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Abstract

Scientific illustrators communicate the cutting edge of research through
their illustrations. There are numerous software tools that assist them
with this job. Often they use professional modeling and animation 3D
programs which are primarily used in games and movies industry.
Because of that however these tools are not suitable for scientific illus-
tration out of the box. There have been attempts to address this issue
which brought tremendous results.

This work focuses on visualization of structures and processes in
biology, focusing mostly on the scales of nano- to micrometers. At this
scale we often do not gain much by using hyper-realistic rendering
style that the professional software aims for. Instead we want to employ
more simplified style which helps to communicate the important story
without losing much detail or scientific precision.

The aim of this thesis is to push abilities of illustrators working on
large scale molecular scenes. This is done by connecting two software
packages—Maya and cellVIEW—combining the real-time rendering
possibilities of cellVIEW, and modeling and animation tools of Maya
which results in more effective and efficient workflow.
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1 Introduction

In this day and age, scientists come to new findings almost every day.
Unfortunately, not all of these are ever shown to the general public.
There can be several reasons for that. New discovered facts are usually
pieces of a bigger picture. Also, all the information might be already
available, spread over several databases, but putting them all together
would take significant effort and time. On top of that, scientists are not
usually trained and encouraged to expose their results to the public
audience.

This is the job of scientific illustrator. These people are, first and
foremost, experts in their fields, but on top of that they have invested
a significant amount of time on acquiring and perfecting their artistic
skills. They use these skills to visualize the science in their domain
using easily understandable images, animations, or other forms of
media.

This thesis focuses on visualization of structure and function of
objects in cell and molecular biology. To show examples of such visu-
alizations, we can point to works of Drew Berry [2], Graham Johnson
[3], or Janet Iwasa [4]. The importance of such work lies not only in
bringing the science to the laymen. Humans are visual beings and by
seeing something we can understand certain concepts more deeply
or differently. This applies to other scientists as well. In practice this
means that illustrations of science can serve as initiators of discus-
sions. New ideas, hypotheses, and experiments might emerge just by
seeing concepts differently or as a compilation of information into one
cohesive artwork.

Scientific illustrators have to carefully balance both the correctness
and artistic form of their outputs. Where conventional artists can
use visuals to suppress or highlight their message in a desired way,
the illustrator is limited by the boundaries of scientific correctness. In
the past, simplifications in such works have often been criticised by
the experts as misleading.

There are several ways of creating scientific illustrations. Histori-
cally, illustrations have been done by hand with traditional drawing
and painting methods. Even today, some illustrators still prefer this
way of working. It is however a very timely process, as individual
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1. Introduction

Figure 1.1: David Goodsell’s illustration of a Mycoplasma cell, taken
from [1]

illustrations can take months to create. Probably the most well known
person focused on hand-drawn molecular illustrations is David Good-
sell1. Goodsell has developed his own style of abstracting details while
preserving the general shapes (see Figure 1.1). If we consider the speed
at which science is moving forward nowadays what could end up hap-
pening is that before an illustration is finished a new finding emerges,
rendering the illustration effectively obsolete. This is of course un-
desirable and we need to search for ways how to accelerate, or even
partially automate, this process.

With the increasing popularity of computer generated imagery, it
has been naturally adopted by scientific illustrators as well. Tools have
become more accessible and easier to use over the years. Today, soft-
ware solutions like Maya, Cinema4D, or 3D Studio Max have become
industry standards for any task that revolves around modeling 3D
geometry and its rendering. Game and movie industry are the lead-
ing fields of industry that push computer graphics software creators
forwards and provide most of the revenue for them. This means that
these tools, no matter how versatile they try to be, are being skewed

1. David Goodsell’s web page: http://mgl.scripps.edu/people/goodsell/
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1. Introduction

towards the use cases in movies and games. In consequence, people
who want to create scientific content might struggle to use these tools
sometimes. Still, illustrators have been already able to create amazing
images and movies showing audience phenomena from all kind of
science disciplines.

With traditional methods it was time consuming to create just
a static illustration. This process can be sped up by using modern tools
with the aid of computers. But the bar has been raised by the need of
animated content and movies. These tasks can take months to prepare
even with modern tools. Using professional 3D tools is certainly very
helpful. For example, instead of frame-by-frame animation, physics
simulations can be used to create animations which are (at least to
a certain extent) physically correct. The still persisting problem is
that vendors do not design their products with the use in scientific
illustration in mind. It would actually be impossible to do so when
we take into account how many different usage scenarios we would
like to cover by using this software. But we still need a system how to
import scientific data into the program and work with them.

To fill the gaps in features of 3D modeling software tools, illustra-
tors have learned to customize them [5]. Professional 3D authoring
software is by convention highly customizable via scripting and/or
APIs. Such flexibility allowed illustrators and animators to extend
the software by implementing a required functionality. Python pro-
gramming language is often used, as it is usually integrated in the
3D software, but also popular among scientists themselves [6]. For
example, one task that commercial toolsets do not solve is importing
scientific data and structures as models. Some of these have been re-
leased to public (as we will see in Chapter 2) but most of the scripts
are being developed and used only by the original author.

From a completely different section of the field of molecular visu-
alization, there are domain-specific tools. There is an active research
in the domain of visualization, with many conferences every year and
hundreds of research papers in the field coming out. Usually, as a side
product, these publications generate pieces of software that showcase
the proposed visualization technique or pipeline. Some of these have
been turned into full featured visualization packages and thus pro-
vide a way to illustrate something in a new way. While the scientific
illustrators can benefit from these programs, it is not always the case
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1. Introduction

that they get used. Usually illustrators are simply used to a certain
pipeline and incorporating a new software into this pipeline does not
seems very beneficial to them. Another problem is that because these
programs are developed for a certain use cases (showcasing the aim
of the paper) they might not be easily applicable to more than one
purpose.

The main motivation for this project came from talks between
researchers of Visualization Group at TU Wien and animator Drew
Berry. Rendering capabilities of cellVIEW (see Chapter 2) have been
shown to Berry and he has expressed his interest in the style of ren-
dering that developers of cellVIEW have been able to create. Since
Drew Berry has been using Maya software for years for creating his
animated movies, we have decided to investigate if, and how, it would
be possible for him to use cellVIEW in combination with Maya.

In the next chapter, we will describe the state-of-the-art programs
and tools that are used for molecular visualization today and we will
mainly focus on showing the gaps in intercompatibility of the available
programs. Then, in Chapter 3, we present a new method of using a
specific modern rendering system to address issues that illustrators
face while using these tools. Chapter 4 is dedicated to an in-depth
description of our implementation. Chapter 5 will demonstrate use
cases of the implemented method. Finally, in Chapter 6, we will discuss
the outcome of the whole project and suggest how it could be extended
in the future.
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2 State of the Art

Several approaches can be adopted when creating an illustration, an an-
imation, or an interactive experience that has some basis in science.
This chapter provides an overview of software tools that illustrators
can use today. The list is not exhaustive, only the solutions that are
pivotal, or at least contain ideas interesting in the field of molecu-
lar illustration, are presented. However, before any of the tools are
mentioned, we need to describe the data that we are working with in
molecular illustration and visualization.

2.1 Molecular Data

All matter consists of atoms which are grouped in molecules. Atoms
in turn contain protons, electrons, and neutrons which have their own
internal structure. This is a level which is out of the scope of what is
relevant to this thesis. Here individual atoms are the smallest elements
that we will consider.

Biomolecule is a term describing any molecule that takes part
in some process in living organisms. Macromolecules are molecules
that are very large, containing typically several thousands of atoms or
more. We will not be dealing with chemical properties of molecules
and therefore details, such as which forces hold which elements to-
gether, are omitted. We are mostly interested in the structure of such
objects—how they look like.

Proteins are macromolecules that are formed by a process called
protein synthesis. During this process, part of DNA is transcribed into
messenger RNA which is then turned into chain of amino acids that
folds into a protein.

Lipids are hydrophobic molecules that typically serve as building
blocks of lipid membranes. Lipid membranes’ function is to separate
different compartments of a cell.

To acquire molecular data, a variety of techniques can be used.
Nowadays, the three most widely used are X-ray crystallography,
nuclear magnetic resonance spectroscopy (NMR), and cryo-electron
microscopy (cryo-EM). Each of these techniques has their benefits
and downsides. For example, using NMR, only structures of limited
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2. State of the Art

size can be resolved. On the other hand, cryo-electron microscopy can
be used to resolve large structures but only in a low resolution. For
more in-depth information about molecular data and the taxonomy
of visualizations of such data, please refer to [7].

RCSB Protein Data Bank [8] is a database where the informa-
tion about the structure of large biological molecules resolved us-
ing these techniques is stored. Each molecule is identified by its PDB
ID—alphanumeric code that is 4 characters long. Data can be exported
and downloaded in several formats, most notably in the PDB file for-
mat with extension .pdb. For us, the most relevant data that can be
acquired from this file is the list of atoms with their three-dimensional
coordinates.

Between the molecular (observable with methods like NMR and X-
ray crystallography) and cellular scale (observable with microscopy),
there is an intermediate scale (mesoscale, 10-100nm). In general, there
are no good methods available to observe objects in mesoscale in
atomic detail. Because of that, models on this level must be compiled
computationally by using information from multiple sources. The cell-
PACK [9] is a software that does exactly that. With cellPACK we can
assemble models of an intermediate scale by employing packing al-
gorithms. A recipe serves as an input for this algorithm. A recipe is
a compilation of data from light and electron microscopy, X-ray crysta-
lography, NMR spectroscopy, and other biochemical data. The process
then has two steps: gathering of the data to compile a recipe and then
assembling a virtual model from this recipe. cellPACK has been devel-
oped at Scripps Institute and is a biological version of a more general
software called autoPACK. Both of these are implemented in Python
and open-sourced.

2.2 Professional 3D Software

Using a professional 3D modeling and animation software can help
scientists to communicate their ideas. These programs have been de-
signed to provide means for people that need to create three dimen-
sional models of any kind. In the past several years, more and more
scientists do employ professional 3D solutions into their pipeline for
various purposes.
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2. State of the Art

Unfortunately, these programs usually come with a very steep
learning curve. Mastering such tool, or even just getting on the level
of proficiency that is enough to produce any meaningful work, is not
an easy task and takes from several months to years [10]. This is not
something many researchers are willing, or even able, to sacrifice.
Good news is that there is usually enough of learning materials avail-
able on the Internet, both supplied by the vendor of the software and
third parties.

Another problem with the software meant for general 3D editing
is that these tools are not designed with molecular visualizations in
mind. This is problematic because of the fact that scientific illustrators
mostly want to work from accurate data. Mentioned software tools are
primarily designed to be used by artists in the entertainment industry.
Thus, there is a need for any framework which would enable to import
scientifically accurate data in the basic program installation.

There is a number of options to choose from currently available
products. Most widely used are Autodesk Maya and Cinema 4D. Other
programs, like open-sourced Blender or a relatively young MODO
[11], have been successfully used in various projects as well.

Despite the mentioned drawbacks, professional 3D software is be-
ing widely adopted as a solid base of workflow of scientific illustrators
and animators. Once illustrators overcome the initial learning period,
general 3D software becomes a powerful tool in their toolset.

2.2.1 Key Features

Disregarding the differences between all 3D software packages, there
are features that are more or less contained in all of them and over
the years have become standard features that tremendously help with
navigating and editing the 3D scene.

First, objects in scenes are organized into some variation of scene
hierarchy or scene tree. This allows users to organize their objects and
establish parent-child relationships between these objects.

Second, navigation in the 3D scene is always designed to be intu-
itive enough to provide efficient ways how the user can position his or
her view. Every mentioned program allows the user to open multiple
viewports at the same time where every viewport shows a projection
from a different camera position.
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Third, object manipulation—translation, rotation, and scale—is
solved and made available under a shortcut which allows the user to
work efficiently. Shortcuts are often instruments that each individual
artist gets used to and might have problems when switching to another
product.

2.2.2 Rendering

Important component of any professional 3D program is a renderer.
Renderer is a tool which turns the 3D scene into a final image (or series
of images in case of an animation). All of the mentioned products
come with at least one default, pre-installed, renderer. On top of that,
the user can install external rendering solutions, either commercial or
free-to-use ones. This installation is most often done via plug-ins.

The process that these rendering solutions use is sometimes re-
ferred to as off-line rendering. The opposite of this would be real-time
rendering. The difference is mainly in the amount of time that these
two types of rendering take. Off-line rendering takes physical correct-
ness and/or realistic appearance as its primary goal, while the amount
of time the rendering process takes is given less priority. Actual num-
bers depend on the complexity of the geometry in the scene and
the materials and effects used in this scene. But the ranges are from
several minutes to hours for casual purposes. On the other hand, real-
time rendering aims to generate a picture several times each second.
The obvious benefit here is that the scene can change dynamically
and is still rendered with a frame-rate that human eye considers as
a continuous movement. In past, the benchmark of 30 FPS (frames per
second) has been considered to be the standard. However, these days
60 FPS is starting to be more and more common. For 30 FPS, every
frame has to been rendered in under 1/30 s = 16ms.

Plethora of external off-line renderers exists these days. From
the popular commercial ones like OTOY’s Octane, Chaosgroup’s V-ray,
Pixar’s RenderMan to open-sourced solutions—LuxRender or Cycles
(which is now available in default installation of Blender).

Similarly to the modeling software, the choice of the renderer is
mostly personal. Renderers are, too, complex tools which take some
time to truly master. This means that when somebody learns how to
use a certain renderer, he or she usually sticks to this solution.
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2.2.3 Plug-ins

It has already become a convention that all of the professional 3D
authoring packages (like Maya, Cinema4D, or even Blender) provide
one or more means of how users can program additional functionality
themselves. There are two major ways how vendors accomplish this.

First, scripting interface is provided. This means that the user can
both perform operations and trigger actions by using a Graphical
User Interface (or GUI), but in addition to that they can do the same
(and in most cases even more) by calling particular commands via
a command-line-like interface. Obviously the capability of these addi-
tional implementations is limited and a scripting interface is mostly
used to automate tasks which would otherwise take too much time.

Second way is the ability to load plug-ins that use Application
Programming Interface (API) designed by the vendor. API provides
classes and functions that can access and alter internal state of the pro-
gram or the data inside it. This way the user can implement functional-
ity that he or she is missing in the basic program. Thanks to that, these
3D authoring programs can be adapted to more specific use cases.

Some of these plug-ins have already been implemented to help
artists with their molecular illustrations. The most typical functionality
is a way how to load molecular data into the program.

An example of that is Molecular Maya1, which, as the name sug-
gests, extends Maya with the ability to load and manipulate models of
macromolecules. These can be loaded either from the online database
or by loading a pdb file from hard drive. When the molecule is loaded,
the user can select a representation used for its visualization. One of
the functions also creates mesh model out of this molecule. The user
is able to select in which level of detail the subsequent export will
be performed. Molecular Maya plug-in is free to use with the op-
tion to purchase an upgraded version that provides more advanced
functionality.

BioBlender2 provides similar functionality as Molecular Maya, but
for the Blender software. BioBlender’s main features revolve around
nanoscale models of molecules imported from a PDB file. Surface

1. Available to download at: http://www.molecularmovies.com/toolkit/
2. BioBlender’s homepage: www.bioblender.eu/
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2. State of the Art

models can be extracted and in addition to that, animations can be
generated with the help of the Blender Game Engine.

CellBlender3 is another example of specific scientific plug-in for
the Blender. It is used in conjunction with MCell [12], a sophisticated
simulation software that uses specialized Monte Carlo algorithms to
simulate reactions of molecules in cells. CellBlender is used to both
create models that serve as inputs to MCell, as well as to display results
of MCell’s simulations.

2.3 Domain-specific Tools

In the field of molecular visualization as a separate research topic,
numerous programs exist. They share some features but each of them
has its own specialties and is meant to be used for slightly different
tasks. We will name several that have been developed and have ma-
tured over recent years. Apart from that, other tools exist which are
even more specialized. These might be results of a research and they
accompany a research paper describing the technique. This means
that these programs are not that well usable out-of-the-box, but rather
serve as a demonstration of a certain technique.

One of the more user-friendly and easier to use tools is Molecular
Flipbook4. It has been developed by the team lead by Janet Iwasa. It
consists of two parts—an animation program and a website where
creators can share their outputs. The main motivation for this project
was to create a tool that even scientists without education in animation
can use to communicate their ideas through simple molecular anima-
tions. They achieve this by building the program around the concept
of a simplified key-frame animation technique. The website portion
of the project is meant to serve as a database of animations explaining
various processes. Creators can upload their works and improve works
of others. Molecular Flipbook has has been built on top of Blender’s
game engine functionality.

PyMOL [13] is a molecular visualization system aimed to be used
by expert users. PyMOL users can view, render, animate, and export
3D molecular structures. PyMOL can visualize molecules using several

3. Homepage of projects MCell and CellBlender: http://mcell.org/
4. Molecular Flipbook project’s homepage: www.molecularflipbook.org
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representations—van der Vaals spheres, surface, mesh, lines, sticks, etc.
Rendering of high quality images can be done with internal ray caster.
Several versions of PyMOL exist—full-featured paid version, open
source version with limited functionality, and educational version
aimed for academic, non-professional research only.

PyMOL focuses on visualization of individual macromolecules,
rather than large molecular scenes consisting of several thousands of
molecules.

VMD (Visual Molecular Dynamics) [14] serves as a tool for model-
ing, visualization, and analysis. It actually has a long tradition, being
first introduced in 1996. Similarly to PyMOL, VMD has been used
extensively to make figures and illustrations for covers of textbooks
and journals. VMD offers a way for users to implement custom compo-
nents. Therefore, VMD can serve as a graphical interface that visualizes
results of molecular dynamics simulations and aids with analysis of
its results.

cellVIEW5 [15] is a tool with the ability to render large biological
macromolecular scenes at interactive frame-rates. It has been designed
and implemented with regards to this use case and it utilizes state-of-
the-art rendering techniques. It employs several modern techniques to
reduce the amount of processed geometry in macromolecular scenes
to provide its users with real-time performance. As a result, cellVIEW
can render scenes containing up to several billion atoms with a frame-
rate above 60 FPS. cellVIEW has been implemented using the Unity
game engine. The rendering style have been inspired by illustrations by
David Goodsell who has developed a style of abstracting the shape of
individual proteins to reduce visual noise in the picture. cellVIEW im-
itates this approach by incorporating a level-of-detail scheme. The far-
ther the protein is from the camera, the less amount of its atoms is
rendered and rendered atoms are scaled up. This approach results in
a multi-scale visualization—user can zoom in to see individual atoms
of a protein, or he or she can zoom out and see the whole dataset with
its distinguishable compartments. The biggest dataset that has been
visualized using cellVIEW is human immunodeficiency virus (HIV).
However, performance tests, that have been performed, indicate that

5. Additional information and links available at https://www.cg.tuwien.ac.at/
research/projects/illvisation/cellview/cellview.php
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larger datasets (e.g. Escherichia coli bacterium) should be possible to
render using cellVIEW as well.

ePMV [16] tackles similar problem as we do in this thesis. The goal
is to simplify the process of generating figures and animations for sci-
entific purposes, taking into account the fact that illustrators have tools
that they are familiar with. ePMV is a plug-in which brings molecular
visualization toolset into various 3D authoring software tools, in this
context called hosts. They take advantage of host API which is nowa-
days commonly exposed to be used by custom Python scripts. They
create a unified environment where the molecular visualization soft-
ware can run. Thanks to this unified environment, called an adaptor
module, the molecular program can remain the same across all sup-
ported hosts. Only the adaptor module needs to be re-implemented
to a new hosts’ API. Within the design process, the emphasis has
been given to make sure that both native (general 3D modeling) and
scientific molecular tools are used in conjunction to utilize their full
potential. Several host programs are already supported—Cinema4D,
Blender, Maya, and 3D Studio Max, with plans to further extend this
list.

2.4 Workflow

The actual workflow obviously differs from illustrator to illustrator.
They use different software, different plug-ins, and, most importantly,
they have different data and project goals.

It is however important to define the general overview of the work-
flow. Our goal is to connect one of the specific domain tools with
a professional software. By doing that, we want to achieve faster and
therefore more effective workflow.

We consider the pipeline to be composed of two major steps: mod-
eling and rendering. In the modeling step, all the data, requirements,
hypothesis, ideas, and stories are compiled into a 3D scene or anima-
tion. Artist usually uses software-specific features like particle systems
or physics simulations to get there.

The next step is generation of either a still image or an animated
video from the 3D scene/animation. This is equally, maybe even more,
important as the first step. By using certain rendering techniques we
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2. State of the Art

can underline concepts which are important to the artwork. The level
of detail has to be carefully chosen not to overwhelm the audience
with visual noise. Traditionally, the rendering step has been very com-
putationally intensive. Today with the power of modern GPUs and
the increasing availability of such devices, the rendering times have
been reduced dramatically. Still, this represents one of the main lim-
itations in the workflow of an illustrator or animator. Even just one
minute delay can cause distraction.

This is the problem that we wanted to solve by using custom state-
of-the-art molecular renderer. As it was mentioned before, at this
domain, hyper-realistic results of modern rendering methods are not
that beneficial. We instead want to employ more illustrative, simplified
rendering styles. That brings us another benefit that such rendering
method has better performance, allowing us to render at interactive
(real-time) frame-rates. By using a fast renderer, we want to elimi-
nate the time cost of rendering step when using conventional off-line
renderers.

13



3 Method

As was discussed in Chapter 2, the majority of artists uses professional
(often commercial) 3D software tools. We want to improve their work-
flow by using a custom real-time renderer, originally developed as a
highly specific tool for visualizing biological data.

3.1 Motivation

We see two issues standing in the way between illustrators and anima-
tors, and more effective workflow. We believe that by using the real-
time renderer cellVIEW, we can solve both of them.

First problem stems from the fact that modern professional 3D
programs are designed primarily for different scenarios than scientific,
specifically molecular, content. They mostly use polygonal meshes as
the representation of 3D scenes. Mesh is a set of vertices, edges and
triangles used to model real-life objects. However, for molecular data
and scenes, meshes are not the best representation. A single atom is in
our case simplified by a single sphere of certain radius. Approximation
of a sphere using meshes is, unfortunately, not very good in terms of
how many triangles are needed for a smooth sphere. Very detailed
mesh (consisting of hundreds of triangles) must be used to create
an effect of smooth spherical object (see Figure 3.1). Given the fact that
our scenes may consist of millions of atoms, this creates a big problem
in terms of memory space requirements.

Figure 3.1: Spheres with different level of detail. From left: 40 triangles,
112 triangles, 264 triangles

14
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Figure 3.2: Molecule rendering via impostors

Other representations and rendering techniques have been created
to render molecules and atoms. Billboarding, sometimes also called
impostor, rendering technique is considered to be the most efficient
way of rendering atomic data today (see Figure 3.2). Instead of full
sphere geometry, we only render a quad for each atom. This quad
is then made to always face the camera. The illusion of sphere is
accomplished by using a fragment shader that draws the sphere as if
it was projected into this quad.

Second issue that we wanted to address, is an issue of efficiency. Off-
line rendering takes some time to finish. In artists’ workflow, it is the
rendering step which causes the bottleneck of the creative authoring
process. It kicks them out of the state of flow [17]. To address this issue,
we want to provide the artist with an immediate feedback. Every
change he or she makes in the scene should be immediately reflected
in the resulting output. The property of a real-time renderer proves to
be beneficial in this situation. The process of rendering is immediate,
we just need a way to utilize this property.

Ultimately, we would want to completely eliminate the step of
rendering and make the process of visual feedback as seamless as
possible (as illustrated in Figure 3.3).
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MODELING RENDERING

time

time

visual feedback

MODELING

RENDERING

visual feedback

a.

b.

Figure 3.3: Workflow, a. traditional approach with off-line rendering, b.
our approach with real-time rendering. By using more simple, faster
rendering method, we eliminate the rendering step completely
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3.2 Immediate Feedback via Shared Memory

Ultimately, we have two programs and we want to use some func-
tionality from the first one and other functionality from the second
one. The naive solution would be to implement our desired features
into the software tool that is missing it. In our case, that would mean
we could either implement a fast and visually appealing renderer
into the modeling software tool, or we could do the opposite and
implement the desired modeling tools into the renderer program.

The problem with the first approach is that substantial percentage
of the 3D software packages that artists use the most are commercial
solutions with closed source code. It is possible to extend them via
API that they provide but that is not enough if we want to implement
state-of-the-art technique that requires the latest technology in terms
of graphics API etc.

We also do not want to implement desired 3D modeling and ani-
mation tools into the specific molecular visualization program. This
would create development overhead which would not bring much
benefit on its own. Besides that, every artist uses different instruments
(different software, shortcuts, additional plug-ins, etc.) and pleasing
all of them would be an impossible goal to achieve.

Instead, we have chosen to go with another, third, option. We
do not want to re-implement from scratch something that is already
available to use. Instead, we went for a different approach and tried to
connect the two parts in a way that would allow us to use both sets of
features at the same time. We do this by using both of the programs
and establishing a communication channel between them.

We use writing and reading from shared memory to accomplish
this communication. In our case the communication is one-way. We
can model or animate the scene in one program and transfer the data
describing this scene to have it rendered in the second program. As
we will show, this can be done in a straightforward fashion as our
scenes can be simplified to the point of describing them with a few
numbers per molecule.

On the side of modeling program, we want to see an approxima-
tion of the scene. One way would be to use a simple geometry like
cube or sphere as a placeholder for each molecule. Such placeholder
would then serve as an object that we manipulate instead of an actual
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Molecule 1 Molecule 2 Molecule 3

X Y Z
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Molecule 1 Molecule 2 Molecule 3

Rotations

type

Molecule 1 Molecule 2 Molecule 3

Infos

Figure 3.4: Shared memory data layout

molecule. We tried something a little bit different. With Molecular
Maya plug-in, we can load a molecule description in the form of a PDB
file. With this plug-in it is also possible to generate a polygonal surface
mesh representation with adjustable detail level. We therefore load
a molecule and generate a very low resolution mesh which serves as
our placeholder.

3.3 Transferred Data

Thanks to the standardization in the form of PDB files which are stored
in a central database, we are able to decrease the amount of data we
need to transfer between programs. A typical molecular scene consists
of macromolecules: proteins and lipids.

There are two simplifications used. First, we consider the shape
of the molecule to be static. This means that inside each molecule,
the positions of its atoms do not change over time. These positions
are taken from the PDB file. Second, all the instances of a certain
molecule look the same. Individual instances of a certain molecule
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type only differ in their positions and rotations. With these facts in
mind, the molecular scene can be defined by three buffers (arrays):

∙ Positions buffer: three-dimensional positions of all the instances
in the scene

∙ Rotations buffer: rotations of all the instances in the scene, rep-
resented as quaternions

∙ Type buffer: containing information about type of each instance,
the other three fields are reserved for future use

Figure 3.4 shows the layout of the data. Because of technical impli-
cations, all positions are grouped together, same with rotations and
types, instead of grouping all the information (position, rotation, type)
about an instance.

Besides the actual scene data, we also want to use shared memory
to synchronize cameras on both endpoints. The feel of connection
would not be complete if the artist had to control two cameras (one in
Maya and one in cellVIEW) at the same time. Because of that, we want
to reflect the camera movements from Maya into cellVIEW. To do that,
we need to share position and rotation of the camera in Maya. Another
shared memory segment is allocated just for this data. On the cellVIEW
side, we then read the position and rotation of camera in Maya and
set the main camera in cellVIEW to have the same parameters. This
way what the user looks at in Maya, he sees from the same point of
view in cellVIEW.

3.4 Limitations

The obvious limitation is the amount of space that can be allocated in
shared memory. As we will see in Chapter 4, we can use shared mem-
ory that is backed by paging system. This means that, theoretically,
we should be able to allocate very large chunks of memory. However,
in case of working with a very large data sets, the speed of writing
into and reading from shared memory might not be ideal.

Another limit could be the amount of placeholder geometry that
Maya can render in its viewport. In that case, an option would be to
further simplify this geometry.
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4 Implementation

This chapter describes in detail the implementation of real-time scene
data sharing between Autodesk Maya and cellVIEW. Autodesk pro-
vides Maya users an API which allowed us to extend this program
with required functionality. Similarly, we have been able to create
a plug-in for cellVIEW. This was thanks to the fact that cellVIEW is im-
plemented using the Unity engine which also allows custom plug-ins
in a form of DLL to be used.

The architecture of the system consists of three parts—a plug-in for
Maya, a plug-in for Unity, and a Unity script—as is shown in Figure
4.1. The data flows only in one way—we write into shared memory
with Maya plug-in and read from shared memory with Unity plug-in.
This simplifies the situation from the implementation point of view
because we do not have to design any synchronization scheme.

The plug-in for Maya is using Maya API (which will be described
later) and is written using C++ programming language. The function
of this plug-in is to parse the 3D scene, look for all molecular objects,
and output their positions and rotations (along with an information
about the type of the instance) into the shared memory.

Unity side of the system consists of two parts—a C++ plug-in
and a C# script. the C++ plug-in takes care of reading the data from
the shared memory, while the C# script, which is a part of cellVIEW,
receives this data and uses it to render the final molecular scene.

Note that there are two types of interoperability between the com-
ponents: (1) shared memory functionality, which enables two pro-
cesses to communicate, and (2) interoperability between C++ and
C#, which allows us to pass memory addresses from the plug-in to
the script on the Unity side.

4.1 Shared Memory

Shared memory is a segment of system memory which can be ac-
cessed by multiple programs. It is used as an efficient way to establish
communication between separately running processes. Our imple-
mentation has been done for Windows operating system, however,
the concept of shared memory can be found in all operating systems.
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MayaStreamUpdater.cs
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MayaUnity-
SharedMem.mll

Shared Memory

Figure 4.1: Overview of system components

From now on, we will be talking about the implementation that
has been done for Windows. There are several ways to access shared
memory here. C++ library boost provides a class that establishes an ab-
straction above shared memory functionality. Similarly, Qt framework
also has class with comparable function set. We chose to not use any
of these. Instead, we directly used Windows API function calls to op-
erate with shared memory. This solution has been chosen because
we wanted to use the lowest possible layer because of performance
concerns. This unfortunately means that our implementation is tied
to Windows platform only. Porting to other platforms should however
be straightforward either by using operating system specific calls or
by using one of the mentioned libraries.

To use share memory between two processes on Windows plat-
form, memory-mapped files system can be utilized. Such memory
segment is identified with a string name. To create a named shared
memory segment, two Windows API functions must then be called:
CreateFileMapping and MapViewOfFile. CreateFileMapping needs
to be given parameter INVALID_HANDLE_VALUE (to explicitly say that
we want to work with shared memory), name for the memory seg-
ment and a read/write permission flag. CreateFileMapping returns
a handle object which is then sent to MapViewOfFile. MapViewOfFile
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finally returns a pointer to the shared memory address where we can
then copy data using CopyMemory function.

The process that wants to read from this shared memory segment
needs to call OpenFileMapping function, providing the same name
as was used when calling CreateFileMapping. OpenFileMapping also
returns handle object which should be provided to MapViewOfFile to
get the pointer to the memory.

When the named shared memory segment is no longer needed,
all the handles to this object should be closed (using CloseHandle
function) to free this memory.

4.2 C++ and C# interoperability

Unity engine is written with a combination of C++ and C#/.NET.
A .NET API is exposed to users which enables them to write scripts in
either C# or Javascript. These scripts are used to implement gameplay
or other behaviour.

Managed code is a code which runs under CLR (Common Language
Runtime) virtual machine. Unmanaged code is any other code which
does not need CLR but runs directly on the hardware instead.

C# and .NET framework have been designed with interoperability
in mind. What this means is that programmers can reuse code written
in other languages. There are several types of interoperability but we
are interested in calling unmanaged (C++) code from a Unity script
written in C#.

We use a feature called Platform Invoke. Platform Invoke enables
managed (C#) code to call unmanaged functions implemented in
dynamic link libraries (DLLs). The process of transforming arguments
from types in native code into equivalent types in managed code is
called marshalling.

4.3 Maya API

There are two ways how one can extend Maya’s functionality—scripts
and plug-ins. The technologies which can be used to do so and how
they are related is shown in Figure 4.2
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Maya Commands Maya API

Maya

MEL Python C++

Figure 4.2: Maya programming ecosystem

Scripting can be done with either MEL or Python and it basically
provides an alternative to performing actions via GUI. Everything you
can do by clicking in GUI, you can do by typing commands through
Maya’s command line. Longer scripts can be written and run through
built-in editor. Scripts are most commonly used for automation.

The second way to extend Maya is by creating plug-ins which
use Maya API, either in C++ or Python. There are several types of
plug-ins that users can make but typically these are either implemen-
tation of new custom MEL command, or implementation of a custom
Dependency Graph node type.

It should be noted that both scripts and plug-ins are supposed
to work together inside the Maya ecosystem. Different means and
programming languages should be chosen accordingly to the project.

4.3.1 MEL vs. Python vs. C++ in Maya

MEL (Maya Embedded Language) is a scripting similar to other script-
ing language like Bash or Perl. It is generally the fastest way to cus-
tomize Maya in any way. For any more complex tasks it is generally
better to use Python scripting or even turn the functionality into a plug-
in. There is however one task where MEL shines and that is custom
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GUI building. Even though users can use modified Qt library in their
plug-ins, it is way easier to create custom graphics interface with MEL.

Maya API can be thought of as a level directly under MEL scripting.
With Maya API, we can create several types of plug-ins but two most
common are new custom commands which can then be called with
MEL, and a custom Dependency Graph nodes. Plug-ins using Maya
API can be implemented either in Python or C++.

Python is a powerful and easy-to-learn scripting language. Its ad-
vantage is that it is interpreted which means that there is no need for
a compilation step. This is beneficial for developers in the phase of
prototyping because they can make changes more quickly. The disad-
vantage is also a consequence of Python being interpreted—Python
is expected to be slower than most compiled language like C++. We
wanted to implement functionality which works in real-time. For this
reason we decided that working in Python was not the ideal approach
in this project.

C++ Maya API ended up being what we used to create our custom
plug-in. It has been chosen primarily because we wanted to get as
much performance as we can. But there is another reason for us to
use C++. By doing so we can easily use operating system API to issue
function calls that work with shared memory.

4.3.2 Dependency Graph

Maya’s internal scene representation is called Dependency Graph. It
is a network of nodes where each node has a set of inputs and outputs.
Through these inputs and outputs the nodes are connected and data is
propagated through the network. The idea is that each node performs
some computation using input parameters and forwards the result
further. There is an optimization in this approach—the calculation
is only done when the input parameters have changed somehow. If
an output of a node is requested when the inputs have not changed,
instead of performing the computation, a cached value is returned.

4.3.3 DAG Hierarchy

DAG (Directed Acyclic Graph), as the name suggests, is a structure
in which nodes are connected with edges that have an orientation
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with the constraint that they cannot create loops. In Maya API con-
text this refers to a hierarchy of nodes which establishes parent-child
relationships between them.

4.3.4 Wrappers, Objects, Function Sets, and Proxies

In Maya API, we can find four types of C++ objects: wrappers, objects,
function sets, and proxies.

Wrapper objects usually provide utility functionality either for eas-
ier manipulation with data or mathematics. These include classes like
MFloatArray, MMatrix, MVector, MQuaternion or iterators for travers-
ing collectionbs of data—MItDependencyGraph, MItMesh, etc.

Objects and Function Sets are used to access and change an in-
ternal object in Maya. Objects are instances of class MObject and they
basically serve as a handle which only holds the necessary information
about the type of the object they point to. In a way Objects are typeless
and their type is determined by a mechanism called RTTI (Run Time
Type Identification). Function Sets are here to actually perform opera-
tions on Objects. Function Set classes always start with a MFn* prefix
and they are designed to be compatible with only certain Objects.

Proxies are classes that allow developers to implement new types
of objects like custom nodes or commands. Proxy classes are always
prefixed with MPx*.

4.4 Maya Side

The functionality of acquiring the data from the 3D scene and writ-
ing it into the shared memory can be implemented in several ways
using Maya API. First option is a naive one—in a function which gets
called every frame, iterate through all objects in the scene, identify
molecular objects, compile the data into buffers, and then write this
information into shared memory. This approach is by itself not very
optimal because most of the time only a small percentage of the scene
changes. Our second implementation attempts to address this issue.

Both of these plug-in implementations have in common that they
contain two new custom commands—startStreamingCommand and
stopStreamingCommand. When the plug-in is loaded and initialized,
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Figure 4.3: Maya2CellVIEW menu item

it creates a new menu item in Maya’s main toolbar. Under this menu
item there are two sub-items (buttons)—Start Streaming and Stop
Streaming (see Figure 4.3). These are set up to trigger call of appro-
priate command—startStreamingCommand and endStreamingCommand.
This interface is made to adapt to the state of streaming, user should
not be allowed to stop streaming when no streaming is happening and
he or she should not be able to start streaming when the streaming is
already running.

4.4.1 Implementation via Custom Locator

Locator, in Maya API context, is a shape that gets drawn inside Maya’s
viewport, but does not show up in the final rendered image. It can
serve as a preview of an effect that actually gets rendered, but would
be too expensive to draw into the interactive viewport. For us, the im-
portant fact is that MPxLocatorNode class has a method draw, which
gets called every time something changes in the scene and thus view-
port needs to be re-rendered. This is where we can implement our
functionality.

This implementation is not exactly in line with Maya’s philoso-
phy—MPxLocatorNode’s draw method is meant for drawing and not
for the type of computation that we need to do there. However, we
have tried to implement real-time sharing the way it should be done
in Maya—using custom nodes which have input and output attributes
and only when the inputs have changed perform the write. Unfortu-
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Figure 4.4: Overview of the molecule object’s attribute writing
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Figure 4.5: Plug-in contents: implementation via streaming locator

nately this turned out to be performing worse. The rate of change was
simply not enough to provide smooth streaming without stuttering.

In the implementation via Custom Locator we do the following.
When startStreamingCommand is called, it creates a new instance of
the custom locator node and adds it into the scene. From now on,
whenever we change something in the scene (like move the camera or
translate any object) this node’s draw method gets called.

The overview of the process of writing attributes of molecule ob-
jects into shared memory is shown in Figure 4.4. In the draw method,
we iterate through all objects in the scene. Looking at the names, we
locate either camera or molecular object. Position, rotation and type
information is accumulated into three buffers. These are then concate-
nated and written into the shared memory.

The type information is transfered in the infos buffer. We need
a way to communicate what protein types are present in the scene.
We do this by creating a map data structure that maps PDB IDs of
molecules in the scene to internal IDs. This data structure is written
into a separate shared memory segment where cellVIEW reads it and
loads the appropriate PDB files for rendering. With this approach,
only the internal IDs need to be written into the infos buffer in the
shared memory.

Overall, four shared memory segments are opened:
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Figure 4.6: Plug-in contents: implementation via watchers

∙ MayaToUnityPosRotSharedMem: positions (vector, 4 components),
rotations (quaternions) and internal type IDs of each protein
instance

∙ MayaToUnityCameraInfoSharedMem: position and rotation of cam-
era

∙ MayaToUnitySceneInfoSharedMem: general scene information—as
of now containing only the number of objects in the scene

∙ MayaToUnityPdbMappingSharedMem: mapping of PDB ID to in-
ternal ID.

4.4.2 Implementation via Watchers

The previously presented implementation has one disadvantage. Even
if just one object changes its position, all the memory is rewritten. Not
only that, but we also iterate through the whole scene as well. This
could easily become bottleneck. To address this, another approach has
been implemented. A concept of a watcher node has been established.

Upon initialization of the plug-in, the whole scene is scanned.
When we process a molecular object we create new watcher node. This
new node is then connected to the node of a molecular object in a way
that the position and rotation attributes are inputs for this watcher
node.
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Figure 4.7: Writing molecule’s attributes into the shared memory di-
rectly, memory address is computed from molecule’s index

Now whenever there is a change in the scene, the draw method is
called for each instance of watcher node. The position and rotation
attributes are read and compared to their previously cached values. If
they are the same, nothing gets done. If they are different, we proceed
to the memory writing.

Each watcher node knows its index. Using this index the precise
address inside the shared memory is computed and we write the new
values into the memory at this address (see Figure 4.7).

This approach works better in the stage of creating the 3D model.
In this stage, the artist tweaks position and rotation of only few objects
at once. In that case, only a small part of shared memory is written
over. This approach however falls short when the artist plays back
an animation. In this situation, mostly all molecular objects in the scene
change. Therefore writing changes into the memory one by one is not
beneficial and might actually be performing worse.

4.5 Unity Side

cellVIEW has been developed using the Unity game engine. Unity
allows users to include additional code in the form of two kinds of
plug-ins—Managed plug-ins and Native plug-ins.

Managed plug-ins, similiar to the term managed code, are plug-ins
containing .NET code using CLR virtual machine to execute this code.
There is little difference between writting functionality using scripts
(common way to code behaviour in Unity) and managed plug-ins
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(other than the fact that managed plug-ins are compiled separately
outside of Unity).

Native plug-ins contain code that is specific to one platform. They
allow to call operating system functions or libraries that are not acces-
sible in default Unity.

4.5.1 Dynamic-link Library

SharedMemDll component is a very simple dynamic-link library which
encapsulates Windows API function calls. By doing so we can use
shared memory functionality in Unity. The DLL consists of two func-
tions—getSharedMemoryPtr and cleanupSharedMemory.

The getSharedMemoryPtr function opens shared memory segment
with a name that is supplied as a parameter to this function. Windows
API function OpenFileMapping is used to do that. Then, by calling an-
other WinAPI function MapViewOfFile, we get a pointer to the memory
address which we can use to read from this memory. The pointer (of
type void *) and a handle (of type HANDLE) are output parameters
that are passed on to the C# script thanks to interoperability feature
and marshaling.

cleanupSharedMemory takes care of unmapping a view of file (the
pointer) from the process’s address space (via UnmapViewOfFile) and
closing the handle to the shared memory object (via CloseHandle).
Note that shared memory is deallocated when there are no handles
attached to this object.

4.5.2 Unity Script

Unity uses scripting as a mechanism for implementing gameplay be-
haviour. Users can use either C# or Javascript. The C# variant is by far
the more used one and cellVIEW has also been implemented using
C# scripts.

Every Unity C# script must be derived from MonoBehaviour class.
MonoBehaviour is a base class which implements basic methods like
Start, Update, FixedUpdate and OnGUI. Our script, MayaStreamUp-
dater, is therefore a child class of MonoBehaviour.

We use the two functions implemented in the native DLL plug-in by
declaring them as private static external methods and using DllImport
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attribute macro. In OnEnable method, we call getSharedMemoryPtr to
get pointer to shared memory.

Update method is a MonoBehaviour method that gets called every
frame. In the Update method of our script, we load the current scene
data from shared memory and update the state of cellVIEW so that
the updated state gets rendered. First, we load position and rotation
of camera and set the current main camera accordingly. Unity has
the feature that when an attribute of a class (it needs to be a child of
MonoBehaviour) is made public, Unity exposes this attribute in the
Unity editor. This way we can declare public _camera attribute and
then assign an object of type Camera to this attribute from the editor. Po-
sition and rotation need to be transformed because Maya and Unity use
different coordinate systems—Maya uses right-handed while Unity
uses left-handed coordinate system. Position is transformed easily
by inverting the z-coordinate. For transforming the rotation a utility
method has been implemented.

Next, positions, rotations and type information is loaded. The lay-
out of this data has been designed with usage in this part of the system
in mind. cellVIEW’s rendering is based on three buffers - buffer with
positions of each instance, buffer with rotations of each instance, and
buffer with information about types of each instance. Thus, the only
action needed is to copy this data from shared memory into these
cellVIEW buffers. These are then in turn copied into GPU memory
where it is used for actual rendering of the molecular scene.

In current implementation an intermediate step is taken—as in
case of camera position and rotation, we need to perform transforma-
tion from right-handed (used in Maya) to left-handed (used in Unity)
coordinate system. This could be taken care of on Maya side when
the data is written into shared memory but because of prototyping
reasons this transformation is done in Unity script.

For details about rendering of molecular scenes in cellVIEW please
refer to [18] and [15].
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5 Demonstration

Here we present two examples of scenes that have been created to
showcase abilities of our system.

5.1 Demonstration 1: Strand-like Structure

First use case: strand-like structure displayed in Figure 5.1. This scene
has been created using two additional plug-ins: already mentioned
Molecular Maya and Instance around Curve1.

Protein has been imported using Molecular Maya. A pdb file has
been downloaded from the Protein Data Bank and loaded into Maya
with this plug-in. Then, a low resolution mesh has been exported from
the protein data. This mesh was then used as an object which was
instanced along a curve using Instance Along Curve plug-in. Last step
was to rename the individual instances to a pattern that our plug-in
would recognise as a molecular object.

5.2 Demonstration 2: Randomized Blood Proteins

Second demonstration case is shown in Figure 5.2 and Figure 5.3.
Proteins of 5 different types (1atu, 1smd, 2tsc, 2hiu, 2rcj) have been
imported using Molecular Maya plug-in and low resolution mesh
has been generated. Then, using a custom script written in Python,
position and rotation of each instance has been determined randomly.
This scene contains 1593 instances of the 5 types of proteins. On Maya
side, the scene consists of almost 3 million triangles.

1. Available for download from: https://github.com/mmerchante/
instanceAlongCurve
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5. Demonstration

Figure 5.1: Strand demonstration. Top: screenshot of a viewport in
Maya, bottom: screenshot of a frame rendered by cellVIEW
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Figure 5.2: Randomized blood proteins
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Figure 5.3: Randomized blood proteins: close-up
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6 Discussion, Future Work

From the practical point of view, the main goal of this thesis was
to investigate, how could the state-of-the-art renderer cellVIEW be
integrated into the modern professional 3D software Maya.

This has been successfully achieved by employing shared memory
to establish communication between the two programs. Naturally,
many aspects of the system could be improved upon. Closer collab-
oration with an illustrator would be extremely helpful at this stage.
Additional design of the system should be based on an actual scientific
scene. It would be interesting to see how the system fits into a working
pipeline.

The pipeline does not have to end with just two programs commu-
nicating. Some further processing might be performed after the image
is rendered with cellVIEW. For example, compositing or editing with
tool like Adobe After Effects.

However, even with this rough prototype we have potential at-
tracted partners for further cooperation. This project has been pre-
sented to Drew Berry who showed his amazement. It is possible that
closer co-operation will be established with him.

Similar response has been given when this project was presented
(among other projects from our group) at a seminar in Utah. The
visualization of the multiscale data that cellVIEW offers is very unique,
so naturally researchers are interested in seeing it used together with
the tool that they have been using themselves.

Experts from the domain of biological visualization are always
eager to tell their stories and express their ideas. It is very common
that they want to integrate interactivity in this process. Hopefully,
the system presented in this thesis will be expanded and fulfill the
ultimate goal of helping illustrators and animators with the process
of communicating the science to a broad audience.
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