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Abstract

With online repositories for 3D models like 3D Warehouse becoming more prevalent and growing ever larger, new possibilities
have emerged for both experienced and inexperienced users. These large collections of shapes can provide inspiration for designers
or make it possible to synthesize new shapes by combining different parts from already existing shapes, which can be both easy to
learn and a fast way of creating new shapes. But exploring large shape collections or searching for particular kinds of shapes can
be difficult and time-consuming tasks as well, especially considering that online repositories are often disorganized. In our work,
we propose a relation-based way to parametrize shape collections, allowing the user to explore the entire set of shapes based on the
variability of spatial arrangements between pairs of parts. The way in which shapes differ from each other is captured automatically,
resulting in a small number of exploration parameters. Furthermore, a copy-and-paste system for parts allows the user to change
the structure of a shape, making it possible to explore the entire collection from any initial shape.
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1. Introduction

High-quality 3D geometric models are needed in many in-
dustries, such as entertainment, computer-aided design, urban
planning, the fabrication of physical objects, as well as research
areas like medical or scientific visualizations and simulations.
Manually creating a 3D model not only requires a lot of artistic,
but also technical skills, as traditional modeling software often
contain hundreds of different tools that all take significant effort
to learn how to be used properly.

However, with online repositories for 3D models like 3D
Warehouse or Turbosquid becoming more prevalent and grow-
ing ever larger, new possibilities have emerged for both experi-
enced and inexperienced users. The availability of large collec-
tions of shapes allows users to quickly populate virtual scenes
with a multitude of different objects. Expert designers can draw
inspiration from the large variety of different shapes and creat-
ing novel shapes can be made easier through shape synthesis,
where parts of existing models are combined to create a new
one, for example by interactive approaches like modeling-by-
example [1] or structural blending [2], or even by algorithms
that automatically generate novel shapes that in turn can also
serve as additional inspiration for the user [3]. On the other
hand, these online repositories are often disorganized, with thou-
sands of shapes listed under the same category and no meaning-
ful way to distinguish between differently looking shapes of the
same family. This makes it a difficult task to look for specific
shapes or explore the collection in a meaningful manner.

Shape retrieval is one proposed solution to this problem [4,
5, 6, 7]. From a high-level point of view, given an existing
shape or a sketch provided by the user, a number of shapes that

Figure 1: Exploring the shape collection by changing the structure of an initial
shape. Existing parts can be copied and assigned a different label. Such a new
part can then be used as a proxy to explore the collection.

are similar to the input are retrieved from the collection based
on some distance measure. Such a method can be useful when
the user already has a specific shape in mind, but is less suited
for exploration where one might not even know what kind of
shapes are available. A more general idea of how to do this
would be to find some kind of ordering of the shapes so that
similar shapes are close and dissimilar ones are far apart.

In this paper we address this problem, denoted as shape ex-
ploration. In order to provide such an ordering, we propose
a relation-based way to parametrize shape collections, allow-
ing the user to explore the entire set of shapes by controlling
a small number of parameters. Given a co-segmented set of
shapes from the same family, we look at pairs of adjacent parts
and how their spatial arrangements vary in regards to other part
pairs of the same category.

To make the exploration process more intuitive, we visual-
ize the parameter changes in the shape viewer. The currently
selected part is represented by its bounding box which is then
transformed relatively to its adjacent part based on the current
setting of the exploration parameters. This gives a rough first
look at the kind of shapes that can be found near the current
point in the exploration space and also provides an understand-
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ing of how the shapes change when moving in a specific direc-
tion of the exploration space.

Since our method only captures local variability, we also
consider the possibility of not using just one such relation to
differentiate between shapes, but multiple relations. As an ex-
ample, one could adjust the spatial arrangements of a chair seat
compared to both the legs and backrest to find more specific
shapes. Finally, we also look at the problem of shapes con-
taining different numbers of parts. This is something that is
often ignored in existing approaches or dealt with by clustering
shapes according to their part numbers and only allowing ex-
ploration within each such cluster. In our method, we provide a
simple tool to allow the copying and pasting of existing parts to
add parts not present in the current shape, making it possible to
explore the entire shape collection from any initial shape. This
can be seen in Figure 1.
In summary, our contributions are as follows:

• A parametrization of shape collections based on relations
between shape parts that automatically captures the way
in which the shapes vary.

• A simple exploration process that allows browsing the
collection based on local variability (spatial arrangements
between a pair of adjacent parts) or searching for more
specific shapes by considering multiple such relations at
the same time.

• A visualization of the exploration parameters that can aid
the user in understanding the effects of altering the pa-
rameters, making exploration more intuitive.

• A way to change the structure of the initial shape, allow-
ing the user to find shapes with different structures and
explore the entire collection from every initial shape.

Our approach can be separated into two stages. The first
stage is the parametrization stage described in Section 3. In
this stage, the collection of shapes is analyzed to find relations
between shape parts that are useful in exploring the collection.
This allows us to compute exploration parameters that can be
used to explore the collection in the exploration stage which is
described in Section 4. We also consider the possibility of using
nonlinear methods described in Section 5.

We perform a number of experiments with our system, re-
sults of which are presented in Section 6. Furthermore, in Sec-
tion 7 we conduct a user study to show that the ordering of
shapes produced by our approach is not less intuitive than or-
dering by the individual spatial features like distance, angle or
scale between parts. The discussion of our results, as well as
limitations of our approach can be found in Section 8. Finally,
we conclude this paper with a short summary in Section 9.

2. Related Work

With online model repositories growing larger, a need for
automatically organizing these huge collections of shapes has
arisen. As such, the problem of how to organize and explore

large collections of shapes has been a popular topic of research
in recent years. In this section we give an overview of related
work on the topic.

Template deformations: Ovsjanikov et al. [8] construct a
template made out of boxes from an initial shape and compute
a shape descriptor for each shape based on how the template has
to be deformed to fit the shape. These descriptors are projected
to a low dimensional manifold from which a deformation model
is then learned, encoding the way in which the shapes vary the
most. The user can then deform the template to explore the
collection, with deformations with high variability being sug-
gested by arrows. However, this method only works for shapes
that are sufficiently close to the template and is thus less suited
for shapes with varying topology. Similarly, Averkiou et al.
[9] also abstract each shape by a box template and then en-
code the spatial arrangements of the boxes as a vector. Based
on a distance measure between such configuration vectors, the
shapes are embedded into a two-dimensional space that can be
explored by the user by clicking on a position inside this space.

Semantic attributes: Another possibility is to use semantic
attributes to encode the variations of shapes inside a collection.
Chaudhuri et al. [10] conduct a user study to obtain semantic
attributes that describe shape parts. To explore the collection of
shape parts, the user can manipulate a slider for each attribute
to find parts that posses more or less of that certain attribute.
Yumer et al. [11] also perform a user study to gather semantic
attributes for a shape category, but additionally connect those
attributes to shape geometry to allow shape deformation by al-
tering the semantic attributes of a shape. For exploration, the
shapes are embedded into a two-dimensional space based on
their attributes and a color map is used to visualize high and
low values of a chosen attribute in the 2D space.

Images: More recently, the possibility of incorporating 2D
images in the exploration of shape collections has also been
considered. Hueting et al. [12] train classifiers on both im-
ages and shapes to align the image viewpoints with views of
the 3D shape and then in turn estimate geometric properties of
the shapes shown in the images based on the properties of the
3D shapes. By computation of the differences between their
geometric properties, the user can then find 3D shapes that are
similar to the shapes displayed in images or find images by set-
ting the orientation of a 3D shape.

Shape descriptors: Kleiman et al. [13] use a nearest neigh-
bor graph of the input shapes, computed using a combination
of similarity measures, to generate a dynamic map that can be
explored. A subset of shapes of the collection is arranged on a
grid of limited size, with similar shapes close to each other.
When the user scrolls in any direction or changes the zoom
level, the new cells of the grid that enter the screen space are
dynamically filled with shapes based on the similarity graph.
Huang et al. [14] also combine multiple shape descriptors for
their similarity measure and construct a category tree based on
quartets of shapes, consisting of two pairs of shapes with high
intra-pair similarity and low inter-pair similarity. Based on an
initial shape, the other shapes are then arranged in a circular
chart with the selected shape in the center and similar shapes in
the circles close to the center.
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Local features: The methods mentioned above mostly cap-
ture the global variability of the shapes, but it is also possible
to concentrate on local features. Kim et al. [15] compute fuzzy
correspondences between sample points on each shape. These
correspondences are then used to define the similarity between
shapes. The user can select one or more regions on an initial
shape (regions with high variability are highlighted with a color
map) to find other shapes with corresponding regions that are
either very similar or dissimilar to the selected regions. Rusta-
mov et al. [16] use a shape difference operator to extend this
approach by allowing magnification or interpolation of shape
differences, meaning that other shapes where a certain differ-
ence is more or less pronounced can also be found. Further
extension of this method is described by Huang et al. [17] who
use functional map networks to even allow interpolation and
magnification of discrete differences in topology.

Combined approach: Gao et al. [18] combine both global
shape descriptors and local similarity based on fuzzy correspon-
dences in their approach. Given a user-provided sketch, the sys-
tem retrieves a number of representative models that are similar
to the sketch. The user can then mark shapes or even regions
of shapes as preferred or disliked to refine the search using an
active learning scheme. Fish et al. [19] use global shape de-
scriptors to first find a small number of similar shapes for each
shape and then analyse local differences between similar shapes
to construct a network of shape clusters where edges between
clusters signify a change in shape structure.

Pairwise relations: The meta-representation method of Fish
et al. [20] allows exploration of shape collections based on spa-
tial arrangements of a part to other parts or the shape as a whole.
For each type of parts, a probability distribution is computed
that encodes some kind of spatial feature, like the relative scale
compared to the whole shape or the distance to another type of
part. This probability distribution is then used as a map of the
exploration space that gives the user an overview of the kinds
of settings that exist in the shape collection. Our method is
inspired by this approach, but we additionally consider correla-
tions between spatial features and filter out features that do not
contribute to the variability within the shape collection.

A more comprehensive survey on data-driven shape analy-
sis, including organization and exploration of large shape col-
lections, can be found in the works of Mitra et al. [21] and Xu
et al. [22].

3. Parametrization Stage

The aim of the parametrization stage is to find a small num-
ber of parameters that allow the user to explore the shape col-
lection. The idea is to use spatial features, such as vertical and
horizontal distance, angle and relative scale between adjacent
parts as a guide, similar to the method by Fish et al. [20]. How-
ever, using every spatial feature as a parameter would result
in a large number of parameters, and some of them might not
vary much across the collection, making them a bad choice for
exploring the collection. Furthermore, correlations might exist
between different features, resulting in a lot of empty regions in

Figure 2: Two co-segmented meshes and their corresponding shape graphs.
Each node corresponds to a part of the shape, visualized by its color. Black
edges represent adjacencies between parts, while green edges represent sym-
metries between parts.

the exploration space if these features are used as separate pa-
rameters. Thus we use Principal Component Analysis (PCA) to
reduce the dimensionality of the parameter space, which results
in a small number of exploration parameters.

The whole stage can be divided into three steps. First we
create a graph abstraction of each shape, followed by comput-
ing the spatial features between each pair of adjacent parts. In
the last step, the exploration parameters are found by analyzing
how these spatial features vary for similar pairs of parts.

3.1. Shape Graph

The input is a set of shapes, each given as a single or multi-
component 2-manifold polygonal mesh with an existing co-
segmentation, meaning that every face of a shape has been as-
signed a label l from a set of labels L that is the same for the
entire collection. If such a co-segmentation is not available,
it can be computed with a variety of co-analysis methods (see
[21, 22] for an overview). We furthermore assume that each
shape has an upright orientation, which can be assured using
for instance the method of Fu et al. [23].

We compute a structural graph for each input shape. Nodes
correspond to parts, meaning a single or multiple intersecting
components of the mesh where every face has the same label,
thus fulfilling a certain function of the shape. The edges of
the graph correspond to relationships between the parts, specif-
ically adjacency and symmetry. An example of such a graph
can be seen in Figure 2. To construct the graph we first abstract
each shape part by its Oriented Bounding Box (OBB).

To compute the adjacency edges, we test for adjacency be-
tween parts with different labels. This is done either by iterat-
ing over all mesh edges to find adjacent faces with different la-
bels, or by running intersection tests between differently labeled
components using a hierarchy of OBBs [24]. We also create an
approximation of the contact area between the parts by taking
their boundary vertices (or triangle-level intersections in the lat-
ter case) and computing the OBB enclosing them. We will refer
to the center of this OBB as the contact center. We also take
the axis of the OBB corresponding to the smallest eigenvalue
which we will refer to as the contact normal since it serves as
the normal vector of the plane that best approximates the con-
tact area between the parts. The contact center and normal are
stored with the adjacency edge and will be useful later when
computing the spatial features between the two parts.
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Figure 3: The distribution of the shapes in the vase dataset based on the spatial
features between the neck and body of the shapes.

To complete the shape graph, symmetry relations are com-
puted between nodes with the same label. Symmetries are de-
tected using an approach similar to the one in Jain et al. [25]. In
particular, we create candidate translational, reflectional or ro-
tational symmetry transforms between parts and check if their
OBB centers and axes are close enough after applying the trans-
form, in which case a symmetry edge is created.

3.2. Spatial Features

Next we compute a feature vector xpq for each adjacency
edge between parts p and q. We have chosen four features to
capture the spatial arrangement between adjacent parts: the ver-
tical distance dy and horizontal distance dxz between part cen-
ters, the angle θ between parts and the bounded relative scale s
between parts.

Distance: Let d = (dx, dy, dz)T be the distance vector be-
tween part centers pc and qc. Then, the vertical distance dy is
simply the y-coordinate of d. The horizontal distance is the
Euclidean distance between the part centers in the xz-plane:

dxz =

√
d2

x + d2
z . Both dy and dxz are normalized by dividing

by the diameter of the bounding box obtained by merging the
bounding boxes of the two parts. We have chosen not to use
the distance in x- and z-direction as separate features because
it would necessitate the assumption that the orientation of all
shapes is globally aligned, which is not always the case with
models taken from an online database. We do, however, assume
that the shapes are in upright position.

Angle: To compute the angle θ between parts, we select
the OBB axis of each part that is best aligned with the contact
normal of the adjacency edge and compute the angle between
them.

Scale: The relative scale sr(p, q) between two parts p and
q is obtained by dividing the OBB diameter of p by the OBB di-
ameter of q. However, the scale is not symmetric since sr(p, q) =

1/sr(q, p), so we define a consistent ordering based on the part
labels. Let Lp and Lq be the labels of parts p and q, then the
ordered relative scale so is given by

so(p, q) =

sr(p, q), if Lp < Lq

sr(q, p), otherwise
.

Furthermore, we want to limit the range of the feature. We
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Figure 4: The spatial features between adjacent parts can be correlated. In this
case there is a correlation between the horizontal distance and scale between
seat and legs of the chair.

define a mapping s with

s(p, q) =


1 −

1
so(p, q)

, if so(p, q) > 1

so(p, q) − 1, otherwise
.

This mapping limits the range of the feature to the interval
[−1, 1] such that s(p, q) = 0 means that the OBB diameter of
the two parts have equal length, positive values mean that p is
larger than q and negative values mean that p is smaller than q.

3.3. Exploration Parameters
For the last parametrization step, we define a set of rela-

tions R for the shape collection. A relation Rlk is contained
in the set only if there exists at least one shape in the collection
whose graph contains an adjacency edge between nodes labeled
l and k. Since the adjacency edges are undirected, the relations
are symmetrical, i.e. Rlk = Rkl. For each relation, we want to
compute one or two exploration parameters, depending on how
much the spatial features are correlated. This is done by using
PCA to reduce the dimensionality of the feature space spanned
by the spatial features. For each relation Rlk, all corresponding
adjacency edges are embedded into a feature space based on the
centered feature vectors x̂pq = xpq− x̄lk, where xpq is the feature
vector of the adjacency edge between parts p and q, and x̄lk is
the mean of the feature vectors of all adjacency edges between
parts labeled l and k.

Then we compute each feature’s variance for every relation
and remove the features with a variance smaller than a thresh-
old. The reasoning is that for any given relation there might
be some features that do not significantly contribute to the vari-
ability within the shape collection. An example of this can be
seen in Figure 3, where the horizontal distance and angle be-
tween the neck and body of the shapes in the vase dataset are
the same for most shapes. Thus they are not useful parameters
for browsing the collection. We set the threshold to 0.005 which
was chosen empirically.

Next we perform PCA for each relation since there is the
possibility of correlation between features. If two features are
strongly correlated, it is possible to use a single parameter for
these features instead of using one parameter for each. Figure 4
shows an example in which the horizontal distance and relative
scale between the legs and seat of the shapes in the chair dataset
are correlated. Since the legs of a chair are usually placed at the
corners of the seat, their horizontal distance to the center of the
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seat depends on the size of the seat. On the other hand, for
chairs that only have a single leg, the leg is usually placed at
the center for balance and needs to be larger to carry the weight
of the seat.

Performing the PCA yields the principal component coeffi-
cient matrix Vlk and the variances λ for each relation, as well
as a principal component score ypq for each adjacency edge be-
tween parts p and q. The rows of Vlk can be seen as the axes
of the principal component space expressed as vectors in the
feature space. The scores ypq express the coordinates of the ad-
jacency edge in the principal component space and are used as
our parameters for the exploration of the shape collection. They
are obtained by transforming the centered feature space coordi-
nates x̂pq with the corresponding transposed coefficient matrix
VT

LpLq
:

ypq = VT
LpLq

x̂pq . (1)

The principal component variances λ are simply the vari-
ances of the data for each axis of the principal component space.
They are used to decide the number of parameters used for the
exploration. We choose to use the two principal components
with the largest variances if the variance of the second com-
ponent is larger than half the variance of the first component.
Otherwise we choose only the first principal component since
the second component does not significantly contribute to the
variation of the relation. In cases where we need two principal
components but two features have been discarded because their
variance is too small, we do not use the principal components as
parameters. Instead we use the two remaining features directly
since it is more intuitive to control them separately. Since we
only need one or two principal components, we only store at
most two columns of Vlk and ypq with each relation and adja-
cency edge respectively. Finally, we also store the mean feature
vector x̄lk, as well as the minimum and maximum of the features
and scores of each relation for later use.

4. Exploration Stage

Using the coefficient scores y as parameters, it is now pos-
sible to explore the shape collection. Starting with an existing
shape, the user selects an adjacency edge apq by picking a pair
of adjacent parts p and q. It is then possible to alter the param-
eters ypq of the chosen edge apq. This can be done in two ways.
First, it is possible to change the parameters directly by inter-
acting with one or two sliders, each corresponding to an entry
of ypq. The second way of altering the parameters is by interact-
ing with the shape itself, using a manipulator tool to transform
the selected part and then recomputing the parameters from the
new transformation. A coupling between the parameter sliders
and the visual representation ensures that any changes are al-
ways reflected on both sides. This is explained in Section 4.1.
Once the altered parameters are computed, we search for the
shape in the collection that best fits these parameters, which is
described in Section 4.2.

Figure 5: Exploration of the shape collection by directly changing the param-
eters of the chosen adjacency edge. In each image, the original shape is shown
on the left, while the shape that best fits the altered parameters is shown on
the right. The bounding boxes of the chair’s legs are updated according to the
parameter changes.

4.1. Visual Representation
Interacting with a slider is a simple and quick way of chang-

ing a parameter value. The problem with this kind of interac-
tion is that the effect of increasing or decreasing the parameters
is not immediately apparent to the user. Because of that, we
have designed a visual aid in the model viewer that is coupled
to the parameters. The selected part p as well as all parts that
are connected to p by a symmetry edge are visually represented
by their OBBs. To show the effect of altering the parameters,
the position, rotation and scale of the OBB of p is updated ac-
cordingly. An example of this can be seen in Figure 5.

To apply the parameter changes to the visual representation,
it is first necessary to compute the altered spatial features from
the altered parameters. Let y′pq denote the altered parameters of
the adjacency edge apq, and let ∆ypq = y′pq − ypq be the differ-
ence between the altered and original parameters. Using ∆ypq
and the coefficient matrix VLpLq we can compute the change in
terms of the original spatial features:

∆xpq = VLpLq∆ypq,

with ∆xpq = (∆dy,∆dxz,∆θ,∆s)T . We can apply these changes
to the original arrangement between p and q to represent the
change visually.

Distance: We translate the OBB of p along the vector be-
tween part centers pc and qc, first by ∆dy in y-direction, then by
∆dxz in the xz-plane.

Angle: To apply the change of the angle between the parts,
it is first necessary to determine the axis of rotation. Let up

and uq denote the OBB axes of p and q that are best aligned
with the contact normal of apq. Since we want to transform
the OBB of p in relation to the OBB of q, the axis of rotation
can be obtained by the cross product uq × up. Of course this
is only possible when uq and up are linearly independent, in
which case the OBB of p is rotated by ∆θ around the computed
axis of rotation using the contact center as the pivot. Otherwise
we do not visualize the rotation, since we have no means to
determine the axis of rotation.

Scale: To apply the change in scale, we first compute the
new relative scale s′r from s′ = s + ∆s:

s′o =


1

1 − s′
, if s′ > 0.

1 + s′, otherwise
, s′r =


s′o, if Lp < Lq.

1
s′o
, otherwise

.
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Figure 6: It is also possible to change the parameters by transforming the
bounding box of the selected part using a manipulator tool.

Since s′r denotes the new relative scale of p in relation to q,
it is first necessary to scale p to be of the same size as q before
applying the new scaling s′r. Thus the OBB of p is scaled by
s′r(p, q)/sr(p, q).

To keep the symmetry between symmetric parts, we also
apply any parameter change ∆y to the parameters of relevant
adjacency edges of symmetric parts and transform their OBBs
accordingly.

It is important to note that the altered features can possibly
take on values that exceed the minimum or maximum features
present in the shape collections, or even result in invalid values
such as a negative distance or scale. This can happen because
at most the first two principal component scores are changed,
while the others remain the same. For this reason we store the
minimum and maximum features for each relation during the
parametrization so we can restrict the visual representation to
those values.

The other method of changing the parameters is by inter-
acting with the shape in the model viewer. After selecting an
adjacency edge by picking a pair of adjacent parts p and q, the
user can activate edit mode to freely translate, rotate and scale
the OBB of p. This can be done with a manipulator tool similar
to those in conventional modeling programs (cf. Fig. 6). Once
the user accepts the transformation of the OBB, a feature vec-
tor xp′q is computed, with p′ denoting the transformed OBB.
We center the feature vector by subtracting the mean feature
vector x̄Lp′ Lq of the corresponding relation RLp′ Lq and compute
the new principal component score yp′q using Equation 1. If
the new score falls outside the range of scores of the relation,
the values are clamped so they do not exceed the minimum and
maximum values. Finally, the OBB is transformed once more
based on yp′q to ensure that the visual representation stays in
line with the parameters. Figure 6 shows an example of this
process.

4.2. Finding The Best Fit

The altered parameters are then used to find shapes in the
collection that best fit these parameters. There are two options
for this search: finding the pair of parts in the collection that
best satisfy the parameters of the currently selected adjacency
edge, or incorporating multiple adjacency edges of the current
shape in the search of the best fit. The first case is simple. Let
apq be the currently selected adjacency edge with altered pa-
rameters y′pq, and let ALpLq denote the set of adjacency edges
between parts labeled Lp and Lq (note that apq is also included

in this set). Then we can find the best fitting adjacency edge a∗

by
a∗ = arg min

a∈ALpLq

‖y′pq − ya‖ .

In order to take multiple adjacency edges into account dur-
ing the search, we must first consider how to deal with cases
where the cardinality of parts varies across the collection. For
every shape Mi we first compute the average parameter vector
ȳi

lk for each relation Rlk given by

ȳi
lk =



∑
a∈Ai

lk
ya

|Ai
lk |

, if |Ai
lk | > 0

ymax
lk − ymin

lk

2
, otherwise

,

with Ai
lk being the set of adjacency edges of shape Mi between

parts labeled l and k, and ymax
lk and ymin

lk being the maximum and
minimum values for ylk. Furthermore, we extend each vector
ȳi

lk by adding another entry zi
lk, which is the weighted number

of adjacency edges between parts labeled l and k given by

zi
lk =


ω
|Ai

lk | − Amin
lk

Amax
lk − Amin

lk

, if Amax
lk − Amin

lk > 0

0, otherwise

,

with Amin
lk = min

i=1...n
|Ai

lk |, Amax
lk = max

i=1...n
|Ai

lk | and ω ≥ 0 being a

weight parameter that decides how important the number of ad-
jacency edges is in finding similar shapes. The average of the
altered parameters ȳ′lk is computed in the same manner. The
shape M∗ that is closest to the altered parameters can then be
found by

M∗ = arg min
Mi∈M

∑
Rlk∈R

‖ȳ′lk − ȳi
lk‖ .

4.3. Structural Changes
Since we can also take the number of adjacency edges into

account when searching for the best fit, it is necessary to pro-
vide the user with a way to add or remove adjacency edges
of the current shape. Either operation is only allowed when
the number of adjacency edges |Ai

lk | remains within the inter-
val [Amin

lk , Amax
lk ]. The first step is to select an adjacency edge

by picking two adjacent parts p and q. An adjacency edge can
be deleted by pressing the corresponding button. Creating a
new adjacency edge is done by creating a new part p′ that is
then connected to q. This can be achieved by copying the OBB
of p and using the manipulator tool to move it to a new loca-
tion. Once confirmed, the vertices and faces of p are copied and
placed at the new location using the transformation of the OBB.
To obtain an approximation for the contact center and contact
normal of the new adjacency edge, we intersect the edges of the
OBB of p′ with the planes of the OBB of q and vice versa. The
points of intersection are then treated as the boundary vertices
between the two parts to compute the contact center and nor-
mal. If the OBB of p′ is placed so that there are less than 3
intersections, the new location is not accepted and the user can
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Figure 7: Nonlinear dimensionality reduction for a dataset in a three-
dimensional space. The data points, represented by circles, are colored depend-
ing on their position in the lower dimensional space. The triangles are points
corresponding to uniformly sampled points from the lower dimensional space.

either alter the transformation of the OBB or cancel the creation
of the new part.

Finally, it is also possible to change the label of a copied
part, thus allowing the creation of adjacency edges that do not
occur in the current shape. While the new part still has the
geometry of the part that was copied, it can be used as a proxy
to find shapes with similar part arrangements and to swap in
parts with the same label from other shapes. Figure 1 shows
an example of this process. The shown shape from the chair
dataset only consists of a seat and a leg. The leg part is copied,
transformed, placed on top of the seat and assigned the label of
a back part. It is then used as a proxy to find a shape with a
different backrest.

5. Nonlinear Parametrization

In our proposed method, we use PCA to reduce the dimen-
sionality of the feature space in order to obtain our exploration
parameter space. Using PCA has the advantage that we get a
mapping between the feature and parameter space, allowing us
to transform any point from one space to the other, which is nec-
essary for our visualization. However, PCA is a linear method
and thus might not provide a good mapping if the data points
are distributed in a way that cannot be well approximated with
a linear function. In this case it might be a good idea to con-
sider nonlinear dimensionality reduction techniques to compute
our parameter space. Figure 7 shows an example of this for the
relation between the legs and seat of the chair dataset. The cir-
cles represent shapes in a three-dimensional feature space and
are colored based on their position in the one-dimensional ex-
ploration parameter space. The triangles represent uniformly
sampled points from the exploration parameter space to illus-
trate their spacing in the feature space, which corresponds to
the visualization computed from our exploration parameter val-
ues.

We use Locally Linear Embedding (LLE) [26] for this pur-
pose, although many other nonlinear dimensionality reduction
methods would work as well. In this method, each data point is
represented by a linear combination of its nearest neighbors,
thus assuming that the neighborhood is locally linear. This

neighborhood information is used to compute a lower dimen-
sional embedding of the data under the constraint that the rep-
resentation of a point by its neighbors should be the same in
both spaces.

In contrast to PCA, the computation of the lower dimen-
sional space with LLE does not yield a mapping between the
two spaces that would allow us to transform any arbitrary point
from one space to the other. However, we require this infor-
mation for our visualization, so we need an alternative. To
do this we follow the suggestion of Saul and Roweis [27] to
compute a statistical model that allows us to estimate the cor-
responding point based on the distribution of the existing data
points. In short, we compute a joint distribution by first using
a mixture-model of Gaussians to model the data distribution in
the lower dimensional space and then compute a distribution of
these Gaussians in the higher-dimensional space.

In total, this process requires three parameters: the desired
dimensionality of the lower dimensional space, the number of
neighbors for the neighborhood construction and the number
of Gaussians to model the joint distribution. Ideally, we want
to use just a single exploration parameter for each relation, so
we set the dimensionality of the exploration parameter space to
1. The other two parameters are more difficult to determine.
A low number of neighbors can lead to bad results when the
data is heavily clustered, with large distances between cluster
boundaries. On the other hand, if the number is too large, the
result will be similar to linear methods since the neighborhoods
are assumed to be locally linear. The number of Gaussians used
for the mixture-model depends on the number of data points
and their distribution. Ideally, we want a large number of sam-
ples for each Gaussian to improve the accuracy of our model.
Inferring the optimal parameter values automatically for a given
dataset is one of the open questions regarding this method.

6. Results

We performed a number of tests on a machine with an Intel
Core i5 processor with four 3.40GHz cores, 8 GB RAM and an
AMD Radeon HD 6950 graphics card. For our test data we used
the chair, vase and candelabra datasets from the Shape COSEG
Dataset [28] with 400, 300 and 28 shapes respectively, and a
plane dataset consisting of 15 shapes taken from the Princeton
Shape Benchmark [29] and 3D Warehouse. For most datasets,
the labeling was provided together with the dataset. The shapes
of the plane dataset do not come with an existing labeling, so
we created our own manual segmentation. We perform tests for
both single-relation and multi-relation exploration.

The parametrization of the shape collection only needs to
be done once before exploration becomes possible. The per-
formance depends on the number of shapes and the number of
faces for each shape. On the test system, the parametrization
step takes 2 minutes and 32.48 seconds for the chair dataset and
1 minute and 14.48 seconds for the vases dataset. Parametriza-
tion of the candelabra dataset takes 26.79 seconds, while com-
putations for the plane dataset take 11.14 seconds.

Since the computation of the shape that best fits the altered
parameters is fast, exploration of the shape collection can be
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Figure 8: Exploration of the chair dataset using the backrest-seat relation. For
each pair of shapes, the initial shape is shown on the left, while the preview
of the shape that best fits the altered exploration parameters is shown on the
right. The altered parameters are represented visually by the bounding box of
the backrest.

Figure 9: Exploration of the vase dataset using the relation between neck and
body (top), and base and body (bottom). Since only two features show a high
variance, but with low correlation, the individual features are used directly for
exploration.

done in real-time even for large sets. As a performance stress
test, we combined the vases and chair datasets (for a total of
700 shapes) where exploration results in a framerate of 30 − 40
frames per second on the test system even when considering all
relations in the computation of the best fit.

Figure 10: Exploration of the vase dataset using the relation between handle
and body. Changes to the first principal component (x-axis) result in a change
in angle and vertical distance, while changes to the second principal component
(y-axis) result in a change in scale and horizontal distance.

Figure 11: Exploring the candelabra dataset using different relations. In the
first row, the relation between the handle and the base of the candelabra is
changed. In the second row, the dataset is explored by changing the relation
between the candles and the base.

Figure 12: Exploring the plane dataset using different relations. We use the
relations between wing and fuselage (top), stabilizer and fuselage (bottom left),
and engine and wing (bottom right) to explore the collection.

6.1. Single-Relation Exploration

In our tests, we explore the chair and vase datasets using
different relations. Figure 8 shows the exploration of the chair
dataset using the backrest-leg relation, while exploration of the
vases dataset can be seen in Figures 9 (using the relations of
neck or base to the body) and 10 (using the handle-body rela-
tion). The shapes are ordered roughly according to their posi-
tion in the 2-dimensional exploration parameter space. As can
be seen, similar shapes are closer to each other than dissimilar
shapes.

Finally, we also test two small datasets – the candelabra set
from the COSEG benchmark and the plane dataset consisting
of shapes that have been put together from shapes found on 3D
Warehouse and the Princeton Shape Benchmark. The explo-
ration of these datasets is depicted in Figures 11 and 12.
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Figure 13: Exploration of the chair dataset using multiple relations. After first
adjusting the parameters of the leg-seat relation, changing the parameters of the
backrest-seat relation yields different results because both relations are taken
into account when computing the best fit. The backrests of the chairs in each
column are similar, while the legs are different.

6.2. Multi-Relation Exploration

In this section we explore the shape collections by taking
multiple relations into account. By changing the parameters of
multiple relations it is possible to find more specific results. The
tests are performed using the same datasets as before.

For the first test, we use the chair dataset, with the following
testing procedure: We first set the parameter for the leg-seat re-
lation of the chair. Then we alter the parameters for the relation
between the backrest and the seat. The results can be seen in
Figure 13. In each column, the shown shapes use the same pa-
rameter values for the backrest-seat relation. This results in the
shapes of each column having a similar backrest, but the type
of shape is different since the leg-seat relation is also taken into
account.

For the next test we also consider the number of parts as a
parameter. Finding a good weight ω to determine how much
influence the difference in part numbers has depends on the use
case. For this test we intend to only search for shapes that have
the exact same number of parts. For that purpose, ω is set to a
large value, in this case 100. We choose a shape from the vase
dataset containing a neck, a base, a body and two handles as the
starting shape to search for other shapes in the dataset. Then we
explore the collection by alternately changing the parameters of
the neck and the base of the shape. We perform the same explo-
ration process three times, each time with a different number of
handles. In the first test, the number of handles is unchanged.
In the second test, both handles are removed. Then in the third
test the two handles are duplicated using our copy-and-paste
operation.

The results are shown in Figure 14. As can be seen, the
shapes depicted in each column have similar characteristics,
with the main difference being the number of handles.

In the last exploration test, we show how to deal with cases
where the starting shape does not contain all possible relations.

Figure 14: Exploration of the vases dataset using multiple relations and differ-
ent numbers of parts. The shapes in each column have similar characteristics,
but a different number of handles.

Figure 15: Exploration of the candelabra and plane datasets by adding parts
that do not exist in the starting shapes shown on the left.

For this we use the candelabra and plane datasets. Figure 15
shows how we can add a handle to the base of a candle or en-
gines and wheels to a plane in order to find other shapes that do
contain these parts.

6.3. Exploration Using Nonlinear Parametrization

We performed a number of tests with nonlinear parametriza-
tion for the two large chair and vase datasets. Choosing appro-
priate parameter values proved to be a difficult task. Empiri-
cally, we have found that a number of 24 to 32 neighbors and 2
to 4 Gaussian led to the best results for our data. Using a lower
number of neighbors mostly causes the data in the lower dimen-
sional space to become more clustered with large inter-cluster
distances, resulting in discontinuities when transitioning from
one cluster to another. A high number of clusters can have a
similar effect since there are less samples per cluster and thus
the model becomes less accurate.

The chair to leg relation of the chair dataset is good ex-
ample for a dataset which can benefit from using nonlinear
parametrization, which is illustrated in Figure 7. The data forms
two clusters, the top cluster containing benches and conven-
tional chairs, while the bottom cluster contains office chairs and
stools with just one leg. This clustering originates from the dif-
ference in horizontal distance between legs and seat. The trian-
gles show the uniformly sampled exploration parameter values
in feature space. As can be seen, the path traced by the param-
eter values follows a curve. Moving along the curve starting
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Figure 16: Exploration of the chair dataset using the backrest-seat relation
after nonlinear parametrization. Shapes with a small straight backrest can be
found on the left side of the parameter space. Moving towards the right side,
the backrest becomes larger while still remaining straight, then smaller again as
the angle also increases.

Figure 17: The order of shapes obtained with nonlinear parametrization of the
vase dataset using the handle-body relation.

from the top left, this corresponds to the size of the legs becom-
ing larger within the first cluster, and then becoming smaller
again within the second cluster.

Using nonlinear parametrization for the backrest to seat re-
lation results in a similar curve for the sampled exploration
parameter values. Beginning with shapes containing a small
straight backrest, changing the parameters causes the backrest
to become larger while still remaining straight, and finally smaller
again as the angle between backrest and seat increases at the
same time. Example shapes found in this exploration can be
seen in Figure 16.

Finally, we also test nonlinear parametrization for the handle-
body relation of the vase dataset, which results in an ordering
of shapes demonstrated in Figure 17.

7. Evaluation

We performed a user study to evaluate our method and com-
pare our orderings of shapes to the orderings produced by each
individual spatial feature, as would be the case using the method
by Fish et al. [20]. Informally, the goal of the user study was
to analyze if the orderings provided by our methods (PCA and
LLE) would match with an ordering given by human intuition.

We surveyed 16 participants, where each was given a num-
ber of shapes printed on paper cards (cf. supplementary mate-
rial) and was then instructed to order the shapes by a specified
relation. 3 different relations, each consisting of 8 shapes, were
used as test cases. The shapes were randomly sampled from the
COSEG chair and vase datasets, but to ensure that no shapes
were visually too similar, some of them were replaced man-
ually. While we did explain to the participants which spatial
features we used to compute the orderings, we did not tell them
which features are more useful to differentiate the shapes of the
different datasets.

To allow for a 3-dimensional perception of each shape, a
perspective view and orthogonal front and side views were pre-
sented on every card, depictions of which can be found in the
supplementary material. Every user received the datasets in a

randomized order to reduce potential bias caused by any pre-
vious orderings. The shapes for the first and second test cases
were picked out of the COSEG chair dataset. Whereas in the
first case the users had to sort by the relation between legs and
seat (test case T1), in the second case the relation between seat
and backrest was used (test case T2). The third test case (T3)
consisted of vases where the relation between handles and body
was important. Note that we reduced the dimensionality of the
feature space to a single dimension for both PCA and LLE for
this comparison. Both parametrizations were computed using
the entire dataset, after which the relative order of the test sam-
ples was determined. For LLE we used 24 neighbors in the
parametrization.

Kendall Tau metric [30] was used to compute the distance
between pairs of orderings. Since the global direction of an or-
dering does not matter in our case, we used the reversed order of
the second ordering in the pair if its distance to the first ordering
was smaller than its original distance. Table 1 lists the average
distances of the user orderings to the orderings obtained using
PCA, LLE and the four spatial features, while Figure 18 shows
the boxplots of the distances between the individual user order-
ings and the 6 computed orderings for each dataset. A visual
comparison between different computed and user orderings for
the leg-seat relation of the chair dataset is illustrated in Figure
19.

The results show that, for both test cases T1 and T3, our
nonlinear dimensionality reduction method produced the order-
ing that is closest to the user orderings, suggesting that it corre-
sponds well to the intuition of the users. The ordering obtained
by PCA did not perform as well, but is in both cases still better
than 2 of the 4 orderings by individual features as used by Fish
et al. If the user does not have any prior knowledge about the
variability of the shape collection, it can prove to be an advan-
tage over having to pick one of the features at random.

For the second test case T2, none of the computed order-
ings produced a result that aligned well with the orderings pro-
vided by the users. According to the feedback gathered after
performing the tests with each user, most users found it difficult
to order the shown chairs based on the spatial arrangements be-
tween backrest and seat, and instead found it more intuitive to
order them based on visual features of the backrests such as the
structural complexity, topology, or roundness. In the future, it
would certainly be interesting to include such features in the
parametrization and also conduct further studies to determine
the types of features that users find most intuitive to sort by.

We perform a right-tailed Student’s t-test to validate the re-
sults of our user study. Since our method has the advantage
of not requiring any prior knowledge about the variability of
shapes in the dataset to allow efficient exploration, we want to
show that our method does not perform worse than using an
ordering based on the individual features. Our null hypothe-
sis states that the mean distance of our parametrized orderings
to the user orderings is not larger than the mean distance be-
tween the individual features and the user orderings. The re-
sulting p-values can be found in Table 2. These values show
the probability of obtaining a result like in our user study under
the assumption that the null hypothesis is true.
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(c) Vase dataset, handle-body relation

Figure 18: These boxplots show the distances of the user orderings to the or-
derings obtained using PCA, LLE, vertical distance, horizontal distance, angle
and scale.

The results for test cases T1 and T3 confirm our observa-
tions that PCA yields an ordering that is at least as intuitive as
half of the individual features, but less intuitive compared to the
other half. For LLE we get p-values above 0.95 for 2 of the 4
features, and above 0.9 for the third feature. Only the compar-
ison to the individual feature with the smallest mean distance
to the user orderings – horizontal distance for T1 and angle for
T3 – results in p-values lower than 0.9, but even in the case that
LLE performs worse in this case, the difference is likely to be
small.

Further data of our user study can be found in the supple-
mentary material, including depictions of all sample shapes,
orderings provided by the users and more visual comparisons
between different orderings.

PCA LLE V. Dist. H. Dist. Angle Scale

T1 8.563 6.063 9.188 6.938 9.188 8.063
T2 9.375 9.625 9.125 10.5 9.25 10.38
T3 8.813 6.688 10.688 10.438 7.188 7.313

Table 1: The average distance of the user orderings to the computed orderings.
T1: Chair dataset, leg-seat relation. T2: Chair dataset, backrest-seat relation.
T3: Vase dataset, handle-body relation.

V. Dist. H. Dist. Angle Scale

T1 - PCA 0.9519 0.0244 0.9418 0.0205
T1 - LLE 0.9674 0.8755 0.9734 0.9364

T2 - PCA 0.2722 0.7875 0.4464 0.9481
T2 - LLE 0.2613 0.7786 0.1914 0.7680

T3 - PCA 0.9621 0.9876 0.0362 0.0657
T3 - LLE 0.9910 0.9952 0.8334 0.9226

Table 2: P-values obtained in a right-tailed Student’s t-test under the null hy-
pothesis that the mean distances of our PCA and LLE methods are not larger
than the mean distances of the individual features.

8. Discussion and Limitations

The results of our tests for the parametrization and explo-
ration stages show that the shapes found while browsing the
collection are mostly in line with our expectations. Spatial fea-
tures with low variation within the collection – which are not
very useful for distinguishing between shapes – are eliminated
and correlations between features are detected successfully.

As an example, consider the leg-seat relation depicted in
Figure 19. Our statistical evaluation shows that, considering
all orderings based on individual features, the ordering based
on horizontal distance is the one closest to the user orderings.
While it is easy to differentiate one-legged chairs from four-
legged chairs or benches using just the horizontal distance be-
tween the legs and the seat, differentiating between different
one-legged chairs requires the vertical distance or relative scale
as a second feature, since the horizontal distance is zero for
each shape.

This is an advantage over the method of Fish et al. [20]
where each spatial feature is treated as a separate parameter
that can be used to explore the collection. Our visual repre-
sentation generally provides a good idea of the changes caused
by altering the exploration parameter values. However, since it
is just an approximation, the results can sometimes differ and
the translation and rotation of the bounding boxes can only be
computed based on the current transformation.

Exploration using a single relation can give a quick overview
of the shapes in the collection, while using multi-relation ex-
ploration allows the user to find more specific shapes. This is
somewhat similar to the method of Kim et al. [15] who allow
the user to mark one or more regions to find shapes with similar
or dissimilar features in the marked regions. However, while
their measure of similarity can be used to order the shapes in
the collection based on their similarity to the selected shape,
there is no distinction between two shapes that are not only dis-
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(a) Parametrization with PCA.

(b) Nonlinear parametrization with LLE.

(c) Horizontal distance (best-fitting individual feature).

Figure 19: A visual comparison between computed and user orderings for the
leg-seat relation of the chair dataset. The middle row in each image shows the
ordering produced by PCA, LLE and horizontal distance respectively, while
the top row shows the user ordering with the smallest distance to the computed
ordering, and the bottom row shows the user ordering with the smallest average
distance to all other user orderings.

similar to the selected shape, but also dissimilar to each other.
Our approach on the other hand provides a global ordering of
the shapes for each relation, making it easier to get an under-
standing of the shape distribution in the exploration space.

The delete and copy-and-paste operations allow the user to
alter the structure of the initial shape, making it possible to find
other shapes with different structures. This addresses a problem
that is common with part-based methods that consider global
variability, namely the question of how discrete differences in
topology should be handled. For example, template deforma-
tion methods ([8, 9]) can only be applied to shapes that fit a
given template reasonably well. While our system does not
incorporate discrete topology differences into the parametriza-
tion, we provide the user with the possibility to find shapes with
a desired structure by altering the structure of any initial shape.
However, we realize that our implementation could still be im-

proved considering that manual transformation and placement
of the parts can be a bit tedious. An interesting idea would be
to extend this approach by finding suggested placements of the
copied parts based on the other shapes in the collection.

While we use only four spatial features in the computation
of our exploration parameters, it would be theoretically possi-
ble to include many more, even hundreds of features. However,
depending on the variability of each individual feature and their
correlations, a lot of information might be lost when mapping
hundreds of dimensions down to just one or two using PCA.
Furthermore, in the case of LLE, a lot more samples will be
required for the parametrization since distances between sam-
ples will be quite large. There is also the tradeoff that the ex-
ploration process will likely become less intuitive, as a lot of
features change at the same time when changing the parameter
values. The simplest solution to this problem would be to only
incorporate a small number of features with the largest variance
in the computation. As an alternative, it would also be possible
to ask the user to order a number of shapes in a similar way to
our user study to determine the features that seem most impor-
tant to the user.

In the future, our method could be extended to also incor-
porate other types of geometric features that are not necessarily
based on a relation between two different parts. Unary features
that are only related to the part itself (like roundness or topol-
ogy) could be modeled in the shape graph as a loop edge, con-
necting the part node with itself, while features that are mea-
sured in relation to the entire shape could be accommodated
by adding a virtual node to the graph that represents the entire
shape.

One of the most important outcomes of our research is the
observation that using nonlinear parametrization allows us to
find a better low-dimensional embedding. This fact appears
clear, since the distribution of the data in the feature space is in
the majority of the cases also nonlinear. While in this case we
need to specify the number of additional parameters, e.g., num-
ber of neighbors for the LLE and the number of Gaussians for
the computation of the statistical model, finding optimal values
can be approached with a number of empirical tests. However,
once suitable values for a given dataset are found, nonlinear
parametrization turned out to be a very useful tool for the ex-
ploration of shape collections. This is especially evident by the
data obtained in our user study which shows that a nonlinear
parametrization of the shapes corresponds very well with the
intuitive orderings given by the users.

9. Conclusions

We introduced a new method of parametrization and explo-
ration of large shape collections obtained from online reposi-
tories. In our approach to this problem, we analyze relations
between parts to find out how their spatial arrangements vary
across the collection, yielding a small number of parameters
that can be used to explore the collection. A visual represen-
tation of how the spatial arrangements change when altering
the parameters provides a better understanding of the kind of
shapes that can be found in the exploration process, making
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it more intuitive to search for specific shapes. To account for
shapes containing a varying number of parts, the system in-
cludes a copy-and-paste operation for parts that also allows for
the addition of parts that are not present in the currently dis-
played shape.
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