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Fig. 1: Several datasets integrated into a single visualization of a human induced pluripotent stem cell. Three renderings with
different visualization parameters are shown.

Abstract—We propose a system to facilitate biology communication by developing a pipeline to support the instructional visualization
of heterogeneous biological data on heterogeneous user-devices. Discoveries and concepts in biology are typically summarized with
illustrations assembled manually from the interpretation and application of heterogenous data. The creation of such illustrations is
time consuming, which makes it incompatible with frequent updates to the measured data as new discoveries are made. Illustrations
are typically non-interactive, and when an illustration is updated, it still has to reach the user. Our system is designed to overcome
these three obstacles. It supports the integration of heterogeneous datasets, reflecting the knowledge that is gained from different data
sources in biology. After pre-processing the datasets, the system transforms them into visual representations as inspired by scientific
illustrations. As opposed to traditional scientific illustration these representations are generated in real-time - they are interactive.
The code generating the visualizations can be embedded in various software environments. To demonstrate this, we implemented
both a desktop application and a remote-rendering server in which the pipeline is embedded. The remote-rendering server supports
multi-threaded rendering and it is able to handle multiple users simultaneously. This scalability to different hardware environments,
including multi-GPU setups, makes our system useful for efficient public dissemination of biological discoveries.

Index Terms—Biological visualization, remote rendering, public dissemination

1 INTRODUCTION

Biologists generate large amounts of data every day. Through analy-
sis of these data, scientists make new discoveries, which are further
communicated to a broad spectrum of audiences, from peer-experts,
through students in training, up to the general public. Especially for
the latter two, this is commonly done through illustrations designed
to reduce distractions, focus attention, and clarify content, since 3D
image data is difficult for non-biologists to interpret.

In order to create an illustration conveying a novel discovery, several
steps are necessary. First, the discovery, as well as the underlying data
have to be explained to the illustrators. Subsequently, the illustrators
proceed to create an illustration, which can be either in the form of an
image or an animation. Finally, labels and descriptions are added so
that the illustration conveys the desired information, and the illustration
is distributed to the target audience.

There are several problems with this approach. In cell biology, the
process of creating illustrations can take much longer than the average
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with TU Wien and the VRVis Research Center.
E-mail: {mindek | dvdkouril | sorger | meister | viola}@cg.tuwien.ac.at.

• D. Toloudis, B. Lyons, G. Johnson are with Allen Institute for Cell Science.
E-mail: {danielt | blairl}@alleninstitute.org and graham@grahamj.com.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

time in which new discoveries are made. Therefore, after the illustration
is made public, it might already be obsolete. The only way to update it
is to remake it from scratch. Therefore, this model is not suitable for
public dissemination of state-of-the-art knowledge in biology.

Another problem is that the illustrations and animations are typically
not interactive. They cannot support the learning process as efficiently
as an interactive environment could. They can tell a single story, but
the possibilities to adapt them to tell different stories are very limited.

We propose a novel system, called Marion, which addresses both of
these problems. It offers means for creating a pipeline which connects
the underlying measurement and imaging data directly with the target
audience. The system includes tools for illustrators to design interactive
visualizations created automatically from the underlying data, and to
deliver the results directly to users over the internet. Whenever the
data change, or new findings are made, the illustrations can simply
be updated and the results are visible to everyone immediately. The
system can either allow users to freely interact with the illustration, or
it can take them on guided tours through cells or microorganisms.

We designed the system to fulfill the need for public dissemination
of discoveries in cell science. The goal of the system is to informatively
display human cells, in a similar way to visualizations designed by
illustrators. The renderings are required to be interactive and deliverable
over the internet, so that they can be used for communicating various
scientific discoveries to wide audiences. The renderings have to be
directly derived from the underlying data, so that the pipeline does not
have to change when the data are updated.

In the first step, the system loads and filters the data. The system
has to support various data types, such as meshes, volumes, as well



as curves describing tubular structures, since individual organelles are
described with different data types. Subsequently, each of the data
types has to be rendered in a unique way, while maintaining interactive
framerates. For instance, the tubular structures are displayed as sets
of screen-space metaballs, which can be rendered in real-time while
providing an organic look of the organelles they are representing, such
as mitochondria. Finally, the rendered images of the organelles, which
are to be visualized, are composited by means of an order-independent
transparency technique.

In our system, this pipeline is implemented as a stand-alone
dynamically-linked library, which can be reused in different host appli-
cations without any changes. To demonstrate this, we implemented a
desktop application with a simple user interface displaying the cell data
and supporting various story-telling operations, as well as a remote-
rendering server, which delivers the renderings over the internet to a
web-based client. Our system ensures that both GPU shader code, as
well as native host code is reloaded automatically upon change. This
allows the developers to quickly prototype new rendering methods, as
well as maintain the code without the need of restarting the application
and reloading all the data.

Our system solves an existing problem of the Allen Institute for Cell
Science (AICS). The goal of AICS is to engage the public in cell biology
with informative 3D illustrations originating from microscopy data of
human cells. The data are frequently updated, e.g., new organelles are
scanned, or higher resolution scans are produced. Our system ensures
that the changes made to the data are immediately incorporated in the
produced visualizations. Our remote-rendering solution ensures that
these interactive visualizations are delivered to the users with the only
requirement that they have an internet connection on their devices.

Our remote-rendering solution serves as a reference implementation
of a public dissemination mechanism for biological data. It is scalable
to utilize multiple graphics processing units through the use of a state-
less multi-threaded rendering architecture. This ensures that multiple
clients can simultaneously issue rendering requests to the server. The
requests are distributed amongst the active rendering threads based on
a load-balancing mechanism tailored to the rendering pipeline, auto-
matically adapting to its possible changes. The load-balancing works
independently from the actual visualization pipeline, and it is therefore
easily reusable for different applications.

The contributions of this paper are:

• A novel system for fast prototyping and deployment of illustrative
visualizations.

• A pipeline implemented using our system designed for public
dissemination of cell biology.

• A scalable remote-rendering system for the delivery of rendered
images over the internet, implemented as another application of
our system.

2 RELATED WORK

Visualization of biological structures and processes is a major part of
visualization research. It has been shown that students understand
concepts easily and in-depth if the material is supplemented by realistic
renderings [11]. Iwasa [6] argues for the importance of animated
content for science communication and teaching. As a consequence
there has been a significant effort put into creating scientific illustrations
and animations. Sharpe et al. [27] provide a comprehensive overview
of techniques for creating biology-based models using modern 3D
software like Maya. Arguably, interactive visualizations can convey the
information and help with the learning process even more than a static
image or a noninteractive animation.

2.1 Biological visualization systems
Rendering large biological structures at their atomic level on consumer
level hardware has only been possible in the last few years. Initially,
Lindow [16] rendered large scenes containing microtubules made of
several billion atoms. Since then, new rendering techniques have been

developed to improve the performance and appearance of rendering
large and complex molecular scenes [15].

MegaMol [5] provides a framework that serves as a prototyping tool
for creating visualizations of large, particle-based datasets. Using a
packing tool like cellPACK [7], is is possible to create models of HIV
down to their atomic detail [8]. The actual interactive visualization of
cellPACK outputs have been made possible by cellVIEW [14].

Different approaches have to be taken when acquiring and displaying
larger organisms. Our system uses microscopy image data to render
organelles of a human cell, which cannot be feasibly modelled and
rendered in its entirety on the atomic level of detail because of hardware
limitations.

Walter et al. [33] reviews the many different modern acquisition
techniques which scientists are using to generate enormous amounts of
data these days. Moreover, the authors introduce a plethora of tools for
visualizing multidimensional image data.

VTK [26] is a prevalent framework for computer graphics, used
extensively in visualization. Multiple other popular tools for showing
multidimensional images exist [3, 19, 20, 22–24, 30].

UCSF Chimera [19] is a popular viewer for displaying and manipu-
lating atom-resolution macromolecule structures.

ParaView [1] is an open-source solution initially focused on visu-
alizing simulation results. It uses VTK as its foundation layer and
implements methods to process, analyze, and visualize large datasets.

Web-based tools play an important role, as it is the most widespread
form of media used by general audience. Online Anatomical Hu-
man [29] is a web based project which provides an interactive way
to study human anatomy. With our system, we want to enable inter-
active exploration of human cells, based on various microscopy and
simulation datasets.

2.2 Remote rendering systems

The idea of remote rendering is not new and has been used in several ap-
plications. Martin [18] establishes three basic approaches to rendering
in a server-client environment: client-side methods, server-side meth-
ods, and hybrid methods. The server-side methods are the focus of this
paper and are based on rendering all the content on a high performance
server and delivering the results as images to the clients.

The most obvious reason to use remote rendering is to leverage
accelerated graphics capabilities of a powerful server machine and
deliver the high-quality rendering results to the client, which might be
a less powerful machine, such as a tablet or a mobile phone. This has
been done for example in case of intensive volume rendering [4]. In
this work, the server renders into an off-screen buffer, compresses the
result and transfers it to the client. The client on the other hand notifies
the server about user interactions.

Koller et al. [10] use remote rendering as a way of securing the
intellectual property of scanned high-fidelity models. The authors
provide a downloadable client program by which users can view 3D
models of Michelangelo’s statues. The difference to our system is that
the client is implemented as a web page, thus eliminating the barrier of
downloading and installing the client software itself.

Ma et al. [17] explore remote rendering as a way to solve the prob-
lem of both high performance and storage requirements. The issue
of latency is discussed and several image compression formats are
compared in order to minimize the lag observed by the user. JPEG is
chosen as the most suitable compression format, therefore we also use
JPEG as the format of resulting images.

Krone et al. [12] used a server-client architecture to leverage the
performance of a server in order to deliver high-quality visualization
results. The main use case of their solution is to employ mobile devices
to control a large high-resolution display. The main emphasis does not
lie in the client visualization quality. Our approach instead aims to
provide the best possible final visualization on the client side.

Lamberti et al. [13] propose an architecture for a remote visualization
system based on the Chromium software and test the performance of
such a system on two model use cases: surface (mesh) rendering and
volume rendering.



Fig. 2: An illustration of a few human induced pluripotent stem cells. It
was created manually in 3D modelling software, based on the measured
data. The rendering took several minutes. Illustration by Graham
Johnson.

Jomier et al. [9] demonstrate the usage of ParaViewWeb, a JavaScript
library that uses the processing and rendering power of either VTK or
ParaView on the back-end to deliver visualizations in the browser.

3 SYSTEM OVERVIEW: VISUALIZATION MULTI-PIPELINE

The motivation for this work is the task to make human-cell confocal-
microscopy data accessible to the general public. The raw data, in
the form of intensity volumes, do not convey much on their own to
laypersons. Their relatively low resolution, and multiple channels
encoding individual organelles, make the data unsuitable to standard
volume-rendering approaches. Therefore, illustrators manually create
abstracted three dimensional depictions of the cells based on the ob-
served data, such as the one shown in Figure 2. Here, the scanned
volumes are simplified and discrete surfaces are introduced to give the
viewers an idea about the shapes and spatial configuration of the cell.
Such information would be very difficult to grasp from simply visually
exploring the volume-rendered images of the original data.

The manually created illustrations can explain the data very effi-
ciently. However, there are several problems with this approach.

P1: the underlying data are continuously refined, as better scanning
techniques are introduced relatively frequently. The algorithms used
for extracting surfaces from the volume data are also continuously
improved. With each update to the data, the illustration has to be
manually updated as well. This takes a significant amount of time for
the illustrator, which makes it expensive to produce the updates to the
illustration. After the creation of the illustration, it is also necessary
to deliver it to the target audience through a variety of channels. This
results in the situation that by the time the illustration reaches the target
audience, it might be already outdated.

P2: with each scanned cell, a new illustration has to be created.
Biologists also use shape-modeling tools to examine all possible shapes
of the cells by generating synthetic data. To visualize all these synthetic
cells, an automated approach of creating the illustrations is necessary.

P3: the manually created illustrations do not provide any kind of
interactivity. All the rendering parameters are fixed and tailored towards
a single use-case. It is difficult to use such illustrations as a presentation
environment for novel discoveries, such as protein interactions. The
illustrations created in this way are mostly single-purpose.

Our goal is to address all of these problems with a system, which
connects the underlying data directly with the target audience by an au-
tomated pipeline creating interactive, real-time 3D visualizations. The
system should allow for easy creation of thick pipelines which simulate
workflows of illustrators producing multiple different images from the
underlying biological data. This means the individual datasets are pro-
cessed into various types of data, rendered with different visualization
techniques, composited together into an illustration communicating
certain message, and delivered to the target audience. We refer to such
pipelines as visualization multi-pipelines.

Fig. 3: (a) Traditional scientific illustration. It is necessary to transfer
the knowledge to the illustrator, who then, through a thin pipeline,
produces a single illustration. Any new illustration, e.g., reflecting
changes in the underlying data, has to be created from scratch. (b)
Visualization multi-pipeline. Our system allows the illustrators to de-
sign thick pipelines, which can automatically convert the underlying
data to the desired visualizations in multiple ways, producing illustra-
tions conveying different aspects of the data. All data refinements are
instantaneously reflected in all generated visualizations.

3.1 Visualization Multi-Pipeline

The visualization multi-pipeline extends what is commonly known as
visualization pipeline by the final stage which we refer to as deployment
stage. In this stage, the entire process of generating the illustrations is
embedded into various host applications, which ensures the delivery
of the illustrations to the target audience. This step is essential when
the illustrations are intended for public dissemination purposes. The
support for the deployment stage constitutes the central novelty of our
system. In comparison to the existing visualization systems, our system
is specifically designed so that the visualizations developed within it
can be easily embedded into external applications. Thus, supporting
the deployment stage of the visualization multi-pipeline.

Figure 3 shows the workflow of traditional illustrations (orange path)
as opposed to our proposed system (blue path).

Both cases start with biology researchers gathering data through
observations, measurements, and simulations (green). In a traditional,
manual approach, the process continues with a knowledge-transfer,
where the scientists carefully explain the underlying dataset to the
illustrators. The illustrators then process the dataset in various ways,
and work on abstracted depictions of the structures and processes,
which need to be communicated. This requires a significant effort, and
in general the result can only convey information about a single dataset
- the one that has been explained to the illustrator by the scientists.

When our system is used, there are three user-roles involved - a
domain expert (a biologist), an illustrator, and a programmer. Rather
than explaining a single dataset that should be illustrated, the domain
expert explains to the illustrator the biology processes in general. The
illustrator assesses which visualization and rendering techniques will
be required in order to illustrate any dataset that is supposed to con-
vey these processes. Subsequently, the illustrator communicates with
the programmer, who prepares the skeleton of the visualization multi-



pipeline. The API of the system is designed in such a way that common
operations, which illustrators would typically be doing, can be im-
plemented as single-command statements. With this approach, the
programmer can efficiently implement any illustrator’s requests.

After the programmer translates the illustration process into the
multi-pipeline, the illustrator can customize it by changing the param-
eter settings. Our system automatically exposes all the parameters
through a user interface so that the illustrator can influence the render-
ing without looking into the code. Thanks to the deployment stage, all
the changes made to the multi-pipeline and its parameters are automati-
cally reflected in all applications build for this particular multi-pipeline.
This makes our system suitable for public dissemination of biology,
where it is necessary to illustrate large numbers of datasets on different
platforms.

In contrast to the traditional approach of illustration, as well as
existing visualization systems, Marion is able to produce interactive
illustrations, which can be immediately deployed to different devices.
The interactiveness of the generated illustrations ensures that they can
be used as a platform to tell stories about cell biology, as well as to
communicate new discoveries made in this field to the public, all based
on the same underlying data. Alternatively, the generated illustrations
can be used for inter-disciplinary communication, for instance as fig-
ures in papers, while they can be highly customized to highlight desired
features of the data. Whenever the underlying data change, all the gen-
erated visualizations can be updated immediately, which is a significant
advantage over the traditional approach.

The first stage, Data Processing, ensures that the data are loaded, and
adequately filtered and simplified so that they are ready to be visualized.
Here it is important that the complexity of the data is reduced as much
as possible, while maintaining all the necessary structural information
about the data. In general, multiple datasets are processed in this stage,
and each of them can be converted into a different format or data
type, since this might be necessary for applying different illustrative
techniques.

In the second stage, the data are rendered using various illustrative-
visualization techniques. Different techniques are needed, since the
underlying data are of various data types, and it might be required to
convey multiple aspects of each of them. For instance, the mitochon-
dria might be displayed with volume rendering as probability clouds
to show the original measured data, or they can be displayed as ex-
tracted surfaces, which are not conveying the measured data, but give a
simplified idea to the laypersons what mitochondria might look like.

The third stage produces the final image by compositing all the
renderings into a single visualization. Here various visualization pa-
rameters are applied to achieve desired results.

Most notably, the visualization multi-pipeline extends the traditional
visualization pipeline by the last, fourth stage, which we refer to as
deployment. This stage describes the application environments, into
which the previous stages can be integrated. Marion aids this integration
on the prototyping, development, as well as deployment level. Thanks
to the inclusion of this stage in our system, it is easily possible to create
applications delivering visualizations in the form of interactive content
to large audiences.

The colored circles in each stage depicted in Figure 3 represent the
modules of our system. Marion is built in a way that it is easy to add
new modules to each of the stages, and to arbitrarily combine them. To
demonstrate our system, we implemented all the modules necessary
to create a pipeline for public dissemination of cell biology based on
confocal-microscopy data.

In the following sections, we discuss the individual stages, and the
modules we implemented to realize our multi-pipeline.

3.2 Data Processing
The first step in creating an illustration is to acquire the necessary data.
The data processing stage has to be able to process all acquired data
types, and prepare them for the rendering. Confocal laser scanning mi-
croscopy (CLSM) creates a 3D volume of the observed specimen, such
as a human cell. By modifying the cells, so that some of their organelle
systems produce fluorescent light when excited by the laser beam, it is

possible to scan each organelle system separately. This results in sev-
eral volumes, which need to be further processed: First, the organelle
structures are segmented. Some of the scanned structures, such as
the cell membrane, can be smoothed and converted to meshes, since
they do not have to convey any volumetric information. Organelles
such as microtubules or mitochondria, which form tubular structures,
are in general segmented with a backbone segmentation, and only the
backbones are used for the visualization. Finally, in some situations, it
is also necessary to show the original data in the volumetric form. We
implemented modules for loading and smoothing of volumes, meshes,
and backbone segmentations.

3.3 Rendering

After the data processing, the datasets are rendered. Since the input data
are diverse (volumes, meshes, backbones), there has to be a separate
renderer for each data type.

For rendering volumes and meshes, we use well known methods,
such as directional occlusion shading [25] or volume raycasting. For
both mesh and volume rendering, we provide the same set of shaders
to mimic the look of the visual appearance created by illustrators.

Each renderer is realized as a standalone module, which renders the
input dataset into an off-screen buffer. The renderers have to output
the depth-buffer for each image too, so that the individual images
can be later composed together in image-space with the depth testing
implemented as a post-processing effect. Thanks to this design it is
possible to split the rendering tasks between separate GPUs if necessary,
since before compositing the renderers are independent of each other.

3.4 Compositing

After the rendering, all the images are composited into a single visu-
alization. For that purpose, all the renderers have to produce images
with the same size and the same format of the depth buffer. Based on
the depth information, we are able to composite the images by means
of order-independent transparency. For semi-transparent volumetric
renderings, an approximation has to be taken, such as assuming a solid
surface where the opacity accumulates above a certain threshold. In
our application area, we are working with volumes obtained by 3D flu-
orescent microscopy, where each volume contains only a single object,
and so there are no nested structures. Therefore, for our purposes, this
is a satisfactory approximation, as shown in Section 5.

The order-independent transparency technique ensures that the in-
dividual organelles can be rendered semi-transparently, or turned off
completely. Additionally, this way of rendering allows for applying
certain post-processing effects on individual layers, such as contours or
halos. This is necessary to achieve those visual effects which illustrators
use for particular storytelling or highlighting purposes.

3.5 Deployment

To finalize the pipeline between the original data and target audience,
Marion implements the fourth stage - Deployment. In this stage, the
visualization created in the previous stages is placed within a suitable
software environment so that it can be delivered to the final users. This
is done in a fast and flexible manner which supports fast prototyping as
well as deploying of the finalized solutions.

The modules within this stage are in fact applications, in which the
previous stages are embedded. With its internal architecture and helper
tools , Marion ensures that this embedding is easily possible, and the
same visualization pipeline is reusable across multiple applications.
This means that in case one of the previous stages is modified, these
changes are automatically passed on to in all applications within the
deployment stage. This happens without the necessity to change any
application code, or even to restart running applications. This is advan-
tageous in case the application is a running server, since it is possible to
update its visualization pipeline without any downtime. Additionally,
this design supports fast prototyping of the visualization code, since
it avoids all the data having to be reloaded on every change of the
visualization pipeline.



We implemented two applications within the deployment stage to
demonstrate the possibilities of our system. The first one is a desktop
application, which provides a user interface for setting the visualization
parameters. The application is scriptable and it can be used to create
story-telling animations using the cell-visualization pipeline.

The second application consists of a remote-rendering server and
thin client handling the interaction and displaying of the rendered
images. This application is used to deliver the visualized content in an
interactive manner to the target users over the internet. All the rendering
happens on the server, where a load-balancing mechanism is in place.
All the interaction is implemented on the client side, and it allows the
users to set the desired rendering parameters. The client part can be
embedded in any web-page, while the server can handle multiple users
at the same time. The server is independent of the actual visualization
pipeline, and its load-balancing mechanism automatically adjusts to it
. Therefore, no server code has to be changed when the visualization
pipeline is updated.

Both applications implemented within the deployment stage of our
system support the public dissemination of biology knowledge based
on measured or simulated data. The remote-rendering solution makes
the interactive visualization available also on devices which lack the
necessary processing power to create such visualizations on their own.

4 SYSTEM ARCHITECTURE

The purpose of our system is to make a database of cell-microscopy
scans accessible to laypersons in the form of interactive illustrations.
The database is constantly being updated with higher quality scans, as
well as by adding new datasets. Additionally, it is often necessary that
the created illustrations are deployed to new platforms, or reused in
different applications. This is typically very difficult to achieve with
existing visualization systems, where the visualization pipelines are
integral parts of a specific application.

Therefore, the contribution of this paper is twofold: an architecture
of a system that allows development of visualization pipelines in such
a dynamic environment, which is described in this section; the second
contribution is an actual pipeline implemented within the system, which
creates interactive illustrations of cells from the microscopy data, which
is described in Section 5.

From the software architecture point of view, Marion consists of two
main components, i.e., the visualization layer and the application layer.
The visualization layer is used to implement the first three stages of
the visualization multi-pipeline as shown in Figure 3. The application
layer implements the deployment stage. Within the deployment stage,
standalone applications, which use Marion, are written.

4.1 Visualization Layer
The visualization layer of our system is implemented as a standalone
library. In this layer, all the modules necessary for data processing,
rendering, and compositing are implemented. Additionally, the library
provides functionality for fast prototyping and deployment of the mod-
ules. In this layer, the whole visualization is designed. This layer is
not concerned with any sort of interaction. Its sole task is to render an
image according to the given visualization parameters and input data.

4.1.1 System
The system part of the visualization layer is responsible for handling
the code and the resources of the visualization multi-pipeline. On its
own, this part of the visualization layer can be used for general purpose
graphics applications and it is not restricted only to visualization tasks.

Our system is build in a way that it supports both fast low-level pro-
totyping of illustrative rendering techniques and quick deployment to
different platforms. This mean the outputs of our system can be quickly
adapted to new types of data, directly within a running infrastructure
without any significant down-times. Existing toolkits, such as VTK
or ParaView, do not offer such functionality. They provide means for
fast prototyping, but unlike in our system, the deployment of these
prototypes to different platforms is tedious.

Fig. 4: The architecture of our system.

Code For the development of complex, extensible visualizations,
it is necessary to have a possibility to structure the code into modules in
an intuitive way. In scientific visualization, two types of code are being
used - CPU (or host) code, and GPU (or device) code. The visualization
layer offers an encapsulating structure for both types of code. For the
CPU code the structure is referred to as dynamic plugin, while for the
GPU code it is referred to as dynamic shader. The developer can create
an arbitrary number of dynamic plugins and dynamic shaders. Both
types of the code modules have in common that the visualization layer
automatically reloads them when the files in which they are stored are
modified. For the GPU code this is trivial, since the GPU shaders are
always compiled during the application run-time. For the CPU code,
this is achieved through the use of dynamically-linked libraries. More
details about this mechanism are given in Section 6.

Thanks to the dynamic reloading of the code modules, it is possible
to observe the implementation changes immediately, without restarting
the host application and reloading all the data, which might otherwise
take a significant amount of time. In this way, the visualization layer
ensures fast prototyping of visualization multi-pipelines.

Resources In the visualization of scientific data, various types
of resources are frequently used. These are code modules (dynamic
shaders and dynamic plugins), and buffers, such as render targets, tex-
tures, or datasets. In order to enable fast prototyping and development
of visualization algorithms, the usage of these resources has to be
simplified as much as possible.

The visualization layer implements a resource manager. All the
resources are stored in dictionaries, implemented as hash maps, where
the keys are string IDs. In this way, all the code modules, datasets,
and GPU buffers are stored. They are created with a unique ID, which
can be later used to retrieve them. The creation, as well as referencing
a particular resource, is reduced to a single function call, where the
unique ID is passed as a parameter.

In the background, the visualization layer handles these resources in
specific ways. For instance, it ensures that the dynamic shaders and the
dynamic plugins are reloaded whenever they are modified, e.g., after
recompilation. Specific types of GPU buffers, the frame-buffer objects,
which are used as rendering targets, are automatically re-sized when
a re-size signal is received by the visualization layer. Therefore, the
creation and usage of all types of resources is comfortable, since these
mechanisms are hidden from the programmer.



Fig. 5: Overview of the modules implemented within our system in
the individual stages of the visualization multi-pipeline for illustrative
visualization of the cell microscopy data.

4.1.2 Modules

The modules within the visualization layer implement individual al-
gorithms for loading, processing, and rendering data. Typically, they
are implemented as either dynamic shaders, dynamic plugins, or an
arbitrary combination thereof. However, it is also possible to imple-
ment them as static libraries, compiled together with the rest of the
visualization layer. In this case, the developer trades the flexibility
of dynamic shaders and dynamic plugins for a possible performance
increase, or compactness of the final application.

Data processing For the purpose of the data processing modules,
the visualization layer contains data structures for holding meshes,
volumes, and fiber structures (sets of one-dimensional poly-lines, i.e., a
generalization of point clouds) . These structures are stored in a paged
memory layout, which means that for each dataset a certain number
of continuous memory blocks, or pages, is allocated. This ensures a
relative data locality. However, it is scalable to large datasets that might
otherwise not fit in the memory in a completely continuous way.

Rendering The rendering modules are based on OpenGL. Gener-
ally, they only render into off-screen buffers, which are managed by the
visualization layer. It is the task of the host application to display the
final rendering on screen, if desired.

Compositing For the purpose of the compositing of the final im-
ages from the individual renderings, the visualization layer is designed
in a way that all the resources are global, and they are accessible to all
the modules. This is realized by automatically providing a pointer to
the visualization layer instance to every module. Through this pointer,
the modules can access the resource dictionaries, which contain all the
frame-buffer objects that are used by the rendering modules as render
targets. Therefore, the compositing modules can access previously
rendered images, as well as their depth buffers, and implement various
compositing schemes, such as order-independent transparency. Simi-
larly to the rendering modules, the output of a compositing module is
also an off-screen buffer, which can be used by the host application in
a flexible way.

(a) (b) (c) (d)

Fig. 6: The original data as scanned by the confocal microscope. (a)
Cell membrane, (b) nucleus, (c) mitochondria, (d) microtubules.

4.2 Application Layer
The application layer of the Marion system consists of host applications,
which embed a visualization multi-pipeline implemented through the
visualization layer. This layer ensures that the visualizations can be
easily deployed to the target audiences across different software and
hardware platforms.

4.2.1 Scenes
In order to make the visualization multi-pipelines easily reusable across
multiple applications, we introduce the concept of scenes. Each scene
implements a single multi-pipeline by accessing the visualization layer
of the Marion system. The scenes are implemented as dynamic plugins.
Therefore, each scene contains an independent code, that produces
one or more images stored in the off-screen buffers managed by the
Marion’s resource manager. The scenes carry additional information,
such as the starting time and the duration. This information can be used
when the final visualization consists of several animated sequences,
where each sequence is implemented as a single scene.

4.2.2 Applications
The final step of connecting the underlying data with the target audi-
ence is to implement a host application. These applications can use
any functionality of the visualization layer of Marion. However, the
intended usage of the system is that all the rendering functionality is
implemented within the scenes, and the host application is only using
existing scenes. In this way, the visualization code is centralized and
shared amongst all the applications that might be developed. The host
applications are then either showing the rendered images, or sending
them over the network to their target audience. Changes made to the
scenes, either because of the changes in the nature of the underlying
data, or because of an aesthetic choice, are automatically reflected in
all applications.

5 SYSTEM IN ACTION: COMMUNICATING CELL BIOLOGY

In this section, we describe the visualization multi-pipeline which we
implemented within Marion for creating illustrations of cells, which are
visually comparable to the professional illustration shown in Figure 2.
However, the requirements are that the cells are visualized in real-time,
and delivered to the target audience over the internet or in a form
of video, this avoiding the necessity of the users owning a high-end
graphics hardware. The modules we implemented to achieve this goal
are shown in Figure 5.

5.1 Data processing
At the current stage, four different organelle systems of a human in-
duced pluripotent stem cell are being scanned by our collaborators in
the form of image stacks forming 3D volumes. A single slice from
each volume is shown in Figure 6. A direct volume rendering of these
datasets would not result in a comprehensible visualization of the or-
ganelle systems, since they are too noisy and their resolution is too low.
Therefore, we implement several modules to process these data and
extract models suitable for creating illustrative visualizations.

In the final visualization of the cell, it is necessary to communicate
the approximate shape of the cell membrane and the nucleus, as well
as the relative size and position of the nucleus within the cell. All
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Fig. 7: (a) Direct volume rendering of the raw nucleus data: due to the
high level of noise in the original data, direct volume rendering does not
convey the shape of the nucleus well. (b) Visualization of the extracted
nucleus surface. (c) Direct volume rendering of the raw mitochondria
data. (d) Extracted center-lines for the individual mitochondria.

the other information present in the acquired data can be abstracted
away, since they would reduce the clarity of the resulting visualization
without providing any added value. Direct volume rendering of the raw
nucleus data is shown in Figure 7a.

To extract an approximate shape of the membrane and the nucleus
from the original data, a segmentation mask is created for both struc-
tures. For the membrane, seeded watershed [21] is used. The segmen-
tation of the nucleus is the result of a combination of adaptive local
normalization, 3D level set segmentation, and weighted seed merg-
ing. This results in noise-free volumes describing the shapes of the
structures. However, their resolution is still too low.

To extract smooth surfaces from the generated segmentation masks,
the masks are filtered with a three-dimensional Gaussian kernel. Subse-
quently, iso-surfaces are extracted. The result of this process, a smooth
surface suitable for an illustration, is shown in Figure 7b.

The same approach cannot be used on much finer organelles, namely
the mitochondria and the microtubules, since they are too fuzzy for
meaningful surfaces to be extracted from the data. Instead, center-lines
are extracted for these organelles. For this purpose, MitoGraph [32] is
used. We up-sample the extracted center-lines and filter them with a
1D Gaussian kernel, since the low resolution of the original data causes
staircase artifacts. Up-sampling and filtering produces smooth curves.
Figure 7c shows how the mitochondria dataset looks like when directly
visualized, Figure 7d shows the extracted center-lines.

5.2 Rendering
In the next step, each of the organelle system is rendered into a separate
image. We have implemented several shaders useful for achieving the
desired illustrative visual style. For the membrane (Figure 8a) and the
nucleus (Figure 8b), contours are used together with a Fresnel shader to
indicate the 3D shape of these structures. The contours are calculated
by applying a Sobel operator to the depth buffer, which ensures that
the inner contours are included as well. The nucleus additionally uses
tone-mapping to achieve a less synthetic look.

To achieve an organic look of the mitochondria (Figure 8c) and mi-
crotubules (Figure 8d), for which the center-lines have been extracted,
metaballs are used. The metaballs technique has originally been intro-
duced by Blinn [2] for rendering molecular data. We place a single

metaball on every vertex of every center-line. We implemented a screen-
space approximation, which is able to render a dataset consisting of
approximately 65000 vertices, in real-time. However, the approach is
scalable to a much larger number of vertices, since it is performed in
screen-space.

The algorithm renders sphere impostors in place of each vertex,
which is realized through billboarding. Separate color, depth, and
normal buffers are rendered. The normal buffer is blurred, and deferred
shading is applied to compose the final image approximating the visual
appearance of metaballs.

In order to adequately illustrate the organelle surfaces, it is necessary
that the metaballs belonging to different mitochondria or microtubules
do not blend into each other. Therefore, for the blurring step, we
use a trilateral filter, which calculates the kernel weights based on the
pixel distance, the differences in depth, and whether pixels belong to
the same mitochondrion or not. This ensures that the screen-space
edges between different mitochondria are not blurred, while the depth
component ensures that the different parts of a single mitochondrion,
which are not next to each other, are not blurred either. The results of
this rendering method are shown in Figure 9.

Even though the trilateral filter is not separable, we approximatively
divide it into a vertical and a horizontal pass. This causes some unde-
sired artifacts, however, since the center-lines are densely sampled in
the data processing step, only a small blur radius is required to compen-
sate this through the metaball effect and the amount of visual artifacts
is therefore negligible.

5.3 Compositing

After all the organelle systems are rendered, they have to be composited.
For this we use a simple order-independent transparency method. For
the nucleus, mitochondria, and microtubules, the corresponding depth-
values for each pixel are sorted and the color-values are composited
in a back-to-front order using alpha blending. The membrane is then
simply blended on top of this image, since the membrane is always the
outermost structure. The final image is shown in Figure 8e.

Blending the semi-transparent membrane on top of the other or-
ganelles in screen-space allows us to use screen-space effects which
depend on the depth information, such as screen-space ambient oc-
clusion, depth-of-field, or fog. Compositing the membrane with other
organelles in object-space would still allow us to use semi-transparency
for each organelle system, but we would not be able to apply these
effects. Figure 10 shows a cell rendered without and with the screen-
space effects. Applying the effects enhances the depth perception of the
individual objects, while their screen-space implementations ensures
the scalability of the visualization for large datasets.

5.4 Deployment

The final step of making the cell data accessible to the general public
is the deployment of the visualization designed in the previous steps.
With the requirement of reaching as large an audience as possible, we
implemented the previous steps into two separate scenes, as described
in Section 4.2 so that they can be reused in different applications. The
first scene contains the data loading and processing, while the second
scene contains the rendering and compositing. The reason for this is
that we can modify the visualization pipeline while the host application
is still running. If the data loading and processing would be part of
this scene, it would be executed every time we change the visualization
pipeline, which is not desirable.

We implemented two distinct applications within the deployment
stage, both reusing these scenes. These applications are described in
the following subsections.

5.4.1 Virtual Cell - A Storytelling Application

We implemented a desktop application which uses both scenes men-
tioned in previous section to display the cell on the screen. The added
value of the application is a graphical user interface, through which
the visualization parameters of individual stages can be specified. The
parameter settings can be stored in so-called presets. The presets can
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Fig. 8: Individual organelle systems extracted from the original data. (a) Cell membrane, (b) nucleus, (c) mitochondria, (d) microtubules, (e) final
composed image.

be timed using a simple scripting interface. The application then inter-
polates all the parameters in accordance with the created script. In this
way, it is possible to create animations within the entire parameter space
of the visualization. Another use case is to expose the user interface
and allow the users to freely explore the visualization parameter space.

5.4.2 Remote-Rendering Server
To be able to deliver the cell visualizations to large audiences, we
implemented a remote-rendering server. The server uses both scenes
implementing the visualization, but does not display it on the screen.
Instead, it acts as an application server listening to connections from
clients. Each client can request an image rendered with given parame-
ters. The remote-rendering server executes each request by rendering
the image in an off-screen buffer, and sending the result back to the
client over a WebSocket interface encoded as a JPEG image.

The server supports multi-threaded rendering with a load-balancing
mechanism for the utilization of multiple GPUs, if these are present.
The multi-threaded rendering works by starting several threads and
creating a separate OpenGL context for each of the threads. All the data
are loaded separately within each of the contexts, so that the rendering
can be done independently in each thread. The XYZ extension can be
used to specify the affinity of each thread to a separate GPU, if this
operation is supported in the given system.

The load-balancing mechanism chooses which thread is used to
render a request. For this, an estimate of the rendering duration of each
request is necessary. The rendering threads have request queues, where
the incoming requests are placed. The sum of the estimated rendering
durations of all requests in a queue gives an estimated load of the given
thread. The load-balancing mechanism always places an incoming
request into the queue with the lowest estimated load.

For this mechanism to work, it is essential that the system can
realistically calculate estimated rendering durations of the incoming
requests. To achieve this, upon startup the server samples the parameter
space of the visualization by creating permutations of the parameter
settings. Subsequently, it renders the scene a predefined number of
times for each parameter setting and from different viewpoints. The

duration of each rendering is recorded, and the durations for all the
renderings from different viewpoints for the same parameter setting
are averaged. These averages are stored. Whenever a request arrives,
the server looks up the averaged rendering times for the parameter
settings of this request. Subsequently it is used as an estimation of
the rendering duration. In our use-case, we take the visibilities of the
individual organelle systems as the relevant parameter settings, since
turning on or off organelle systems has the most significant influence
on the duration of the rendering.

The server uses the visualization multi-pipeline for rendering sam-
ples of the parameter settings without making any assumptions on
how the multi-pipeline actually works. Therefore, the load-balancing
mechanism automatically adapts to a particular implementation of the
visualization multi-pipeline.

5.4.3 Remote-Rendering Client
Our remote-rendering solution utilizes a thin client, which implements
a user interface to set the visualization parameters, as well as a camera
widget based on ArcBall [28] rotations. The client does not have any
rendering capabilities, it only shows the images received from the
server. The client is implemented in JavaScript. With this design, it is
possible to run the client on a large variety of devices, which are not
required to be equipped with a powerful GPU.

6 IMPLEMENTATION

Our system is implemented in C++ and it uses the Qt library [31].
The rendering is based on OpenGL. Besides that, there are no other
dependencies. The entire visualization layer, as well as the individual
scenes, are implemented as dynamically-linked libraries. Therefore, it
is possible to use the system without static linking.

An important aspect of our system is that it is able to reload CPU
and GPU code without restarting the host application. For the GPU
code this is done by watching changes of the shader files, and upon
their modification, the respective shaders are recompiled in the run-
time. For the CPU code, it is required that the code is compiled into a
dynamically-linked library. Instead of loading it directly, the system

(a) (b) (c)

Fig. 9: (a) Center-lines extracted from the mitochondria dataset. (b) Every vertex is replaced by an impostor sphere. (c) The normal buffer is
blurred with a trilateral filter, which makes individual mitochondria appear as smooth 3D objects. The filter prevents individual mitochondria to
blend into each other. Additionally, screen-space ambient occlusion, depth of field, and fog effects have been applied in a post-processing step to
provide sufficient depth cues for the scene. The screen-space implementation ensures interactive frame rates.
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Fig. 10: (a) No post-processing effects are used. (b) Screen-space am-
bient occlusion, screen-space volumetric fog, and screen-space depth-
of-field are applied. Since the semi-transparent membrane is blended
in image-space on top of the rest of the scene, it is possible to use these
screen-space effects together with the semi-transparent membrane.

makes a copy of the library file and loads the copy. In this way, it is still
possible to modify the original library file, e.g., through a recompilation
of the particular program. Marion watches the changes of the original
library file. Whenever a modification is detected, it unlinks the library
and erases the copy from which the library has been loaded. It then
proceeds to create a copy of the new version of the library, and loads it.

7 DISCUSSION AND FUTURE WORK

Our remote-rendering solution is going to be deployed at the AICS to
support the public dissemination of their microscopy data of human
cells. After the deployment, we plan to evaluate the performance of the
system on the large user group composed of AICS website visitors.

The illustrators and visualization tool software engineers at the
AICS specified a set of requirements for the rendering of cells, so
that the datasets are easily understandable by the general public. The
illustrators also confirmed that our system fulfills their requirements.
These include the possibility to use depth-cueing effects, such as fog
and depth of field; illustrative effects, such as Fresnel shaders applicable
to any channel, contours, and metaball rendering; composition of the
individual organelles by means of order-independent transparency;
volume rendering of noisy data, which we achieved by gradient-free
shading. Additionally, the system exposes all the necessary parameters
through the user interface, so that the illustrators have full control over
such aspects as the level of simplification of the datasets.

In the future, we intend to present certain discoveries based on
nanoscale models of the cellular structures at atomic detail. Such
discoveries might be, for instance, protein colocalizations, interactions
or other functional aspects derived from structural changes in the cells.

Our system already supports this multiscale aspect, as we already
implemented a molecular rendering module within Marion, which can
currently be used for rendering microtubules on molecular scale (as
demonstrated in Figure 11). We plan to further extend the nanoscale ren-
dering capabilities with more complex mechanisms to support dynamic
scenes of molecular interactions.

The interactions with the current single-scale visualizations can be
handled by the standard features of the underlying Qt library. Therefore,
no additional abstraction level was needed. For a proper support of
interactions with multiscale data, however, our system will need to be
extended by special interaction modules. One of these modules is a
multiscale camera, which adapts the zoom speed semantically, based
on the target of a zoom operation.

Another aspect we would like to explore in the future, are multi-
user guided tours within the cell. Such guided tours can be used
for teaching through interactive storytelling. This will allow users
to virtually experience new biological discoveries through interactive
tours guided by narration.We are also working on tools for comparing

Fig. 11: Detail of a microtubule rendered at a nanoscale resolution.

two or more cells both visually, statistically, and methods to integrate
these two approaches.

Since the discoveries of the Allen Institute will be publicly an-
nounced, it might happen that the remote-rendering server load will
peak shortly after the announcements. Our load-balancing mechanism
can already efficiently utilize the resources available to the server, but
this might not be enough during the peak times. Therefore, we plan to
investigate further scalability options. One idea is to introduce a smart
caching system, where the images, which have been already rendered,
are stored. Whenever a similar image is requested, the respective image
is taken from the cache, transformed in image-space so that it fits the
request, and is sent to the user. The system would avoid caching images
that are too similar, for instance with respect to the camera settings.
In this way, a lot of processing power can be saved, and reasonable
storage requirements can be maintained.

While our system is tailored to biological visualization, it includes
modules covering many illustrative-rendering tasks to help focus the
attention of different types of end users. It contains functionality for
volume and mesh rendering, various illustrative effects such as contours
and depth-of-field, and several simple filters like Gaussian and bilateral
blur. These can be arbitrarily combined in order to use our system in
different applications. Besides the data structures for storing volumes,
meshes, and point clouds, the system also includes low-level memory
structures for holding arbitrary data. This makes it convenient to extend
the system to support new data types.

8 CONCLUSIONS

We presented a system for the dissemination of knowledge in cell
science by means of interactive illustrative visualizations. Our system
is powered by a visualization multi-pipeline that specifically targets
two aspects that are associated with this task. First, it is capable of
handling the illustrative visualization of volumetric data of various
origins and degrees of quality. In order to achieve this, the multi-
pipeline offers several modules for the processing and rendering of
heterogeneous data sources that can be combined sequentially and in
parallel. Secondly, the multi-pipeline allows the deployment of the
generated visualizations at interactive frame rates to a wide range of
software environments and output devices. Our system is therefore
specially tailored to the quickly changing and accumulating data types
and data entries of the short lived research results that are produced by
cutting edge cell science. The flexibility of our system enables scientists
to explore their data in the raw volumetric and in the refined illustrative
representations. At the same time, guided illustrations with simple
interactions can be produced for public knowledge dissemination, by
allowing the partial masking the system’s features and by supporting
scripted changes of parametrizations. We demonstrated the capabilities
of our multi-pipeline based on a real world application that will be
publicly available. We are excited about the potential of our system
with the goal of integrating all available data about human cells in a
single framework.
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