g.
)

(a) Input (303K Points) (b) WLOP (h = 3.7) (c) CLOP l=6
α=2.1

0

0.24

Er
ro

r (
%

 B
B

D
ia

g.
)

(d) Input (155K Points) (e) WLOP (h = 4.2) (f) CLOP l=6
α=2.0

Figure 5.12: Reconstruction error on two noisy registered scans (a),(d). Heatmaps
compare the surface error between (b),(e) the WLOP and (c),(f) the CLOP reconstruction
(#particles = #points, 20 iterations). Kernel sizes h are given in % of the bounding-box
diagonal. For both cases, the detail lenses and the respective error distribution functions
(g),(h) demonstrate the superior accuracy of our method.

approach runs several times faster than its discrete counterpart, its continuous nature is
able to produce a reconstruction of comparable or even better accuracy.

Accuracy. We study the reconstruction error of CLOP vs. WLOP on two models
exhibiting different characteristics (Fig. 5.12). To provide exact reference models for
measurement, we used the virtual scanning framework by Berger et al. [BLN+13]. Both
models were resampled by 16 virtual scans exhibiting a moderate amount of additive
Gaussian noise. These were registered using locally weighted ICP [BR07] using a realistic
amount of rotational misalignment, which is a common source of outliers. Note that
we generated an additional smaller version of the Gargoyle for the performance tests
in Section 5.10.1 using the same scanner parameters, but with lower scanner resolution.
The left column in Figure 5.12 shows the resulting noisy input point clouds, the middle

78

5.10. Evaluation and Results
D

en
si

ty

Error (% BB Diag.)

Input
WLOP
CLOP

0.05 0.10 0.15 0.20

5

10

15

(a) Gargoyle error density
Error (% BB Diag.)

Input
WLOP
CLOP

0.05 0.10 0.15 0.20

2

5

8

10

12

(b) Daratech error density

Figure 5.13: WLOP and CLOP error distribution functions for the models in Fig. 5.12.

and right columns give the WLOP and CLOP reconstructions. Splat colors indicate
particle errors E(q) = 〈q − p,Np〉, measuring the distance of q to the tangent plane in
the nearest reference surface point p, with Np being its normal. Interestingly, the error
heat maps and detail lenses indicate a generally superior behavior of our method over
WLOP, especially at regions of high curvature. Only in few isolated regions like at the
Gargoyle’s ear, the clustering between very close-by misaligned scans leads to a slightly
higher error than using WLOP. Fig. 5.13 plots the error density functions (particle error
on abscissa vs. density on ordinate) of CLOP against WLOP and the input data for
both models. Both graphs show that CLOP produces more low-error particles and less
high-error particles than WLOP, thus providing an overall better reconstruction quality.

A detailed error analysis for different geometric cases is given in Figure 5.14. Here we
use a synthetic data set (Fig. 5.14a) designed to show varying levels of noise as well as
both sharp and smooth features. Figure 5.14b shows the WLOP reconstruction after 20
iterations. As expected, the error is maximal at the sharp edges. The presence of noise
in the data leads to a more noisy particle alignment, although only at a very subtle level.
However, even where the input data is noise-free, WLOP produces homogeneous regions
of error in the curved trenches of the function. This error is explained by particles being
repulsed in tangential direction instead of along the curvature of the surface, and is thus
less visible as the surface gets more planar. Figure 5.14c shows the corresponding CLOP
result at reasonable parameters. Compared to WLOP, we observe a clear reduction of the
error regions in both the flat trenches and the sharp edges, which is especially apparent
at the conic apex of the function. We suspect that CLOP’s overall better quality can be
attributed to the continuous attractive energies, which provide a smoother and thus more
robust description of the geometry than the singular attractive points used by WLOP.
This might positively affect the stability of the attractive particle movements against
the perturbing repulsion forces, and thus allow for a more controlled and overall better
optimization.

79

5. Continuous Locally Optimal Projection

0.35σ

0 σ = 0

σ = σmax

max

(a) Input (|P | = 500K) (b) WLOP

(c) CLOP α=2, |M | = 25K (d) CLOP α=3, |M | = 4700 (e) CLOP α=4, |M | = 1200

Figure 5.14: (a) Point sampling of a radially symmetric ripple function, containing sharp
edges of various angles, and exhibiting Gaussian noise increasing from 0 to σmax with the
angle of rotation. We compare the reconstruction error of (b) WLOP and (c)-(e) CLOP
at various α and mixture reductions. Heat map colors relate to error amplitudes. Note
that with a suggested α = 2, we are able to achieve an overall lower error than WLOP.

Effect of Clustering. As our method relies on a reduced representation of the input
data, i.e., a Gaussian mixture, we are interested in the effect of this reduction on
reconstruction quality, especially in the presence of high frequencies. We thus investigate
the reconstruction error for different levels of compression. Figure 5.14 (c) to (e) show
CLOP reconstructions at same kernel size and iteration count for increasing levels of
mixture compression (increasing α at 8 HEM levels). While for α = 2 we have observed
an improved accuracy over WLOP, the quality drops with successive levels of compression.
Figure 5.14e shows that choosing an extreme mixture compression still achieves moderate
reconstruction quality in noise-free regions, but breaks down for stronger noise levels,
leading to a corrupt reconstruction with large errors and irregularities in the particle
distribution (holes). The insets depict the Gaussians at a sharp edge and show that a
sufficiently strict HEM regularization (i.e., small α) produces almost no signal blurring.

80

5.10. Evaluation and Results

40 50 60 70 80 90 100

0.042

0.043

0.044

0.045

0.046

mixture compression in %

m
ea

n
er

ro
r (

%
 B

B
 d

ia
g.

)

1.8 2.2 2.6 3.0α
WLOP

(a) Gargoyle (Fig. 5.12)

mixture compression in %

WLOP: 0.0052

60 70 80 90 100
0.0034

0.0035

0.0036

0.0037

0.0038

0.0039

0.0040

0.0041

0.0042

(b) Ripple function (Fig. 5.14)

Figure 5.15: Mean error development with increasing mixture compression, given by
various values of α and 1− 9 levels. For each α, the marker lines indicate the level where
the additional compression falls below 2.5%. The dashed line gives the corresponding
WLOP error (above plot range in (b)).

The reduction of the Gaussian mixture is controlled by the regularization α and the
number of clustering levels. Figure 5.15 plots the actual compression rates (abscissa) for
the Gargoyle and the Ripple data set against the mean reconstruction error (ordinate, in %
of bounding box diagonal) for different values of α and HEM levels. The plots show that in
general, the mean error lies clearly below the WLOP error level for reasonable compression
rates, and only starts to increase at strong compressions, depending on the complexity of
the model: For the Gargoyle, this happens at 80%, while the ripple model, containing more
smooth and flat regions, can be compressed up to 94% without significantly increasing
the reconstruction error. We also see that for a given compression rate, lower values for α
require more HEM clustering levels to achieve the same compression, but for α . 2.2, also
bound the compression such that the region of rapidly increasing error is avoided. A lower
α also produces a lower error at a given mixture size due to a stronger regularization.
For these reasons, we recommend to use an α ≈ 2.0.

Number of HEM Levels. For a given α, we want to use enough HEM levels to achieve
sufficient compression, but also not waste performance on additional levels that do not
substantially reduce the mixture further. Figure 5.15 shows that different input models
exhibit different compression potential. To take this into account, we abort clustering
when the additional compression afforded by a level falls below a given threshold. The
markers at the abscissas indicate the final mixture compression for a threshold of 2.5%
additional compression.

Point Regularity. In all our experiments, the continuous formulation of the attractive
energies has shown to provide an improved sampling regularity of the resulting particles,

81

5. Continuous Locally Optimal Projection

mixture compression rate

10

σ

WLOP-3

40 50 60 70 80 90 100
2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8 1.8 2.2 2.6 3.0α

(a) (b)

Figure 5.16: (a) Sampling regularity σ of the Gargoyle model with increasing levels of
compression. (b) WLOP on a sub-sampled Gargoyle with same parameters and reduction
rate as in Fig. 5.12c.

which we measure by the variance σ of nearest neighbor distances [HLZ+09]. Figure 5.16a
plots σ for different α and 1 − 8 HEM levels for the Gargoyle from Figure 5.12c. In
contrast to the regularity achieved by WLOP (dashed line), the continuous attractive
energies allow for smoother particle movements, resulting in a notably lower σ up to a
critical point of compression (α = 3), where the smooth energy distribution cannot be
sufficiently described by the remaining Gaussians anymore. Note that this regularity
improvement is independent of the one achieved by interleaved repulsion (Section 5.7.2),
which we have activated for both the CLOP and WLOP evaluation.

Usable Amount of Particles. As shown by Lipman et al. [LCOLTE07], the original
LOP operator is problematic when using more particles for resampling than there are
points in the model. If a given kernel contains too few attractive points to sufficiently
describe a smooth energy density, particles tend to collapse into irregular clusters. A
larger kernel is able to dampen this effect, but also comes with a much stronger smoothing
of the resulting geometry. Therefore, the idea of accelerating WLOP by subsampling
the input point set also reduces the usable amount of particles. Fig. 5.12c shows the
CLOP reconstruction of the Gargoyle (303K input points, 303K particles) using 35K
Gaussians. Fig. 5.16b gives the WLOP result on the model after subsampling to 35K
points. Using the same particle count and kernel size as CLOP, the figure shows that
WLOP fails to obtain a sufficient sampling regularity for a faithful reconstruction. In
contrast, CLOP even allows for using much more particles than input points, and can
therefore also be used to upsample a point cloud. For example, based on a sparse sampling
of the Gargoyle model with 39.5K points (Fig. 5.17a), we used CLOP to project 198K
particles (500%) into its Gaussian mixture with 22K components, using a sufficiently
small kernel bandwidth (Fig. 5.17b). As shown in Fig. 5.17c, a similar upsampling with

82

5.10. Evaluation and Results

(a) Input (39.5K) (b) CLOP (198K) (c) WLOP (198K)

Figure 5.17: Sparse Gargoyle (a) upsampled to 500% of the input point count, (b) using
CLOP (h = 2.6), (c) using WLOP (h = 2.6 and 8.7). Lenses show splat distributions and
surface details for the input, CLOP upsampling, and large-kernel WLOP upsampling.
Kernel sizes h are given in % of the bounding box diagonal.

low bandwidth using WLOP leads to particle collapses (left side), while a sufficiently
larger bandwidth destroys salient features (right side).

Robust Normals. Finally, we investigate the effect of different CSW kernel sizes
on the resulting alignment of the splat normals (Section 5.8.3). A common normal
computation method is local tangent plane fitting using PCA [HDD+92], which is quick
enough to be suitable for online reconstruction, as shown in Chapter 4, but suffers from
typical smoothing artifacts. Figure 5.18a shows the CLOP result of the Daratech data
set from Figure 5.12f with PCA normals, where the surface colors encode corresponding
splat normals. Note the rounding of the model’s sharp edges. Figure 5.18b illustrates
the result after applying 13 continuous spherical Weiszfeld iterations on the normals
associated with the points resulting from CLOP, where |M| = 17.8% of the input point
cloud. We used a manually tuned kernel of 1.1% of the BB diagonal, which optimally
reconstructs the fine bracings at the model’s front and backside. In contrast, a kernel of
twice this size flattens subtle features, but also robustly aligns splats on more significant
edges more faithfully (Figure 5.18c). Figure 5.18d shows details of the model for various
levels of compression (α = {1.5, 2.0, 2.5}, 5 levels). As in spatial Continuous LOP, an
increasing mixture compression leads to a successive reduction in quality. An optimal
screen-space reconstruction of the Daratech model with 155K points (135K after screen-
space projection) requires 124 ms for CLOP + 56 ms for CSW (with kernel size h = 1.1%
for both passes). Figure 5.19 shows a robust online normal alignment of a Kinect stream
using CSW.

83

5. Continuous Locally Optimal Projection

(a) PCA normals (b) CSW (h = 1.1) (c) CSW (h = 2.2)

(d) Quality of normals with increasing mixture compression (h = 1.1)

Figure 5.18: CSW on the Daratech model. (a) Splat normals using local PCA, (b) and
(c) CSW normals with different kernel sizes. (d) Quality reduction of the normals using
increasing compression of the spherical mixture (given in % of input model size).

5.11 Limitations

Like its discrete variants, CLOP is a kernel-based operator, and therefore inherits their
kernel-related characteristics: larger bandwidths are required in cases of stronger noise,
which then leads to stronger smoothing. Since CLOP exploits the fact that dense regions
of low curvature can be compressed to very few Gaussians without significant loss of
geometric information, the compression potential, and thus the achievable speedup, is
always bound by the geometrical complexity of the input data (see Figure 5.15). As
discussed in Section 5.4.3, the choice of the regularization term α is a trade-off between
clustering efficiency and reconstruction quality. In order to maintain high accuracy,
there is a bound on suitable values for the regularization term α, and thus also on the
achievable clustering speed. However, the resulting quality also depends on a proper
mixture initialization bandwidth as mentioned in Section 5.4.3. The initializing kernel
radius r has to be large enough (above noise level) to give the initial Gaussians proper
orientation, but should be small enough to prevent from blurring the data in the first
place. Currently, we use a density-adaptive radius r, which showed satisfactory results.
However, in input data of strongly varying noise, a more flexible, locally noise-aware
initialization could probably produce an even better reconstruction quality.

84

5.12. Summary

Figure 5.19: Screen capture during online reconstruction of a Kinect stream (left). L2-
based splat reconstruction (middle) results in typical smoothing artifacts, while our
robust CSW normal reconstruction (right) faithfully reconstructs sharp features.

5.12 Summary
We have introduced a robust probabilistic point-set resampling and denoising technique
that applies the robust Weighted LOP operator to a continuous representation of a point
cloud. We showed how to regularize the hierarchical EM algorithm to cluster a point
set to a Gaussian mixture in a geometry-preserving manner, and derived an analytic
formulation of LOP’s attraction forces for this much more compact representation. This
way, our method runs several time faster than the original discrete variant, while being
able to produce comparable or even superior accuracy for reasonable regularization terms
(α ≈ 2). Furthermore, CLOP provides an overall better sampling regularity, does not
put constraints on the number of resampling particles (unlike subsampling approaches
based on discrete LOP), and is even capable of point-cloud upsampling. Finally, we have
also shown that our continuous formulation can be applied to the spherical domain for
efficient robust feature-preserving normal estimation.

85

And so it is
Just like you said it should be.

— Damien Rice

CHAPTER 6
Gaussian Kernel-Product

Surfaces

Kernel-Product Surface
Gaussian
Mixture

Covariance
Mesh

Point Cloud
(6.9 MB)(386 MB)

Figure 6.1: A probabilistic surface reconstruction pipeline. Based on a sparse Gaussian
mixture modeling the input points’ probability distribution, we define a C∞-smooth
surface using a novel interpolation strategy of its individual triangulated Gaussians.

89

6. Gaussian Kernel-Product Surfaces

POINT CLOUD PROCESSING

RENDERING

SURFACE
RECON-

STRUCTION
PROBABILITY
MODEL

Polygon
Rasterization

Interpolation

Implicit Surface

Implicit Approximation

Discretization
Ray Casting

Real Object

Acquisition /
Registration

Splatting

Point Splats

Coverage
Estimation

Parametric Surface

TessellationParametric
Approx.

Polygon Mesh

Model Fitting

Parametric Model

Interpolation

Point Cloud

Normal
Computation

Denoising
Filtering

Resampling

Figure 6.2: We introduce a new processing path for surface reconstruction, that first
interpolates the components of a probabilistic model of the data to reconstruct its
topological structure as a mesh, and then defines a parametric surface using a new
interpolation method that incorporates the probabilistic information given by the model.

6.1 Introduction

In the previous chapter, we have seen that sparse probabilistic models like Gaussian
mixtures offer many computational advantages for the processing of 3d point data: They
are able to describe the spatial distribution of a point set in a compact, highly memory-
efficient way, can naturally encode the uncertainty that is inherent to the data due to
noise and imperfect sampling, and raise the potential to improve both the efficiency and
accuracy of point-based operators when transferred to the continuous domain. However,
up to the present, sparse Gaussian mixture models have mostly served as intermediate
representations during the reconstruction process and have not been further used in the
representation of the final surface. In this chapter, we therefore investigate methods for
defining a smooth surface, accurately representing the shape given by the original point
samples, solely based on such a sparse Gaussian mixture. To this end, we develop a new
probabilistic technique that allows for efficiently reconstructing and representing large
models using only a sparse set of Gaussians, which significantly reduces the required
memory footprint and reconstruction time.

Previous probabilistic methods mostly tried to extract the extremal surface that is given
by the ridge contour of the pdf of a dense mixture. These methods, however, break down
at increasing mixture compression rates, where this ridge degenerates, and are thus unfit

90

6.2. Motivation and Overview

to exploit the simplification power of Gaussian mixture models for defining continuous
surfaces. In contrast, we obtain a parametric approximation of these probability ridges
using a new kernel-product interpolation that is defined over a direct triangulation of the
individual Gaussians components. This constitutes a new probabilistic reconstruction
pipeline as shown in Figure 6.2. The resulting surface closely resembles the probability
density ridge of its mixture pdf, while at the same time ensuring continuous surfaces
even for strongly simplified mixtures. This allows for an efficient surface reconstruction
from strongly compressed mixtures, reducing the memory storage footprint of a model
by over 98% while achieving accuracy levels comparable to Screened Poisson surfaces at
significantly lower reconstruction times. Moreover, in contrast to many existing methods,
this technique does not depend on the availability of consistently oriented normals, thus
providing increased robustness for non-orientable, noisy or deficiently sampled models.

The main technical contributions of this chapter are

• a new interpolation method for anisotropic Gaussians, using interpolation coefficients
that act on the powers of their pdfs and thereby define a surface along their Gaussian
product means,

• a new probabilistic triangulation of Gaussians that respects the anisotropy of their
kernels and outputs a covariance mesh, and

• an approach to implement this interpolation in the construction of a parametric
pseudo-manifold that is based on this covariance mesh, resulting in a consistent
probabilistic surface.

6.2 Motivation and Overview
Let P be a set of discrete points sampled from a surface S∗ (potentially with noise), and
M = {Θi} a mixture of weighted, multivariate anisotropic Gaussians Θi = (wi, µi,Σi)
computed from P and modeling the probability distribution of its points by an associated
probability density function (pdf)

fM(x) =
∑
i

wif(x|Θi), (6.1)

with µi denoting the mean, Σi the covariance, wi the weight, and

f(x|Θi) = |2πΣi|−
1
2 e−

1
2 (x−µi)TΣ−1

i (x−µi) (6.2)

the Gaussian pdf of the i-th mixture component. Our principal aim is to find a continuous,
smooth surface S that faithfully resembles the shape of the original surface S∗ solely
based on the probabilistic representationM. An optimal reconstruction with respect
to the probability density of M is one that places the surface S along the ridge of
the pdf landscape fM, as depicted in Figure 6.3a. Various methods exist that extract

91

6. Gaussian Kernel-Product Surfaces

KDE Kernel

(a) 108 points (b) ridge (108 Gaussians)

(c) ridge (12 Gaussians) (d) KPS (12 Gaussians)

Figure 6.3: (a) Surface contour (dashed white) sampled with normal distributed noise
(σ = 1.6% of the shape diagonal). Convolving the Dirac distribution of the samples with
a Gaussian kernel (σ = 3.2%) results in a kernel density estimate (KDE) of their pdf
(blue height field). Note that the ground-truth contour runs closely along the ridge of this
pdf, where the density is maximial. (b) The actual ridge contour contains spurious ridges
(red), and discontinuities at highly curved features (black). (c) A maximum-likelihood
simplification of the pdf to fewer anisotropic Gaussians generally smoothes the ridge
contour, but reinforces discontinuities and the appearance of spurious ridges. (d) A
topology-aware kernel-product interpolation of the simplified Gaussians in (c).

this ridge by finding local maxima in the pdf along trajectories that are given by the
smallest negative eigenvector of its Hessian [OE11, SG07, LLP+10]. However, as shown
in Figure 6.3b, general Gaussian mixture pdfs can exhibit discontinuities in the smallest
Hessian eigenvector field, resulting in discontinuous ridge structures (black lines) and
the occurrence of secondary, spurious ridges (red lines), which have to be dealt with.
Moreover, a maximum likelihood simplification of a dense input mixture to fewer, larger
Gaussians of higher anisotropy expectedly smooths the ridge contour, but increases the
appearance of discontinuities and spurious ridges (Figure 6.3c). This behavior opposes
our intention to exploit the power of Gaussian Mixtures to model the distribution of a
large number of input samples in a sparse, efficient way at minimal information loss.

92

6.2. Motivation and Overview

Point Cloud (2M) Gaussian Mixture (12K)

Covariance MeshSmooth Surface

Hierarchical EM

Probabilistic
Triangulation

Gaussian
Kernel-Product
Interpolation

Figure 6.4: Overview of our probabilistic reconstruction pipeline. A noisy point cloud
is first converted into a sparse Gaussian mixture. Its anisotropic Gaussians are then
triangulated based on a probabilistic similarity measure. From the resulting covariance
mesh, a smooth surface can be constructed using a new Gaussian interpolation scheme.

In this chapter, we therefore introduce a probabilistic approach, outlined in Figure 6.4,
that works on already compressed, sparse mixtures. As described in the previous
chapter, these can be quickly computed from given input point sets using hierarchical EM
clustering (Section 6.3). Instead of trying to reconstruct an implicit or extremal surface
directly from the mixture pdf, we first explicitly determine its topological structure by
computing a triangulation of the individual Gaussian components, driven by a probabilistic
measure of closeness (Section 6.4). This results in a covariance mesh, allowing us to
construct a smooth surface by applying a novel interpolation of neighboring Gaussian
kernels (Section 6.5). We thereby shift the task of finding a continuous surface structure in
the pdf landscape to the much more tractable problem of finding a manifold triangulation
of sparse anisotropic Gaussians. The resulting kernel-product surface (KPS) mimics
the shape of the probability ridges while ensuring continuous and artifact-free contours
(see Figure 6.3d and 6.5). Our evaluations show that our method competes in accuracy

93

6. Gaussian Kernel-Product Surfaces

(a) Ridge Surface [SG07] (b) Kernel-Product Surface

Figure 6.5: Defects of ridge surfaces (a) in high-curvature regions, where a tip collapses
to one sheet (green) or a spurious ridge merges with the main ridge (red). (b) Robust
surface definition provided by our method.

with non-probabilistic reconstruction methods, while both significantly speeding up the
reconstruction process and drastically reducing the memory footprint for representing
surfaces (Section 6.6).

6.3 Gaussian Mixture Computation
The input to our reconstruction pipeline is an unordered noisy point cloud P = {pi}.
It is important to note that our approach does not require the availability or explicit
precomputation of per-point normals. In the first step, P is converted to a sparse
mixture of anisotropic GaussiansM = {Θs} using the geometrically regularized variant of
hierarchical expectation maximization (HEM) that has been developed in Chapter 5. HEM
starts with a dense base mixture (Figure 6.6a), containing one initial Gaussian component
per input point, and then hierarchically reduces the number of components by merging
close Gaussians in the maximum-likelihood sense. With each consecutive clustering step,
the Gaussians’ covariance matrices thereby become increasingly anisotropic, such that
the plane spanned by their two larger eigenvectors more and more approximates the local
balancing plane of the surface (Figure 6.6b and 6.6c). To avoid a too strong degeneration
of geometric features modeled by the mixture, we use the same regularization threshold α
as introduced in Section 5.4.3, which prevents the clustering of Gaussians that exceed
a certain Kullback-Leibler divergence. A larger α allows merging more distant and
dissimilarly oriented Gaussians and thus achieves a stronger compression of the mixture.
For the models in this chapter, we used values between 1.5 and 2.5. See Section 5.4 and
Appendix B for a detailed review of the α-regularized HEM algorithm.

Except for strongly displaced outliers, any Gaussians representing noisy points should
be merged during the clustering process in order to obtain a noise-free mixture for a
subsequent robust triangulation. However, enlarging α in this regard can have the side

94

6.4. Probabilistic Triangulation of Gaussians

(a) base mixture (2M) (b) HEM level 3 (74K) (c) HEM level 10 (8K)

Figure 6.6: Hierarchical EM on the noisy dragon point cloud. (a) The points (detail
lens) are converted into small isotropic Gaussians, which are iteratively clustered in the
maximum-likelihood sense, thereby successively gaining anisotropy (b and c).

effect of producing a too strong compression and global degeneration of features. Therefore,
we instead adapt the initial standard deviation σ0 of the base mixture Gaussians to the
local noise level (denoted by σn) in order to provide sufficiently overlapping kernels that
ensure merging even for small, constrained α thresholds (Fig. 6.6a). In Figure 6.3a we
chose σ0 = 2σn for initializing the 108 Gaussian kernels of the base mixture. After HEM
compression, we obtain a noise-free chain of only 12 anisotropic Gaussians, which allows
a faithful connectivity determination and subsequent curve reconstruction (Figure 6.3d).
In case of strong noise, prefiltering the points additionally reduces the Gaussians’ initial
dislocation, which allows for even smaller σ0 and consequently produces a sharper
reconstruction. For example, the Gaussian means of the dragon tail in Figure 6.6a have
been initialized to the weighted mean of surrounding points using a Gaussian weight
kernel of 1.6σn, allowing for initial kernels of σ0 = 0.8σn to be faithfully merged in the
following HEM levels (Fig. 6.6b and 6.6c).

6.4 Probabilistic Triangulation of Gaussians
Our surface is defined over a manifold triangulation of the individual components of a
Gaussian mixtureM. In this section, we therefore introduce a simple yet efficient way to
produce such a triangulation by respecting the probabilistic properties of the Gaussian
components. We call the resulting triangulation a covariance mesh, as it stores both the
means µi and the covariances Σi of the mixture in its vertices.

An ordinary Delaunay-based triangulation, as used for simple point sets, is obviously
unsuitable for our purpose, as the anisotropic extent of the individual Gaussian kernels
calls for different metrics for the assessment of local distance relations. One way is to
approach this problem as a general Delaunay triangulation on a Riemannian manifold,
whose local metric is stretched according to the Gaussians’ covariance tensors [RLWB16,
BLdG+16]. However, such strategies lead to volume meshes, from which the extraction

95

6. Gaussian Kernel-Product Surfaces

0.24

0.26

0.100.07

(a)
(b)

Figure 6.7: (a) Thin sheets modeled by 4 anisotropic Gaussians. Black dots indicate
their means, ellipses their unit-variance isocontours. Simple distance-based criteria fail
to express their topological connectivity. We therefore measure the overlap of their
probability extent (numbers over red arrows). (b) Faithful triangulation of a cuboid
mixture, where the distribution of Gaussian means does not meet the sampling criterion.

of a surface structure relies on input sampling guarantees we cannot provide in practice,
and ends up being even harder than the triangulation problem itself [ACK01]. Therefore,
instead of resorting solely to such geometric interpretations of the mixture model, we use
a triangulation approach that makes use of the probabilistic information encoded in the
Gaussians.

Greedy triangulation. Our method is based on a simple greedy front-growing tri-
angulation of point sets [CSD04], which starts with an initial seed triangle and then
iteratively advances its edge front by adding the next connected triangle ∆ijk that is
optimal with respect to a certain plausibility grade P (∆ijk). For point sets, Cohen-Steiner
and Da [CSD04] measure this grade of a candidate triangle geometrically by the reciprocal
radius of the smallest empty circumsphere. To avoid the appearance of slivers, where a
triangle is added in a way that creates a fold, a negative plausibility grade is assigned if
the dihedral angle βijk between an existing triangle and its connected candidate ∆ijk

falls below a certain threshold βmin.

Probabilistic plausibility grading. For triangulating a set of anisotropic Gaussians
describing the probability distribution of surface points, a Delaunay-based criterion is
unsuitable, as the mere Euclidean distance between Gaussians is inconclusive about
their topological connectivity. Figure 6.7a demonstrates this on the example of two thin
density sheets, represented by 4 Gaussians. While two horizontally aligned Gaussians can
have a larger distance between their means, they are still more plausible to be connected,
since their individual probability distributions partially model the same region of the
surface, i.e., they overlap to a considerable degree. Our intuition therefore is to use a

96

6.4. Probabilistic Triangulation of Gaussians

grading that assesses exactly this overlap of their probability distributions. To this end,
we use the Bhattacharyya coefficient [Kai67]

BCij =
∫
R3

√
f(x|Θi) f(x|Θj) dx (6.3)

between two Gaussians Θi and Θj as fundamental connectivity measure in our system.
This coefficient quantifies the amount of overlap between two statistical populations, has
a closed form expression for Gaussians,

BCij = |Σ̃|−
1
2 |ΣiΣj

∣∣ 1
4 e−

1
8 (µi−µj)T Σ̃−1(µi−µj) (6.4)

with Σ̃ = (Σi + Σj)/2, and has a tractable range 0 < BC ≤ 1, where 1 indicates maximal
overlap in case of coinciding distributions. The Bhattacharyya coefficients shown for pairs
of Gaussians in Figure 6.7a indicate that they provide a robust measure of topological
closeness even for difficult configurations like these thin sheets.

To grade the plausibility of a triangle connecting three Gaussians Ωi, Ωj and Ωk, we
request each respective pair of Gaussians to provide sufficient mutual overlap. We thus
measure their probabilistic plausibility by

Pprob(∆ijk) = BCij ·BCjk ·BCik. (6.5)

However, in addition to this probabilistic grade, we still need to incorporate a geometric
regularization to avoid the appearance of slivers in the resulting triangulation. Therefore,
we adopt the dihedral angle threshold βmin from Cohen-Steiner and Da. Moreover, our
intuition is that at similar probability overlaps, the candidate triangle with the larger
dihedral angle is more plausible to provide a good triangulation. Therefore, we add a
geometric weight

Pβ(∆ijk) = βijk/π (6.6)

based on the smallest dihedral angle βijk between ∆ijk and its neighboring triangles.
Our final plausibility grade is thus given by

P (∆ijk) =
{
Pprob(∆ijk) · Pβ(∆ijk) βijk < βmin

−βijk else
(6.7)

Figure 6.7b shows the inside of a triangulated mixture representing a thin cuboid, where
the average distance between neighboring Gaussians lies above the distance between its
upper and lower faces. Next, we will use the resulting triangulation of the Gaussian
components to define a smooth surface based on a new interpolation formulation.

97

6. Gaussian Kernel-Product Surfaces

6.5 Kernel-Product Surfaces

6.5.1 Gaussian Kernel-Product Interpolation

We now develop the interpolation formulation that lies at the heart of our probabilistic
surface definition. Let us first look at the basic example of two topologically connected
Gaussians Θi and Θj , shown in black in Figure 6.8a. Our aim is to find a smooth contour
connecting their means along a continuous path of highest possible probability density.
While the ridge of the pdf (blue contour) would have maximum density along its path, it
has problems to meet the continuity requirement, especially close to where the Gaussians
overlap. Therefore, we need a curve formulation that closely approximates the ridge
where possible, but provides a closed path, specifically in the Gaussian kernel overlap
region, where the continuity of the ridge contour tends to break down. To find such a
curve, we employ the Gaussian’s joint distribution, which is given by the product of their
individual probability distributions,

f(x|Θij) = w−1
ij f(x|Θi) f(x|Θj) (6.8)

and results in the weighted pdf of another Gaussian Θij (red dashed). Here, the weight
factor wij =

∫
Rd f(x|Θi)f(x|Θj) dx indicates that the product of the two pdfs is generally

not a normalized pdf that integrates to 1. The expected value µij of this product Gaussian
represents the point that is most likely to be part of both distributions and can therefore
be interpreted as the surface point upon which both Gaussians agree the most. As shown
in Figure 6.8a, this product expectation gives a robust and suitable prediction for a
surface point even if the ridge contour exhibits a discontinuity.

In order to exploit this quality of the Gaussian kernel product for obtaining a complete
interpolating contour, we can now modify the statistical certainty of a Gaussian factor
distribution by modifying the power of its generalized pdf f(x|Θi)p. Increasing p causes
a downscaling of its covariance matrix Σi by 1/p, which results in a tighter distribution,
increasing the statistical certainty of the Gaussian. In contrast, reducing p upscales its
covariance, resulting in a larger distribution of reduced certainty.

Figure 6.8b shows the same configuration of Gaussians as before, but with different
powers applied to their pdfs, thus modifying the extent of their probability distributions.
As demonstrated by the figure, the kernel product tends to shift towards the Gaussian
with the smaller kernel (higher power), and away from the Gaussian with the larger
kernel (lower power). In the extremal case, where the power of the first Gaussian
approaches zero (infinite covariance), its resulting pdf is a flat function, and the product
becomes equal to the second Gaussian. This behavior suggests that we can formulate a
continuous interpolation of the Gaussian centroids by relaxing one kernel while tightening
the other. To this end, we introduce an interpolation variable that modifies the power of
the individual Gaussian pdfs:

f(x|Θij,t) = w−1
ij f(x|Θi)1−t f(x|Θj)t t ∈ [0, 1]. (6.9)

98

6.5. Kernel-Product Surfaces

θi

θj

θij

(a)

θij

θij
‚‚

‚

(b)

cij

µi

µj

µij

µij

µij

‚‚

‚

(c)

Figure 6.8: (a) Two Gaussians Θi and Θj and their common product Gaussian Θij . Dots
indicate their means, the ellipses the unit-variance isocontours of their kernels. The blue
lines represent the ridge of the pdf of the mixture {Θi,Θj}, exhibiting a discontinuity
near their pdf overlap. (b) Movement of the product at double (resp. half) the covariance
matrix of Θi (resp. Θj) (upper image) and vice versa (lower image). (c) Resulting
contour cij from continuous kernel-product interpolation.

The final interpolating contour is now obtained by tracing the expectation of the variable
product Gaussian Θij,t, i.e., its mean

cij(t) = E[x|Θij,t] =
∫
Rd

x f(x|Θij,t) dx

= (t Σ−1
j + (1− t)Σ−1

i)−1(t Σ−1
j µj + (1− t)Σ−1

i µi)
(6.10)

which results in a rational parametric curve, shown in red in Figure 6.8c. A detailed
derivation of a generalized form of Eq. (6.10), which we will use later in this chapter, is
given in Appendix C. The resulting curve has several interesting properties, which we
will discuss in the following.

Smoothness. In general, the smoothness of the curve is controlled by the ratio of
the eigenvalues of the covariance matrices, i.e., their degree of anisotropy. Figure 6.9a
illustrates this feature by successively reducing the anisotropic extent of the Gaussians
from Figure 6.8a (dashed). With decreasing anisotropy of the kernels, the resulting
contour c′ij becomes smoother (red). In the extreme case, where both Gaussians are
isotropic, the resulting curve c′′ij reduces to a straight line (blue). This behavior also
lets the kernel-product contour intuitively reflect the level of uncertainty encoded in the
Gaussian covariances. In a sparse mixture representing a noisy point set, stronger noise
will result in a larger surface-orthogonal variance of the Gaussian kernels, resulting in
reduced anisotropy and smoother contours (Figure 6.9b). In contrast, a low level of noise
will create thinner, more anisotropic Gaussians, allowing for sharper features and an

99

6. Gaussian Kernel-Product Surfaces

cij

cij
‚

‚‚cij

(a)

cij

cij
‚

(b)

cijcij

‚

(c)

Figure 6.9: Influence of the shape of Gaussian kernels on their kernel-product contour cij .
(a) Successively reducing their tangential variance straightens out the curve up to the
point where cij is a straight line. (b) Increasing the surface-orthogonal variance produces
smoother contours as well, while (c) reducing the variance results in sharper features.

overall more precise reconstruction (Fig. 6.9c). These observations suggest that we can
control the smoothness of the reconstruction by reducing the amount of anisotropy in
the kernels, as can be achieved by convolving the mixture with an isotropic Gaussian
smoothing kernel (Gaussian blurring). Finally, we note that applying a common scale
factor to the kernels Σi and Σj will not affect the curve, as this factor will cancel out in
Eq. (6.10).

Weightlessness. While the Gaussian weights wi affect the additive definition of the
mixture pdf (6.1) and are thus crucial for the HEM computation, the expectation in
Eq. (6.10) and thus the resulting kernel-product contour is defined solely over Gaussian
product pdfs f(x|Θij,t) and is therefore agnostic to any component weight wi, wj ,
or product weight wij . For the purpose of defining a smooth kernel-product surface,
covariance meshes therefore only have to store the Gaussian covariances in their vertices,
while the original mixture weights can be dropped.

Continuity. The kernel-product contour defined in Eq. (6.10) interpolates the Gaussian
means, i.e. cij(0) = µi and cij(1) = µj , thus for two curves cij and cjk meeting in a
common Gaussian Θj , C0-continuity is provided. However, they will generally not be
tangent-continuous, which becomes more apparent after reformulating Eq. (6.10) to

cij(t) = µi + Λ(t)−1(µj − µi), (6.11)

where Λ(t) = I + (t−1 − 1)Σ−1
i Σj , and noting that its derivative dcij/dt always depends

on both means µi and µj for t→ 0 and t→ 1. Therefore, in the next section we will show
how to define C∞-smooth surfaces by seamlessly blending elementary kernel-product
surface patches.

100

6.5. Kernel-Product Surfaces

Si

θi
θj

θk ∩

Si

Si
i

Figure 6.10: 3 Gaussians define a simple kernel-product surface patch Si, which however
only provides C0 continuity to its neighboring patches.

6.5.2 Constructing Manifold Surfaces

The basic interpolation formulation developed in the previous section can now be extended
to create smooth two-dimensional surfaces by incorporating 3 or more Gaussians for
which a two-dimensional parametrization can be defined. Adding a third Gaussian factor
to the kernel-product formulation in Eq. (6.9) already gives us a simple 3d product
Gaussian with pdf

f(x|Θijk,s,t) = w−1
ijk f(x|Θi)(1−s−t) f(x|Θj)s f(x|Θk)t, (6.12)

whose expectation E[x|Θijk,s,t] forms a rational kernel-product surface patch parametrized
by barycentric coordinates (s, t). However, due to the tangent discontinuity property
discussed before, such a piecewise continuous parametrization of individual triangles only
results in a piecewise smooth surface, as shown in Figure 6.10. On the other hand, a
suitable globally continuous parametrization is hard to obtain for meshes of arbitrary
topological complexity. Therefore, we construct a parametric pseudo-manifold (PPM)
[GH95, SXG+09], which allows defining a C∞-continuous two-dimensional surface by
seamlessly blending individual overlapping kernel-product surface patches.

PPM construction. A blueprint for the construction of a PPM is shown in Figure
6.11a. For each vertex Θi of a covariance triangle mesh, we create a local planar
parametrization Ωi ⊂ R2 (called chart) over its umbrella Ui of one-ring triangles. Each
pair of neighboring charts Ωi, Ωj overlaps at their two common triangles Uij = Ui ∩
Uj (shaded orange). In this overlap region, we establish a transition map τij from
points x ∈ Ωij ⊂ Ωi to points x′ ∈ Ωji ⊂ Ωj , which enables us to move continuously
between the individual parametric spaces. If τij satisfies τij = τ−1

ji (bijectivity) and
x = (τki ◦ τjk ◦ τij)(x) (cocycle condition), Grimm and Hughes [GH95] show that the set
of charts Ωi and transition maps τij alone are sufficient to define a manifold M .

Similar to Siqueira et al. [SXG+09], we set up the chart Ωi of a vertex with valence m
such that the parameter coordinates of its associated source vertex i lie in the origin,
and its one-ring neighbors j, k, l ... form a regular m-polygon inscribed in the unit circle
centered at i. The neighbors are thereby arranged in counterclockwise order starting
at angle 0, i.e., the n-th neighbor is located at (cosαn, sinαn), with angle αn = 2πn/m.

101

6. Gaussian Kernel-Product Surfaces

ξj

τijθi
θj

gM(x)
gi(x)

ξi

Si Sj

M

S
M

ΣPOU

j

k

x

Ωi

h

i´
k´Ωj

j´

´

h´

x

gjgi

 T
op

ol
og

y
G

eo
m

et
ry

(a)

(b)
x́

i

Figure 6.11: (a) A PPM M parametrizes the topological structure of a given covariance
mesh using a set of local planar parametric charts Ωi and a set of transition maps τij
allowing a continuous movement between the individual charts within their common
domain (orange). (b) M is given continuous geometry by defining over each chart a
local parametric surface patch Si and a localizing weight ξi which compose the patches
together to a complete surface SM by partition of unity.

Since umbrellas of different valence disallow a simple congruent mapping of their common
overlap region, the transition map τij performs an angular distortion on both triangles
∆ijk ⊂ Ωi and ∆j′k′i′ ⊂ Ωj to bring them into common equilateral form where the
transition between coordinate frames can occur. To this end, τij is composed of several
atomic transformations:

τij = R−1
ji ◦ ϕ

−1
j ◦ ρ ◦ ϕi ◦Rij . (6.13)

First, a rotation Rij is applied to the triangle ∆ijk ⊂ Ωi, such that the neighbor vertex
j associated with the transition target is aligned with the x-axis at angle 0. Given the
polar form (θ, r) of any point x ∈ ∆ijk, we can then perform an angular stretching

ϕi(θ, r) = (θ ·m/6, r · cos(π/6)/ cos(π/m)) (6.14)

which transforms this triangle into equilateral form. Now we are able to apply a congruent
map ρ(x) = (1− x1,−x2) to reflect the coordinates of x = (x1, x2) to its corresponding
equilateral location in the chart of the neighbor j. Finally, the transition triangle in Ωj

is transformed back to its original shape ∆j′k′i′ using the inverse stretching ϕ−1
j , and

102

6.5. Kernel-Product Surfaces

rotated to its original angle using R−1
ji . Note that since the cocycle condition requires the

counterclockwise ordering of the neighbors k′, i′, h′ in Ωj to be inverse to the ordering of
h, j, k in Ωi, the actual change of coordinates by ρ represents both a horizontal reflection
(from i to j along the x-axis) and a vertical reflection, flipping the overlapping double
triangles upside down to be in correct order and position when rotated back in Ωj .

Adding geometry. The PPM constructed above solely defines the topological structure
of the manifoldM , i.e., a mapping between the charts. To define the geometry of a surface
parametrized by this PPM, we can now equip its individual charts with an associated
geometry function gi : Ωi 7→ R3, defining a local surface patch Si, and a locally supported
weight function ξi, defining for each parametric point x ∈ Ωi the contribution of gi(x) to
the final manifold surface SM . Any point x of the i-th chart can then be mapped to its
final surface point gM,i(x) by collecting the contributions from overlapping neighboring
charts Ωj via the transition maps τij and blending their surface patches together as
partitions of unity (Fig. 6.11b). The final surface point is thus defined as

gM,i(x) =
∑

j∈T (x)
ωij(x) gj(τij(x)) (6.15)

where ωij are convex combinations of the weight functions ξj with overlapping support,

ωij(x) = ξj(‖τij(x)‖)∑
j′∈T (x) ξj′(‖τij′(x)‖) , (6.16)

T (x) is the index set of patches overlapping at x, i.e., the vertices of the surrounding
triangle, and we presume that τii = id.

Weight function. The weight ξi is a compactly supported, radially symmetric and
smoothly decaying function centered in the origin of the chart Ωi. Note that in order to
achieve a seamless blending of neighboring charts, its support must not exceed the radius
r = cos(π/m) of the circle inscribed to the m-sided one-ring polygon (dashed circles in
Fig. 6.11a). We adopt the weight from Siqueira et al. [SXG+09], which is given by

ξ(t) =

1 t ≤ δ
0 t ≥ r
1/(1 + e2 s) δ < t < r

(6.17)

where

s = (1− h)−
1
2 − h−

1
2 and h = (t− δ)/(r − δ).

This function is C∞-smooth, thus allowing for a seamless blending of surface patches
without constraining the continuity order of the resulting surface. The constant δ specifies
the offset of the blending range and is set to r/5 in all our examples. Fig. 6.12a illustrates
the curve and its ranges, where, by definition, 0 ≤ δ ≤ r < 1.

103

6. Gaussian Kernel-Product Surfaces

ξ(t)

t
δ r0 1

1

(a)

σk

x

σj

Ωj xk

xj

(b)

Figure 6.12: (a) Plot of the weight function ξ. (b) Distance-based power RBF ψ of each
Gaussian for a given parameter point x. Dashed circles show the standard deviations of
the RBFs.

Geometry function. The local geometry function gi over each chart is defined using
our new kernel-product surface formulation. Given a mesh umbrella Ui parameterized by a
planar chart Ωi, we need to set up a kernel product of all Gaussians Θj∈J , J = {i ∪N (i)}
of the umbrella:

f(x|ΘJ,x) = w−1
J

∏
j∈J

f(x|Θj)ψj(x) (6.18)

with weight wJ analogous to Eq. (6.8). Here, ψj represents a function Ω 7→ R that assigns
a power to the j-th Gaussian based on the parametric point x ∈ Ωi. This power should
be maximal at the chart coordinates xj of Θj , and continuously fall off with increasing
distance to xj . In contrast to the case of 2 and 3 Gaussians, a generalized barycentric
interpolation similar to Eq. (6.9) and (6.12) is infeasible for this function due to the
non-cyclic layout of the vertices in the chart. Therefore, we model the power functions of
Gaussians Θj using radial basis functions centered in their chart locations xj . To ensure
a continuous surface, the support of these RBFs has to cover its neighboring vertices in
the umbrella, since a two-dimensional kernel-product surface requires everywhere at least
3 Gaussian factors with non-zero power. On the other hand, ψj should be small enough
at its neighbors xk to minimize smoothing due to too closely overlapping bases. We thus
use a Gaussian RBF

ψj(x) = e−‖x−xj‖
2/σ2

j (6.19)

and adjust its bandwidth σj according to the parametric length s of the longest edge
incident to xj in the chart. This way, every umbrella Gaussian Θj obtains a power ψj(x)
depending on the parametric distance of their chart position xj to the parameter point
x, illustrated by the size of the colored disks in Figure 6.12b. Note that s = 1 for the
center vertex of any chart and for all vertices in umbrellas with m ≥ 6 neighbors, while in
umbrellas with 3, 4 and 5 neighbors, it corresponds to the the side length of the boundary

104

6.6. Results and Discussions

polygon. We recommend to set 1/2 s ≤ σj ≤ 3/4 s, and have used σj = 0.6·s in all our
examples.

With the interpolating power ψj(x) at hand, the geometry function gi associated with
any parametric point x ∈ Ωi is now given by the expectation of the kernel-product pdf,
analogous to Eq. (6.10):

gi(x) = E[x|ΘJ,x] =
∫
R3

x f(x|ΘJ,x) dx

=
(∑

j

ψj(x) Σ−1
j

)−1(∑
j

ψj(x) Σ−1
j µj

)
.

(6.20)

A detailed derivation of the resulting matrix form of Eq. (6.20) is given in Appendix C.
Note that by caching the inverse covariances Σ−1

j and matrix-vector products Σ−1
j µj of

each Gaussian, this function can be efficiently evaluated using linear combinations and
only one matrix inversion per evaluation point x.

Boundaries. In case of bounded covariance meshes, boundary vertices Vi, which only
contain partial mesh umbrellas, require special chart layouts. In order to ensure a sufficient
parametric distance between the chart positions of its two neighboring boundary vertices,
the chart of Vi is set up in such a way that the opening angle of its partial parametric
fan of neighbors does not exceed a half circle. To this end, we simply modify the angular
arrangement of its neighbors, such that the n-th neighbor in the chart is placed on the
unit circle at angle αn = πn/m.

6.6 Results and Discussions
In this section we study the effect of different HEM parameters on the resulting surface,
analyze time and memory consumptions of our method for different levels of compression,
and assess its quality and robustness in the presence of noise. We will finish with a
discussion of limitations and further applications of our probabilistic reconstruction
technique. All reconstructions were produced on a PC with 32 GB RAM and Intel i7
3.5 GHz CPU. The kernel-product surfaces (KPS) shown in this section were rendered
by tessellating their covariance-mesh triangles to screen resolution at render-time by
sampling their geometry function (see Eq. (6.20)).

6.6.1 Reconstruction Performance

Effect of HEM parameters. As discussed in Section 6.3, the mixture compression
strength achieved by the initial HEM procedure depends on both the initial kernel size
σ0 and the regularization threshold α, which controls the anisotropic merge range of
Gaussians. A larger α allows clustering more dissimilar Gaussians with respect to their
Kullback-Leibler divergence, while a larger σ0 decreases this divergence and thus allows
more Gaussians to be clustered as well. We are therefore interested in the effect of these
parameters on the resulting surface quality.

105

6. Gaussian Kernel-Product Surfaces

(a) σ0 = 0.02, α = 2
|M| = 1.4M

compr= 43.1%

(b) σ0 = 0.02, α = 2.8
|M| = 32K

compr= 1.0%

(c) σ0 = 0.085, α = 2
|M| = 38K

compr= 1.2%

Figure 6.13: Effects of increasing the HEM parameters α and σ0 on the resulting surface.
(a) Small σ0 and α allow only limited compression, but high detail preservation. (b)
Increasing α produces a stronger compression, but also highly anisotropic Gaussians,
resulting in flattening artifacts. (c) Increasing σ0 increases the compression as well, but
produces a smoother surface.

Fig. 6.13a shows a detailed KPS reconstruction of the Lincoln point set (9.8M points)
with σ0 = 0.02, which is about half the average nearest-neighbor distance in the input
point cloud (all values of σ0 are given in % of the model diameter). Using α = 2, HEM
clustering converges to a mixture of 1.4M Gaussians, which represents only a moderate
level of compression, since one Gaussian requires 9 floats to store its mean and covariance,
which equals the memory footprint of 3 points. The detail lens reveals the shape and
distribution of Gaussians as well as the resulting surface at the eyebrow. Increasing α
increases the compression, but since this allows more distant and dissimilar Gaussians to
be merged during HEM clustering, the resulting Gaussians become highly anisotropic,
exhibiting a flatness that corresponds to the small initial kernel size σ0 (see Fig. 6.13b).
However, as visible in the detail view, such highly anisotropic Gaussians can lead to
flattening effects of the surface around their means and produce sharper creases due
to the anisotropic interpolation behavior shown in Fig. 6.9. In contrast, Fig. 6.13c
demonstrates that keeping α low and increasing σ0 instead (here to about twice the
average nearest-neighbor distance) also increases the level of compression, but results
in more mollified Gaussians, and consequently a smoother surface. In the following, we

106

6.6. Results and Discussions

0

100

200

300

400

500

600

700

800

 1,5 2,5 5,5 6,5

Normals

SPS

HEM

Triangulation

rel. Memory SPS

rel. Memory

100

75

50

25

rel. m
em

ory footprint (in %
 of input data)

se
co

nd
s

SPS-10

SPS-9

x 10-3RMSE

0.02 0.04 0.05 0.06 0.07 0.075 0.08 0.085
 4,5 3,5

SPS-12

SPS-11

(a) Performance for varying σ0
Er

ro
r

(1
0-2

 %
 o

f B
B

-D
ia

g.
) 1

0

(b) SPS-10
113 s − 23.7MB

(c) KPS 0.04
30 s − 8.2MB

Figure 6.14: (a) KPS reconstruction performance for different compressions of the
Lincoln model at α = 2 (blue) compared to SPS reconstructions at different octree levels
(red). Timings are plotted over the achieved RMS error. The dashed anchors indicate
the memory reduction over the input data for the given covariance and SPS output
meshes. Note that the relative memory factor for SPS-12 lies at 288%. (b) and (c) Error
distribution over the surface for KPS and SPS at similar error levels.

will therefore only vary σ0 to analyze the reconstruction quality of different compression
rates. For the purpose of an unbiased analysis, we also do not apply a prefiltering of the
initial Gaussian locations for the results shown in this section, except for a discussion of
limitations (Section 6.6.3).

Reconstruction time, accuracy and compression. To assess the performance of
our technique, we analyze the computation timings, reconstruction errors, and the
achieved levels of compression over varying σ0. We put them in context with comparable
Screened Poisson Surfaces (SPS) [KH13], representing the state-of-the-art reference in
high-accuracy reconstruction, where similar to our mixture compression, different octree
levels result in different levels of smoothing and output mesh sizes. For the comparisons,
we have used a multi-threaded C++ implementation of our method, and the multi-
threaded reference implementation of SPS, using 8 threads for both methods. Fig. 6.14a
plots the KPS reconstruction times of the Lincoln model for varying σ0 (blue bars) and
the SPS timings for octree depths 9 to 12 (red bars) over the RMS error to the input
point set achieved by the respective reconstruction. To determine the SPS error, we
measured the RMSE over all vertices of the resulting trimmed Poisson mesh. The KPS
error was computed using 36 samples per parametric triangle. KPS timings are broken
down to mixture computation (HEM) and triangulation times. SPS timings include
the precomputation of oriented normals and the actual SPS reconstruction. The plots
indicate that for a given level of accuracy, our method is generally much faster than a

107

6. Gaussian Kernel-Product Surfaces

comparable SPS reconstruction. Fig. 6.14b and 6.14c show the error distributions over
the surface in false colors for two results of SPS and KPS at similar levels of accuracy,
where our method is almost 4 times faster. Fig. 6.14a also plots the relative memory
footprints of the resulting mixtures (in % of the input data size) over their reconstruction
error. We compare them to the memory footprints of the vertices of the respective SPS
output meshes, as these represent the minimum amount of information defining an SPS
result. The plot shows that for a surface of similar accuracy, our representation requires
only a fraction of the memory footprint of a corresponding SPS.

Measuring the reconstruction performance by (time× error), the optimal level of com-
pression is achieved around σ0 = 0.035, which is about the average nearest-neighbor
spacing of the input points. For σ0 > 0.05, the time required for triangulation becomes
negligible, which is due to the number of Gaussians being already reduced to about 1%
of the number of input points. At the same time, we observe a slight increase in the
HEM computation timings, since during clustering, larger kernel sizes require larger
radii for the spatial neighborhood queries, while at such high compression rates, further
simplifications do not significantly reduce the clustering effort any more. Table 6.1 gives a
complete list of the dataset sizes, HEM parameters, compression rates and reconstruction
timings for the different models in this chapter. The parameter σ0 was mostly chosen to
fit the local point density and/or noise level, while α has been kept below 2.0. While
these represent rather moderate parameter values, we have achieved memory compression
rates down to under 2%.

|P | σ0 α |M| MBP MBM compr. HEM triang total
Chair 33.8M 0.036 2.0 200K 386.3 6.9 1.8% 152 10 162
Castle 32.8M 0.03 1.8 316K 374.9 10.8 2.9% 129 25 154
Lincoln 9.8M 0.04 2.0 239K 111.9 8.2 7.3% 21 9 30
Dragon 2.0M 0.3 1.3 12K 22.9 0.4 1.8% 14 2 16
Gargoyle 303K 0.3 1.8 7.3K 3.5 0.3 9.4% 2 2 4
Moebius 141K 0.5 1.6 1.3K 1.6 0.04 2.7% 0.6 0.1 0.7

Table 6.1: Dataset sizes and memory footprints (in MB) for the input point sets P
and covariance meshesM, HEM parameters (σ0 in % of the model diameter), achieved
compression rates and computation times (in seconds) for the models in this chapter.

6.6.2 Discussion of Quality and Robustness

Orientability. Our method can naturally handle non-orientable surfaces and models
where noise and bad sampling conditions prevent a consistent orientation of normals.
The inset in Fig. 6.15a shows a point set sampling a five-twist Moebius strip. Similar to
Simple Point Set Surfaces (SPSS) [AA04], the KPS reconstruction is independent of the
availability of orientable normals and can thus produce a continuous surface (Fig. 6.15b).
Other PSS variants that rely on properly oriented normals [AA09, OGG09, GAB12,

108

6.6. Results and Discussions

(a) SPSS (b) KPS (c) Screened Poisson

Figure 6.15: Comparison of different reconstructions of a point set sampling a non-
orientable bounded surface (left inset).

GG07] or methods constructing a consistent indicator function like Screened Poisson
reconstruction tend to fail in the presence of normal discontinuities (Fig. 6.15c).

Deficient sampling. We evaluate the robustness of our method in the presence of
noise and difficult sampling conditions on the example of a large LIDAR scan of a
geometrically complex building, exhibiting thin features and sharp creases. Fig. 6.16a
shows the input point cloud embedded in a number of outliers. The closeup views reveal
a highly non-unform sampling pattern along vertical scan lines, which is reinforced by the
registration of individual scans. The Screened Poisson reconstruction at octree depth 11
shown in Fig. 6.16b can crisply reconstruct small salient features, but is also oversensitive
to the predominant sampling direction, which produces corresponding groove patterns.
Furthermore, noise and sampling deficiencies prohibit a consistent orientation of normals,
resulting in discontinuities and artifact surfaces along the tower (red), roof and chimney
corners. Note that the resulting SPS mesh has been trimmed using a manually determined
density threshold representing the best trade-off between artifact removal and model
integrity. In contrast, an SPSS reconstruction produces a cleaner and more robust result
(Fig. 6.16c). However, outliers and residual points result in artifact surfaces, as seen in
the air and in front of the entrace (blue). Moreover, thin or undersampled features like
the balcony rods (green) or fascia bearers (orange) degenerate to flat sheets. As with
SPSS, the KPS reconstruction remains unaffected by the non-orientability of the input,
producing a surface of generally similar quality (Fig. 6.16d). However, the closeup-views
reveal differences in how our method responds to outliers and undersampled features.
Due to their vanishing probability overlaps, Gaussians from outliers and residual points
are mostly left out by the triangulation, which removes most artifacts visible in the
SPSS reconstruction (air, entrance, terrace doors). Clear artifacts are visible at the eaves
boards along the edge of the roof, where the sparse and deficient sampling produces an
ambiguous Gaussian configuration that represents a break-down case for the probabilistic
triangulation.

109

6. Gaussian Kernel-Product Surfaces

(a) input (374.9MB) (b) SPS-11 (88.6MB)

(c) SPSS (374.9MB) (d) KPS (10.8MB)

Figure 6.16: Reconstructions of a large, non-uniformly sampled point cloud with noise (a),
where a consistent orientation of normals fails and thus produces notable seams in a
Screened Poisson surface (b). Normal-independent methods like SPSS produce more
robust results (c), but are typically still sensitive to outliers. Our method runs on
compressed data (d), where the triangulation skips most outliers, but can still be
confused by sparse sampling.

110

6.6. Results and Discussions

(a) SPSS (13.8MB) (b) SPS-12 (7.4MB) (c) KPS (2.1MB)

Figure 6.17: Part of the chair model. (a) SPSS produces artifacts at outliers and
concavities. The detail shows a flattening artifact puncturing the surface where its
curvature lies below the reconstruction bandwidth. (b) High-resolution SPS result. (c)
moderately compressed KPS, preserving high curvatures similar to SPS, but at a lower
memory footprint.

Fig. 6.16 also gives the memory footprints of the input point cloud and the different
reconstructions in parentheses. Note that since the point set surface is defined by the
entirety of input points, its memory footprint is considered to be equal.

Noise and high-frequency features. Another example of noise contamination is
given by the chair detail shown in Fig. 6.17. SPSS produces numerous artifacts around
outliers, but also at regions of too high curvature, where the local balancing plane either
collapses sharp features to a thin sheet (see inset in Fig. 6.17a), or produces ghost surfaces
in between concavities. In contrast, a high-accuracy SPS reconstruction preserves these
sharp features, but exhibits more subtle surface noise (Fig. 6.17b). Finally, a moderately
compressed KPS (∼20 points per Gaussian) ignores far outliers during triangulation and
preserves a continuous surface at high curvatures, while smoothing subtle noise through
Gaussian clustering (Fig. 6.17c).

6.6.3 Limitations.

Boundary smoothness. Fig. 6.15b shows the sparse control covariance mesh of the
Moebius strip superimposed over the resulting kernel-product surface. At its boundaries,
KPS produces slightly oscillating silhouettes due to varying valences of vertices, which
influence the RBF bandwidths that define the power functions ψj in Eq. (6.19) (see
Section 6.5.2). Altering these powers close to the boundaries or clipping the surface
based on the underlying pdf fM could be possible ways to obtain smoother silhouettes
in future work.

Outlier sensitivity. The Gaussian locations obtained by HEM represent least-squares
fits to their surrounding points, making our method sensitive to strong noise and outliers

111

6. Gaussian Kernel-Product Surfaces

Er
ro

r
(%

 B
B

-D
ia

go
na

l) 0.45

0

(a) Input (0.115) (b) KPS σ0 = 0.45 (0.153)

(c) Avg + KPS
σ0 = 0.3 (0.112)

(d) CLOP + KPS
σ0 = 0.3 (0.096)

Figure 6.18: KPS on outlier-driven data (a), using (b) large kernels initialized in the
points, (c) smaller kernels initialized in the locally weighted average of points, and (d)
small kernels initialized in CLOP-resampled points. Red numbers in parentheses give the
ground truth RMS error (in % of the model diameter).

in the input data. Figure 6.18a shows the noisy Gargoyle point cloud generated using
the virtual scanning framework of Berger et. al [BLN+13], consisting of 16 scans that
have been registered with ICP using a plausible amount of misalignment. The coloring
indicates the normal distance to the ground-truth surface; overall RMS errors are given
in red parentheses. While noise is generally modeled by the Gaussian covariances, too
strong noise amplitudes and irregular outliers require larger kernels that can significantly
smooth the resulting surface, as shown in Fig. 6.18b. Prefiltering the Gaussian means
as proposed in Section 6.3 allows reducing the required kernel sizes, but is known to

112

6.6. Results and Discussions

produce a smoothing effect as well. In Fig. 6.18c, we performed such a weighted-average
initialization of the Gaussian means using a weight kernel radius of 0.8%. The resulting
KPS clearly reduces the overall error, but still exhibits a clear bias at features and
concavities of high curvature. In order to improve the reconstruction in such cases, robust
prefiltering techniques should be applied to the input in advance. Figure 6.18d shows
the KPS after resampling the input using the robust CLOP operator, which has been
introduced in Chapter 5. Computing a covariance mesh on this point set using the same
HEM parameters produces a KPS that reduces the overall RMS error by additional 14%.
This shows that although our method provides an efficient reconstruction framework for
smooth surfaces, it does not offer the robustness of consolidation techniques like CLOP,
and is better used in combination with these for very noisy data.

6.6.4 Further Applications

Mesh-based simplification. A given Gaussian triangulation allows us to further
simplify a model through successive edge collapses without destroying its surface topology.
This way we can achieve compression levels beyond what is possible through direct
triangulation of similarly sparse mixtures. When collapsing two Gaussians Θi and Θj , we
replace them by a new Gaussian Θij that represents the maximum likelihood estimate of
their common density:

ωij = wi + wj µij = ωiµi + ωjµj

Σij = ωi(Σi + µiµ
T
i) + ωj(Σj + µjµ

T
j)− µijµTij

where ωi = wi/(wi + wj), ωj = 1 − ωi. To this end, the edges to be collapsed can be
prioritized by the probabilistic similarity between their Gaussians. Fig. 6.19 shows such
a simplification process, where we have successively collapsed the edge with the lowest
mutual Kullback-Leibler divergence,

min(DKL(Θi,Θj), DKL(Θj ,Θi)).

To control the degree of geometry degeneration, the maximum allowed divergence for
collapsing is constrained by the same regularization threshold α as is used by the HEM
process in the initial mixture computation (see Section 6.3). To avoid flattening artifacts,
we again do not increase α when aiming for stronger levels of simplification, but instead
increase the scale of the covariances in the mesh. This reduces the divergence between
neighboring Gaussians and thus allows for further collapses. Note that as discussed
in Section 6.5.1, a globally uniform scaling of the covariances itself does not affect the
kernel-product interpolation (Eq. (6.10)) and, consequently, the resulting surface. Since
α is not increased, and the scaling does not increase the anisotropy of individual Gaussian
kernels, the surface is prevented from over-flattening throughout further simplification.
The covariances in Fig. 6.19 have first been scaled by a factor of 1.42, and then successively
collapsed until a threshold of α = 2.0 was reached. After four repetitions of this process
we obtain a topology-preserving compression that would have been too sparse and blurry
for a faithful direct triangulation.

113

6. Gaussian Kernel-Product Surfaces

200K Gaussians 11K Gaussians 1500 Gaussians Direct Triangulation

Figure 6.19: Topology-preserving simplification of the chair’s covariance mesh (upper
row) and its resulting KPS (lower row) after two and four iterations. The inset to the
right shows the size and distribution of the final simplified Gaussians, where a direct
triangulation would fail due to their sparseness and ambiguous probability overlaps.

Smooth surface modeling. Our approach offers a competitive alternative to subdi-
vison surfaces for modeling smooth surfaces based on given low-resolution input meshes
(Figure 6.20). As opposed to the previously proposed reconstruction pipeline, where a
covariance mesh is computed by triangulating a Gaussian mixture, we can thereby start
with a coarse input triangle mesh (Figure 6.20a) and infer Gaussian tensors at its vertices
vi, using the covariance

Σi = |J |−1∑
j vjv

T
j − |J |−2(

∑
j vj)(

∑
j vj)T

of the local umbrella vertices vj∈J , where J = {i ∪ N (i)}. This results in a covariance
mesh (Figure 6.20b) that can be used for rendering a smooth surface (Figure 6.20c). The
comparison to various subdivision surfaces demonstrates that we can produce a smooth,
feature-rich surface where other methods produce unwanted singularities (lower row of
Figure 6.20d), strong smoothing (Figure 6.20e), or high-frequency artifacts (Figure 6.20f).
Nevertheless, the inherent anisotropy of the mesh vertices still allows for sharp features
where their presence is natural to be assumed (pointy star in the upper row of the figure).

114

6.6. Results and Discussions

(a) low-res mesh (b) inferred Gaussians (c) KPS

(d) Catmull-Clark (e) Loop (f) Modified Butterfly

(a) low-res mesh (b) inferred Gaussians (c) KPS

(d) Catmull-Clark (e) Loop (f) Modified Butterfly

Figure 6.20: Comparison of Gaussian kernel-product surfaces on given low-resolution
meshes with inferred Gaussians to different subdivision-surface techniques.

115

6. Gaussian Kernel-Product Surfaces

6.7 Summary
In this chapter, we have developed a surface definition based on a Gaussian mixture
representation of input points. Gaussians are naturally capable of modeling uncertainty
in sampled data, and can encode a set of points using only a few parameters, thus
allowing a vastly compressed data representation. While previous work used this model
solely to accelerate operators on point clouds, our method provides the first surface
definition directly based on sparse Gaussian mixtures, which obviates the need to go
back to a point-based representation and apply costly surface-reconstruction methods on
the full dense point data. Our key technical contribution is the use of the expectation of
a product of neighboring Gaussians for the geometry definition, varying the powers of
their pdfs to smoothly interpolate between their covariance kernels.

We have shown that the quality of our surfaces can compete with those of elaborate
state-of-the-art techniques like the widely used Screened Poisson surface reconstruction,
while being independent of orientable normal information, and reducing both the required
reconstruction time and memory storage costs due to the sparse representation. We
demonstrate surface reconstructions of point-sampled models with moderate noise while
relying on previous Gaussian-mixture based methods to clean models with more significant
noise and outliers, thus providing a natural embedding into a fully Gaussian point-
processing pipeline.

116

CHAPTER 7
Conclusion

7.1 Résumé

In this thesis, we have presented a line of research in which we developed a high-quality
point-rendering technique for unstructured dynamic point clouds and discovered new
ways of fast point-cloud processing and surface reconstruction that employ probabilistic
models and improve on the quality and performance of state-of-the-art methods.

In Chapter 3, we have laid out the foundations for an in-situ surface reconstruction
applied to raw unstructured points projected to the screen. By rasterizing conservative
quad splats covering the projected neighborhood of each point, we were able to establish
the communication between neighboring points and perform a variety of local operations
directly in screen-space. This allowed for performing efficient nearest-neighbor queries
for each point, which is an essential building block of any local surface reconstruction
strategy. We have used this nearest-neighbor information for a fixed-sized neighborhood
to perform a local screen-space triangulation of large and/or dynamic point sets.

Chapter 4 picks up on the idea of directly reconstructing surfaces from points at render-
time and improves on both the flexibility and the view independence of the nearest-
neighbor search, which ensures a much more stable reconstruction. We have shown that
we can use arbitrarily sized neighborhoods to locally fit elliptical splats to each point,
even without explicitly storing the individual neighbor points themselves. These splats
allow for a much smoother surface rendering by employing high-quality surface-splatting
methods, performing elliptical weighted-average blending on the GPU.

To address the common issue of noise and outliers in the input point data, Chapter 5
aims at integrating the robust L1-based Locally Optimal Projection operator into our
splat-reconstruction framework, enabling instant feature-preserving point-set resampling

117

7. Conclusion

in screen space directly before splat computation. To overcome the high computational
effort of this iterative operator and yet ensure an execution at real-time frame rates, we
introduced a new probabilistic approach that changes the representation of the input point
cloud to a strongly compressed Gaussian mixture and reformulates the LOP operator to
perform on this continuous probabilistic model. Our experiments show that this method
is not only several times faster than the original discrete operator, but also exhibits a
higher reconstruction accuracy, a more balanced sample distribution, and, unlike previous
LOP variants, even allows a robust point-cloud upsampling in noisy data.

Finally, due to the various observed beneficial properties of Gaussian mixtures for
point-cloud processing, Chapter 6 has been devoted to the development of an entirely
probabilistic surface-reconstruction pipeline, which employs this sparse mixture model
for a new, memory-efficient surface representation. We have introduced a technique that
allows us to define smooth surfaces solely over sparse Gaussian mixtures that represent
the distribution of given input point clouds. We employ a straight-forward approach
for probabilistically triangulating the individual components of such a mixture, and
introduced a new parametric interpolation technique that interpolates the Gaussians
under consideration of their covariance kernels. We have shown that this method can
outperform state-of-the-art surface reconstruction methods in both speed and accuracy,
and enables to represent smooth surfaces with salient features in a highly memory-efficient
way.

7.2 Epilogue

The research path documented in this thesis has been one of many branchings, backtracks,
and unexpected surprises. My Master thesis on reconstructing reflections for point-cloud
scenes in screen space has originally raised the need for obtaining as-smooth-as-possible
depth maps when rendering unstructured point clouds. Starting my PhD with this classic
rendering-related research problem, I would never have guessed I would finalize it solving
the problem of defining surfaces over a compressed spatial probability model.

When developing the CLOP technique described in Chapter 5, the major aim was to
accelerate the operator by simplification, while keeping the quality loss we expected
due to the data simplification to a minimum. During the evaluations, we were actually
surprised twice: Operating on the compressed data, i.e., the Gaussian mixture, resulted
in lower ground-truth error measurements than operating on the full input point data
(Section 5.10.2). Similarly, reducing the frequency of repulsion updates for acceleration
showed an improved convergence behavior of sampling uniformity (Section 5.7.2). Both
these results were entirely contrary to our expectations, and had us check our evaluation
code and the resulting numbers twice before accepting these beneficial properties. What
were originally despaired attempts of acceleration turned out to be an approach that
immediately bent my subsequent path of PhD research. It is one of the exciting features

118

7.2. Epilogue

of research that lets you suppose you determine your direction, while your research is in
fact directing you.

While I believe that probabilistic approaches bear lots of potential for improving further
operations on point sets and other data in the future, I hope that my future research will
keep me positively surprised and will open up further exciting new directions.

∼

119

APPENDIX A
Virtual Scanning Parameters

In order to generate realistic models that can also be used in a ground-truth comparison,
we applied a virtual scanning framework to some of the models used in this thesis to
simulate an optical laser scanner [BLN+13]. In Table A.1 we describe the scanning
parameters used for each model. The additive noise parameter simulates noise in the
form of laser speckle, which stems from diffuse surface imperfections and can lead to
outliers near depth continuities. According to the authors, typical noise magnitudes
vary between 0 and 0.6, where the latter results in a highly corrupted signal. The peak
magnitude threshold rejects points that have a low-radiance signal and hence a high
likelihood to be an outlier. Setting it to a low value of 0.05 will keep most points.

Three of our models also exhibit registration errors. In particular, 4 of the 16 scans have
an initial random rotational alignment error of 1.0◦. They are subsequently registered
using a locally weighted ICP algorithm [BR07]. Such an initial misalignment is a common
source of outliers, when ICP converges to a bad local minimum [BLN+13].

Model Camel Daratech Gargoyle Garg. small
scans 18 16 16 16
resolution 2452 3002 3002 1502

noise magnitue 0.2 0.1 0.1 0.1
laser smoothing 0.5 0.1 0.1 0.1
laser beam FOV 8 4.5 4.5 4.5
peak mag. threshold 0.05 0.1 0.1 0.1
registration error 0 1.0 1.0 1.0

Table A.1: Virtual scan parameters used for our models. For the non-listed parameters,
the default values suggested by the framework were used.

121

APPENDIX B
HEM Algorithm Outline

Algorithm B.1 outlines the complete hierarchical EM procedure for computing a mixture
M describing both the point distribution (by Gaussians Θs) and the spatially associated
distribution of normals (by WN distributions Φs) as described in Chapter 5.

Base Mixture Initialization. For each point in parallel (Line 1), we first determine
a conservative radius r (Line 2), being a multiple α0 (2 ∼ 3) of the point’s nearest
neighbor distance. Using this radius, we perform a kernel-accumulation pass (Line 3),
simultaneously computing both the point’s initial covariance Σ(0)

j and its local density
weight vj . The initial estimator for its surface normal mj is then extracted using the
smallest eigenvector of Σ(0)

j (Line 4). These quantities define the initial weight w(0)
j ,

Gaussian Θ(0)
j and WN Φ(0)

j assigned to the j-th point (Lines 5-7), which make up the
initial mixtureM(0) (Line 9).

Hierarchical Clustering. Each iteration of the following hierarchical clustering loop
(Line 10) represents an EM step fitting a reduced set of parent components {Θ|Φ}(l+1)

s

for the next level to the current set of child components {Θ|Φ}(l)i . Here, the i-th WN
component Φi is always coupled to the i-th spatial component Θi when clustering. The
parent set is initialized by randomly selecting elements from the current mixtureM(l)

(Line 11), where we recommend a selection probability π ≈ 1/3. For each such parent
(Line 12) in parallel, Line 13 applies the regularization constraint α (Section 5.4.3) to
select the index set I of child components it is responsible for and thus allowed to merge.
Note that the centers µ(l)

i of all child components can be found within a conservative ball
with radius α ·σmax around µ(l+1)

s , σmax being the root of the largest eigenvalue of Σ(l+1)
s .

Line 14 computes the responsibilities ris of the s-th component for its selected set of
children, which are then used to update the maximum-likelihood estimate of the parent’s
parameters (Line 15). Finally, the function Orphans in Line 18 selects child components

123

B. HEM Algorithm Outline

that are not within the responsibility set I of any parent. They have to be taken along
to the next level’s mixtureM(l+1) together with the updated parent components in S.

Algorithm B.1: Outline of the HEM computation of mixture M including
both spatial and spherical components.

input : point set P = {pj}j∈J , levels lmax, regularization α
output :mixtureM(lmax) = {ws,Θs,Φs}

1 // Mixture Initialization
2 foreach j ∈ J do in parallel
3 r ← α0· NearestNeighborDist(pj); //Section 5.4.3

4 (Σ(0)
j , vj)← KernelCovDensity(pj, r); //Eq. (5.13) / Sec. 5.6

5 mj ← MinEigenVec(Σ(0)
j);

6 w
(0)
j ← (vj |P |)−1; //Eq. (5.27)

7 Θ(0)
j ← (pj ,Σ(0)

j);
8 Φ(0)

j ← (mj , ρ
(0)); //Section 5.8.2

9 end
10 M(0) ← {w(0)

j ,Θ(0)
j ,Φ(0)

j };
11

12 // Hierarchical EM clustering
13 for l← 0 to lmax − 1 do
14 S ← RandomIndexSubset(M(l), π);
15 foreach s ∈ S do in parallel
16 I ← {i | DKL(Θ(l)

i ||Θ
(l+1)
s) < α2/2}; //Eq. (5.12)

17 {ris}i∈I ← Responsibility(Θ(l+1)
s , Θ(l)

i); //Eq. (5.9)+(5.10)

18 (ws,Θs,Φs)(l+1) ← UpdateMLE(M(l),{ris}i∈I); //Eq. (5.11),(5.30),(5.31)

19 end
20 M(l+1) ← {w(l+1)

s ,Θ(l+1)
s ,Φ(l+1)

s } ∪Orphans(M(l));

21 end

124

APPENDIX C
Derivation of the Kernel-Product

Expectation

We derive the closed matrix form for the expectation E[x|ΘJ] of the product of multiple
Gaussians in Eq. (6.10) and Eq. (6.20) using their general form

f(x|ΘJ) = w−1
J

∏
j∈J

f(x|Θj)ψj .

First note that any power of a Gaussian is another weighted Gaussian

f(x|µj ,Σj)ψj = |2πΣj |−
1
2ψj e−

1
2 (x−µj)TψjΣ−1

j (x−µj)

= wj f(x|µj , ψ−1
j Σj)

whose covariance has been scaled by its inverse power. Since the product ΘJ of any
number of such scaled Gaussians is again Gaussian, the expectation E[x|ΘJ] of this
product equals its mean µJ . To obtain µJ , we bring the pdf of ΘJ into canonical form

f(x|ΘJ) = |2πΣJ |−
1
2 · e−

1
2 (x−µJ)TΣ−1

J (x−µJ)

= c · e−
1
2 (xTΣ−1

J x − 2xTΣ−1
J µJ) (C.1)

where c collects all constant factors in the expression. After simplifying∏
j∈J

f(x|Θj)ψj =
∏
j∈J

wj f(x|µj , ψ−1
j Σj)

= c · e−
1
2

∑
j∈J (x−µj)TψjΣ−1

j (x−µj)

= c · e
− 1

2

(
xT
(∑
j∈J

ψjΣ−1
j

)
x− 2xT

(∑
j∈J

ψjΣ−1
j µj

)
+
(∑
j∈J

µTj ψjΣ
−1
j µj

))

125

C. Derivation of the Kernel-Product Expectation

and moving the constant third term in the exponent again over to c, we obtain the
canonical form of Eq. (C.1) from which we can directly read out

Σ−1
J =

∑
j∈J

ψjΣ−1
j and Σ−1

J µJ =
∑
j∈J

ψjΣ−1
j µj .

Inverting the first term to obtain ΣJ and right-multiplying the second term, we finally
get the form in Eq. (6.20),

E[x|ΘJ] = µJ = ΣJ Σ−1
J µJ =

(∑
j∈J

ψjΣ−1
j

)−1(∑
j∈J

ψjΣ−1
j µj

)
.

126

List of Figures

1.1 Computational paths in point-based processing, reconstruction, and rendering. 3

3.1 Comparison between box splat rendering and screen-space triangulation. . 19
3.2 Processing pipeline of screen-space triangulation 20
3.3 Overview of the SST rendering and feedback loop 22
3.4 Storage layout for the nearest neighbors in SST 23
3.5 Two-pass screen-space neighbor search procedure 24
3.6 Screen-space triangulation scheme of a point and its neighbors 25
3.7 Deferred shading of a scene reconstructed with SST 26
3.8 Comparison of density-based box splats, uniform box splats, and SST . . 28
3.9 Comparison of heuristic box splats and SST in noisy datasets 29
3.10 Comparison of heuristic box splats and SST on a complex-geometry scan 29
3.11 Comparison of normal maps produced with box splatting and with SST . 30
3.12 Comparison of precomputed normals and SST normals in noisy data 31
3.13 Time consumptions of the individual SST shader passes 31

4.1 A dynamic point-cloud scene with 1 Million points rendered with Auto Splats 35
4.2 Auto-Splats processing pipeline . 36
4.3 Overview of the Auto-Splatting algorithm 38
4.4 Addressing of world-space neighbors through their screen-space projections 39
4.5 Utilization of an eligible depth footprint for Early-Z discards 40
4.6 K-radius search algorithm and textures used for data writes and reads. . . 42
4.7 Silhouette quality of Auto Splats compared to precomputed splats 46
4.8 Auto-Splat reconstruction quality in varying point density 47
4.9 A huge out-of-core dataset rendered with Auto Splats 48
4.10 Performance decompositions of the Auto-Splats computation pipeline . . 49
4.11 Convergence behaviour of the k-radius search in Auto Splats 49
4.12 A dynamically scanned object reconstructed by Auto Splats 51
4.13 Auto-Splatted image of a range scan with in-situ curvature visualization . 52

5.1 Comparison of a CLOP resampling and an L2-based reconstruction 57
5.2 CLOP processing pipeline . 58
5.3 Gaussian Mixture on a signal with an outlier and its LOP reconstruction 63
5.4 Gaussians at different levels of HEM compression 65

127

5.5 Density functions involved in continuous attraction 66
5.6 Function α used in LOP and its approximation in CLOP 67
5.7 CLOP particle distribution in weighted mixtures 69
5.8 Volatility of repulsive-moments and NN variances for interleaved repulsion . 71
5.9 WN distribution, product of two WN distributions, and CSW step on the S2 73
5.10 Model statistics and timings of the CLOP algorithm 76
5.11 Comparison of WLOP and the CLOP on the Face model 77
5.12 CLOP reconstruction error on two noisy registered scans 78
5.13 CLOP reconstruction error on two noisy registered scans 79
5.14 WLOP and CLOP on sharp edges and varying Gaussian noise 80
5.15 Mean error development with increasing mixture compression 81
5.16 Sampling regularity σ; point collapse of WLOP on a subsampled model . 82
5.17 Comparison of CLOP and WLOP for upsampling 83
5.18 Comparison of PCA normals and CSW normals 84
5.19 L2 normals vs. CSW normals on a Kinect stream 85

6.1 KPS reconstruction overview . 89
6.2 Processing pipeline of the KPS reconstruction. 90
6.3 Ridge contour and kernel-product contour on a 2d Gaussian mixture . . . 92
6.4 Overview of a probabilistic reconstruction pipeline 93
6.5 Defects of ridge surfaces in high-curvature regions 94
6.6 Different levels of hierarchical EM on a noisy point cloud 95
6.7 Probabilistic triangulation in thin-sheet situations 96
6.8 Kernel-product interpolation of two Gaussians 99
6.9 Influence of the shape of Gaussian kernels on their kernel-product contour 100
6.10 A kernel-product surface patch defined by 3 Gaussians 101
6.11 PPM construction and definition of an associated KPS 102
6.12 Weight function ξ and distance-based Gaussian power function ψ 104
6.13 Effects of increasing α and σ0 on the resulting KPS 106
6.14 KPS reconstruction performance compared to Screened Poisson 107
6.15 SPSS, KPS and Screened Poisson on a non-orientable bounded surface . . 109
6.16 Reconstructions of a large, non-uniformly sampled noisy point cloud . . . 110
6.17 SPSS, KPS and SPS on a noisy model with high-frequency features 111
6.18 KPS on outlier-driven data after different kinds of prefiltering 112
6.19 Topology-preserving simplification of a covariance mesh 114
6.20 KPS on meshes with inferred Gaussians vs. subdivision surfaces 115

128

List of Tables

4.1 k-radius search times of Auto Splats compared to a GPU kd-tree. 50

6.1 KPS reconstruction statistics for different models 108

A.1 Virtual scanning parameters . 121

129

Bibliography

[AA04] Anders Adamson and Marc Alexa. Approximating bounded, non-orientable
surfaces from points. In Proceedings of the Shape Modeling International
2004, SMI ’04, pages 243–252, Washington, DC, USA, 2004. IEEE Com-
puter Society.

[AA06] Anders Adamson and Marc Alexa. Anisotropic point set surfaces. In
Proceedings of the 4th International Conference on Computer Graphics,
Virtual Reality, Visualisation and Interaction in Africa, AFRIGRAPH ’06,
pages 7–13, New York, NY, USA, 2006. ACM.

[AA09] Marc Alexa and Anders Adamson. Interpolatory point set surfaces -
convexity and hermite data. ACM Trans. Graph., 28(2):20:1–20:10, May
2009.

[ABCO+01] Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David
Levin, and Claudio T. Silva. Point set surfaces. In Proceedings of the
conference on Visualization ’01, VIS ’01, pages 21–28, Washington, DC,
USA, 2001. IEEE Computer Society.

[ABCO+03] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T.
Silva. Computing and rendering point set surfaces. IEEE Transactions on
Visualization and Computer Graphics, 9(1):3–15, Jan. 2003.

[ACK01] Nina Amenta, Sunghee Choi, and Ravi Krishna Kolluri. The power
crust. In Proceedings of the Sixth ACM Symposium on Solid Modeling and
Applications, SMA ’01, pages 249–266, New York, NY, USA, 2001. ACM.

[AK04] Nina Amenta and Yong Joo Kil. Defining point-set surfaces. ACM Trans.
Graph., 23(3):264–270, August 2004.

[ASGCO10] Haim Avron, Andrei Sharf, Chen Greif, and Daniel Cohen-Or. l1-sparse
reconstruction of sharp point set surfaces. ACM Trans. Graph., 29(5):135:1–
135:12, November 2010.

[BDGS05] Arindam Banerjee, Inderjit S. Dhillon, Joydeep Ghosh, and Suvrit Sra.
Clustering on the unit hypersphere using von Mises-Fisher distributions.
J. Mach. Learn. Res., 6:1345–1382, December 2005.

131

[BHZK05] M. Botsch, A. Hornung, M. Zwicker, and L. Kobbelt. High-quality surface
splatting on today’s GPUs. In Point-Based Graphics, 2005. Eurograph-
ics/IEEE VGTC Symposium Proceedings, pages 17 – 141, june 2005.

[BK03] Mario Botsch and Leif Kobbelt. High-quality point-based rendering on
modern GPUs. In Proceedings of the 11th Pacific Conference on Computer
Graphics and Applications, PG ’03, pages 335–, Washington, DC, USA,
2003. IEEE Computer Society.

[BLdG+16] Max Budninskiy, Beibei Liu, Fernando de Goes, Yiying Tong, Pierre Alliez,
and Mathieu Desbrun. Optimal voronoi tessellations with Hessian-based
anisotropy. ACM Trans. Graph., 35(6):242:1–242:12, November 2016.

[BLN+13] Matthew Berger, Joshua A. Levine, Luis Gustavo Nonato, Gabriel Taubin,
and Claudio T. Silva. A benchmark for surface reconstruction. ACM
Trans. Graph., 32(2):20:1–20:17, April 2013.

[BM12] Alexandre Boulch and Renaud Marlet. Fast and robust normal estimation
for point clouds with sharp features. Computer Graphics Forum, 31(5):1765–
1774, 2012.

[BR07] Benedict J. Brown and Szymon Rusinkiewicz. Global non-rigid alignment
of 3-d scans. ACM Trans. Graph., 26(3), July 2007.

[BSK04] Mario Botsch, Michael Spernat, and Leif Kobbelt. Phong splatting. In
Proceedings of the First Eurographics Conference on Point-Based Graph-
ics, SPBG’04, pages 25–32, Aire-la-Ville, Switzerland, Switzerland, 2004.
Eurographics Association.

[BTS+14] Matthew Berger, Andrea Tagliasacchi, Lee M. Seversky, Pierre Alliez,
Joshua A. Levine, Andrei Sharf, and Claudio T. Silva. State of the Art
in Surface Reconstruction from Point Clouds. In Sylvain Lefebvre and
Michela Spagnuolo, editors, Eurographics 2014 - State of the Art Reports.
The Eurographics Association, 2014.

[BWK02] Mario Botsch, Andreas Wiratanaya, and Leif Kobbelt. Efficient high
quality rendering of point sampled geometry. In Proceedings of the 13th
Eurographics workshop on Rendering, EGRW ’02, pages 53–64, Aire-la-
Ville, Switzerland, Switzerland, 2002. Eurographics Association.

[CB14] Stephane Calderon and Tamy Boubekeur. Point morphology. ACM
Transactions on Graphics (Proc. SIGGRAPH 2014), 2014.

[CBC+01] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright,
B. C. McCallum, and T. R. Evans. Reconstruction and representation
of 3d objects with radial basis functions. In Proceedings of Conference
on Computer graphics and interactive techniques, SIGGRAPH ’01, pages
67–76. ACM, 2001.

132

[CC78] E. Catmull and J. Clark. Recursively generated b-spline surfaces on
arbitrary topological meshes. Computer-Aided Design, 10(6):350 – 355,
October 1978.

[CNPGVA02] J. Cotrina-Navau, N. Pla-Garcia, and M. Vigo-Anglada. A generic ap-
proach to free form surface generation. In Proceedings of the Seventh ACM
Symposium on Solid Modeling and Applications, SMA ’02, pages 35–44,
New York, NY, USA, 2002. ACM.

[CSD04] David Cohen-Steiner and Frank Da. A greedy delaunay-based surface
reconstruction algorithm. The Visual Computer, 20(1):4–16, April 2004.

[DB07] Rosen Diankov and Ruzena Bajcsy. Real-time adaptive point splatting for
noisy point clouds. In GRAPP (GM/R), pages 228–234, 2007.

[DG06] Tamal K. Dey and Samrat Goswami. Provable surface reconstruction
from noisy samples. Computational Geometry Theory and Applications,
35(1):124–141, August 2006.

[DLR77] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the em algorithm. Journal of the Royal Statistical
Society Series B, 39(1):1–38, 1977.

[DMKF16] M. Danelljan, G. Meneghetti, F. S. Khan, and M. Felsberg. A probabilistic
framework for color-based point set registration. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 1818–1826,
June 2016.

[DRL10] Petar Dobrev, Paul Rosenthal, and Lars Linsen. Interactive image-space
point cloud rendering with transparency and shadows. In Vaclav Skala,
editor, Communication Papers Proceedings of WSCG, The 18th Interna-
tional Conference on Computer Graphics, Visualization and Computer
Vision, pages 101–108, Plzen, Czech Republic, 2 2010. UNION Agency –
Science Press.

[DS06] Tamal K. Dey and Jian Sun. Normal and feature approximations from noisy
point clouds. In Proceedings of Conference on Foundations of Software
Technology and Theoretical Computer Science, volume 4337 of Lecture
Notes in Computer Science, pages 21–32, 2006.

[Ebe11] David Eberly. Eigensystems for 3x3 symmetric matrices (re-
visited). http://www.geometrictools.com/Documentation/
EigenSymmetric3x3.pdf, 2011. [Online; accessed 13-July-2017].

[FCOS05] Shachar Fleishman, Daniel Cohen-Or, and Cláudio T. Silva. Robust
moving least-squares fitting with sharp features. ACM Trans. Graph.,
24(3):544–552, July 2005.

133

http://www.geometrictools.com/Documentation/EigenSymmetric3x3.pdf
http://www.geometrictools.com/Documentation/EigenSymmetric3x3.pdf

[GAB12] T. Guillemot, A. Almansa, and T. Boubekeur. Non local point set surfaces.
In 2nd International Conference on 3D Imaging, Modeling, Processing,
Visualization Transmission, pages 324–331, Oct 2012.

[GDB08] V. Garcia, E. Debreuve, and M. Barlaud. Fast k nearest neighbor search
using GPU. In Computer Vision and Pattern Recognition Workshops,
2008. CVPRW ’08. IEEE Computer Society Conference on, pages 1 –6,
june 2008.

[GG07] Gaël Guennebaud and Markus Gross. Algebraic point set surfaces. In
ACM SIGGRAPH 2007 papers, SIGGRAPH ’07, New York, NY, USA,
2007. ACM.

[GH95] Cindy M. Grimm and John F. Hughes. Modeling surfaces of arbitrary
topology using manifolds. In Proceedings of the 22nd Annual Conference
on Computer Graphics and Interactive Techniques, SIGGRAPH ’95, pages
359–368, New York, NY, USA, 1995. ACM.

[GHJ+08] Xianfeng Gu, Ying He, Miao Jin, Feng Luo, Hong Qin, and Shing-Tung
Yau. Manifold splines with a single extraordinary point. Computer-Aided
Design, 40(6):676 – 690, 2008. Selected Papers from the ACM Solid and
Physical Modeling Symposium 2007.

[GHQ06] Xianfeng Gu, Ying He, and Hong Qin. Manifold splines. Graphical Models,
68(3):237 – 254, 2006.

[GKS00] M. Gopi, S. Krishnan, and C.T. Silva. Surface reconstruction based on
lower dimensional localized delaunay triangulation. Computer Graphics
Forum, 19(3):467–478, 2000.

[GM04] Enrico Gobbetti and Fabio Marton. Layered point clouds: a simple and
efficient multiresolution structure for distributing and rendering gigantic
point-sampled models. Computers & Graphics, 28(6):815–826, 2004.

[GNN10] Vincent Garcia, Frank Nielsen, and Richard Nock. Hierarchical Gaussian
mixture model. In IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), Dallas, Texas, USA, March 2010.

[GP07] Markus Gross and Hanspeter Pfister. Point-Based Graphics (The Morgan
Kaufmann Series in Computer Graphics). Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2007.

[Gro09] Markus Gross. Point based graphics: state of the art and recent advances.
In ACM SIGGRAPH 2009 Courses, SIGGRAPH ’09, pages 18:1–18:68,
New York, NY, USA, 2009. ACM.

134

[HAT11] R. Hartley, K. Aftab, and J. Trumpf. L1 rotation averaging using the
weiszfeld algorithm. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, CVPR ’11, pages 3041–3048, 2011.

[HDD+92] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner
Stuetzle. Surface reconstruction from unorganized points. In Proceed-
ings of the 19th annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’92, pages 71–78. ACM, 1992.

[HK04] Takashi Kanai Hiroaki Kawata, Alexandre Gouaillard. Interactive point-
based painterly rendering. In Proc. International Conference on Cyber-
worlds 2004 (CW2004), pages 293–299, Nov. 2004.

[HLZ+09] Hui Huang, Dan Li, Hao Zhang, Uri Ascher, and Daniel Cohen-Or. Con-
solidation of unorganized point clouds for surface reconstruction. ACM
Trans. Graph., 28(5):176:1–176:7, December 2009.

[HPS08] Kai Hormann, Konrad Polthier, and Alia Sheffer. Mesh parameteriza-
tion: Theory and practice. In ACM SIGGRAPH ASIA 2008 Courses,
SIGGRAPH Asia ’08, pages 12:1–12:87, New York, NY, USA, 2008. ACM.

[IKH+11] Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard
Newcombe, Pushmeet Kohli, Jamie Shotton, Steve Hodges, Dustin Free-
man, Andrew Davison, and Andrew Fitzgibbon. Kinectfusion: real-time
3d reconstruction and interaction using a moving depth camera. In Pro-
ceedings of Symposium on User Interface Software and Technology, UIST
’11, pages 559–568. ACM, 2011.

[JGBZ10] Tang Jie, Wu Gangshan, Xu Bo, and Gong Zhongliang. Interactive point
clouds fairing on many-core system. In Proceedings of the International
Symposium on Parallel and Distributed Processing with Applications, ISPA
’10, pages 557–562, Washington, DC, USA, 2010. IEEE Computer Society.

[JLSW02] Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren. Dual contouring
of hermite data. ACM Trans. Graph., 21(3):339–346, July 2002.

[JRJ11] Wenzel Jakob, Christian Regg, and Wojciech Jarosz. Progressive
expectation–maximization for hierarchical volumetric photon mapping.
Computer Graphics Forum, 30(4), June 2011.

[JV11] Bing Jian and Baba C. Vemuri. Robust point set registration using
Gaussian mixture models. IEEE Trans. Pattern Anal. Mach. Intell.,
33(8):1633–1645, August 2011.

[Kai67] T. Kailath. The divergence and Bhattacharyya distance measures in signal
selection. IEEE Transactions on Communication Technology, 15(1):52–60,
February 1967.

135

[KB04] Leif Kobbelt and Mario Botsch. A survey of point-based techniques in
computer graphics. Computers & Graphics, 28:801–814, December 2004.

[KBH06] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson surface
reconstruction. In Proceedings of the Fourth Eurographics Symposium on
Geometry Processing, SGP ’06, pages 61–70, Aire-la-Ville, Switzerland,
2006. Eurographics Association.

[KH13] Michael Kazhdan and Hugues Hoppe. Screened poisson surface reconstruc-
tion. ACM Trans. Graph., 32(3):29:1–29:13, July 2013.

[KSNS07] Evangelos Kalogerakis, Patricio Simari, Derek Nowrouzezahrai, and Karan
Singh. Robust statistical estimation of curvature on discretized surfaces.
In Proceedings of the Eurographics Symposium on Geometry Processing,
SGP ’07, pages 13–22, 2007.

[LC87] William E. Lorensen and Harvey E. Cline. Marching cubes: A high
resolution 3d surface construction algorithm. SIGGRAPH Computer
Graphics, 21(4):163–169, August 1987.

[LCOLTE07] Yaron Lipman, Daniel Cohen-Or, David Levin, and Hillel Tal-Ezer.
Parameterization-free projection for geometry reconstruction. ACM Trans.
Graph., 26(3), July 2007.

[Lev98] David Levin. The approximation power of moving least-squares. Mathe-
matics and Computation, 67(224):1517–1531, October 1998.

[Lev03] David Levin. Mesh-independent surface interpolation. In Guido Brunnett,
Bernd Hamann, Heinrich Müller, and Lars Linsen, editors, Geometric Mod-
eling for Scientific Visualization, pages 37–49. Springer, Berlin, Heidelberg,
2003.

[LLP+10] Ruosi Li, Lu Liu, Ly Phan, Sasakthi Abeysinghe, Cindy Grimm, and
Tao Ju. Polygonizing extremal surfaces with manifold guarantees. In
Proceedings of the 14th ACM Symposium on Solid and Physical Modeling,
SPM ’10, pages 189–194, New York, NY, USA, 2010. ACM.

[LP03] Lars Linsen and Hartmut Prautzsch. Fan clouds - an alternative to meshes.
In Tetsuo Asano, Reinhard Klette, and Christian Ronse, editors, Geom-
etry, Morphology, and Computational Imaging, volume 2616 of Lecture
Notes in Computer Science, pages 39–57. Springer, Berlin, Germany, 2003.
linsenprautzsch.

[LS81] P. Lancaster and K. Salkauskas. Surfaces generated by moving least
squares methods. Mathematics of Computation, 37:141 – 158, 1981.

136

[LSK+10] Bao Li, Ruwen Schnabel, Reinhard Klein, Zhiquan Cheng, Gang Dang,
and Jin Shiyao. Robust normal estimation for point clouds with sharp
features. Computers & Graphics, 34(2):94–106, April 2010.

[LTdF+09] P. Leite, J. Teixeira, T. de Farias, V. Teichrieb, and J. Kelner. Massively
parallel nearest neighbor queries for dynamic point clouds on the GPU. In
Computer Architecture and High Performance Computing, 2009. SBAC-
PAD ’09. 21st International Symposium on, pages 19 –25, oct. 2009.

[LXJF13] Bin Liao, Chunxia Xiao, Liqiang Jin, and Hongbo Fu. Efficient
feature-preserving local projection operator for geometry reconstruction.
Computer-Aided Design, 45(5):861–874, 2013.

[MDGD+10] Patrick Mullen, Fernando De Goes, Mathieu Desbrun, David Cohen-
Steiner, and Pierre Alliez. Signing the unsigned: Robust surface recon-
struction from raw pointsets. Computer Graphics Forum, 29(5):1733–1741,
2010.

[MJ09] K.V. Mardia and P.E. Jupp. Directional Statistics. Wiley Series in
Probability and Statistics. Wiley, 2009.

[MKC07] Ricardo Marroquim, Martin Kraus, and Paulo Roma Cavalcanti. Efficient
point-based rendering using image reconstruction. In Proceedings Sympo-
sium on Point-Based Graphics, pages 101–108. Eurographics Association,
2007.

[MNG04] N. J. Mitra, A. Nguyen, and L. Guibas. Estimating surface normals
in noisy point cloud data. In special issue of International Journal of
Computational Geometry and Applications, volume 14, pages 261–276,
2004.

[MOC08] R. Marroquim, A. Oliveira, and P.R. Cavalcanti. High quality image recon-
struction of point models. In Computer Graphics and Image Processing,
2008. SIBGRAPI ’08. XXI Brazilian Symposium on, pages 297 –304, oct.
2008.

[NG00] J. Cotrina Navau and N. Pla Garcia. Modeling surfaces from meshes of
arbitrary topology. Computer Aided Geometric Design, 17(7):643 – 671,
2000.

[OBA+03] Yutaka Ohtake, Alexander Belyaev, Marc Alexa, Greg Turk, and Hans-
Peter Seidel. Multi-level partition of unity implicits. ACM Trans. Graph.,
22(3):463–470, July 2003.

[OE11] Umut Ozertem and Deniz Erdogmus. Locally defined principal curves and
surfaces. Journal of Machine Learning Research, 12:1249–1286, 2011.

137

[OGG09] Cengiz Oztireli, Gaël Guennebaud, and Markus Gross. Feature preserving
point set surfaces based on non-linear kernel regression. Computer Graphics
Forum, 28(2):493–501, 2009.

[Paj03] Renato Pajarola. Efficient level-of-details for point based rendering. In
Computer Graphics and Imaging, pages 141–146, 2003.

[PLM10] Jia Pan, C. Lauterbach, and D. Manocha. Efficient nearest-neighbor
computation for GPU-based motion planning. In Intelligent Robots and
Systems (IROS), 2010 IEEE/RSJ International Conference on, pages 2243
–2248, oct. 2010.

[PMG04] Mark Pauly, Niloy J. Mitra, and Leonidas J. Guibas. Uncertainty and
variability in point cloud surface data. In Proceedings of the First Eu-
rographics Conference on Point-Based Graphics, SPBG’04, pages 77–84,
Aire-la-Ville, Switzerland, 2004. Eurographics Association.

[PP12] K. B. Petersen and M. S. Pedersen. The matrix cookbook, November 2012.
Version 20121115.

[PZvBG00] Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar, and Markus Gross.
Surfels: surface elements as rendering primitives. In SIGGRAPH ’00:
Proceedings of the 27th annual conference on Computer graphics and
interactive techniques, pages 335–342, New York, NY, USA, 2000. ACM
Press/Addison-Wesley Publishing Co.

[QMN09] Deyuan Qiu, Stefan May, and Andreas Nüchter. GPU-accelerated nearest
neighbor search for 3d registration. In Proceedings of the 7th International
Conference on Computer Vision Systems: Computer Vision Systems, ICVS
’09, pages 194–203, Berlin, Heidelberg, 2009. Springer-Verlag.

[RL08] Paul Rosenthal and Lars Linsen. Image-space point cloud rendering. In
Proceedings of Computer Graphics International, pages 136–143, 2008.

[RL16] Mael Rouxel-Labbe. Anisotropic mesh generation. Theses, Université Côte
d’Azur, December 2016.

[RLWB16] M Rouxel-Labbé, M Wintraecken, and J.-D Boissonnat. Discretized
Riemannian Delaunay triangulations. In Proceedings 25th International
Meshing Roundtable (IMR25), Washington DC, United States, September
2016. Elsevier.

[RPZ02] Liu Ren, Hanspeter Pfister, and Matthias Zwicker. Object space EWA
surface splatting: A hardware accelerated approach to high quality point
rendering. In Computer Graphics Forum (Eurographics 2002), volume 21,
pages 461–470, September 2002.

138

[SG07] Jochen Suessmuth and Guenther Greiner. Ridge based curve and surface
reconstruction. In Proceedings of the Fifth Eurographics Symposium on
Geometry Processing, SGP ’07, pages 243–251, Aire-la-Ville, Switzerland,
2007. Eurographics Association.

[SJW07] Daniel Scherzer, Stefan Jeschke, and Michael Wimmer. Pixel-correct
shadow maps with temporal reprojection and shadow test confidence.
In Jan Kautz and Sumanta Pattanaik, editors, Rendering Techniques
2007 (Proceedings Eurographics Symposium on Rendering), pages 45–50.
Eurographics, Eurographics Association, June 2007.

[SXG+09] Marcelo Siqueira, Dianna Xu, Jean Gallier, Luis Gustavo Nonato, Di-
mas Martinez Morera, and Luiz Velho. A new construction of smooth
surfaces from triangle meshes using parametric pseudo-manifolds. Comput-
ers & Graphics, 33(3):331 – 340, 2009. {IEEE} International Conference
on Shape Modelling and Applications 2009.

[SZW09] Claus Scheiblauer, Norbert Zimmermann, and Michael Wimmer. Inter-
active domitilla catacomb exploration. In 10th VAST International Sym-
posium on Virtual Reality, Archaeology and Cultural Heritage (VAST09),
pages 65–72. Eurographics Association, September 2009.

[Vas98] Nuno Vasconcelos. Learning mixture hierarchies. In Proceedings of Ad-
vances in Neural Information Processing Systems, NIPS’98, pages 606–612.
MIT Press, 1998.

[VJ09] G. Vecchia and B. Jüttler. Piecewise rational manifold surfaces with sharp
features. In Proceedings of the 13th IMA International Conference on
Mathematics of Surfaces XIII, pages 90–105, Berlin, Heidelberg, 2009.
Springer-Verlag.

[VJK08] Giovanni Della Vecchia, Bert Jüttler, and Myung-Soo Kim. A construction
of rational manifold surfaces of arbitrary topology and smoothness from
triangular meshes. Computer Aided Geometric Design, 25(9):801 – 815,
2008. Classical Techniques for Applied Geometry.

[vKvdBT07] Kees van Kooten, Gino van den Bergen, and Alex Telea. Point-based
visualization of metaballs on a GPU. GPU Gems, (3), 2007.

[WBKP08] B. Walter, K. Bala, M. Kulkarni, and K. Pingali. Fast agglomerative
clustering for rendering. In IEEE Symposium on Interactive Ray Tracing,
pages 81–86, 2008.

[WS06] Michael Wimmer and Claus Scheiblauer. Instant points. In Proceedings
Symposium on Point-Based Graphics 2006, pages 129–136. Eurographics,
Eurographics Association, July 2006.

139

[WZK05] Jianhua Wu, Zhuo Zhang, and Leif Kobbelt. Progressive Splatting. In
Marc Alexa, Szymon Rusinkiewicz, Mark Pauly, and Matthias Zwicker,
editors, Eurographics Symposium on Point-Based Graphics (2005). The
Eurographics Association, 2005.

[YHGT10] Jason C. Yang, Justin Hensley, Holger Grün, and Nicolas Thibieroz. Real-
time concurrent linked list construction on the gpu. In Proceedings of the
21st Eurographics Conference on Rendering, EGSR’10, pages 1297–1304,
Aire-la-Ville, Switzerland, Switzerland, 2010. Eurographics Association.

[YZ04] Lexing Ying and Denis Zorin. A simple manifold-based construction of
surfaces of arbitrary smoothness. In ACM SIGGRAPH 2004 Papers,
SIGGRAPH ’04, pages 271–275, New York, NY, USA, 2004. ACM.

[ZGHG11] Kun Zhou, Minmin Gong, Xin Huang, and Baining Guo. Data-parallel
octrees for surface reconstruction. IEEE Transactions on Visualization
and Computer Graphics, 17:669–681, 2011.

[ZHWG08] Kun Zhou, Qiming Hou, Rui Wang, and Baining Guo. Real-time kd-tree
construction on graphics hardware. In ACM SIGGRAPH Asia 2008 papers,
SIGGRAPH Asia ’08, pages 126:1–126:11, New York, NY, USA, 2008.
ACM.

[ZSW+10] Qian Zheng, Andrei Sharf, Guowei Wan, Yangyan Li, Niloy J. Mitra,
Daniel Cohen-Or, and Baoquan Chen. Non-local scan consolidation for 3d
urban scenes. ACM Trans. Graph., 29:94:1–94:9, July 2010.

140

Reinhold Preiner
Doctoral Researcher

education
2010–2017 Doctor of Technical Sciences TU Wien, Austria

Dynamic and Probabilistic Point-Cloud Processing
(exp. date of defense: Oct 2017)

2008–2010 Diplom-Ingenieur (Dipl.-Ing.) in Visual Computing TU Wien, Austria

Interactive Curved Reflections in Large Point Clouds
Graduation with honors

2004–2008 Bachelor (Bakk.rer.soc.oec.) TU Graz, Austria

in Software Engineering and Knowledge Management
Adaption der Grafikausgabe eines First-Person-Shooters für den Be-
trieb in einer virtuellen Umgebung

professional

2010–2017 TU Wien Vienna, Austria

University Assistant and Research Assistant
at the Rendering and Modeling group of the Institute of Computer
Graphics and Algorithms

2007–2008 Siemens Austria Vienna, Austria

Software-quality controlling and software-engineering internships

teaching

2014, 2016 Algorithms for Real-Time Rendering TU Wien

Responsible for specific lecture units on real-time rendering

2014–2015 Modelling in Computer Graphics TU Wien

Responsible for lecture units on specific modeling topics

2010–2013 Introduction to Visual Computing TU Wien

Assistance in lecture units and design, execution and correction of
final exams

2010 Computer Graphics 2 TU Wien

Tutor for student support in C++/OpenGL game-engine programming

2009 Computer Graphics 1 TU Wien

Tutor for student support in introductory CG assignments

2008–2010 Introduction to Programming TU Wien

Tutor of student groups for object-oriented programming exercises in
Java

reviewing

CESCG 2011/2012/2013, CGI 2011, GCH 2011/2014, PG 2012, CAG 2013, JOCCH 2014,
TVCG 2014/2016, CAGD 2016, SIGGRAPH ASIA 2016, TVCJ 2016, CGF 2017, HPG 2017,
SIGGRAPH 2017

contact
Favoritenstraße 9-11

1040, Wien
Austria

rp@cg.tuwien.ac.at

languages
native German
fluent English
basic Spanish

interests
visual computing

geometry
reconstruction

probabilistic methods

supervision

Student Projects

2010 GPU Point-Cloud Raytracing Probst, Kolesik

2013 Real-Time Global Illumination using Virtual Area Lights Weinzierl

2016 Kinect Fusion using Gaussian Mixtures Jahrmann

Bachelor Theses

2013 Rasterized Curved Reflections in Screen Space Szabo

2016 Molecule-Rendering in Unity3D Prost

Diploma Theses

2017 Adaptively-Clustered Virtual Area Lights for Real-Time Weinzierl

Global Illumination

publications

full papers

Murat Arikan, Reinhold Preiner, Michael Wimmer. Multi-Depth-Map Raytracing for Ef-
ficient Large-Scene Reconstruction. IEEE Transactions on Visualization & Computer
Graphics, 22(2):1127–1137, February 2016

Johanna Schmidt, Reinhold Preiner, Thomas Auzinger, Michael Wimmer, Meister Ed-
uard Gröller, Stefan Bruckner. YMCA – Your Mesh Comparison Application. In IEEE
Visual Analytics Science and Technology. November 2014

Murat Arikan, Reinhold Preiner, Claus Scheiblauer, Stefan Jeschke, Michael Wimmer.
Large-Scale Point-Cloud Visualization through Localized Textured Surface Reconstruction.
IEEE Transactions on Visualization & Computer Graphics, 20(9):1280-1292, September
2014

Reinhold Preiner, Oliver Mattausch, Murat Arikan, Renato Pajarola, Michael Wimmer.
Continuous Projection for Fast L1 Reconstruction. ACM Transactions on Graphics (In
Proceedings of ACM SIGGRAPH 2014), 33(4):47:1–47:13, August 2014

Thomas Auzinger, Przemyslaw Musialski, Reinhold Preiner, Michael Wimmer. Non-
Sampled Anti-Aliasing. In Proceedings of the 18th International Workshop on Vision,
Modeling and Visualization (VMV 2013), pages 169–176. September 2013

Reinhold Preiner, Stefan Jeschke, Michael Wimmer. Auto Splats: Dynamic Point
Cloud Visualization on the GPU. In Proceedings of Eurographics Symposium on Parallel
Graphics and Visualization, pages 139–148. May 2012

non-peer reviewed papers

Johanna Schmidt, Bernhard Fröhler, Reinhold Preiner, Johannes Kehrer, Meister Ed-
uard Gröller, Stefan Bruckner, Christoph Heinzl. Visual Analysis of Volume Ensembles
Based on Local Features. Technical Report, TR-186-2-16-2, May 2016

Reinhold Preiner, Michael Wimmer. Interactive Screen-Space Triangulation for High-
Quality Rendering of Point Clouds. Technical Report, TR-186-2-12-01, April 2012

Reinhold Preiner, Michael Wimmer. Real-Time Global Illumination in Point Clouds.
In Proceedings of Central European Seminar on Computer Graphics. May 2010

	Kurzfassung
	Abstract
	Contents
	Introduction
	Prelude
	Scope of this Thesis
	Challenges in Dynamic Point Rendering and Reconstruction
	Contributions

	Related Work
	Dynamic High-Quality Point Rendering
	Robust Point-Cloud Processing
	Modeling Point Clouds with Gaussian Mixtures
	Surface Reconstruction and Representation

	Interactive Screen-Space Triangulation
	Introduction
	Challenges
	Algorithm Overview
	Nearest neighbor search
	Normal estimation
	Triangulation
	Search radii update
	Results
	Conclusion and Limitations

	Auto Splats
	Introduction
	Overview
	Parallel Splat Communication
	Neighborhood Computation
	Surface Fitting
	Auto Splat Rendering
	Results and Discussion
	Summary

	Continuous Locally Optimal Projection
	Introduction
	A Review of the LOP Operator
	Motivation and Overview
	Gaussian Mixture Density Computation
	Continuous LOP in Gaussian Mixtures
	Weighted CLOP
	Accelerating Repulsion
	Robust Normal Computation in Mixtures
	Implementation
	Evaluation and Results
	Limitations
	Summary

	Gaussian Kernel-Product Surfaces
	Introduction
	Motivation and Overview
	Gaussian Mixture Computation
	Probabilistic Triangulation of Gaussians
	Kernel-Product Surfaces
	Results and Discussions
	Summary

	Conclusion
	Résumé
	Epilogue

	Virtual Scanning Parameters
	HEM Algorithm Outline
	Derivation of the Kernel-Product Expectation
	List of Figures
	List of Tables
	Bibliography
	Curriculum Vitae

