
Data-Sensitive Visual Navigation

Peter Mindeka, Gabriel Mistelbauerb, Eduard Gröllera,c, Stefan Brucknerd

aTU Wien, Austria
bUniversity of Magdeburg, Germany

cVRVis Research Center, Austria
dUniversity of Bergen, Norway

Abstract

In visualization systems it is often the case that the changes of the input parameters are not proportional to the visual change of the
generated output. In this paper, we propose a model for enabling data-sensitive navigation for user-interface elements. This model
is applied to normalize the user input according to the visual change, and also to visually communicate this normalization. In this
way, the exploration of heterogeneous data using common interaction elements can be performed in an efficient way. We apply our
model to the field of medical visualization and present guided navigation tools for traversing vascular structures and for camera
rotation around 3D volumes. The presented examples demonstrate that the model scales to user-interface elements where multiple
parameters are set simultaneously.

Keywords: navigation, exploration, medical visualization

1. Introduction

In interactive visualization systems, parameters are typi-
cally set through a wide variety of user interface elements. It is
challenging to design an interface, which would allow the users
to efficiently explore and analyze complex datasets. It is of-
ten necessary to provide two separate sets of control elements,
which respectively provide coarse and fine parameter adjust-
ments. This approach clearly does not scale with the increasing
complexity of the data, or with the increasing generality of vi-
sualization systems.

Specifically, given the non-linear nature of the visualization-
mapping functions used to display the data, the changes in the
user input do not always proportionally reflect the visual changes
in the output image which can make the exploration process
counter-intuitive. This is, for instance, often an issue in general-
purpose volume rendering applications, where it is not always
possible to prepare adequate presets. In such applications, trans-
fer functions have to be adjusted manually, which can be chal-
lenging, particularly for users without a strong technical back-
ground. Small changes in certain parts of the transfer function
may cause significant changes in the visualization, while mod-
ifying the rest of the transfer function may not have a strong
effect on the output image. In general, it is hard to predict how
the parameter changes will influence the output image.

Similar problems exist in colorimetry. Most of the color
spaces are perceptually non-uniform, such as the RGB, HLS,
or CIE XYZ color model. Changes of colors will be perceived
differently by the human observer depending on their specific
location in the color space. For this reason, color spaces such as
CIELUV were devised, which are perceptually uniform. Here,
a unit color change leads to a unit perceptual change, indepen-
dent of where in the color space this change occurs. We address

a similar issue, but in the area of human-computer interaction
with interactive visual systems. Our goal is to make changes in
the input parameters more predictable with respect to the per-
ceived changes in the output image and to actively support users
in the anticipation of the expected effects of the interaction.

Specifically, we address the problem of unpredictable inter-
action in medical visualization, where complex 3D volume data
are explored on a regular basis. For this purpose, various types
of input elements are investigated, realizing different ways of
user interaction.

To be able to enhance different kinds of input elements, we
introduce a general model of data-sensitive navigation consist-
ing of two elements:

• Data-sensitive manipulation describes how the behavior
of input elements is modified so that changes of the visual
output are made proportional to changes in the user input.

• Data-sensitive guidance refers to the visual encoding of
the information used for normalizing the output changes
to support users in steering the interaction towards spe-
cific goals.

We demonstrate our model by proposing TreeSlider, a novel
data-sensitive navigation tool for the investigation of tree struc-
tures. TreeSlider can be used to traverse vessel trees in order
to identify potential pathologies such as stenoses or occlusions.
Radiologists typically have to inspect hundreds to thousands
of slices, and important pathologies can be easily missed. By
adapting the interaction mechanism to the underlying data and
explicitly encoding information about potentially important re-
gions in the data, we show how our approach can assist users in
this tedious and time-consuming task. In the second example,
we apply our approach to the more general scenario of camera

Preprint submitted to SCCG 2017 November 28, 2017

manipulation. Here we show how viewpoint relevance mea-
sures can be employed to provide additional visual guidance in
the interaction with 3D visualizations.

2. Related Work

While the motivation of our work are specific tasks from
the field of medical visualization, our model is generally ap-
plicable to various computer graphics areas where interaction
is employed as well. Therefore, we subsequently review exist-
ing literature from both areas, namely interaction in computer
graphics as well as medical visualization.

Non-linear Interaction. Lindow et al. [1] present a method for
transforming input parameters of visualizations to obtain a lin-
ear relationship between the input and the output. Gavrilescu
et al. [2] customize common interaction elements by visualiz-
ing the amount of change caused by modifying these elements.
Van Wijk and Nuij [3] describe a metric for efficiently navi-
gating between two regions in large 2D environments. Their
non-linear approach simultaneously performs
zooming and panning and and ensures a constant change of
velocity. Blanch et al. [4] present the semantic pointing in-
teraction metaphor. Objects within a user interface have two
different size properties: One in motor space (importance for
interaction) and the other one in visual space (the displayed
visual size). Elmqvist and Fekete [5] describe several map-
ping functions for picking objects in a 3D scene by adjusting
the ratio between motor and visual space. In a region without
target objects, the cursor moves fast and is enlarged, whereas
when approaching an object, the cursor progressively becomes
smaller and slower. Chapius et al. [6] present an interaction
technique that couples the size of the cursor to its speed while
minimizing visual distraction. When approaching an object (the
closest one), the area of the cursor decreases until it behaves
like a common point-cursor when hitting the object. Elmqvist
et al. [7] propose a space deformation technique for exploring
large geometric spaces such as maps or networks. They fold
the space similar to an accordion in order to reduce the con-
sumed screen space while simultaneously preserving the overall
context. Ji and Shen [8] describe an approach that selects the
optimal view of a static scene by analyzing the opacity, color
and curvature of images from various viewing angles. By em-
ploying an optimization to maximize the perceived information,
they achieve smooth and constant visual changes of the optimal
viewpoint in dynamic scenes of time-varying data. Kohlmann
et al. [9] present an interaction metaphor for linking 2D slice
views with 3D volume rendering. Depending on a minimal
set of input parameters such as patient orientation, local ob-
ject shape, and viewpoint history, an optimal viewpoint from
a user-picked slice position is determined. In their follow-up
work [10], they additionally adjust the transfer function within
the 3D view in order to reveal the structure of interest without
obstruction. Wörner and Ertl propose SmoothScroll [11], an
interaction element for browsing one-dimensional data, which
can be hierarchically aggregated at multiple levels. This allows
for browsing of very large datasets. Our method is applicable

to controls associated with one-dimensional data, but also to
more complex structures such as trees. We demonstrate this by
applying our method to TreeSlider, a novel interaction element
for browsing tree structures.

Furthermore, we propose a general model that unifies the
concept of remapping the user interaction impact on the input
parameters and the guidance, which visually hints on how the
impact is remapped. Willett at al. [12] propose guidelines for
displaying such information. We apply our concept on more
complex input elements, where existing methods are not usable.

Angiography. The analysis of blood vessels is a crucial and
fundamental procedure in medicine for investigating embolisms,
calcifications, stenoses, or occlusions within the lung, the brain,
or the peripheral arteries, such as the legs. All these examples
share a tree of the arterial system as basis for their analysis.
Starting with the most basic, but widespread, procedure for an-
alyzing vascular pathologies, all axial or transverse slices of an
acquired medical volume dataset have to be viewed and pre-
cisely inspected. Since this demands a lot of manual work from
physicians, Kanitsar et al. [13] discuss Curved Planar Reforma-
tion (CPR), a visualization technique that creates a cut along
a blood vessel in order to inspect its interior (or lumen) in an
obstruction-free manner. This approach significantly reduces
the number of images to investigate. Auzinger et al. [14] pro-
pose a technique to view the lumen of blood vessels from un-
restricted viewing angles. Portugaller et al. [15] investigate the
importance of viewing slice-images together with supporting
techniques such as Maximum Intensity Projection (MIP). They
conclude that transverse slices still play an essential role in de-
tecting arterial lumen narrowings, although techniques such as
CPR reduce the number of images to analyze. Motivated by
this fact, we enhance the well-established and accepted role of
transverse-slice images in a data-sensitive manner. The layout
of vascular structures is important when browsing through the
vessels. In order to reflect the spatial arrangement of the inves-
tigated blood vessels, Borkin et al. [16] developed a horizontal
arrangement for analyzing the endothelial shear stress of heart
arteries. Although this layout represents the vascular system
well, its spatial orientation would be problematic when investi-
gating arteries, such as the ones of the human lower extremities,
since these are mostly vertically oriented. We propose an ex-
tended interface element that remedies this problem while uti-
lizing a well-known interaction paradigm, the slider. Inspired
by the simplicity of a slider and the necessity to browse through
a vessel tree, we combine both aspects into one interface ele-
ment, called TreeSlider. Oeltze and Preim [17] describe an or-
ganically looking visualization for vascular structures based on
convolution surfaces. The vessel tree is convolved with a Gaus-
sian filter and artifacts at branching points, such as bulging or
blending, are handled by reducing the kernel size. Wu et al. [18]
propose an adaptive refinement for surface-based vascular visu-
alization to have more polygons in regions with high curvature.
A comparison of different surface modeling approaches for vi-
sualizing blood vessels is given by Wu et al. [19]. Based on the
focus and context principle proposed by Straka et al. [20], we
blend the vessel tree over a MIP of the underlying dataset.

2

3. Data-Sensitive Navigation

To address various problems arising in the interaction with
visualization systems through diverse input elements, we present
a model of data-sensitive navigation. This model can be applied
as a basis for enhancing interaction in various vessel visualiza-
tion scenarios. In its generality, the model could be employed
in other application areas as well.

In visual computing, interaction consists of a feedback loop
between the user input and the visual output. The user sets
the parameters, he observes the generated output image, and
refines the parameter settings accordingly until the output is
satisfactory. To model this process, we split the data-sensitive
navigation into two parts – manipulation and guidance. Data-
sensitive manipulation transforms the user input with respect to
the underlying data, so that the changes in the input are made
proportional to the changes of the output. Data-sensitive guid-
ance augments the visual output with information derived from
the remapping used in the manipulation stage. The guidance
informs the user about the effects of potential future changes
of the input elements. Depending on the interaction method,
the guidance information can overlay either the input elements
themselves or the output image. The location of the overlay is
chosen so that the user is not distracted during the interaction,
yet the guidance information is properly communicated.

Figure 1 gives an overview of our proposed model. Figure
1a shows the traditional interaction. Changes of the user input
are proportional to the changes of the parameter values, which
often do not have direct semantic relevance to the user. Changes
in the output image, providing the only visual feedback for the
user to steer the input, are typically not proportional to the input
changes. The worst-case scenario is that certain desired outputs
are impossible to achieve with the given input elements.

3.1. Model Overview

Our model addresses this problem in two different ways.
Figure 1b shows data-sensitive manipulation. The goal of this
concept is to non-linearly modify the sensitivity of input ele-
ments to make the changes in the input proportional to visual
changes in the output images. The sensitivity of an input el-
ement is the amount of parameter-value change caused by a
unit interaction, i.e., how much does the underlying parameter
value change if a slider handle moves a unit distance. This non-
linear sensitivity modification ensures that the screen-space of
the input elements is properly utilized for efficiently controlling
the changes in the output. For instance, a slider could be non-
linearly rescaled so that larger portions of the slider-track map
to the areas of high interest, thus making the sensitivity of the
slider lower around these areas.

On the other hand, data-sensitive guidance (Figure 1c) dis-
plays gathered information about interesting aspects of the un-
derlying data in a way that helps users to find them more quickly.
An example is a slider augmented with non-uniform ticks, in-
dicating non-linear changes in the output with respect to linear
slider changes. This form of visualization reduces the amount
of trial-and-error exploration by steering users in the specifica-
tion of parameter settings to obtain desired results. Depending

data-sensitive manipulation

traditional interaction

input space parameter space image space

input space parameter space image space

input space parameter space image space

data-sensitive guidance

(c)

(b)

(a)

data-sensitive navigation

Figure 1: White arrows represent changes in input space, parameter space, or
the output visualization. (a) User input is directly mapped to the input parame-
ters. The changes of the input are not proportional to the changes of the output.
(b) Data-sensitive manipulation, where the underlying data or the output are
used to dynamically scale the changes in the parameter space. In this way,
changes in the output are proportional to the changes in the input space. The
mapping is illustrated with the dashed arrows. (c) The mapping information is
displayed in the image space to guide users during the data-sensitive navigation
(yellow arrows).

on the type of the input element, this information can be shown
in the output image, or it can be used to augment the input ele-
ment itself to make it easier to use. This is illustrated by yellow
arrows, which represent the displayed guidance information.

3.2. Data-Sensitive Manipulation

To consider various input elements, which are used to con-
trol parameters of different types, we use a formalism that de-
scribes the problem of non-proportionality between input and
output in a general way.

A common characteristic of input elements is that they are
employed to specify user input I, which is transformed into pa-
rameter settings P. These parameter settings are used to gener-
ate an output image O. Typically, the changes in the input I are
not proportional to the changes in the output O. This is due to
the fact that there is usually a non-linear relationship between
P and O, while I is linearly mapped to P (∆I ∝ ∆P 6∝ ∆O). To
rectify this situation, it is necessary to apply a transformation T
which introduces a non-linear relationship between I and P:

P = T (I) | ∆I ∝ ∆O (1)

During data-sensitive navigation, parameter values are de-
termined by the transformation T (I) instead of the traditional

3

s0 s1 s2 s3 s4 s5 s6 s7 s8

(a)

s0 s1 s2 s3 s4 s5 s6 s7 s8

d‘(s0) d’(s6) d’(s8).

(b)

Figure 2: Transformation T of an input to get a parameter value, indicated by
gray arrows. The red dot indicates the input, e.g., a slider position, the blue dot
shows the parameter value. The black dots are the sample positions si in the
parameter space, while d′(si) is the normalized importance d(si) of the sample
si. (a) Transformation T if importance values of all samples are uniform (data-
sensitive manipulation is disabled). (b) Transformation T if the samples have
non-uniform importance values (data-sensitive manipulation is enabled).

linear mapping of I to P. This makes the user interaction pro-
portional to the visual changes in the output images.

In most cases, the transformation T cannot be defined ana-
lytically, as this would require a complex mathematical model
of the visualization mapping as well as of the underlying dataset.
Such a model is typically not available. Therefore, we assume
that it is possible to define a function d(P) which estimates the
importance of the respective output image O generated from
the given parameter settings P. Alternatively, d(P) can be de-
fined as the magnitude of change of O with respect to P. The
transformation T is then constructed from d as described below.
The function d is obtained by sampling the parameter space and
applying an adequate interpolation. Such an approach was em-
ployed by Lindow at al. [1].

Figure 2 illustrates how the transformation T is constructed
from the sampled importance function d. First, n samples of
the function d are taken by analyzing the corresponding output
images. These sampled importance values are then normalized
so that their sum is equal to the range of the given input ele-
ment. The normalized sample values are denoted as d′(si). The
input domain is split into regions corresponding to individual
samples. The size of each region is proportional to the normal-
ized importance d′(si) of the respective sample si. If all outputs
would have equal importance, the input domain would be split
into regions of equal size and the input would be mapped to the
parameter values in a traditional, linear way (Figure 2a). If each
output would be assigned a different importance, parameter-
space regions with higher importance would be assigned larger
regions of the input domain, e.g., ranges in a slider (Figure 2b).
Essentially, the sensitivity of the input element is modified in
such a way that its resolution is increased in those areas, which
account for more visual changes in the output image.

3.3. Data-Sensitive Guidance

As previously explained, data-sensitive manipulation changes
the way how the user input maps to the displayed output in
traditional interactive environments. This mapping, achieved
through the transformation T , allocates more screen-space of
the interaction elements to those parts of the parameter space
that account for greater visual changes of the output images.
However, this might not always be apparent by observing the
output image alone. Even though the resolution of the input el-

(a) (b)

Figure 3: Data-sensitive navigation applied to a simple slider for volume slicing
of a CTA dataset of an aneurysm (marked with the red circle). (a) The red
line represents a slider. The visual guidance information shown to enhance the
usability of the data-sensitive slider is depicted in blue (global encoding) and
green (local encoding) color. (b) A volume rendering of the entire dataset for
overview.

ement is increased in potential regions of high interest, the non-
linear mapping between the input and the output through the
abstract parameter space might cause confusion for the user.
Therefore, in addition to data-sensitive manipulation, we em-
ploy the concept of data-sensitive guidance. Data-sensitive guid-
ance is a way of displaying the importance function in image
space to steer the user while they are interacting with the sys-
tem. In this context, the image space is either the output visual-
ization, any linked view, or the portion of the screen where the
graphical representation of the input element itself is placed.
Hence, it is possible to show the guidance information wher-
ever it is most suitable for the given application and interaction
type. This is indicated in Figure 1c as the yellow arrow between
the parameter space and the image space.

Since there are many different ways how the importance can
be shown, we categorize them into two groups:

Local encoding. The importance value is shown for the current
parameter settings or its close neighborhood. This type of en-
coding is useful if a continuous path within the parameter space
needs to be explored by the user. The local encoding of the
importance guides the user where to go next from the current
parameter settings, or how fast can they proceed. For instance,
when traversing blood vessels, the user moves through the ves-
sels continuously. It is unlikely that they will jump from the
current position within the vessel to other than neighbouring
positions. In this case, the local encoding is sufficient to pro-
vide the guidance in the traversal process.

Global encoding. The importance is visualized for the whole
input domain or the parameter space. This type of encoding is
useful if the parameter space is not necessarily explored in a

4

handle

branching indicator

track

(a)

fork

(b) (c) (d)

(e) (f) (g) (h)

Figure 4: Different states of a TreeSlider are shown in (a) to (d). (a) TreeSlider and its components (b) If the handle is moved close to a point where the tree branches,
a fork continuously appears. (c) If the handle is within the fork area, it can be moved vertically to choose other branches of the tree for traversal. (d) The traversal
continues on the chosen path. In (e) to (h), the traversed tree is shown. The active path is depicted in red color, the green circle represents a branching node, while
the black circle represents the current position set by the TreeSlider.

continuous manner. Therefore, the importance is shown for all
available choices to help the user decide on how to change the
input. An example is selecting adequate viewpoints in the vi-
sualization of 3D objects. It is not essential that the viewpoints
are continuously explored, but good ones need to be found. In
this case, the global encoding of the importance is appropriate.

Displaying importance instead of (or in addition to) the non-
linear mapping of the input to the parameter values helps guid-
ing the user towards areas of potentially high interest within
the explored data. In the following sections we present several
ways how this type of visualization can be utilized to steer the
navigation in interactive visualization systems.

Figure 3 illustrates data-sensitive navigation on a simple
slider (shown in red color) used for traversing a stack of slices
of a volume dataset. The sensitivity of the slider is modified
using data-sensitive manipulation, so that it provides more res-
olution around the areas of interest (in this case, an aneurysm).
A simple pixel difference between consecutive slices is used
as the importance function, while the transformation T is con-
structed as illustrated in Figure 2. In this way, the slices, where
significant visual changes occur, are considered as areas of high
interest. Because of the uneven shape of the aneurysm, this
metric assigns high importance to the areas around it.

The importance function used to construct the transforma-
tion T from the input to the parameter space is visualized next
to the slider in blue color. This visual guidance in the form of
ticks indicates how the screen-space of the slider is allocated
to individual parts of the slice stack. Areas with higher impor-
tance values are indicated by a higher density of the ticks. This
is an example of global guidance encoding. It gives the user
the possibility to quickly locate areas of potential interest, as
well as means for estimating their extent. The green arrow is an
example of local guidance encoding. It links the current slider
position to the visualized importance function.

4. Applications

The goal of this paper is to describe how data-sensitive nav-
igation can be employed to address interaction issues in medical

visualization. Therefore, we apply our concept in two interac-
tion use-cases typical in medical visualization. The first use
case is the examination of vascular structures. It is an inter-
action task commonly performed by medical personnel. The
second use case is a more general one, i.e., the rotation of 3D
objects. This task is performed in situations where 3D visual-
ization is applied, such as surgery planning.

4.1. Data-Sensitive Vessel Traversal
The examination of vascular structures is an important topic

in medical visualization [14, 13, 17]. Vascular pathologies such
as stenoses, i.e., an abnormal narrowing of blood vessels, or
vascular calcifications, i.e., mineral deposition inside a blood
vessel, potentially leading to a blockage of the blood flow, are
often small in relation to the acquired data. However, their ex-
amination is of critical importance. Since vascular structures
usually consist of many branches, examining all of them simul-
taneously or sequentially is a cumbersome task. The vascular
structures are modelled by a tree referred to as vessel tree.

4.1.1. TreeSlider
To free physicians from the laborious process of inspecting

the entire vessel tree by repeatedly choosing a path and travers-
ing it using a simple slider, we introduce a novel interaction
element, called TreeSlider. TreeSlider allows users to specify a
position within a tree structure. In case of blood vessel traver-
sal, a slice of the underlying data perpendicular to the vessel
tree at the position specified by the TreeSlider is taken and pre-
sented to the user. The perpendicular slices are calculated using
Rotation Minimizing Frames [21]. In this way, using TreeSlider
it is possible to traverse the entire vessel tree without the neces-
sity of traversing the same part of the tree multiple times.

In order to make the TreeSlider an efficient interaction ele-
ment for traversing tree structures, it is required to:

• be scalable – the image-space dedicated to the TreeSlider
has to be as small as possible even when traversing large
trees,

• allow users to visit every part of the tree,

5

• support data-sensitive navigation.

To satisfy these requirements, we utilize the design of a
classic slider, which consists of a single line called track, and
a handle which is dragged along the track. The position of the
handle represents the slider value, which is mapped to a posi-
tion on a path between the root node and a specific leaf node
of the vessel tree. Since only one path is traversed at a time,
the screen-space of the slider does not have to account for all
the tree branches at the same time, thus maintaining scalabil-
ity, as defined in the first requirement. The components of the
TreeSlider are shown in Figure 4a.

According to the second requirement, the user has to be able
to visit every part of the tree. Therefore, the path mapped to
the slider track can be changed through an element called fork.
Forks are elements displaying all branches of the tree originat-
ing in a specific node. Forks are placed on the slider track at
positions corresponding to these nodes where the tree branches
(nodes with more than one child). Through these nodes, which
we refer to as fork nodes, the currently traversed path can be
changed. By default, the forks are invisible and their positions
on the track are illustrated by dots called branching indicators.

If the handle is near a branching indicator, the fork appears.
It consists of several parallel lines, each representing one alter-
native path where the user can go from the respective branch-
ing node. At this point, the handle can be moved vertically to
switch between possible paths. This process is illustrated in
Figures 4b and 4c. As the user moves the handle further along
the track, the fork continuously collapses to bring the handle
back to the track (Figure 4d). Now the track maps to a different
path within the tree. Figures 4e to 4h show how the traversed
path is changed using the fork.

The problem with switching the paths is that the relative po-
sitions of the fork node within different paths may be different.
The problem is illustrated in Figure 5. Suppose the current path
is the one marked in blue. If the handle reaches the fork node
b, it is possible to switch the current path to the one marked in
red. However, the position of the fork node b is much further
down the red path than it is within the blue path.

This would result in discontinuities in the interaction with
the TreeSlider. Therefore, when switching the paths through a
fork node, its position within the new path is linearly remapped
so that it matches the position in the previous path. This is
achieved by scaling the portion of the TreeSlider track repre-
senting the path before the fork node and the portion after it.
In this way, the respective branching indicator does not move
during the path switching. As the user moves the handle away
from the fork after switching the paths, the scaling factors of
both parts of the TreeSlider track are continuously interpolated
to the original values. In this way, the remapping is continu-
ously reduced as the user is moving the handle. This allows
users to seamlessly switch between different paths within the
tree.

This mechanism might cause discontinuities in the interac-
tion if two forks nodes are close to each other as it might be
impossible to smoothly remove the remapping before the sec-
ond fork is reached. Therefore, for multiple fork nodes, which

a

b

c

d

e f

Figure 5: A directed acyclic graph with two paths (marked blue and red). The
relative positions of the fork node b on these two paths are not equal. Therefore,
if the user changes between the paths, the position of the fork node b has to be
remapped so that the respective branching indicator does not move during the
switching of the paths.

(a) (b)

Figure 6: Traversal of a vessel tree in a CTA scan using the TreeSlider. (a)
Axial slices through the selected point (marked with red circles) and a slice
perpendicular to the vessel tree at the current position are shown above the
TreeSlider. (b) The vessel tree is overlaid on top of a 3D visualization of the
dataset as an overview. All views in (a) and (b) are linked together.

are closer than a specified threshold, we only use a single fork.
This fork contains all the branches of the concerned fork nodes.
This is useful in scenarios such as blood vessel traversal, as
vessel trees rarely contain nodes with more than two branches.
However, several branching nodes may be close together. Using
a single fork for these nodes is therefore an efficient option.

4.1.2. Data-Sensitive TreeSlider
In order to make the interaction with the TreeSlider data-

sensitive, we split the traversed tree into segments separated by
the fork nodes. Since there is exactly one path between each
pair of fork nodes, we can treat each segment in the same way
as if it were a simple one-dimensional slider.

In order for the data-sensitive navigation to work, we need
the function d(P) specifying the importance for every position
P on the tree. In our specific case, we use the difference of con-
secutive slices based on the mean square metric. The resolution
of the TreeSlider is effectively increased in those areas where
strong changes in the slices around the blood vessels occur.

6

Additionally, we also want to take the structure of the vessel
tree into account. The most important structural features of the
vessel tree are branchings, i.e., the fork nodes. Therefore, we
increase the importance values for all points along the vessel
tree which are close to a fork node. In this way, the resolution
of the TreeSlider is also increased near branchings of the ves-
sel tree. This demonstrates that complex data models can be
used to construct the transformation T to realize data-sensitive
navigation.

Figure 6 shows our interface for vessel traversal using the
TreeSlider. In Figure 6a, the TreeSlider with the locally en-
coded guidance (red arrows) is shown. The guidance indicates
how sensitive the TreeSlider will be when moving the handle in
the respective directions. Since the TreeSlider is used to contin-
uously traverse the tree, locally encoded guidance is adequate.

Above the slider, four slices of the volume data are given.
These are three axial slices passing through the slider position,
and a slice perpendicular to the path in the vessel tree. The
slice views are linked with a 3D overview visualization (Figure
6b), where the entire vessel tree overlays a Maximum Intensity
Projection (MIP) of the dataset. In each of these linked views,
the slider position is depicted as a red dot. The 3D overview
also contains globally encoded guidance information, where
high importance along a blood vessel is shown in red, while
low importance is indicated in black. In this way, the users im-
mediately see areas of high importance.

4.1.3. TreeSlider Evaluation
In order to gain an insight of how people interact with the

TreeSlider, we conducted a usability experiment. The experi-
ment was performed with nine participants, all of them Master
and PhD students in computer science familiar with medical
volume data. Since the participants are not medical profession-
als, we designed the task to show whether the TreeSlider can
be easily understood in a general use scenario, not necessarily
linked to the medical domain.

The participants used the interface shown in Figure 6. They
could interact with the TreeSlider, while observing the cursor
movement along the vessel tree. After a short explanation of
the functionality of the TreeSlider, we asked them to perform
the following task: A blue dot is displayed at a random position
on the vessel tree; use the TreeSlider to move the cursor along
the vessel tree to the position of the blue dot. After the position
of the dot is reached, the dot moves to a new random position
and the task is repeated.

We asked the subjects to always move the cursor to the po-
sition of the dot in the most efficient way, i.e., using the shortest
possible path. This task tests the ability of the users to navigate
through the tree with the TreeSlider in a desired manner.

For each run, we record the starting position, the position
of the dot, and the path along which the cursor is moved. We
determine the optimality of the recorded path, which we define
as the percentage of the recorded path that overlaps with the
shortest possible path calculated by the Dijkstra algorithm.

In total, the participants performed 232 iterations of the
task. The average optimality of all recorded paths was 95%.
This was mainly due to movements of the cursor around forks.

This finding suggests that the TreeSlider can be efficiently used
to traverse tree structures.

Additionally, we gathered informal user feedback from the
test subjects. In general, they liked the concept of the TreeSlider.
Some of them reported that it was enjoyable to interact with it.
The subjects did not report any problems with the scaling of
the TreeSlider track during branch switching. We attribute this
to the fact that the linear remapping of the fork positions only
temporally changes the sensitivity of the TreeSlider interaction
and the users can compensate for it by a continuous movement
of the handle.

Some concerns were raised regarding the mapping between
a fork of the TreeSlider and a branching in the traversed tree.
From the visual representation of the fork, it might not be im-
mediately clear, which branch maps to which line within the
fork and, hence, it has to be determined by trial-and-error. This
is not a significant issue when traversing vessel trees, since the
forks typically only consist of two to three branches. The prob-
lem could be solved by visual mapping, such as using different
colors for different branches both in the TreeSlider and the un-
derlying visualization.

However, in the medical scenario this might be unnecessary,
since the TreeSlider is designed in a way that the user does not
have to look at it during the interaction. This is due to the fact
that it uses relative changes of the mouse input instead of abso-
lute positions. As confirmed by a domain expert in radiology,
this supports the usual workflow in radiology. It is important
that the domain experts can keep their attention focused at the
underlying visualization rather than the user interface while ex-
amining the data. The locally encoded guidance, which aug-
ments the TreeSlider, is mostly useful when users wish to con-
tinue the interaction after it was interrupted.

We asked our test subjects whether they were looking at the
TreeSlider while interacting with it. Some of them realized that
this is not necessary, even though we did not instruct them not to
look at the TreeSlider while completing the task. This suggests
that it is intuitive to use the TreeSlider without looking at it,
making it suitable for the use in the medical domain.

Despite these findings, it is a point for future work to clearly
indicate the mapping between the TreeSlider forks and the tree
branchings in the visual representation. This will ensure that
the TreeSlider can be used outside of the medical domain and
to efficiently traverse trees with nodes of higher degrees.

4.2. Data-Sensitive 3D Object Rotation

So far we have shown how data-sensitive navigation can be
applied in a 2D interaction scenario. Such scenarios are often
used in the diagnostic process.

However, there are applications for the use of 3D visualiza-
tion in the medical domain as well. These include interdisci-
plinary communication, knowledge transfer, but also more spe-
cific tasks such as surgery planning. In these applications, more
complex methods of interaction are usually required in order to
generate desired views. Generally, these interaction methods
require an intuitive control of several parameters at the same
time, e.g., 3D camera settings.

7

Figure 7: Mouse input of the Arcball rotation. mc (blue) is the input vector
whose length is limited to the interval [0, 1]. m̂c is the normalized vector mc.
p0 is the original mouse position, pc is the new mouse position. For every
mouse movement, we can only consider importance values along the vector
m̂c. In this way, the 2D mouse input is in each step reduced to a 1D problem
as illustrated in Figure 2. m̂c represents the whole slider and pc represents the
current slider position. The red dots show where the importance map z (show in
the background - black areas are least importants, red areas are most important)
is sampled in order to produce the importance function for 1D data-sensitive
navigation.

Our model of data-sensitive navigation can be applied to
interaction widgets, which control multiple parameters at the
same time, and therefore support various tasks utilizing 3D vi-
sualization. To demonstrate this, we apply the model to Arcball
rotation of 3D objects [22].

The data-sensitive navigation applied to the object rotation
makes sense if we want to increase the precision of the rotation
around interesting viewpoints, while keeping the rotation rel-
atively fast around viewpoints without interesting features. In
this particular example, we apply our model to a visualization
of a simple CT scan of a human head, where there is a clear
distinction between feature-rich and featureless areas (face and
neck versus occipital and parietal bones). In this way, the prin-
ciples of the data-sensitive navigation are demonstrated in a tan-
gible way.

The assumption of applying the data-sensitive navigation is
that there is a function d(v) which evaluates the importance of
the given viewpoint v. There are numerous viewpoint-evaluation
techniques that can be used [23, 24]. For our application, we
employ a simple importance function, which evaluates the num-
ber of edges visible from each viewpoint. This is achieved by
summing the pixel intensities of the image rendered from the
given viewpoint processed by the Sobel operator. The assump-
tion is that more edges indicate more visible features.

In Arcball rotation, the user input consists of a screen-space
2D input vector, usually provided as mouse input, which maps
to a quaternion-represented rotation of the displayed 3D object.
In order to apply data-sensitive navigation, we sample the im-
portance function d(vc) at each possible viewpoint vc, which can
be obtained from all the possible input vectors sampled with a
fixed resolution. In this way, we get a 2D importance map z of
the sized dependent on the sampling resolution.

In order to apply data-sensitive manipulation, we cannot

simply apply the transformation T to the input vector, since
this might result in the discontinuities in the transformed input.
Therefore, we reduce the transformation of the Arcball input to
a one-dimensional problem.

Figure 7 shows how the 2D Arcball interaction can be re-
duced to a 1D remapping problem. m̂c is the normalization
of the input vector mc. It represents the maximum length of
the input vector in this direction. m̂c can be viewed as a one-
dimensional slider as shown in Figure 2, where pc is the current
slider position. By sampling the map z(mc), which is trans-
formed so that p0 is in its middle, the importance along the
slider is obtained. Now it is possible to transform the point pc

through data-sensitive manipulation as if it was a handle of a
one-dimensional data-sensitive slider. In this way, the speed of
the Arcball rotation is adjusted so that it is proportional to the
perceived change of the rendered image by taking the underly-
ing data into account. In this way, the rotation is made slower,
and thus more precise, over areas of high importance.

In addition to data-sensitive manipulation, we apply both
the global and the local encoding for data-sensitive guidance.
The globally encoded guidance consists of a sphere placed in
the lower right corner of the image, which we refer to as naviga-
tion sphere. The navigation sphere has the same orientation as
the rendered objects. The surface of the navigation sphere en-
codes the importance for all viewpoints in color (black for least
important, red for most important). Additionally, we overlay
the importance map z onto the image whenever the user rotates
the object. This encoding indicates where the user has to drag
the mouse in order to display viewpoints with high importance.
We apply a simple image-processing filter on the map z which
increases the contrast of the image, helping the user to pick im-
portant regions. According to the specific application, this filter
could be replaced by a different one, e.g., an iso-contour detec-
tion filter to group regions of similar importance together.

For locally-encoded guidance, we employ a vignetting ef-
fect, whose strength is modulated by the importance of the cur-
rent viewpoint. This means that the edges of the image get
brighter if more important viewpoints are shown, and thus guide
the user’s attention. Both vignetting and the navigation sphere
are shown in Figure 8, while the importance map overlay is
shown in Figure 9.

5. Discussion and Limitations

The aim of our work is to enhance input elements used in
medical visualization. Since the commonly employed elements
are very diverse, we propose a model of data-sensitive naviga-
tion, which is independent of the user interface. The model de-
scribes how the underlying data can be utilized to make changes
in the input proportional to the changes of the output, and how
these changes can be visually encoded.

The computational overhead of applying our model is the
evaluation of the importance function for the individual data
samples. Therefore, it is highly dependent on the dataset size
and the complexity of the importance function. In our exam-
ples, the overhead was in the order of milliseconds for the ves-
sel exploration, and in the order of seconds for the 3D rotation,

8

(a) (b)

Figure 8: Visualization of the importance using the navigation sphere and vi-
gnetting. (a) A feature-rich area is shown without vignetting. The front-facing
part of the navigation sphere is red, indicating high importance (b) If a feature-
less area is displayed, vignetting is introduced to indicate the low importance.
It is also visible through the black color of the navigation sphere.

for medium-sized datasets (approx. 5123 voxels). However, the
importance function can be precalculated, which ensures that
the overhead during the interaction is negligible.

In addition to the concept of data-sensitive navigation, we
proposed the TreeSlider. It is a a novel interaction element im-
plementing the data-sensitive navigation model, which we em-
ploy for the traversal of vascular structures.

Unlike our 3D rotation example, the TreeSlider extends the
way how such widgets are commonly understood and interacted
with, since the same visual element represents different tree
branches. Therefore, we performed an experiment to help us
understand how people interact with the TreeSlider.

The main limitation of the TreeSlider as a general-purpose
input element is its inability to handle tree nodes of high de-
grees. Without making the screen-space of the TreeSlider wider,
the too many branches originating in a single fork node might
have to be displayed too close together in the fork, preventing
users from easily switching between the branches. This limita-
tion could be overcome by using the mouse wheel to switch be-
tween branches instead of using the vertical movement. How-
ever, this limitation does not apply in scenarios where degrees
of the nodes are relatively low, such as in the traversal of large
vessels in the peripheral vascular system.

We showed TreeSlider to a radiologist, who found the idea
interesting and potentially useful. In the future, we are planing
to conduct a thorough evaluation of the TreeSlider applied in
radiology.

We realized the TreeSlider as a self-contained, open-source
Qt widget. The source code is available for download 1.

6. Conclusions

In this paper, we address the problem of unpredictable user
input for medical visualization. To tackle the challenge of an
efficient and intuitive interaction, we propose a general model,
which can be used to improve navigation in visual-computing

1https://cg.tuwien.ac.at/downloads/treeslider

(a) (b)

(c) (d)

Figure 9: Visual guidance for 3D object rotation. The white dotted line indi-
cates the input vector for the Arcball rotation. (a) Initial position. The red color
indicates where to move the mouse to rotate the object to a more interesting
viewpoint. (b) The mouse was moved towards the red area to reveal interesting
features around the neck and jaw. (c) The mouse was moved towards another
red area to show the face. Since a large portion of the image comprises the
featureless forehead, this red area is less pronounced. (d) The mouse moves
towards an area of low interest denoted by the lack of red color. Featureless
occipital and parietal bones are shown. The low importance is visible from the
dark navigation sphere, as well as darker borders caused by the vignetting.

applications in general. The model consists of data-sensitive
manipulation, a way of making changes in the user input and
output proportional, and data-sensitive guidance, which displays
the remapping information to steer the user interaction.

To showcase our model, we propose the TreeSlider, a novel
interaction element for traversing tree structures. We demon-
strate that both data-sensitive manipulation and guidance can be
applied to the TreeSlider to efficiently traverse vascular struc-
tures. Additionally, we apply data-sensitive navigation to the
rotation of 3D objects. This indicates, that our method is scal-
able to multidimensional input elements as well.

Although we only used medical-visualization examples, data-
sensitive navigation seems applicable to many other areas as
well, such as information visualization, visual analytics, and
more generally visual computing.

Acknowledgements

The research presented in this paper was supported by the
MetaVis project (#250133) funded by the Research Council of
Norway, ManyViews, OeAD Scientific & Technological Agree-
ment SK 14/2016, the Vienna Science and Technology Fund
(WWTF) through project VRG11-010, and by EC Marie Curie
Career Integration Grant through project PCIG13-GA-2013-618680.

9

https://cg.tuwien.ac.at/downloads/treeslider

References

[1] Lindow, N., Baum, D., Hege, H.C.. Perceptually linear parameter
variations. Computer Graphics Forum 2012;31(2pt4):535–544.

[2] Gavrilescu, M., Malik, M.M., Gröller, M.E.. Custom interface elements
for improved paramter control in volume rendering. In: Proceedings of
the 14th International Conference on System Theory and Control. 2010,
p. 219–224.

[3] van Wijk, J.J., Nuij, W.A.A.. Smooth and efficient zooming and panning.
In: Proceedings of the 9th IEEE Conference on Information Visualization.
2003, p. 15–22.

[4] Blanch, R., Guiard, Y., Beaudouin-Lafon, M.. Semantic pointing: Im-
proving target acquisition with control-display ratio adaptation. In: Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems. 2004, p. 519–526.

[5] Elmqvist, N., Fekete, J.D.. Semantic pointing for object picking in
complex 3d environments. In: Proceedings of Graphics Interface. 2008,
p. 243–250.

[6] Chapuis, O., Labrune, J.B., Pietriga, E.. Dynaspot: Speed-dependent
area cursor. In: CHI ’09: SIGCHI conference on Human Factors in com-
puting systems. 2009, p. 1391–1400.

[7] Elmqvist, N., Riche, Y., Henry-Riche, N., Fekete, J.D.. Mélange:
Space folding for visual exploration. IEEE Transactions on Visualization
and Computer Graphics 2010;16(3):468–483.

[8] Ji, G., Shen, H.W.. Dynamic view selection for time-varying vol-
umes. IEEE Transaction on Visualization and Computer Graphics
2006;12(5):1109–1116.

[9] Kohlmann, P., Bruckner, S., Kanitsar, A., Gröller, M.E.. Livesync:
Deformed viewing spheres for knowledge-based navigation. IEEE Trans-
actions on Visualization and Computer Graphics 2007;13(6):1544–1551.

[10] Kohlmann, P., Bruckner, S., Kanitsar, A., Gröller, M.E.. Livesync++:
Enhancements of an interaction metaphor. In: Proceedings of Graphics
Interface. 2008, p. 81–88.

[11] Wörner, M., Ertl, T.. SmoothScroll: A Multi-scale, Multi-layer Slider.
Springer Berlin Heidelberg. ISBN 978-3-642-32350-8; 2013, p. 142–154.

[12] Willett, W., Heer, J., Agrawala, M.. Scented widgets: Improving nav-
igation cues with embedded visualizations. IEEE Trans Visualization &
Comp Graphics (Proc InfoVis) 2007;13:1129–1136.

[13] Kanitsar, A., Fleischmann, D., Wegenkittl, R., Felkel, P., Gröller, M.E..
CPR – Curved Planar Reformation. In: Proceedings of IEEE Visualiza-
tion. 2002, p. 37–44.

[14] Auzinger, T., Mistelbauer, G., Baclija, I., Schernthaner, R., Köchl,
A., Wimmer, M., et al. Vessel visualization using curved surface ref-
ormation. IEEE Transactions on Visualization and Computer Graphics
2013;19(12):2858–2867.

[15] Portugaller, H.R., Schoellnast, H., Hausegger, K.A., Tiesenhausen, K.,
Amann, W., Berghold, A.. Multislice spiral CT angiography in pe-
ripheral arterial occlusive disease: a valuable tool in detecting significant
arterial lumen narrowing? European Radiology 2004;14(9):1681–1687.

[16] Borkin, M.A., Gajos, K.Z., Peters, A., Mitsouras, D., Melchionna, S.,
Rybicki, F.J., et al. Evaluation of artery visualizations for heart disease
diagnosis. IEEE Transactions on Visualization and Computer Graphics
2011;17(12):2479–2488.

[17] Oeltze, S., Preim, B.. Visualization of vasculature with convolution sur-
faces: method, validation and evaluation. IEEE Transactions on Medical
Imaging 2005;24(4):540–548.

[18] Wu, J., Ma, R., Ma, X., Jia, F., Hu, Q.. Curvature-dependent surface
visualization of vascular structures. In: Computerized Medical Imaging
and Graphics. 2010, p. 651–658.

[19] Wu, J., Hu, Q., Ma, X.. Comparative study of surface modeling methods
for vascular structures. In: Computerized Medical Imaging and Graphics.
2013, p. 4–14.

[20] Straka, M., Köchl, A., Cervenansky, M., Sramek, M., Fleischmann, D.,
Cruz, A.L., et al. The VesselGlyph: Focus & Context Visualization in
CT-Angiography. In: Proceedings of IEEE Visualization. 2004, p. 385–
392.

[21] Wang, W., Jüttler, B., Zheng, D., Liu, Y.. Computation of rotation
minimizing frames. ACM Trans Graph 2008;27(1):2:1–2:18.

[22] Shoemake, K.. ARCBALL: A user interface for specifying three-
dimensional orientation using a mouse. In: Proceedings of the Confer-
ence on Graphics Interface. San Francisco, CA, USA; 1992, p. 151–156.

[23] Takahashi, S., Fujishiro, I., Takeshima, Y., Nishita, T.. A feature-
driven approach to locating optimal viewpoints for volume visualization.
In: Proceedings of IEEE Visualization. 2005, p. 495–502.

[24] Vázquez, P.P., Feixas, M., Sbert, M., Heidrich, W.. Viewpoint selection
using viewpoint entropy. In: Proceedings of the Vision Modeling and
Visualization Conference. 2001, p. 273–280.

10

	Introduction
	Related Work
	Data-Sensitive Navigation
	Model Overview
	Data-Sensitive Manipulation
	Data-Sensitive Guidance

	Applications
	Data-Sensitive Vessel Traversal
	TreeSlider
	Data-Sensitive TreeSlider
	TreeSlider Evaluation

	Data-Sensitive 3D Object Rotation

	Discussion and Limitations
	Conclusions

