
Extracting Sensor Specific Noise
Models

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Medieninformatik und Visual Computing

eingereicht von

Nicolas Grossmann
Matrikelnummer 1325103

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Dr. Michael Wimmer
Mitwirkung: Dr. Stefan Ohrhallinger

Wien, 28. August 2017
Nicolas Grossmann Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Extracting Sensor Specific Noise
Models

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Media Informatics and Visual Computing

by

Nicolas Grossmann
Registration Number 1325103

to the Faculty of Informatics

at the TU Wien

Advisor: Dr. Michael Wimmer
Assistance: Dr. Stefan Ohrhallinger

Vienna, 28th August, 2017
Nicolas Grossmann Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Nicolas Grossmann
Heiligenstädter Straße 167-171/1/6

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 28. August 2017
Nicolas Grossmann

v

Danksagung

Ich möchte mich an dieser Stelle bei meinen Betreuern Dr. Stefan Ohrhallinger und Dr.
Michael Wimmer für ihre Hilfe und ihr ausführliches Feedback während meiner Arbeit
bedanken. Des Weiteren möchte ich mich bei dem Institut für Computergraphik und
Algorithmen für die Bereitstellung von Materialien und Räumlichkeiten bedanken.

Allem voran gilt mein Dank meinem Kollegen Thomas Köppel, welcher mich während
dieser Arbeit tatkräftig unterstützt hat, sei es nun tagelanges Messen, das Bauen von
Versuchsteilen oder auch das Korrekturlesen dieser Arbeit.

vii

Acknowledgements

I would like to express my gratitude to my supervisors Dr. Stefan Ohrhallinger and Dr.
Michael Wimmer for their great support and extensive feedback during the work on this
thesis. Furthermore, I want to thank the Institute of Computer Graphics and Algorithms
for providing us with the materials and locations for our measurements.

But most of all I want to thank my colleague Thomas Köppel, who worked together
with me in many parts of the project, be it days of measuring, crafting setup parts or
proofreading this thesis.

ix

Kurzfassung

Im Laufe der letzten Jahre kamen immer mehr Tiefensensoren für den privaten Gebrauch
auf den Markt, wie die Kinect oder die seit kurzem erhältliche Phab2Pro. In dieser
Arbeit analysieren wir den durchschnittlichen Messfehler dieser Sensoren in axialer und
lateraler Richtung. Als Teil eines zweiteiligen Projektes werden wir in dieser Arbeit die
Abhängigkeit des Messfehlers von der Distanz und dem Rotationswinkel zwischen Sensor
und Objekt betrachten. In weiterer Folge werden wir zwei Modelle erstellen, das erste
aus den in dieser Arbeit erhobenen Daten und das zweite, aus der Kombination des
vorherigen Models mit dem eines Kollegen, die erstellten Modelle können in weiterer
Folge für die Verbesserung von Tiefenbildern verwendet werden.

xi

Abstract

With the growing number of consumer-oriented depth sensors like the Kinect or the
newly released Phab2Pro, the question of how precise these sensors are arises. In this
thesis we want to evaluate the average noise in the generated depth measurements in
both the axial direction and the lateral directions. As part of a two-part project this
thesis will view the noise’s development with varying distance and angle. Finally, we
will present and evaluate two models describing the noise behavior, with the first being
derived from solely this thesis’ measurements and the second one being a combination of
the previous model and a model of a colleague. This derived models can be used in a
post-processing step to filter the generated depth images.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Background . 1
1.2 Previous Work . 2
1.3 Scope of this Thesis . 4
1.4 Outline . 5

2 Theory 7
2.1 Sensors . 7
2.2 Errors . 8

3 Method 13
3.1 Experimental Setup . 13
3.2 Data Extraction . 15
3.3 Calibration . 19
3.4 Preprocessing . 22
3.5 Noise Extraction . 28
3.6 Model Generation . 32

4 Results 37
4.1 Recognition . 37
4.2 Noise Distribution . 37
4.3 Noise Model . 39
4.4 Evaluation . 45

5 Conclusion 51
5.1 Resulting Models . 52

List of Figures 55

xv

List of Tables 56

Bibliography 59

CHAPTER 1
Introduction

1.1 Background

Over the last years several customer-oriented depth sensors arrived on the market. Depth
sensors allow taking images of their surrounding world, like normal cameras, but instead
of recording color their images picture the distance between the camera and the sensor.
This information is particularly useful in several different applications, as it allows easier
segmentation and recognition of objects in scenes.

While many different cameras were already able to deliver depth information, their prices
were pretty high and they were mostly used in industrial applications. It was not until
around 2010 that the first consumer-affordable cameras came on the market. The most
widely known being the KinectV1, which is a depth sensor combined with a color camera
that was used as a new way to play on the Xbox360. This sensor allowed people to play
games without the need of a typical controller, by just using their bodies to make certain
movements that controlled their game actions. The good perception and capabilities
of the KinectV1 resulted in an increased interest of business and science in this cheap
depth sensor. All of this led Microsoft to releasing not only an SDK for the Kinect
that allowed developers to create own programs for the depth sensor, but also a second,
more advanced sensor version the KinectV2. This resulted in many papers dealing with
the use of the Kinect in robotics [ElHY12], human- [XCA11], gesture- [RMYZ11] and
object-detection [KE12], medical visualization [GPC11] and many more.

Just recently, another big development in the field of consumer depth sensors happened:
the first smartphone utilizing depth perception was released. While some producers
already developed small depth sensors that were built into laptops, for example, none of
them were integrated in a hand-held device. The Phab2Pro, from Lenovo, uses a sensor
similar to the one in the KinectV2, but in a much smaller size, which allows the sensor to
be built into a usual smartphone. The depth data of the sensor is processed by a Google

1

1. Introduction

(a) KinectV2 (image taken from
[Cor14]) (b) Phab2Pro (image taken from [Ltd])

Figure 1.1: Images of the two sensors

product called Project Tango, which uses several techniques including machine learning
to extract information out of the depth data and make the results usable for apps. Most
of these apps are based on an augmented reality in which the depth information acts as
an anchor, tying virtual and physical reality closer together, for example, by enabling
occlusions through objects.

1.2 Previous Work

The problem with most of these affordable depth sensors is that they are prone to having
a higher amount of noise (measurement errors) in their generated depth images than
more expensive models. Errors in the depth measurements may lead to problems in
the processing pipelines of different applications. Surfaces and objects reconstructed
from measurements may have lots of small bumps or miss some details. To minimize
the effects of noise, many papers have analyzed it and tried to come up with ways to
describe its behavior.

1.2.1 Accuracy and Resolution of Kinect Depth Data for Indoor
Mapping Applications

One of the first papers that deals with this kind of problems of the KinectV1 was written
by Khoshelham et al. [KE12]. The goal of the paper was to analyze the quality of the
gathered depth data in indoor situations. Their two major contributions were firstly a
calibration procedure for the sensor and secondly a statistical analysis of the random
errors in depth measurements and the depth resolution. A laser scanner was used as a
ground truth measure in the paper.

By comparing the differences between the KinectV1 point cloud to the laser scanner point
cloud, they showed the necessity of a calibration procedure. As shown in the paper, a
standard calibration procedure like it is used for color cameras can be used to calibrate the

2

1.2. Previous Work

(a) Image of the setup (b) Results of the noise measurements

Figure 1.2: Images taken from [KE12]

infrared camera in the sensor used for the depth perception. The statistical errors were
calculated by measuring a flat surface (a door). A plane was fitted through the resulting
point cloud and the difference between the plane positions and the measurements was
calculated. The statistical parameters yielded the noise of the sensor.

The result of the work was a calibration procedure combining the color images with the
point cloud and a statistical model of the noise distribution for the KinectV1, modeling
the circumstance that the depth noise grows with increasing distance. (images in Figure
1.2)

1.2.2 Modeling Kinect Sensor Noise for Improved 3D Reconstruction
and Tracking

Based on the previous paper, Nguyen et al. [NIL12] developed a similar statistical model
for the sensor noise of the KinectV1. Using this calculated model, they tried to show
that 3D reconstruction can be improved by sensor specific noise models.

The model proposed by Khoshelham et al. 1.2.1 was extended in this paper to not only
consider the distance between sensor and camera, but also the surface angle. Furthermore,
apart from noise along the image axis, lateral noise orthogonal to the image axis was
measured.

The statistical models, calculated from these measurements, were used to filter depth
images produced by the KinectV1 and to enhance the standard KinectFusion pipeline,
which is used for 3D reconstruction. Their enhanced reconstruction method was able to
extract finer surface details than the standard one. They also showed that their extended
KinectFusion version has improved tracking capabilities when compared to its original.
(images in Figure 1.3)

3

1. Introduction

(a) Image of the setup (b) Results of the noise measurements

Figure 1.3: Images taken from [NIL12]

1.2.3 KinectV2 for Mobile Robot Navigation: Evaluation and
Modeling

One of the first papers using the noise measurement techniques from the previously
mentioned papers for the KinectV2 was written by Fankhauser et al. [FBR+15]. Their
main goal was to evaluate the possibility of using the KinectV2 in mobile robot navigation
in indoor and outdoor scenarios.

Because the KinectV2 was relatively new at this time, they also proposed a calibration
procedure for improved depth measurements and evaluated the quality of the measure-
ments for different distances. They also repeated the measurement procedure from
Nguyen et al. [NIL12], both indoors and outdoors. From these measurement results,
two noise models were derived for the axial noise. The indoor model was similar to the
previous models, while the noise was generally lower for the KinectV2. The outdoor
model used an additional parameter for its calculation, the angle of the sun. The lateral
noise of the KinectV2 indicated no specific noise function and was only estimated by a
constant factor. (images in Figure 1.4)

While this paper did not contain a practical component using the calculated models,
they delivered a detailed basis for further projects using the KinectV2, by explaining
their suitability for problems in the field robot navigation (e.g. close objects recognition,
temperature problems or overcast illumination).

1.3 Scope of this Thesis

This thesis is one part of a two-part project, where two different types of models are
calculated defining the measured sensor noise of the KinectV2 and the Phab2Pro. The
focus of this thesis is mainly guided by the previous papers in this field, which measure
noise on planar surfaces and statistically model the measured results. Our goal is to
evaluate the depth sensor noise of the newly released Phab2Pro and repeat the previously
executed measurements for the KinectV2. Additionally, our work extends the previous

4

1.4. Outline

(a) Image of the setup (b) Results of the noise measurements

Figure 1.4: Images taken from [FBR+15]

setups – which only extracted lateral noise in the x-axis – to also extract noise from
the y-axis. We intend to generate empirical models describing the noise for all three
directions for both cameras: one model that is based on the target’s distance and surface
rotation and another one that combines the previous model with the one of a colleague,
whose model uses the pixel coordinates and the distance as parameters. Finally, the
calculated models are validated by measuring a well-defined object.

1.4 Outline
This thesis is structured in such a way that in Chapter 2 mainly the sensor technology
behind both cameras is described, including their error sources. Furthermore, this chapter
should give an overview of the theoretical basis on which this kind of sensor can be
evaluated and how its noise can be described. In Chapter 3, the experimental setups
we used are described in detail, as well as the processing steps we took to extract the
valuable data from the measurements and how we calculated the noise models. After that,
we present the results in Chapter 4. This includes a short analysis of the sensor error, the
calculated noise measures with their corresponding models, as well as the axial and lateral
noise models for both sensors. In this chapter we also define an extended noise model,
which is created by combining the model from this thesis with the one of a colleague’s
thesis, which uses pixel coordinates and distance as model parameters. Furthermore, we
try to evaluate the quality of our models by comparing them to preceding models in the
literature and by evaluating them with a simple experiment. Finally, in Chapter 5, we
discuss the results of our work and how it could be improved.

5

CHAPTER 2
Theory

2.1 Sensors

Our work focuses on the evaluation of the measurement quality of two specific depth
sensors, the KinectV2 and the Phab2Pro, both of which are time-of-flight sensors. As these
sensors are commonly used, an understanding of their typical measurement problems
is necessary to support applications using them. In this chapter, we will introduce
each sensor, explain the principles of their underlying technology and discuss their
advantages and disadvantages. It will also be explained, how the measurement errors
can be statistically analyzed and modeled.

2.1.1 KinectV2

The Kinect is a series of depth sensors from Microsoft, which were released for consumers.
Its primary purpose is to act as a control device for several games on the Xbox One
console. Many of which are developed around concepts that require an active form of
player involvement like dancing or sports games. The Kinect supports this by not only
generating a depth map of the scene, but also by actively detecting persons and their
poses. [Cor13]

Microsoft released two versions of the Kinect, the first one in 2010 and the second more
advanced one in 2013. This work focuses on the latter one. While both systems deliver
similar outputs, in terms of data, both deliver color and depth images with additional
player recognition information, their inner workings are fundamentally different. The
KinectV1 uses the structured-light principle, which illuminates the scene with an infrared
dot pattern to measure the dot displacement and calculate the depth. The KinectV2
uses a time-of-flight system for depth estimation, which utilizes the travel time of light
impulses to estimate distances. [SLK15]

7

2. Theory

Originally, the Kinect did not have an open software development kit for non-commercial
use, but with the growing interest and popularity of the depth sensor, Microsoft released
an SDK that allowed accessing KinectV1 and later V2 data with own applications. This
allowed many different companies and scientists to develop uses for the Kinect apart
from gaming like advanced user interfaces [BBW+11], security measures [For] or robotics
[FBR+15].

2.1.2 Phab2Pro

The second device used in this work is the Phab2Pro. Unlike the KinectV2, the Phab2Pro
is not only a simple sensor but a whole smartphone with all of its functionalities. The
Phab2Pro, produced by Lenovo, is the first commercially available smartphone that is
capable of advanced depth recognition. The reason for this is that the Phab2Pro comes
with an integrated time-of-flight sensor alongside its camera. [Ltd]

The processing part of the depth information is done by Google Project Tango, which is a
framework for the development of depth-aware apps on Android devices. The framework
delivers processed information to various specially developed apps. Most of these apps
are games that use the depth information to create a virtual reality in the real world.
This project from Google intends to bringing depth sensing technology to smartphones.
In contrast to the Kinect for Windows SDK that is only able to handle sensor input from
two devices, Google’s Project Tango tries to be universally usable on every smartphone
that has certain features. For example, the basic depth sensor can be everything from a
structured-light sensor, to a time-of-flight sensor or even a stereo-vision based system. By
encapsulating the underlying technology, the framework offers depth data in a universally
applicable way to develop apps for different smartphones.

2.2 Errors

The general principle of time-of-flight cameras like the KinectV2 and the Phab2Pro is to
utilize a complex sensor unit and a modulatable illumination unit, both normally operating
in the infrared spectrum. The illumination unit sends out differently modulated light
pulses into the scene, which are reflected from the contained objects. The reflected light
is picked up by the sensor unit and based on its time-of-flight, the depth of the reflecting
object can be estimated. Because of the extremely fast speed of light (300 000 km s−1) a
camera that works in close range needs to work in nanoseconds.

This architecture has many advantages over other technologies: [SLK15]

• Simple and Compact: The camera itself does not have moving parts like the
ones used in laser scanners. Furthermore, there is no need for a wide aperture
because both its illumination and sensor unit can be close together, as opposed to
stereo vision systems.

8

2.2. Errors

• Speed: Most time-of-flight cameras have high frame rates, some even working
with more than 100 frames per second. The reason for this is that the depth
measurements for all pixels are done at once. Furthermore, the processing of the
measurements to calculate the depth is rather easy without the need of too complex
algorithms. The rather high frame rates enable the use in real-time applications.

2.2.1 Error Sources

Like every technology, time-of-flight cameras have their own set of disadvantages caused
by problematic lighting conditions: [SLK15]

• Background Illumination: Because most time-of-flight sensors use infrared light,
background light, which is light not directly produced by the camera, has to be
filtered before it interferes with the depth calculation. This problem is especially
noticeable in outdoor situations. Different manufactures have developed use case
specific ways to account for background illumination.

• Reflections: Surfaces reflecting the infrared light lead to wrong measurements.
There are many reason for this problem like specular, highly reflective surfaces
that may result in superimposition of measured values. In our work we observed
that even diffuse surfaces turn into specular surfaces at extreme angles, leading to
unwanted reflections (as seen in our experiments with surfaces at 70◦).

• Interference: If multiple time-of-flight sensors are used in parallel, this may lead
to interferences because the illumination unit of one camera might lead to false
light measurements in the sensor of the other unit. There are several ways to face
this problem like different modulations for each illumination unit.

• Temperature: As shown in the work from Breuer et al. [BBA14] the higher
energy consumption and the resulting increase in temperature of some time-of-flight
cameras like the KinectV2 can lead to a shifting in distance values during the
device’s warm up phase.

• Systematic Error: The depth images of the sensor are falsified by two types of
systematic errors: calibration errors and wiggling errors. The first one is simply
the result of an inadequate camera calibration like wrong assumptions about the
principal point or the lens distortion. This type of error can be reduced by a
standard camera calibration procedure. The second one is the result of small
approximations in the measurement pipeline.

2.2.2 Error Model

This work mainly focuses on analyzing the systematic error (which remains after a
calibration procedure) and its relation to the distance and rotation of an object. Our
goal is to provide an error model describing this relation in mathematical terms. The

9

2. Theory

x

z

θ

Figure 2.1: Axial noise along the face of the planar target

resulting model could in turn be used to enhance 3D reconstruction processes to resolve
finer details with fewer frames.

To calculate such an error model we use a stochastic approach where the error is calculated
based on the difference between measurement results and ground truth information. Other
works have shown that this approach is suitable for time-of-flight sensors like the KinectV2
[FBR+15]. Based on the technical similarity of our two sensors, we assumed that this
approach is also applicable for the Phab2Pro.

The systematic noise has two main components that need to be analyzed separately as
previously shown [NIL12]:

Axial Noise

The axial noise describes the depth measurement error along the z-axis. In general,
it describes the average difference between the measured depth and the actual depth.
This type of error is determined by assuming a flat surface that is perpendicular to the
z-axis and measuring its distance. The modeled domain describing the ground truth is
represented by a plane. The difference for each pixel to the plane would then in turn be
the axial noise. [NIL12]

At this point it is important to consider the difference between the model domain and the
real-world domain. The plane and its structure probably differ from the modeled plane
because of tiny bumps in its structure and small setup errors in distance, rotation or
orientation. The real-world domain is then measured with the noisy sensor. The resulting
data can be described as lying in the measurement domain. The error is estimated from
this domain. [CLDB14]

The real ground truth is unknown to a certain degree because obtaining it would require
another more precise sensor that in turn would be prone to errors. [CLDB14] To evade
this circular problem, we tried to generate a real-world domain whose errors are smaller
than the tested sensors resolution and used a virtual ground truth model that is not too
prone to setup distortions.

10

2.2. Errors

y

x

Figure 2.2: Lateral noise alongside the edge of the planar target

Furthermore, we assume that the sensor noise has a normal distribution. This is based
on the previous works by Nguyen et al. [NIL12] and Fankhauser et al. [FBR+15] and our
own measurements seen in Figure 4.3. The characterizing parameter of noise with this
distribution is the standard deviation.

Considering all of this, the final procedure we used to extract the axial noise was as
follows:

1. Placing a plane at a certain distance and rotation around the y-axis (verified by
manual measuring)

2. Measuring the plane with the sensor

3. Extracting the point cloud of the plane

4. Fitting a plane based on a model equation to get the ground truth model

5. Determining the distance between each measured point and its modeled ground
truth

6. Calculating the standard deviation of the measurements

Lateral Noise

The lateral noise is a measure for the pixel deviation along the two image axes x and
y. It describes how much the measured point is vertically or horizontally misplaced
compared to the actual point on the object. To measure this, the plane is assumed to be
perpendicular to the z-axis so that its border points are measured as straight lines. The
difference between the presumed border line and the measured one is the lateral noise.
This noise can be measured for the x- and the y-direction. [NIL12]

Similar to the axial noise, the real ground truth position of the point is uncertain and
cannot be perfectly measured. To minimize small errors in the real-world domain, we
tried to use a virtual ground truth model that fits the borders to the measured data.

11

2. Theory

Even though other works showed that the lateral noise for time-of-flight cameras is only
partially described by a normal distribution, the standard deviation is still used as a
measure because, as stated in Fankhauser et al. [FBR+15], many frameworks assume a
Gaussian noise distribution.

12

CHAPTER 3
Method

3.1 Experimental Setup
Because our work combines two separate statistical noise models we also need two separate
test setups to measure noise. The first one is used to capture axial and lateral noise
based on the distance and surface angle of the target, this test setup will be described in
detail in this thesis. The second test setup is used to capture the axial and lateral noise
based on the target distance and its position in the depth image. The latter setup can
be read in detail in the work of my colleague. [Kö17]

3.1.1 Previous setups

As we mentioned before, previous papers measured the axial noise of depth cameras.
Most of them used a setup consisting out of a moving depth sensor and a fixed planar
target. One of the earliest works trying to quantify axial noise of a customer-oriented
depth sensor is Khoshelham et al. [KE12]. Their experiment used a KinectV1 aimed at
a door to measure its surface’s distance. These measurements were then compared to
a fitted plane perpendicular to the z-axis so that the standard deviation was the axial
noise. Their measurements were repeated at increasing distances from the target. In
doing so, they found out that the noise grows with increasing distance between sensor
and target. Later works like Nguyen et al. [NIL12] also used a KinectV1 but with an
improved version of this setup: a rotatable board. This allowed to not only extract the
axial noise on its surface, but also the lateral noise along its edges. Furthermore, their
noise model not only incorporated the target’s distance but also the target’s rotation.
Both mentioned works showed that it is possible to measure the noise of a structured-light
camera with this setup. The applicability of this setup to time-of-flight sensors like the
one used in the KinectV2 or the Phab2Pro is shown by Fankhauser et al. [FBR+15].
One part of their work was to quantify the indoor and outdoor noise of a KinectV2 in
axial and lateral direction. Their setup is largely similar to the one used by Nguyen

13

3. Method

et al. [NIL12]. It consisted of a KinectV2 pointing towards a rotatable plane, taking
measurements at different distances and angles. These measurements were used to create
two noise models one for indoor and one for outdoor applications. This paper showed
that the commonly used setup is able to measure axial and lateral noise not only for
structured-light cameras, but also for time-of-flight cameras.

3.1.2 Our Setup

Our test setup was nearly identical to the ones used in Nguyen et al. [NIL12] and
Fankhauser et al. [FBR+15], which were based on Khoshelham et al. [KE12]. As the
target a wooden press board with a faint white surface was mounted onto a tripod.
Although the rather high weight of the board had to be accounted for, lighter materials
like card boards were no option because as our first tries showed, these lighter and thinner
materials were too flexible and would bend under their own weight. This would have
led to measurement errors. The surface color and faintness were chosen to minimize the
error through reflection. Finally, all parts from the tripod to the plane were carefully
adjusted to account for different error sources like an uneven floor. To extract the angular
characteristics of the noise, the target plane was vertically rotated from 0◦ to 80◦ in
intervals of 10◦. To ensure a valid angle, a rotation device, which is used in photography
to rotate a camera to a certain angle, was placed between the tripod and the board.
Furthermore, two differently sized press boards were used to keep the measured area
in the depth images roughly at the same size at different distances. Between 0.9 m and
1.9 m a board with the size of 0.4 m × 0.3 m was used and between 2 m and 3 m a board
with 0.6 m × 0.4 m was used. A larger board with the size of 1.0 m × 0.8 m was not used
due to it being too heavy for the tripod.

The camera in our setup was placed on a wooden construct that in turn was standing on
a desk in front of the fixed target. Similar to the target, the camera and its desk were
carefully adjusted to be evenly leveled and parallel to each other to minimize errors due
to the test setup. To extract the distance dependent noise characteristics, the camera was
moved from 0.9 m to 3.0 m in intervals of 0.1 m. The mentioned range does not cover the
minimal and maximal sensing range perfectly (0.5 m to 4.5 m for the KinectV2) because
the noise at this extreme ranges was too high to extract any information. To ensure
that the distances were valid, a tape ruler was used for the initial positioning. From
there on out, a fixed tape ruler between the desk and the wooden construct allowed us to
make precise backward steps and to keep the camera in a parallel position to the target.
The camera was positioned in such a way that the y-axis of the depth image overlapped
with the rotation axis of the target and the x-axis overlapped with the lower border of
the board. The latter one was used to keep the perspectively distorted border of the
board parallel to the image border, which helps with the automatic board recognition
(as described in 3.4.2).

Before the measurements were started, the camera was running for at least 30 minutes to
reduce temperature dependent errors [BBA14]. After that, the test procedure started at
0.9 m at 0◦. At each setting of distance z and angle θ 200 images were taken. 100 images

14

3.2. Data Extraction

Figure 3.1: Images of the setups for the two different sensors in both horizontal and
vertical position

with the camera in a horizontal position to extract the axial noise and the lateral noise
in x-direction and 100 images with the camera in a vertical position to extract the lateral
noise in y-direction. This process was repeated until a depth map or a point cloud was
captured for all combinations of distances and angles.

3.2 Data Extraction

To ensure that our project can calculate the noise for any arbitrary depth sensor, we
separated our measurement software into two parts: a device dependent program to save
measured data in the common format .csv and a device independent evaluation toolkit
programmed in MATLAB. For nearly all calculations in our project like the finding of a
region of interest (see section 3.4.2) or the measuring of the axial and the lateral noise (see
section 3.5), only two types of data were needed: a depth image and a point cloud. Depth
images are also called depth maps and can be seen as images, but instead of saving color
information at each position, they save the distance to the nearest object for each pixel.
They can easily be analyzed with standard image processing techniques and filters. The
objects in the scene are perspectively distorted and have to be reshaped and repositioned
before they can be measured. Point clouds model the scene by a high number of points
where each point corresponds to exactly one measurement of the camera. Each point
has a fixed position in 3D space based on its real-world position. If the point cloud was
created properly, the points of the positions of the objects corresponds to the real-world
without any distortions. While this enables easy measurements for planes, the point

15

3. Method

cloud can not be as easily processed and filtered as a 2D image. Because it is possible to
calculate one from another (see section 3.4.1) the extraction of only one of the two types
of data was needed in our measurements. As mentioned before, our project used two
different sensors, the KinectV2 and the Phab2Pro. Because both of them used depth
sensing technology from different companies, there was no universal way to extract data
from the devices. For this reason, we developed two different tools to save the data into
a readable format.

During the first setup, 200 measurements were taken at each plane orientation. This
led to a total amount of 35.200 measurements for each depth sensor (22 distances ×
8 rotations × 200 measurements = 35.200 measurements). Each measurement was saved
in one consecutively numbered file. To organize all of these files we used a rather easy but
effective directory structure. Each experimental setup had a directory containing sub-
directories for each distance that in turn had sub-directories for each rotation, containing
the measurements.

3.2.1 Kinect for Windows SDK

The KinectV2 sensor noise was extracted by using the Kinect for Windows SDK, provided
by Microsoft. It contains not only drivers for both Kinect models but also an API to easily
create programs using the sensor. Once it is installed and the KinectV2 is connected
to a computer, it allows complete access to all functionalities and data provided by the
sensor. This includes access to the raw data of the four different streams for color, depth,
infrared and audio. The API offers an event based interface that notifies an application if
a Kinect frame arrives. To allow this a function needs to be assigned to an event handler.
sensor = KinectSensor.GetDefault();

if (sensor != null)
{

sensor.Open();
reader = sensor.

OpenMultiSourceFrameReader(
FrameSourceTypes.Depth);

reader.MultiSourceFrameArrived += readFrame;
}

We used Visual Studio 2013 to develop a simple Visual C# WPF application that
connected to the KinectV2 and saved the arriving frames of the depth stream on demand.
As seen in Figure 3.3 the GUI consists of an image of the depth stream and a number of
elements to specify the setup parameters. The depth stream was visualized by mapping it
between black for close objects and white for distant objects. This live image was useful
during the early stages of calibration and alignment, as it gives a good impression of the
generated depth images. As described by the labels, the two text boxes define the current
distance and rotation of the plane, which in turn specifies the target directories of the
generated measurements. To keep the time between measurements as short as possible,

16

3.2. Data Extraction

(a) Color stream

(b) Body data stream

(c) Infrared stream (d) Depth stream

Figure 3.2: Images of the four visual streams provided by the Kinect (taken in Kinect
Studio v2.0)

17

3. Method

Figure 3.3: Screenshot of the C# WPF application used in our experiments

we used two tricks: The first one was using the plus and minus buttons beside the text
boxes to increment or decrement the current alignment values by the usual step sizes
(100 mm for the distance and 10◦ for the rotation), which allowed a quicker parameter
change. The second and more important one was the asynchronous event handling for
measurements. Because frames usually arrive faster than they can be written into .csv
files, having only one thread handle one frame after another takes around 20 s. This
process can be sped up by letting the event-handling thread start a separate thread
to save the received frame. In doing so, the measurements were finished in around 4 s
seconds. While the threads were still busy with saving the frames, we were able to rotate
or move to the next alignment. To keep track of these processes, we implemented two
signals an acoustic beeping sound to inform us that all necessary frames were recorded
and a progress bar tracking the number of saved files.

3.2.2 Project Tango API

To extract depth information from the Phab2Pro we used the Project Tango API. The
API uses (similar to the Kinect) an event-based system that notifies the app when a
certain type of information is available. The depth data from the sensor is a good example
of the abstraction done by the framework. While the Kinect SDK allowed direct access
to the depth stream, Project Tango delivers an already preprocessed point cloud. The
automatic preprocessing also transforms the point cloud to fit the motion of the sensor.
While this allows to get correctly aligned point clouds when moving around in a room this
transformation was unwanted for our evaluation as it may lead to incorrect measurements.
To handle this problem we simply disabled the motion tracking feature in our app.

18

3.3. Calibration

mTango.connectListener(framePairs, new OnTangoUpdateListener() {
@Override
public void onPoseAvailable(final TangoPoseData pose) {

// ...
}

@Override
public void onXyzIjAvailable(TangoXyzIjData xyzIj) {

// Unsupported
}

@Override
public void onPointCloudAvailable(final

TangoPointCloudData pointCloudData) {
// Save point cloud to file

}

@Override
public void onTangoEvent(final TangoEvent event) {

// ...
}

@Override
public void onFrameAvailable(int cameraId) {

// Only works for the two color cameras
}

});

We developed an app for the Phab2Pro, using Android Studio and the Java API for
Project Tango (alternatively Unity, C and C++ are also supported). As seen in Figure
3.4, the layout of the app was similar to the WPF application for the Kinect. It has
two text labels describing the current distance and rotation. Their values can be quickly
changed between alignments, using the plus and minus buttons to increase or decrease the
current value by the usual step sizes. A big button was used to start the measurements.
To keep the measuring time as low as possible, the recording of a point cloud and its
saving have been programmed to be asynchronous. The arriving point clouds were copied
into a buffer and then handed to a separate thread to write them into a locally stored
.csv file. Again, the reaching of the end of the point cloud recording was marked by an
acoustic sound, while the number of saved files was tracked by a progress bar. Generally,
the layout was designed in such a way that our app was still easily usable, while being
mounted horizontally or vertically on our apparatus.

3.3 Calibration

The depth sensing in both cameras uses the images of an infrared camera to calculate the
depth of a point. Like with nearly all optical cameras, the resulting images are partially

19

3. Method

Figure 3.4: Screenshot of the app for the Phab2Pro used in our experiments

KinectV2 Phab2Pro
Synchronous Time 20 s 80 s
Asynchronous Time - Measuring 4 s 25 s
Asynchronous Time - Saving 16 s 55 s

Table 3.1: Comparison of synchronous and asynchronous measurement times for both
programs

distorted because the lens bends the light that passes through before it is measured at
the photo sensor. This leads to the unwanted effect that straight lines in the real world
get bent in the image. [LMM+15] The two most typical distortion patterns are the barrel
distortion – where the image appears to bend outward like a round barrel – and the
pincushion distortion – where the lines bend toward the center like a pincushion.

This effect would have a negative impact on our noise calculations because, for example,
the lateral noise was defined as the deviations along a straight edge. If an edge would be
bent through lens distortions, the measured noise would be much higher than it actually
was. The problem can be solved by transforming the images based on the parameters of
the used lenses. The taken images can be simply bent into the opposing direction of the
distortion until lines that should be straight are straight again. [FBR+15]

As previous works showed, a standard calibration procedure, which is used for most
cameras, suffices for depth sensors using infrared cameras. Removing the distortion
requires exact knowledge of the camera intrinsics and extrinsics like focal length, optical
center, skew coefficients and real-world rotation and translation. Because most of these
were not known, a procedure was needed to calculate them. [LMM+15] Most commonly,
this is done by comparing known point coordinates with their corresponding image
coordinates and estimating the intrinsics and extrinsics from the differences between
them.

20

3.3. Calibration

Figure 3.5: Screenshot of the MATLAB cameraCalibration tool. The left side shows
the input images, the center contains the currently selected image with the detected
pattern highlighted and the right side shows the fitting results (errors and pattern
positions are displayed). [Kö17]

3.3.1 KinectV2 Calibration

For the KinectV2 we used a checkerboard pattern printed on an A4 sized paper as a
reference [Wie17] and took several infrared images with the pattern at different positions
and rotations, covering most of the image area. The resulting images were then used as
an input for the MATLAB cameraCalibrator that detects the position of the pattern
in the images. For each pattern its position and orientation were calculated based on the
joints between the black and white fields. Using this information, the tool estimates the
concrete camera parameters. [Zha00]

The resulting information was then used in the MATLAB function undistortImage
that deformed the input depth images, according to the camera parameters. The
improvements can be seen by looking at the outer regions of the depth maps 3.6 [Kö17].
[TM17b] [Bou04]

21

3. Method

(a) Before Calibration: Distorted 3D
checkerboard pattern

(b) After Calibration: Undistorted 3D
checkerboard pattern

Figure 3.6: Comparison between two depth images of our second setup using a 3D
checkerboard pattern. [Kö17]

3.3.2 Phab2Pro Calibration

The calibration procedure used for the KinectV2 cannot be a applied to the Phab2Pro
because the Project Tango framework does not offer direct access to the images provided
by the infrared sensor. Luckily, the Phab2Pro removes lens distortions by default [Goo]
in their reconstructed point clouds, as seen in Figure 3.8. The calculated depth images
bend inwards, indicating that the original images had a barrel distortion.

3.4 Preprocessing
The gathered raw data cannot be directly used to extract the specific sensor noise because
there were several problems that had to be accounted for. The fundamental problem was
that the two different sensors deliver different types of data, the KinectV2 returns a depth
image, while the Phab2Pro returns a point cloud. Furthermore, in both of these data
sets the plane does not fill the whole sensor area, which means that the exact position of
the plane was unknown and had to be found. This had do be done, while also ignoring
wrong data from other objects than the plane.

3.4.1 Data Conversions

As mentioned before, both a depth image and a point cloud were needed in the calculation
of the lateral and the axial noise. Because each of the sensors only returned one of them,
a conversion from one type of data to the other one was needed.

Depth Image to Point Cloud Conversion

Starting with a depth image (like the one returned from the KinectV2), a simple conversion
of a pixel position (x, y) and a depth value (z) to a point in space would lead to a

22

3.4. Preprocessing

(a) Perspectively distorted point cloud gen-
erated by directly using the depth image
coordinates as x- and y-positions

(b) Undistorted point cloud resulting of scal-
ing the previous point cloud according to
3.1 and 3.2

Figure 3.7: Comparison of an unscaled and a scaled KinectV2 point cloud

KinectV2 Phab2Pro
Manufacturer Calibrated

width[px] 512 512 224
height[px] 424 424 172
FoVH 70.6 73.78 65.45
FoVV 60.0 63.73 52.52

Table 3.2: Camera Intrinsics

rectangular cuboid view frustum with the objects inside it being skewed as seen in Figure
3.7. Objects closer to the camera appear bigger than they are and objects farther away
(like the wall) are displayed smaller. To restore the original proportions, as well as
convert the pixel distances into metric distances, the exact camera intrinsics needed to
be known. Namely, the resolution of the depth image and the field of view were used in
our calculation. We used our own specifications of these parameters, which we obtained
through the calibration. (see Table 3.2) for the KinectV2. [NIL12]

x[mm] = z ∗
2 tan(FoVH

2)
width[px]

∗ (x[px] −
width[px]

2) (3.1)

y[mm] = z ∗
2 tan(FoVV

2)
height[px]

∗ (y[px] −
height[px]

2) (3.2)

23

3. Method

Applying these equations to all points in the depth image allowed the calculation of
their corresponding real-world x[mm] and y[mm] coordinates. To speed up the calculation
process, the equation parts that are independent of the concrete points can be extracted
and precalculated, as they are constant for all depth images. [NIL12]

ρx =
2 tan(FoVH

2)
width[px]

(3.3)

ρy =
2 tan(FoVV

2)
height[px]

(3.4)

x[mm] = z ∗ ρx ∗ (x[px] −
width[px]

2) (3.5)

y[mm] = z ∗ ρy ∗ (y[px] −
height[px]

2) (3.6)

The complete set of transformed points of one depth image is a correctly scaled point
cloud, which was used to extract axial noise.

Point Cloud to Depth Image Conversion

The inverse of the previously mentioned method was used to transform a point cloud
(like the one returned from the Phab2Pro) into a 2D depth image. To achieve this, the
cone shaped view frustum needed to be rescaled to represent a cuboid, meaning that
objects closer to the camera needed to be increased in size, while objects farther away
had to be reduced in size. The final result is a depth image with its pixels containing
the depth values similar to the sensor output of the KinectV2. To transform a point
cloud, we needed to know the same camera intrinsics as in the depth image to point cloud
transformation. For the Phab2Pro these were obtained through the API (see Table 3.2).
The previously used equation can be inverted to represent the inverse transformation,
mapping the real-world coordinates (x[mm] and y[mm]) to image coordinates (x[px] and
y[px]).

x[px] =
x[mm]
z ∗ ρx

+
width[px]

2 (3.7)

y[px] =
y[mm]
z ∗ ρy

+
height[px]

2 (3.8)

The resulting reshaped point cloud was then saved into a 2D depth image. This was
achieved by "painting" each transformed point’s depth into the corresponding image
position – similar to the painter’s algorithm. Points sharing the same x[px] and y[px]
coordinates were painted back to front. This means that the closest point covers the
points behind it. Normally this case would not happen if the unprocessed point cloud

24

3.4. Preprocessing

Figure 3.8: Overlapping points in the point cloud to depth image transformation because
of preprocessing

of a time-of-flight or a structured-light camera was used. But because the point cloud
returned by Project Tango was already preprocessed to account for effects like lens
distortions, it resulted in around 10% of the points being occluded (as seen in Figure
3.8). To minimize the negative influence of this lossy transformation to our axial noise
calculation, the generated depth image was only used to find the region of interest, while
the original point cloud was used for the actual calculation. As for the lateral noise
measured alongside the edges, the painter’s algorithm prioritizes the closer points of the
plane, which prohibits the generation of additional noise through the transformation.

3.4.2 Region of Interest Detection

As previously mentioned, the plane we used as a measurement target was neither filling
the whole screen nor did it have the same size at different distances. Furthermore, the
calculations to extract axial and lateral noise not only needed the concrete borders of
the plane, but they were also very sensible to outside noise factors like foreign objects
(wall, tripod, . . .). By detecting the plane’s boundaries as close as possible, we were able
to effectively eliminate points not belonging to the plane.

Create Binary Image

As a basis for the further region of interest calculations, a binary image was used. The
white pixels were used to indicate regions of interest, while black pixels were ignored.
The initial binary image was created by applying a threshold to the depth image. The
threshold consists of an upper and a lower boundary that were calculated based on the
plane’s width w, distance from the sensor d and rotation θ. The lower boundary was

25

3. Method

based on the depth of the plane’s side that got rotated away from the sensor while the
upper boundary was based on the side of the plane closer to the sensor. Because the axial
noise along the plane might have led to some points inside of it falling out of this range,
we extended the threshold region by a small percentage p to be more tolerant to outliers.

l = sin θ ∗ w2 ∗ p (3.9)

bupper = d+ l (3.10)
blower = d− l (3.11)

Each depth pixel inside this range got classified as white, every pixel too far away or too
close got classified as black.

c(z) =
{

1 if z ≥ blower and z ≤ bupper

0 otherwise
(3.12)

While this threshold calculation was able to correctly classify the plane, it also detected
a lot of noise of objects being at the same distance as the plane like the tripod or parts
of the table, the apparatus was standing on. (see Figure 3.10b)

Mask Out Unused Regions

To improve the detection rate, the amount of wrongly classified pixels not belonging
to the plane needed to be reduced to a minimum. An easy way of getting rid of many
outliers like the surrounding tables and chairs was masking out certain areas. To do this,
the smallest region containing the complete plane for all different distances was found
manually for each camera. All points outside of this region got classified as black because
none of them could be part of the plane. (see Figure 3.10c and 3.10d)

Remove Noise

As previous works have shown, the sensor noise rises with growing distance and angle.
This may lead to some points inside the plane exceeding the calculated limits and getting
classified as black. But because of the next steps needed for the plane to be as continuously
labeled as possible, noise inside the plane had to be removed. This was done by applying
a hole filling algorithm that set black pixels completely surrounded by white ones to
white. In doing so, we effectively reduced the noise inside the plane. To remove the noise
alongside its borders, we used a square shaped structure element to first dilate and than
erode the image. In this way, small pixel gaps alongside the borders were closed. (see
Figure 3.10e)

26

3.4. Preprocessing

hl

hr

w

k

1

Figure 3.9: Scheme of the plane structure element

Erode and Dilate Plane

While the previous step smoothed the appearance of the plane, it also smoothed the
appearance of the remaining noise components, some of which (like the tripod) may even
have gotten more dominant. To finally remove all other objects except for the plane in
our binary image, we used a specially calculated structure element in combination with
erosion and dilation. In the previous step, we saw that by first dilating and then eroding
we effectively removed black noise smaller than the structure element. In this step we
wanted to achieve the opposite effect: removing white parts that stood out and which
were smaller than our plane.

To achieve this, a special structure element was created that closely resembled the shape
of the plane in the current distance and rotation. This was possible due to the positioning
of the plane in the image. Its lower edge laid directly on the image’s x-axis and the whole
plane was directly centered around the image’s y-axis. The effect of this positioning was
that the shape could be calculated by knowing the camera intrinsics, the plane’s size
(width w and height h), its distance and rotation.

hl =
⌊

h

bupper ∗ ρy

⌋
(3.13)

hr =
⌊

h

blower ∗ ρy

⌋
(3.14)

w =
⌊cos(θ) ∗ w

d ∗ ρx

⌋
(3.15)

k = (hr − hl)
w

(3.16)

With this calculations, a binary structure element was created. The final result resembled
the plane in the image, while being a little bit smaller to be more resistant to the

27

3. Method

remaining noise. After that, the image was eroded with the structure element, removing
objects not having the same size or form as the plane. This was followed by a dilation to
restore the remaining elements to their correct size. Applying this procedure effectively
removed every object in the scene that was not the plane itself in nearly all images. (see
Figure 3.10f)

Calculate Bounding Box

The final step, after everything except the plane pixels was removed from the binary
image, was to get the bounding box of the remaining white part. This was done by using
the MATLAB function regionprops that measures different properties of the white
parts in an image. The result contained the exact bounding box of the remaining white
region, our plane. The region was then returned as the region of interest for further noise
calculations. (see Figure 3.10g)

3.5 Noise Extraction
By combining the preprocessed point cloud and depth images with their corresponding
regions of interest determining the plane’s position, the axial and lateral noise were
calculated. In general, this was done by taking the standard deviation of the difference
between the data and the calculated ground truth. [NIL12] [FBR+15]

3.5.1 Lateral Noise Extraction

The lateral noise was calculated for both the x- and the y-direction. The noise was
extracted based on the pixel positions alongside the plane’s edges in the depth image. The
idea was that the plane was normal to the image’s x-axis, which should result in a perfect
line in the resulting depth images. The so called wiggling error of time-of-flight cameras
tampers with our results, leading to misplaced pixels along the edges. By measuring the
horizontal pixel positions this error could be estimated.

Because this calculation required depth images, the Phab2Pro point cloud data needed
to be projected onto a depth image, as mentioned during the preprocessing. As for the
direction of the error, the extraction of noise with the sensor in its horizontal position
led to the lateral noise in x-direction and the extraction of noise with the 90◦ rotated
sensor to the lateral noise in y-direction.

Border Region Calculation

Based on the previously calculated regions of interest, the regions containing each of
the vertical plane borders could be estimated. At first, the border region’s width was
manually defined. The region of interest’s x-coordinates were moved away from the plane
by half the border width. The height of the region was taken from the detected region of
interest. To only measure the horizontal lateral noise component, the top and bottom of
the border region were trimmed by a scale factor.

28

3.5. Noise Extraction

(a) Depth map for z =
2100 mm, 60◦

(b) Binary image from depth
threshold

(c) Manually selected mask re-
gion

(d) Remaining binary image with un-
used regions removed

(e) Noise reduced image after filling
holes and smoothing edges

(f) Binary image after the application
of the plane shaped structure element

(g) Bounding box of the remaining
white area

Figure 3.10: Processing steps of the plane recognition

29

3. Method

Figure 3.11: KinectV2 edge image for the lateral noise extraction with highlighted border
regions. (z = 1000 mm, θ = 0◦)

Edge Image Creation

Because the lateral noise components were measured around the edges of the plane, they
had to be made visible. The first step was to transform the depth image into a binary
image by applying a threshold that marks objects in the depth range of the plane as white
and everything else black. After that, a Canny edge detector was applied to the image.
The special property of this edge detector is that it not only detects edges (changes from
black to white) but also that these edges are only one pixel in their width. The filtered
image was scanned for horizontal lines (rows with more than one white pixel). From this
lines only the outermost pixels were kept white while the others were set to black. This
was used to count the bumpy parts of the edge only once.

Lateral Noise Quantification

After this preprocessing step, each line contained at most one white pixel. The column
indices of these pixels were determined by applying the MATLAB function find. The
lateral noise was the standard deviation of these values. The results were two σL[px]
describing the horizontal lateral noise for each side of the plane. Both the left and right
side noise were handled and saved separately because as Fankhauser et al. [FBR+15]
showed, their values differ greatly. The reason for this is that sensors like the KinectV2
have an asymmetric setup with the infrared sensor and emitter being slightly apart,
leading to one side of the plane being better illuminated and measured than the other.

3.5.2 Axial Noise Extraction

The axial noise was calculated by comparing the measured plane points to the estimated
plane. The difference between the plane and the measurements was the noise, which was
a direct result of the unsteady depth measurements. By looking at the point cloud data,

30

3.5. Noise Extraction

Equation Independent Var. Coefficients Problem Par.
(3.17) x θ, d
(3.18) x a θ
(3.19) x a, b
(3.20) x, y a, b, c

Table 3.3: Plane Equation Parameters

the plane’s surface seemed to have lots of small bumps and dells, which were a result of
those measurement errors.

Central Region Calculation

The region of interest determined by the preprocessing steps contained the whole plane up
to its outer borders. The regions alongside the borders were prone to not only suffer from
axial noise but also from lateral noise, as described in 3.5.1. To prevent a falsification of
the axial noise, a border margin had to be added to the region of interest. This was done
by decreasing the region’s sides by 20%, the factor was manually chosen to eliminate any
lateral noise interference, while still remaining an as large as possible region to calculate
the axial noise.

Plane Fitting

The points lying inside the resulting region were then selected, discarding the other points
of the point cloud. For these plane points a plane with minimal distance to all points was
calculated. This was done by using the MATLAB function fit that calculates the best
coefficients for an equation with given points. The equation calculates z based on the
values of x and y. We experimented with three different plane equations with different
grades of restrictiveness in regard to the physical ground truth.

z = sin(2π − θ) ∗ x+ d

cos(2π − θ) (3.17)

z = sin(2π − θ) ∗ x+ a

cos(2π − θ) (3.18)

z = sin(b) ∗ x+ a

cos(b) (3.19)

z = a ∗ x+ b ∗ y + c (3.20)

The equations are ordered from top to bottom by their flexibility to adapt to a certain
set of points. This can be seen at the growing number of fitted coefficients in Table
3.3. Before each of the equations was examined, it had to be remarked that the first
three equations ((3.17), (3.18), (3.19)) only need the x variable to calculate z because

31

3. Method

these models assume that the plane was perfectly normal to the x-axis without a tilt.
This means that every point with the same y-coordinate has the same depth z. The
first equation (3.17) was entirely based on the known ground truth by using the known
distance d and rotation angle θ as fixed parameters. The second equation (3.18) neglects
the distance constraint. The third equation (3.19) neglects the distance and rotation
constraint of the plane but still assumes that it was not tilted. The ideal case would
be using one of these three equations to get precise noise information like the standard
deviation or the depth over- or underestimation. But the problem with these equations
was that even with a lot of preparation, calibration and adjustment, we were not able
to achieve the exact positions with no error at all in regard to distance, rotation or
adjustment. By estimating the error with one of these strict equations, the noise of
the sensor would be overshadowed by positioning errors. To prevent this we decided to
use the standard and most flexible plane equation (3.20). Without any ground truth
constraints the fitted plane allowed an estimation of the noise without being susceptible
to positioning errors.

Axial Error Quantification

Given the fitted plane equation from the previous step, the ground truth depths could
be estimated by using the measured point’s x- and y-coordinates as input variables for
the equation. This was done by the MATLAB function feval that uses a fitted model
and various input parameters to calculate the resulting values. Each point’s calculated
ground truth depth was subtracted from its actually measured depth. This difference is
the measurement error. By calculating the standard deviation of these errors, we got the
axial noise σA[mm] for a certain position. The axial noise was unlike the lateral noise
already calculated in mm and therefore did not need to be additionally transformed.

3.5.3 Noise Saving

Because for every combination of position, rotation and depth sensor, 200 images were
made, the axial and lateral noise calculation for each data set can take multiple hours. For
this reason, the results of each measurement were saved as a line in a .csv-file consisting
out of the experiment’s parameters (distance, rotation and measurement number) and
the calculation results for the axial and lateral noise. For each distance a separate file
named after the distance was created in a subdirectory of the dataset called Results.
This allowed us to re-evaluate the results of all 200 images without having to re-calculate
everything.

3.6 Model Generation
The empirically derived noise data was used as a basis for three mathematical models
describing σz, σx and σy for a certain distance d and surface rotation θ. The goal was to
find a model that characterizes our measured data as close as possible and allows a valid
prediction of the positions lying in-between our measurements. The choices to make for

32

3.6. Model Generation

Figure 3.12: Fitted ground truth plane for KinectV2 point cloud (z = 1000 mm, θ = 0◦)

this were at first finding a mathematical formula that has the same shape as the noise
and then fitting its coefficients to be as close as possible to the noise data points.

3.6.1 Data Preparation

The raw noise data, calculated in the previous steps, had to be transformed before it
was usable for the generation of an appropriate model. The axial noise data has two
measurements for each position: one from the horizontal and one from the vertical camera
setup. Instead of using only one or another for our axial noise model, we decided do
combine the gathered information to have an even better noise estimation. To do this,
we calculated the average of the two standard deviations measured at each position and
used this as our axial noise. The lateral noise was handled in a similar fashion because
each position also had two measurement values: one of the left and of the right plane side.
As mentioned before we kept both values apart to analyze the effects of different sensor
illumination for the left and the right side. But because our model cannot differentiate
between the both sides, we decided to combine both lateral noise values to one. This was
again done by taking their average. The last step was the transformation of the pixel
based lateral noise to a metric one σL[mm], using the formula described in 3.4.1 and the
known distance of the plane.

33

3. Method

3.6.2 Model Fitting

After the noise data was prepared, an appropriate model representing the measurements
had to be found. Such a model should fulfill two requirements:

1. Model the measured data distribution as close as possible

2. Remain general enough to be used to plausibly predict unmeasured values

Both of these requirements needed to be verified in a way. The first was checked by
calculating the root-mean-square error (RMSE):

RMSE =

√∑n
t=1 (ẑt − zt)2

n
(3.21)

Additionally, we tried to maximize the value of R2 that describes the proportion of data
variance described through the chosen model.

The second constraint could not be calculated because it was hard to verify mathematically
and was therefore visually determined by plotting the function and analyzing its behavior
with different input values. A good model should have an as low as possible RMSE
value and its function should have an as low as possible degree and avoid too high jumps
between measured values. The last two constraints could be verified by plotting the
surface of the calculated model.

To find the best fitting model for each axial and lateral data set, we split the fitting
process into two parts: a manual model selection and an automatic fitting of the model
coefficients. To dynamically propose a model and check how well it suits the gathered
data, we used the MATLAB curve fitting toolbox, which allows a quick and interactive
way to change the data, the underlying model and the fitting constraints. The output of
the toolbox is both a mathematically calculated goodness consisting of many different
key figures (RMSE, R2, . . .) and a visual plot of model and data points. 3.13

34

3.6. Model Generation

Figure 3.13: Screenshot of the MATLAB curve fitting toolbox

35

CHAPTER 4
Results

4.1 Recognition
As seen in Figure 4.1, the recognition rate for both cameras is 100% for angles between
0◦ and 60◦. For 70◦, the KinectV2 recognition has some small errors in larger distances.
To compensate for this errors, we detected as many regions for the same distance and
rotation as possible and calculated their average. The resulting region could then be used
as input for the noise calculation, so that even images without a directly detected region
of interest can be used. The Phab2Pro images for 70◦ are completely unrecognizable
after a distance of 2 m, meaning that not even an average region can be used for the
noise estimation, as not even a single region was found in the 100 images.

Looking at the raw data, this is not the fault of our algorithm but more a result of missing
points in the point cloud due to too high noise. Both cameras deal differently with these
high noise regions, while the Phab2Pro simply discards points in this regions, leaving them
empty, the KinectV2 sets the distance of these points to 0 m. The plane in the resulting
measurements (as seen in Figure 4.2) could not be detected using our morphological
approach. The low detection rate did not tamper with the later calculations, as the
noise for this angles could not be reliably calculated by plane fitting. The noise for this
unmeasurable regions was assumed to be approaching infinity.

4.2 Noise Distribution
Because all following measures used in this work, to describe the sensor noise like
the standard deviation and the noise models calculated from them, are based on the
assumption that the systematic error is normally distributed, one of our next steps was to
validate this claim. This was done by both looking at the histograms of the calculated axial
and lateral noise and calculating the number of measurements, whose noise distributions
correspond to a normal distribution based on the Kolmogorow-Smirnow-Test [TM17a].

37

4. Results

(a) KinectV2 (b) Phab2Pro

Figure 4.1: Comparison of the recognition rate of our algorithm for the KinectV2 and
Phab2Pro on the complete dataset

(a) KinectV2

(b) Phab2Pro

Figure 4.2: High noise in the depth images of both sensors for high surface angles (60◦

vs. 70◦)

38

4.3. Noise Model

0◦ - 70◦ 0◦ - 60◦

KinectV2 78.01 88.38
KinectV2 rotated 83.52 86.10
Phab2Pro 82.05 92.99
Phab2Pro rotated 84.15 95.45

Table 4.1: Percent of all measured axial noise distributions that are describable through
a normal distribution (based on the results of the KS-Test)

4.2.1 Axial Noise Distribution

The plots of the axial noise for the KinectV2 and the Phab2Pro indicate a normal
distribution (as seen in Figure 4.3) that seems to have a growing standard deviation the
farther away the measured plane is and the more rotated it is. Both of these observations
were already made for the KinectV2, but are now also shown for the Phab2Pro.

The results of the Kolmogorow-Smirnow-Test [TM17a] in Table 4.1 show that around
80% of the data is describable through a normal distribution at a significance level of
5%. The highest portion of measurements whose noise distribution is counted as not
normally distributed are the ones taken at high angles like 70◦. If those are taken out of
the calculation, the test results go up to around 90%.

4.2.2 Lateral Noise Distribution

The lateral noise distributions for both the x- and the y-direction do not show clear signs
of a normal distribution in their fitted histogram plots (as seen in Figure 4.4 and 4.5).
Furthermore, the noise does not seem to grow clearly with distance or angle.

This observation is validated by the Kolmogorow-Smirnow-Test [TM17a] that clearly
states that no lateral noise measurement is describable by a normal distribution at a
significance level of 5%. This indicates that either the measurement method based on
pixels or the statistical model are probably not an appropriate measure for the lateral
noise. In abundance of a better way to analyze the lateral noise components, we still
used the standard deviation as a rough estimation for the following calculations.

4.3 Noise Model

For each position the noise is calculated based on all measurements. These noise values
describe the fluctuation for a measured depth point on a surface. To analyze how the
intensity of noise changes with the two independent variables z and θ, a simple line plot
was used (as seen in Figure 4.6). Based on this data, the models were calculated. The
results can be seen in Figure 4.7.

39

4. Results

Figure 4.3: Comparison of the axial noise distributions for both sensors with different
distances and rotations

4.3.1 Axial Noise Model

The plots of the axial noise indicate a low linear growth between 0◦ and 40◦ for both
sensors. After that, the noise seems to grow rapidly with higher degrees approaching
infinity. This behavior was already shown for the KinectV2 by Fankhauser et al. [FBR+15],
whose model was adapted for our measurements and additionally applied to the Phab2Pro.
Their function is a combination of a quadratic part for the distance z and a hyperbolic
part for the rotation θ. While the most coefficients were fitted, as previously explained,
the values for e were found manually.

σz1 = a+ b ∗ z + c ∗ z2 + d ∗ ze ∗ θ2

(π2 − θ)2 (4.1)

40

4.3. Noise Model

Figure 4.4: Comparison of the lateral noise distributions in x-direction for both sensors
with different distances and rotations. [Kö17]

KinectV2 Phab2Pro
a 2.094 0.3019
b −1.099 ∗ 10−3 5.712 ∗ 10−4

c 4.048 ∗ 10−7 6.183 ∗ 10−7

d 6.846 ∗ 10−7 2.386 ∗ 10−5

e 1.7 1.47

Table 4.2: Axial Model Coefficients (Equation 4.1)

4.3.2 Lateral Noise Model

Because of the seemingly random nature of the lateral noise in our measurements, a
mathematical model could not be fitted to the data. The reason for this could be

41

4. Results

Figure 4.5: Comparison of the lateral noise distributions in y-direction for both sensors
with different distances and rotations. [Kö17]

that either our noise extraction method was not sufficient enough to detect the noise
appropriately, or that the noise simply does not follow a statistically significant pattern
described by the standard deviation.

To circumvent this problem, we decided to calculate the 90-percentile to be used as a
plausible upper boundary for the lateral noise in both directions. This value is constant
for all distances and rotation angles, as no trend for any variable is visible in the data. It
is also notable that the noise in y-direction is lower for both sensors.

4.3.3 Combined Model

As the previously mentioned model only used distance and rotation to estimate the noise,
we decided to add additional parameters in order to enhance the quality of the model.

42

4.3. Noise Model

Figure 4.6: Calculated standard deviations of the fitted normal distributions for the
sensor noise

43

4. Results

Figure 4.7: Results of the noise model estimations for the standard deviations of the
sensor noise

44

4.4. Evaluation

KinectV2 Phab2Pro
σx1 2.9110 4.1207
σy1 1.9617 3.6665

Table 4.3: Lateral Models (90-percentile)

KinectV2 Phab2Pro
wa 29 8
wb 0.3 0.2
wc 0 0.3

Table 4.4: Weight Function - Coefficients

This was done by taking another axial and lateral model from the thesis of my colleague
Thomas Köppel [Kö17] and joining it with the model presented in this thesis. The added
model uses the distance and pixel coordinates of a point to determine the noise. This
is based on the idea that the noise in a depth image is not uniform across the whole
image. Each model represents a different component of the axial and lateral noise, the
first estimates it based on the object’s surface distance and rotation, while the second is
based on the object’s relative image position.

The model of this work (which will be called Model 1 - σx1 σy1 σz1) is combined with the
model from my colleague Thomas Köppel [Kö17] (which will be called Model 2 - σx2 σy2

σz2) by multiplying them with a simple weight function w and adding them up. Although
we planed to only average between both models, our evaluation 4.4 showed that such a
model would lead to worse results than Model 1. The reason for this seems to be that
the additional noise from a rotated surface outweighs the image position dependent noise
component. Because of this, our manually determined weight functions assign a higher
weight to Model 1 at higher angles.

w = max (wa − θ

wa
∗ wb + wc, wc) (4.2)

σx = (1 − w) ∗ σx1 + w ∗ σx2 (4.3)
σy = (1 − w) ∗ σy1 + w ∗ σy2 (4.4)
σz = (1 − w) ∗ σz1 + w ∗ σz2 (4.5)

4.4 Evaluation
As a final step in our work, we tried two evaluate the quality of the produced models
and compare them to not only one another, but also to the models from previous works.

45

4. Results

KinectV2 Phab2Pro
RMSERMSE [mm] 0.0633 0.2328
R-square 0.9982 0.9992

Table 4.5: Axial Model Fit Key Figures

The quality of our fitted models was estimated in two ways: statistically, by comparing
key figures of the fitted models and experimentally, by measuring a simple object in a
real-world situation.

4.4.1 Statistical Evaluation

The first method is used to evaluate the distance- and rotation-based model. It was
applied all throughout the model finding process, as the key figures used to judge a models
quality are displayed in the MATLAB curve fitting toolbox (as seen in Table 4.5). With
our model, we were able to achieve R-square values close to 1. This means that almost all
of the variance in the data is described by our model. The values of the root-mean-square
error (RMSE) for both models are also significantly below 1 mm. Although the RMSE
for the Phab2Pro is noticeably higher than the value for the KinectV2, which is probably
due to the lower signal-to-noise ratio, it is still rather small. Overall one can assume,
based on this values, that the resulting models are appropriate for estimating the axial
noise for both sensors.

For comparison, the RMSE of [FBR+15] was stated as 0.002 mm, which is approximately
30 times lower than ours. The reason for this is not easily identifiable, but might be a
result of different test conditions. It might also be based on the fact that our axial model
included measurements from two different rotations, whilst theirs only used one. For the
Phab2Pro no comparable papers exist up to date.

4.4.2 Experimental Evaluation

The second method of evaluation used a simple setup in a real-world situation and
was used for our combined model. The setup consisted of a cube of the dimensions
300 mm × 300 mm × 300 mm that was measured with both sensors. The cube was placed
at different positions, distances and rotations (to show more or less faces) and the sensor
was hand held. Specifically, the cube was measured with one face, two faces or three
faces turned towards to camera. For the first two positions, the camera looked straight
at the cube, while for the three faced position the sensor was above it. Distance wise,
the cube was placed in one measurement series close to the sensor at 1 m and for another
series farther away at 2 m. For each frame, the lateral and axial noise got roughly
estimated by an approach, similar to the one explained in 3.5.2. But instead of taking
100 measurements, only a single one was made. The measured noise was then compared
to the estimations made by our combined model. Because of the simplicity of the cube’s

46

4.4. Evaluation

KinectV2 Phab2Pro
Model 1 0.8947 2.5146
Model 2 1.5197 4.1739
Combined (Averaged) 1.1780 2.0438
Combined (Weighted) 0.8926 1.7856

Table 4.6: Axial evaluation results (RMSE [mm]) for both sensors

KinectV2 Phab2Pro
X - Combined (Averaged) 94.4 93.4
Y - Combined (Averaged) 94.4 94.8

Table 4.7: Percent of all values below our estimations of the lateral noise calculated by
our final lateral models

surface and the fixed positions, the model parameters like rotation and distance could be
automatically determined.

For the axial model we calculated the RMSE of the difference between the measured
values and the predicted ones. As for the lateral noise components, we chose to verify, if
our model could serve as an upper border by checking, if the noise values are under the
predicted values 90% of the cases. This way of verifying our lateral model was chosen,
because the seemingly random structure of the noise was not predictable with any of our
models and was only defined as the 90-percentile of the measurements.

The axial results, seen in Figure 4.8, show the previously mentioned circumstance of
Model 1 being better at higher angles and Model 2 being better at lower angles. By
applying a weight function to both models, we could adapt to this and generated a
weighted combined model that is better than its initial components.

The lateral results, seen in Figure 4.10, show that both directions of our combined lateral
models are most of the time above the measured values, thus they can be seen as a good
upper border for the lateral noise. More concretely, the percentage of values that are
correctly under our border is around 90% in all instances. In contrast to the axial model,
the lateral models do not seem to need an additional weight function and could be simply
averaged.

47

4. Results

Figure 4.8: Results of the experimental evaluation of our separate models and the average
model for both sensors. The dot position represents its detected distance and rotation,
while its color represents how much the predicted value differs from the measured one.

48

4.4. Evaluation

Figure 4.9: Results of the final axial model for both sensors

49

4. Results

Figure 4.10: Results of the final lateral models for both sensors

50

CHAPTER 5
Conclusion

In this thesis we presented two different models for estimating the sensor noise in the axial
and both lateral directions. Similar models were already calculated for the KinectV2,
but as of now we are the first to do this kind of experiment with the Phab2Pro.

We used a test setup consisting of a rotating planar target that was measured at different
distances and rotations to estimate the noise. At each position two measurement series
were made, one with the camera in a normal (horizontal) position and one with the
camera (vertically) rotated 90◦ to calculate eventual differences between both lateral
directions. Furthermore, we showed an automated pipeline to extract the sensor noise.

From these noise measures we derived an empirical model that used the object’s distance
and rotation as parameters. To further improve this model we combined it with the one
of my colleague Thomas Köppel [Kö17], whose model used the image coordinates and
the distance of the object as parameters. For the merging of the two separate models, we
showed the need for a weight function that decides when to use which model. We used a
simple linear function based on the object’s rotation.

Finally, our empirical models were validated, using a simple setup, where a cube is placed
in a scene with different distances, positions and rotations. For each face, the local noise
is roughly estimated and compared to the predictions of our model. The results of the
evaluation indicate that the combined axial model using a weight function is superior to
its component models. A similar conclusion can be drawn for both lateral models.

Future work could include attempts to improve the combined model like using a more
refined weight function joining the component models. The lateral noise component could
be further analyzed to come up with a more concrete model. Furthermore, our generated
noise models could be used to enhance KinectV2 and Phab2Pro depth data, possibly
leading to improved reconstruction results.

51

5. Conclusion

5.1 Resulting Models

KinectV2 Phab2Pro
σx1 2.9110 4.1207
σy1 1.9617 3.6665

Table 5.1: Model 1 - Lateral Models (90-percentile)

σz1(z, θ) = a+ b ∗ z + c ∗ z2 + d ∗ ze ∗ θ2

(π2 − θ)2 (5.1)

KinectV2 Phab2Pro
a 2.094 0.3019
b −1.099 ∗ 10−3 5.712 ∗ 10−4

c 4.048 ∗ 10−7 6.183 ∗ 10−7

d 6.846 ∗ 10−7 2.386 ∗ 10−5

e 1.7 1.47

Table 5.2: Model 1 - Axial Model Coefficients (Equation 5.1)

σx2/y2(z) = α[1]z
3 + α[2]z

2 + α[3]z + α[4] (5.2)

[Kö17]

KinectV2 X KinectV2 Y Phab2Pro X Phab2Pro Y
α[1] 6.6987e-09 3.9018e-09 4.3031 ∗ 10−9 1.9045 ∗ 10−9

α[2] -3.1781e-05 -1.3349e-05 −1.8169 ∗ 10−5 −5.0756 ∗ 10−6

α[3] 0.0518 0.013148 0.0284 0.0066
α[4] -23.4839 1.8268 -11.4981 -0.6622

Table 5.3: Model 2 - Lateral Model Coefficients (Equation 5.2) [Kö17]

52

5.1. Resulting Models

KinectV2 Z Phab2Pro Z
α[1] 6.569 -20.2165
α[2] -0.0063664 0.025415
α[3] 4.5605e-06 -1.7253e-06
α[4] -3.2304 11.28
α[5] 0.0029717 -0.01511
α[6] -1.6241e-06 3.0272e-06
α[7] 0.46318 -1.5463
α[8] -0.00042755 0.0019859
α[9] 2.088e-07 -4.2756e-07
α[10] -2.9137 11.0018
α[11] 0.0027723 -0.01431
α[12] -1.6192e-06 2.6006e-06
α[13] 2.0513 -4.9918
α[14] -0.0021142 0.0070606
α[15] 8.908e-07 -1.5391e-06
α[16] -0.27216 0.6874
α[17] 0.00028939 -0.00097463
α[18] -1.1505e-07 2.2922e-07
α[19] 0.30466 -1.2972
α[20] -0.00025628 0.0015642
α[21] 1.6642e-07 -2.8225e-07
α[22] -0.20004 0.54637
α[23] 0.00020537 -0.00078213
α[24] -9.2035e-08 1.7218e-07
α[25] 0.026884 -0.076423
α[26] -2.8628e-05 0.00010955
α[27] 1.1963e-08 -2.6047e-08
α[28] -0.0037752 0.013358
α[29] -0.0029981 0.0101
α[30] -1.9996e-10 -5.6216e-10

Table 5.4: Model 2 - Axial Model Coefficients (Equation 5.3) [Kö17]

σz2(x, y, z) =α[1] + α[2]z
1 + α[3]z

2 + α[4]y
1 + α[5]y

1z1+
α[6]y

1z2 + α[7]y
2 + α[8]y

2z1 + α[9]y
2z2 + α[10]x

1+
α[11]x

1z1 + α[12]x
1z2 + α[13]x

1y1 + α[14]x
1y1z1 + α[15]x

1y1z2+
α[16]x

1y2 + α[17]x
1y2z1 + α[18]x

1y2z2 + α[19]x
2 + α[20]x

2z1+
α[21]x

2z2 + α[22]x
2y1 + α[23]x

2y1z1 + α[24]x
2y1z2 + α[25]x

2y2+
α[26]x

2y2z1 + α[27]x
2y2z2 + α[28]x

3 + α[29]y
3 + α[30]z

3

(5.3)

53

5. Conclusion

[Kö17]

w = max (wa − θ

wa
∗ wb + wc, wc) (5.4)

σx = (1 − w)σx1 + wσx2 (5.5)
σy = (1 − w)σy1 + wσy2 (5.6)
σz = (1 − w)σz1 + wσz2 (5.7)

KinectV2 Phab2Pro
wa 29 8
wb 0.3 0.2
wc 0 0.3

Table 5.5: Weight Function - Coefficients

54

List of Figures

1.1 Images of the two sensors . 2
1.2 Images taken from [KE12] . 3
1.3 Images taken from [NIL12] . 4
1.4 Images taken from [FBR+15] . 5

2.1 Axial noise along the face of the planar target 10
2.2 Lateral noise alongside the edge of the planar target 11

3.1 Images of the setups for the two different sensors in both horizontal and
vertical position . 15

3.2 Images of the four visual streams provided by the Kinect (taken in Kinect
Studio v2.0) . 17

3.3 Screenshot of the C# WPF application used in our experiments 18
3.4 Screenshot of the app for the Phab2Pro used in our experiments 20
3.5 Screenshot of the MATLAB cameraCalibration tool. The left side shows

the input images, the center contains the currently selected image with the
detected pattern highlighted and the right side shows the fitting results (errors
and pattern positions are displayed). [Kö17] 21

3.6 Comparison between two depth images of our second setup using a 3D
checkerboard pattern. [Kö17] . 22

3.7 Comparison of an unscaled and a scaled KinectV2 point cloud 23
3.8 Overlapping points in the point cloud to depth image transformation because

of preprocessing . 25
3.9 Scheme of the plane structure element . 27
3.10 Processing steps of the plane recognition . 29
3.11 KinectV2 edge image for the lateral noise extraction with highlighted border

regions. (z = 1000 mm, θ = 0◦) . 30
3.12 Fitted ground truth plane for KinectV2 point cloud (z = 1000 mm, θ = 0◦) . 33
3.13 Screenshot of the MATLAB curve fitting toolbox 35

4.1 Comparison of the recognition rate of our algorithm for the KinectV2 and
Phab2Pro on the complete dataset . 38

4.2 High noise in the depth images of both sensors for high surface angles (60◦ vs.
70◦) . 38

55

4.3 Comparison of the axial noise distributions for both sensors with different
distances and rotations . 40

4.4 Comparison of the lateral noise distributions in x-direction for both sensors
with different distances and rotations. [Kö17] 41

4.5 Comparison of the lateral noise distributions in y-direction for both sensors
with different distances and rotations. [Kö17] 42

4.6 Calculated standard deviations of the fitted normal distributions for the sensor
noise . 43

4.7 Results of the noise model estimations for the standard deviations of the
sensor noise . 44

4.8 Results of the experimental evaluation of our separate models and the average
model for both sensors. The dot position represents its detected distance and
rotation, while its color represents how much the predicted value differs from
the measured one. 48

4.9 Results of the final axial model for both sensors 49
4.10 Results of the final lateral models for both sensors 50

List of Tables

3.1 Comparison of synchronous and asynchronous measurement times for both
programs . 20

3.2 Camera Intrinsics . 23
3.3 Plane Equation Parameters . 31

4.1 Percent of all measured axial noise distributions that are describable through
a normal distribution (based on the results of the KS-Test) 39

4.2 Axial Model Coefficients (Equation 4.1) . 41
4.3 Lateral Models (90-percentile) . 45
4.4 Weight Function - Coefficients . 45
4.5 Axial Model Fit Key Figures . 46
4.6 Axial evaluation results (RMSE [mm]) for both sensors 47
4.7 Percent of all values below our estimations of the lateral noise calculated by

our final lateral models . 47

5.1 Model 1 - Lateral Models (90-percentile) . 52
5.2 Model 1 - Axial Model Coefficients (Equation 5.1) 52
5.3 Model 2 - Lateral Model Coefficients (Equation 5.2) [Kö17] 52

56

5.4 Model 2 - Axial Model Coefficients (Equation 5.3) [Kö17] 53
5.5 Weight Function - Coefficients . 54

57

Bibliography

[BBA14] Timo Breuer, Christoph Bodensteiner, and Michael Arens. Low-cost com-
modity depth sensor comparison and accuracy analysis. In SPIE Security+
Defence, pages 92500G–92500G. International Society for Optics and Pho-
tonics, 2014.

[BBW+11] Maged N Kamel Boulos, Bryan J Blanchard, Cory Walker, Julio Montero,
Aalap Tripathy, and Ricardo Gutierrez-Osuna. Web gis in practice x: a mi-
crosoft kinect natural user interface for google earth navigation. International
journal of health geographics, 10(1):45, 2011.

[Bou04] Jean-Yves Bouguet. Camera calibration toolbox for matlab. Caltech Technical
Report, 2004.

[CLDB14] Benjamin Choo, Michael Landau, Michael DeVore, and Peter A Beling.
Statistical analysis-based error models for the microsoft kinecttm depth
sensor. Sensors, 14(9):17430–17450, 2014.

[Cor13] Microsoft Corporation. Kinect hardware. https://developer.
microsoft.com/en-us/windows/kinect/hardware, 2013. Accessed:
2017-07-07.

[Cor14] Microsoft Corporation. Kinect for windows v2 sensor. https://news.
microsoft.com/kinect-for-windows-v2-sensor-2, 2014. Ac-
cessed: 2017-07-07.

[ElHY12] Riyad A El-laithy, Jidong Huang, and Michael Yeh. Study on the use of
microsoft kinect for robotics applications. In Position Location and Navigation
Symposium (PLANS), 2012 IEEE/ION, pages 1280–1288. IEEE, 2012.

[FBR+15] Péter Fankhauser, Michael Bloesch, Diego Rodriguez, Ralf Kaestner, Marco
Hutter, and Roland Siegwart. Kinect v2 for mobile robot navigation: eval-
uation and modeling. In Advanced Robotics (ICAR), 2015 International
Conference on, pages 388–394. IEEE, 2015.

[For] Inc Forbes. South korea is using kinect to patrol the dmz.
https://www.forbes.com/sites/erikkain/2014/02/03/

59

https://developer.microsoft.com/en-us/windows/kinect/hardware
https://developer.microsoft.com/en-us/windows/kinect/hardware
https://news.microsoft.com/kinect-for-windows-v2-sensor-2
https://news.microsoft.com/kinect-for-windows-v2-sensor-2
https://www.forbes.com/sites/erikkain/2014/02/03/south-korea-is-using-kinect-to-patrol-the-dmz
https://www.forbes.com/sites/erikkain/2014/02/03/south-korea-is-using-kinect-to-patrol-the-dmz

south-korea-is-using-kinect-to-patrol-the-dmz. Accessed:
2017-06-07.

[Goo] Inc Google. Calibrating your tango device. https://developers.
google.com/tango/hardware/calibration. Accessed: 2017-04-17.

[GPC11] Luigi Gallo, Alessio Pierluigi Placitelli, and Mario Ciampi. Controller-free
exploration of medical image data: Experiencing the kinect. In Computer-
based medical systems (CBMS), 2011 24th international symposium on, pages
1–6. IEEE, 2011.

[Kö17] Thomas Köppel. Extracting Noise Models considering X Y and Z Noise.
Bachelor’s thesis, TU Wien, Austria, 2017.

[KE12] Kourosh Khoshelham and Sander Oude Elberink. Accuracy and resolution of
kinect depth data for indoor mapping applications. Sensors, 12(2):1437–1454,
2012.

[LMM+15] E Lachat, H Macher, MA Mittet, T Landes, and P Grussenmeyer. First
experiences with kinect v2 sensor for close range 3d modelling. The Interna-
tional Archives of Photogrammetry, Remote Sensing and Spatial Information
Sciences, 40(5):93, 2015.

[Ltd] Lenovo Group Ltd. Phab 2 pro smartphone. http://www3.lenovo.com/
us/en/smart-devices/-lenovo-smartphones/phab-series/
Lenovo-Phab-2-Pro/p/WMD00000220. Accessed: 2017-07-07.

[NIL12] Chuong V Nguyen, Shahram Izadi, and David Lovell. Modeling kinect
sensor noise for improved 3d reconstruction and tracking. In 2012 Second
International Conference on 3D Imaging, Modeling, Processing, Visualization
& Transmission, pages 524–530. IEEE, 2012.

[RMYZ11] Zhou Ren, Jingjing Meng, Junsong Yuan, and Zhengyou Zhang. Robust
hand gesture recognition with kinect sensor. In Proceedings of the 19th ACM
international conference on Multimedia, pages 759–760. ACM, 2011.

[SLK15] Hamed Sarbolandi, Damien Lefloch, and Andreas Kolb. Kinect range sensing:
Structured-light versus time-of-flight kinect. CoRR, abs/1505.05459, 2015.

[TM17a] Inc The MathWorks. kstest. https://de.mathworks.com/help/
stats/kstest.html, 2017. Accessed: 2017-08-07.

[TM17b] Inc The MathWorks. What is camera calibration? https://de.
mathworks.com/help/vision/ug/camera-calibration.html,
2017. Accessed: 2017-04-17.

60

https://www.forbes.com/sites/erikkain/2014/02/03/south-korea-is-using-kinect-to-patrol-the-dmz
https://www.forbes.com/sites/erikkain/2014/02/03/south-korea-is-using-kinect-to-patrol-the-dmz
https://developers.google.com/tango/hardware/calibration
https://developers.google.com/tango/hardware/calibration
http://www3.lenovo.com/us/en/smart-devices/-lenovo-smartphones/phab-series/Lenovo-Phab-2-Pro/p/WMD00000220
http://www3.lenovo.com/us/en/smart-devices/-lenovo-smartphones/phab-series/Lenovo-Phab-2-Pro/p/WMD00000220
http://www3.lenovo.com/us/en/smart-devices/-lenovo-smartphones/phab-series/Lenovo-Phab-2-Pro/p/WMD00000220
https://de.mathworks.com/help/stats/kstest.html
https://de.mathworks.com/help/stats/kstest.html
https://de.mathworks.com/help/vision/ug/camera-calibration.html
https://de.mathworks.com/help/vision/ug/camera-calibration.html

[Wie17] Thiemo Wiedemeyer. Tools for using the kinect one (kinect v2) in ros.
https://github.com/code-iai/iai_kinect2, 2017. Accessed: 2017-
04-17.

[XCA11] Lu Xia, Chia-Chih Chen, and Jake K Aggarwal. Human detection using
depth information by kinect. In Computer Vision and Pattern Recognition
Workshops (CVPRW), 2011 IEEE Computer Society Conference on, pages
15–22. IEEE, 2011.

[Zha00] Zhengyou Zhang. A flexible new technique for camera calibration. IEEE
Transactions on pattern analysis and machine intelligence, 22(11):1330–1334,
2000.

61

https://github.com/code-iai/iai_kinect2

	Kurzfassung
	Abstract
	Contents
	Introduction
	Background
	Previous Work
	Scope of this Thesis
	Outline

	Theory
	Sensors
	Errors

	Method
	Experimental Setup
	Data Extraction
	Calibration
	Preprocessing
	Noise Extraction
	Model Generation

	Results
	Recognition
	Noise Distribution
	Noise Model
	Evaluation

	Conclusion
	Resulting Models

	List of Figures
	List of Tables
	Bibliography

