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Kurzfassung

Lichtsimulations-Algorithmen haben sich bei der Nachstellung vieler Effekte, welche in
der Natur vorkommen, als effektiv erwiesen, weshalb sie in der Industrie großflächig
eingesetzt werden. Dies machte die Entwicklung effizienter und robuster Algorithmen
notwendig. PCBPT baut auf dem klassischem BDPT Algorithmus auf. In BPDT wird
ein Strahl sowohl vom Sensor als auch vom Emitter verfolgt. Die beiden Strahlen
werden dann verbunden, um den Beitrag zu Bildpixeln zu errechnen. PCBPT erweitert
diese Idee um das Verbinden mehrerer Emitter Pfade mit einem Subpfad des Sensors
und verwendet Importance Sampling um die geeignetsten Emitter Pfade zu wählen.
Wir implementierten PCBPT im quelloffenen Mitsuba Renderer und evaluierten und
vergleichen den Algorithmus mit BDPT in verschiedenen Szenen.
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Abstract

Light transport simulation algorithms are remarkably adept at recreating a large variety
of light phenomena which occur in nature. As such they have seen widespread adoption
across the industry, which made it paramount to create efficient and robust algorithms.
One recent algorithm which tries to deal with this problem is known as Probabilistic
Connections for Bidirectional Path Tracing (PCBPT). It builds upon the classical
Bidirectional Path Tracing (BDPT) algorithm. In Bidirectional Path Tracing, a ray is
traced from the sensor as well as from the emitter. The two rays are then connected to
calculate the light contribution to image pixels. PCBPT extends this idea to support
connecting multiple emitter paths to one sensor subpath, and introduces importance
sampling as a way of choosing the most suitable emitter paths. Unfortunately, there
was no implementation of PCBPT publically available, which is why we implemented
it into the open-source Mitsuba renderer. We evaluate the algorithm against standard
BDPT on a variety of different scenes. Our comparisons provide insight into what type of
scenes PCBPT can help improve and where the additional computational cost presents
too much of an overhead.
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CHAPTER 1
Introduction

Practical photo-realistic image synthesis, also referred to as physically based rendering,
is one of the long-standing goals of computer graphics research. Its applications range
from the entertainment industry to architectural and engineering visualizations. As such,
it is important to have robust methods which are capable of reproducing a wide variety
of light phenomena that occur in nature. Light transport simulation algorithms aim to
provide a solution to this problem. As their name suggests, these algorithms simulate
how light behaves within a simplified mathematical model. Due to their generality, as
well as recent hardware advancements, such algorithms have seen large-scale adoption in
the industry during the last few decades.

For a simulation to exactly calculate the light intensity of a light ray leaving a point
in a scene, it would have to take into account all of the rays of light incident at that
point. Furthermore, in order to know the intensity of any single one of these rays, the
simulation would need to take into account the infinitely many rays incident at the points
where these rays originated. This implies evaluating infinitely many incoming rays at
each point in space. We can intuitively see that the complete calculation of the light
distribution is an intractable problem for arbitrary scenes.

A popular class of algorithms, jointly referred to as Monte Carlo rendering, uses statistical
methods to estimate the light distribution in a scene in order to estimate how the final
image should look. They rely on the more general framework of Monte Carlo integration,
which we explain in Section 2.2. At their core, instead of fully calculating a pixel value,
they take a finite number of samples from the light distribution and average them. A
sample in this sense represents a path generated by a ray of light as it bounces around the
scene. In practice, the most common procedure for creating samples involves shooting
rays into the scene, starting either from the camera sensor or from the light emitter. Note
that both of these procedures are equivalent, as demonstrated by Sen et al. [SCG+05].
Once the ray intersects with an object, we take into account the effect of the object’s
material properties on the color estimate, and calculate in which direction the ray should
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1. Introduction

bounce next. We repeat this procedure until some criteria is met. In case that we are
shooting rays starting from the camera sensor, the described procedure is known as path
tracing [Kaj86]. If rays start from the emitter, the algorithm is referred to as light tracing
[DW95].

As the number of samples in these algorithms goes to infinity, the process provably
converges to the exact pixel value, and the variance of the pixel value estimator goes to
zero. In practice this often implies that we need to take many samples to get a good
looking result. As taking samples from the distribution is computationally expensive,
certain images often require extensive resources and hundreds of hours of processing time.
This makes designing smarter algorithms which, in various ways, reduce the running
time while remaining robust and converging to the correct result an important and open
problem.

Bidirectional path tracing (BDPT) [LW93, Vea98] approaches this problem by combining
path tracing with light tracing. It relies on a method called multiple importance sampling
in order to optimally combine the strengths of both algorithms. BDPT produces more
than one sample from two paths generated with path tracing and light tracing by
connecting the two paths at different locations to build new complete paths. In other
words, it reuses different sections of each of the two paths to build multiple full paths.

Probabilistic Connections for Bidirectional Path Tracing (PCBPT), as proposed by Popov
et al. [PRDD15], builds upon the ideas of BDPT. It extends them to allow for additional
reuse of both sensor and eye paths, introduces importance sampling to the algorithm as
another technique for improving the convergence speed, and modifies multiple importance
sampling (MIS) to better suit the problem at hand.

Many algorithms also attempt to accelerate the rendering process by reusing already
generated paths to produce multiple samples. For example, even the standard path
tracing algorithm [Kaj86] reuses the path used for the last sample when generating the
next sample. Combinatorial Bidirectional Path Tracing [PBPP11] relies on the idea of
connecting a sensor path to multiple emitter paths and is, in many ways, the predecessor
to PCBPT. We discuss the related work in more detail in Section 2.4.

Importance sampling, in the general sense, is a variance-reduction technique which allows
us to utilize assumptions about which paths are more “important” to explore. Given
that our assumptions were correct, it improves the performance of the algorithm. In the
context of path tracing, most importance-sampling methods attempt to solve the same
problem – given a vertex in a scene and the incoming direction of the ray to that vertex,
decide which direction we should follow next. Importance in this sense is determined by
how large the light intensity contribution of a path to the final estimate is.

To give better intuition on the issue, we will shortly describe two common importance
sampling strategies found in regular path tracing. In one strategy, we would prefer
sampling the ray bounces in directions where the material throughput is high, as we
assume a larger total light contribution that way. Another strategy assumes that the
contribution will be large if it samples towards the light emitters. We provide the
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mathematical background for importance sampling in Section 2.2.1, and in Section 2.3.1,
we show how importance sampling can be utilized in the context of path tracing.

In comparison, PCBPT approaches importance sampling from a different angle. For
a given sensor path and a set of emitter paths, it tries to choose which emitter paths
it should connect the sensor path to, in such a way that the final contribution of the
generated path is high. We touch upon this method in more detail in Section 3.2.

Given that we can have many strategies similar to the two in the previous example, it
would be beneficial if we could combine more of them to get a superior result than we
would have by using any of them individually. Multiple importance sampling (MIS) gives
us a solution to this problem. It allows us to decide whether a sample is “important”
after it has been created.

MIS plays a significant role in BDPT [VG95, Vea98]. In his seminal work, Veach presented
a specific method for MIS, named the balance heuristic, which has strong guarantees
on the quality of the result. Popov et al. [PRDD15] build upon their method and solve
certain issues which arise due to the reuse of emitter paths. Notably, their extensions can
serve as a useful tool not only in the context of PCBPT, but also potentially in any other
algorithms which rely on path reuse. We discuss the issues which arise when reusing
paths in more detail in Section 2.2.3, and explain how PCBPT solves them in Section
3.3.

At the time of writing, the original PCBPT implementation of Popov et al. [PRDD15]
remains closed source and is not available to the public. Implementing the method in
a well-established open-source renderer would enable comparisons with other existing
methods. It would also enable potential future work to build upon the implementation.

In this thesis, we implement PCBPT into the Mitsuba renderer [Jak10]. The Mitsuba
renderer implements many of today’s state-of-the-art methods, facilitating easier compar-
isons with them. Its plugin architecture enables the addition of modules in a non-intrusive
manner. Furthermore, Mitsuba provides a framework for bidirectional methods, which
abstracts away many of the low-level implementation details. The parallelization ab-
straction layer also allows us to do comparisons across many different types of rendering
setups.

We implement PCBPT into Mitsuba, as detailed in Chapter 4, and provide comparisons
with other methods to show how this approach handles a number of complex scenes and
scenarios. In our tests, we noticed significant speed-ups of up when using PCBPT on
difficult scenes compared to standard BDPT. We also noticed a decrease in the RMSE
metric of up to 11% times. We present our results in Section 5.
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CHAPTER 2
Background

2.1 Light Transport Model

2.1.1 Radiometry

Light transport algorithms are formalized through the rendering equation first published
by Kajiya et al. [Kaj86]. To understand the rendering equation, in the next few
paragraphs we will shortly touch upon what it is trying to measure.

In simple terms, we are interested in somehow measuring the light intensity coming to a
pixel on the camera lens. In order to define what “light” actually means in more formal
terms, we rely on a mathematical model called radiometry.

A quantity of interest within this model is the radiant flux. The radiant flux is defined as
the total amount of energy passing through a region of space in an instant of time. The
measured flux changes if we scale the region of space which we are observing. Instead, a
somewhat more suitable measurement would be the irradiance. Irradiance is the density
of the flux arriving at a surface of some defined area, or, in other words, the average
energy per unit area. More precisely, we are interested at the area density of flux at every
single point in the scene. To this extent, we formally define the irradiance at a point p as
the differential flux per differential unit area E(p) = dΦ(p)

dA . Note that the same measure
describes not only the energy density arriving at a point, but also the energy leaving a
point. This related quantity is named the radiant exitance.

However, irradiance and radiant exitance are still unsuitable for our purpose. The
problem is that these quantities do not take into account the incoming direction of the
light. For example, imagine looking at a point and trying to measure how bright it is with
a camera sensor. If if that camera sensor was to measure the radiant exitance at that
point, it would be taking into account all of the light leaving that point, even that which
is not going towards it. Imagine the situation where the radiant exitance is high, but all
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2. Background

of the light is headed in some direction other than where we are standing. Our sensor
would register this spot as bright, even though we would actually see it as completely
black.

The quantity we are really interested in is called radiance. Intuitively, radiance is the
energy incoming at a point from a certain direction. More formally, radiance is defined
as the radiant flux, per unit projected area, per unit solid angle, or in other words, the
irradiance or radiant exitance per unit solid angle,

E(p) = dΦ(p)
dωdA⊥

. (2.1)

This quantity is quite useful, since it represents the smallest building block of our model.
All other quantities can be derived once the radiance is known. Furthermore, assuming a
pixel is a mathematical point, calculating its value is exactly equivalent to calculating
the incoming radiance at that point. Another useful property is that the radiance exiting
a point and traveling down an imaginary light ray until it hits some other object will
be the same at the beginning and at the end of that light ray. For a more in-depth
discussion on the topic of radiometry, refer to Physically Based Rendering: From Theory
to Practice (PBRT) [PJH16], section 5.4.

At this point, we know that we need to be able to calculated the radiance coming to a
point to be able to calculate a pixel’s value. We also know that the radiance incoming to
the pixel is equivalent to the radiance leaving the point in the scene “in front” of that
pixel. As we will see in Section 2.1.2, to know the radiance leaving a point, we would
need to know all of the radiance incoming at that point. The rendering equation allows
us to formalize all of these ideas, which is, in turn, the first step towards solving this
problem.

2.1.2 The Path Space Rendering Equation

At its core, the rendering equation allows us to calculate the radiance leaving a point
in the scene and going along a certain direction. Hence, we can theoretically use the
rendering equation to calculate the incoming radiance to each pixel.

We will here discuss the path-space form of this equation as presented by Veach [Vea98],
since Bidirectional Path Tracing (BDPT) and consequently Probabilistic Connections
for Bidirectional Path Tracing (PCBPT) derive from it more naturally. As previously
mentioned, the rendering equation says that the outgoing radiance at a point in some
direction depends on all of the incoming radiance from all possible directions to that
point. This means that the rendering equation needs to consider the distribution of
radiance in the entire scene.

To model the radiance in a scene, we also need to introduce the concept of paths. A path
of length l, x̄l, is a tuple of points in 3D space, x̄l = x0x1 . . .xl, which lay on surfaces in
the scene. The set of all paths of length l is symbolized with Ωl. Hence, Ωl represents
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2.1. Light Transport Model

the l-dimensional Cartesian product over the surfaces in the scene. Consequently, path
space is defined as the set of all paths in a scene,

Ω =
∞⋃

l=1
Ωl. (2.2)

Figure 2.1 shows an example of a path, x̄3 ∈ Ω3 in a 2D scene.

Figure 2.1: A path of length 3 starting at the sensor (symbolized by the eye), visualized
using PathGraph [Dar].

Each path carries a certain amount of radiance, I, also known as the path contribution.
We, therefore, want to know the value of I coming to a pixel from some point in the
scene. This means that the final value is a result of accumulating the contributions of all
paths which have these two points in common. From there, we can see that the total
radiance coming to a pixel intuitively equals the integral of the contributions over the
subset of path space containing these two points. More formally, this can be written as a
sum of total contributions of paths of increasing length,

I =
∞∑

l=1
Il, (2.3)

where Il represents the contribution of all paths of length l. We can further define the
total contribution of all paths of length l which contribute to I as

Il =
∫

Ωl

f(x̄)dµl(x̄), (2.4)

where f(x̄) abstracts the contribution of a single path x̄, and the area-product measure is
defined as dµl(x̄) = dA(x0) . . . dA(xl).

Here, we will provide a basic definition of f(x̄) for completeness, and refer the interested
reader to PBRT [PJH16], section 14.4. Following Popov et al. [PRDD15], we define f(x̄)
as
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2. Background

f(x̄) = Le(x1 → x2)Πl(x̄)G(xl−1 ↔ xl)W (xl−1 → xl). (2.5)

Le(x1 → x2) represents the emittance, i.e. the radiance emitted from point x0 to point
x1. W (xl−1 → xl) is the importance function [Vea98] determining the sensor’s sensitivity
for a given light ray. G(xx ↔ xy) is the generalized geometric term, which includes the
geometric relations as well as the visibility between two points.

The path throughput is defined as

Πl(x̄) =
l−3∏
i=0

G(xi ↔ xi+1)ρ(xi → xi+1 → xi+2), (2.6)

with ρ being the bidirectional scattering distribution function (BSDF) of the material.
The BSDF of a given material determines the probability of a light ray scattering in a
certain direction at a point, given some incoming angle for the light ray.

As it turns out, calculating a solution to this equation is an immensely difficult problem.
The mathematical background for the most commonly used approach is known as Monte
Carlo Integration. In the next few sections, we will explain the theoretical background
for this method, as well as a few ways of improving it. Finally, we show how it can be
used to give us an estimate for the solution of the rendering equation.

2.2 Monte Carlo Integration
The rendering equation is, in general, not known to be analytically solvable. Due to this
fact, we have to turn to numerical methods instead. Typically, we employ a statistical
method known as Monte Carlo (MC) integration. The result of this method is an estimate
of the true value of a pixel.

Let Ĩ be the Monte Carlo estimate of the integral I of a function f(x). Let Xi, i ∈
[1, . . . , N ] be N independent and identically distributed (i.i.d.) random variables and
xi = Xi their realizations. Let their probability distribution function (PDF) be p(xi) =
P (xi = Xi). Then, the Monte Carlo estimate of the integral of the function is

Ĩ = 1
N

N∑
i=1

f(xi)
p(xi)

≈
∫

D
f(x)dx. (2.7)

Estimating an integral with this method in practice means that we first generate random
samples xi from some distribution p(Xi) on the domain D over which we want to integrate.
Then we evaluate the function at the sampled point f(xi) and calculate the ratio f(xi)

p(xi) .
To get the final estimate, we do this N times and average the results.

We will first provide some mathematical intuition on how and why Monte Carlo integration
works. First, let’s look at one sample and the expected value of the ratio itself. This
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2.2. Monte Carlo Integration

ratio is in itself an unbiased estimator of the actual value of the integral. This is easily
provable as well,

E
[
f(X)
p(X)

]
=

∫
f(x)
p(x) p(x) dx =

∫
f(x) dx = I. (2.8)

However, the error here is potentially extremely large since the sampled value could be
far from the expected value. It would be useful to have a way of making this estimate
converge to the correct value.

To this extent, Monte Carlo integration relies on the Law of Large Numbers. For a
sequence of i.i.d. random variables Xi, i ∈ [1, . . . ,∞), with the expected value E[Xi] = µ
and the variance Var[Xi] = σ2 <∞, the Law of Large Numbers asserts that the sample
mean of the first N elements of the sequence, X̄N = 1

N

∑N
1 Xi, converges in the probability

to the actual expected value, X̄N
P−→ µ.

Combining this with the result above, it is visible that the Monte Carlo estimate of the
integral converges in probability to the true result as the sample size tends to infinity,

lim
N→∞

P(|I − Ĩ| < ε) = 1. (2.9)

Monte Carlo integration has a major advantages over many other numerical integration
methods. In Monte Carlo integration, the rate of convergence of the method remains
constant as the dimensionality of the integration domain increases. This is not the case
for most other numerical integration algorithms, which often suffer from the curse of
dimensionality, where the number of function evaluation increases exponentially with the
number of dimensions. In rendering, we are dealing with integrals over highly dimensional
spaces, where the dimensionality of Ωl tends to infinity as l→∞.

However, Monte Carlo integration also comes with a downside, namely the fact that the
number of samples required to evaluate an integral and get a satisfying result can be
very high. This, in turn, requires extensive computational resources. To help mitigate
these issues, different variance-reduction techniques were devised. One such technique
which allows us to rely on certain heuristics to choose a “better” sampling distribution is
called importance sampling.

2.2.1 Importance Sampling

To understand the usefulness of importance sampling, we need to understand the problems
it tries to solve. The first issue with MC integration, which we touched upon, is that
of the speed of convergence. Additionally, cases where Monte Carlo integration fails to
converge at any reasonable rate occur often, even in simple scenarios. Furthermore, as we
will see in this section, the choice of the sampling PDF matters a lot, and a bad choice
can lead to even worse results than simply using a uniform distribution.
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2. Background

An example of a simple scenario which is difficult for MC integration is a function with a
very high, narrow, peak, but a very wide integration domain. Figure 2.2 demonstrates
evaluating such an example with a uniform PDF. Notice that most of the samples are
distributed across the entire domain, where the function value is very low. This means
that the value of the integral will be underestimated until we eventually “hit” the peak.

Figure 2.2: Using a uniform sampling distribution can often lead to poor performance.
Only few out of the 100 samples managed to take into account the peak of the function.

Instead, we would like to prefer our sampling scheme to somehow adapt to the shape
of the integrand. Intuitively, we want to make it so that each section of the function
is represented in the samples proportional its contribution. This would make sure we
sample the peaks more often, while giving less significance to the low contribution areas.
As it turns out, this is also the optimal strategy to choosing a sampling distribution from
a variance-reduction point of view.

Importance sampling is based on the idea that the variance of the Monte Carlo estimator
is reduced when the sampling distribution is similar to the integrand. Less variance
implies less noise, which in turn implies faster convergence. Let’s assume that we know
this perfect distribution p(xi) and that p(xi) = cf(xi). Since p(xi) needs to integrate to
1, c needs to equal

c = 1∫
f(xi)dx

. (2.10)

Simple algebraic manipulation can show that the variance of the estimator from equation
2.8 when using such a PDF, always equals 0, no matter what the actual sample is, since
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2.2. Monte Carlo Integration

the ratio always evaluates exactly to the integral,

f(xi)
p(xi)

= 1
c

=
∫
f(xi)dx. (2.11)

While this works in theory, in practice we don’t know the exact PDF, since knowing it
would also imply knowing the integral. However, even if the distribution is not a perfect
match for the integrand, the rate of convergence will still increase if they are similar.
This means that we can rely on certain assumptions about the shape of the integrand
and, as long as they are not wrong, the variance will be decreased.

In their essence, all importance-sampling methods are based on this seemingly straight-
forward idea. However, choosing the right heuristic can be a difficult problem in itself.
When it comes to the rendering equation, the integrand usually depends on many factors,
such as material properties, the distribution and shape of lights in the scene and the
occlusions generated by objects in the scene. There are usually multiple strategies to
choose from and no way to know which one is better for the current situation. In the
next section, we will discuss multiple importance sampling as a method for combining
multiple different strategies, to produce a result superior to any of them individually.

2.2.2 Multiple Importance Sampling

As already mentioned, choosing the right sampling distribution is a difficult problem,
as choosing an unsuitable one can lead to an increase in variance. Figure 2.3 shows a
simplified illustration of this problem using a 1D function. In this example, we assume
that we do not know the actual shape of our integrand, shown in blue. However, we do
have two heuristics, from here on referred to as strategies, on which we can rely. Each
of the strategies makes valid assumptions about where one of the peaks is located, and
shapes its PDF in such a way that it perfectly importance samples that peak.

However, if we were to use the PDF in the left image to sample the integrand and end
up producing a sample inside the peak on the right-hand side, we would get a very
large sample value, which would increase the variance of our estimator. For illustrative
purposes, we can assume that the probability for sampling that point equaled 0.01,
whereas the sample value equaled 3. We can calculate the MC estimate (with N = 1),
f(xi)
p(xi) = 3

0.01 = 300, which is relatively large compared to the true value of the integral in
the image which equals 20. This shows how having a low probability of sampling a high
contribution region can pose a problem, even though the PDF approximates another
part of the integrand rather well.

Let us now look at this problem more formally. Without loss of generality let us assume
only two sampling strategies, A and B, with their corresponding sampling PDFs, pA(x)
and pB(x). Our goal is to avoid an increase in variance for the cases where the probability
of sampling a highly contributing part of the integrand is low.
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2. Background

Figure 2.3: Sampling with two different distributions, each approximating one one the
peaks. It is visible that both strategies undersample one of the peaks.

A way of achieving this is by relying on multiple importance sampling (MIS) [Vea98].
MIS allows us to retroactively mitigate the negative effect of an inappropriate sampling
strategy. In this context, retroactively means that we first generate a sample from each of
the strategies, and then assign a weight to each sample with the goal to decrease overall
variance. We will refer to the sample weights for strategies A and B as wA(x) and wB(x)
respectively.

Mathematically, MIS is based on the simple idea that we can separate our estimator into
a weighted sum of two different estimators with different PDFs. The only conditions
imposed are that every non-zero point on the integrand must have a non-zero probability
of being sampled by at least one of the PDFs, and that the weights of the estimators for
sampling the sample point sum up to one. This also allows either of the PDFs to be zero
in some parts of the function.

Therefore, we can turn the single value estimator in equation 2.8 into an MIS estimator,
by asserting the conditions that wA(x) + wB(x) = 1, wherever f(x) 6= 0, and wA(x) = 0
and wB(x) = 0 where pA(x) = 0 and pB(x) = 0. Assuming those conditions hold, and
assuming we have made two samples, a from pA(x) and b from pB(x), it can be shown
that the following is an unbiased estimator of the integral:

Ĩ = wA(a) f(a)
pA(a) + wB(b) f(b)

pB(b) . (2.12)

The conditions can be justified by looking at what would happen to the estimate in a
region where the two sampling strategies overlap as the number of samples tends to
infinity. At infinity, the estimate for the integral within the sampled domain will converge
to the true value for both sampling strategies. If the weights did not equal one when
added together, the final estimate would be inaccurate.

To offer some intuition on why this works, we will show that the expected value of this
estimate is the integral itself, in a similar manner to equation 2.8,
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2.2. Monte Carlo Integration

E[Ĩ] = E
[
wA(x) f(x)

pA(x) + wB(x) f(x)
pB(x)

]

=
∫
wA(x)f(x)dx+

∫
wB(x)f(x)dx

=
∫
wA(x)f(x) + wB(x)f(x)dx

=
∫

(wA(x) + wB(x))f(x)dx

=
∫
f(x)dx

= I.

(2.13)

Now that we have defined the general MIS framework, we are still left with the question
on how to effectively combine the samples, i.e. how we should calculate our weights. This
problem is solved in a provably optimal way for i.i.d. samples, by a method known as
the balance heuristic.

To understand how the balance heuristic works, let us observe sample a, generated
using strategy A. The balance heuristic makes its judgment by looking at what the
probability of drawing that sample would have been had it been generated by using the
other strategy as well. In other words, it not only looks at pA(a), but also observes pB(a),
when calculating the weights. In our two-strategies, one-sample example from equation
2.12, the formula for the balance heuristic weight of the first estimator would be defined
as

wA(a) = pA(a)
pA(a) + pB(a) . (2.14)

The assumption here is that at least one of our strategies is high where the integrand is
high. When this assumption holds, the balance heuristic prevents high variance, since
the low-probability high-contribution samples get weighted down. This also implies that
samples with a high probability relative to both sampling distributions get weighted
more.

In our example, if a had been sampled from an area where pA(a) = cf(a), c ∈ R, and
pB(a) was low, the ratio from equation 2.14 would be close to one, which is what we
want. If, however, a was sampled in an area where pA(a) was low, but f(a) was high and
pB(a) = cf(a), a situation which would normally lead to a variance increase, the weight
wA(a) would be close to 0, reducing the potential negative effects of such a sample.

It is straightforward to extend these ideas to a multi-sample estimator which relies on
many different strategies instead of just two. Here we only present the equation, but all
of the intuition as well as the arguments apply just as easily to this context. Assuming
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l different sampling strategies, where t is the current strategy and xj is the jth sample
taken from that strategy, we define the contribution of that sample to the final estimate
as

Ĩt(xj) = wt(xj) f(xj)
pt(xj) (2.15)

The balance heuristic would then be defined as

wt(xj) = Ntpt(xj)∑l
i=1Nipi(xj)

, (2.16)

where Nt and Ni represent the number of samples in strategies t and i, respectively. The
full MIS estimator is then given by,

Ĩ =
l∑

t=1

1
Nt

Nt∑
j=1

Ĩt(xj) (2.17)

As we have seen, the MIS estimator is an important variance-reduction technique.
Combining it with Bidirectional Path Tracing, as was done by Veach [VG95], makes
for a powerful and robust rendering algorithm. However, as already noted, the balance
heuristic is only optimal under the assumption that the samples come from i.i.d. random
variables. In the next section we will look at what happens to the error produced by the
estimator if the samples are not independent.

2.2.3 Sample Correlation

So far we have discussed the MC estimator in the context of samples from i.i.d. random
variables. To see why the samples being independent is important, we need to look at
the variance of the MC estimator. The variance is given by

Var
[

1
N

N∑
i=1

f(Xi)
p(Xi)

]
= 1
N2

N∑
i=1

Var
[
f(Xi)
p(Xi)

]
+ 1
N2

N∑
i,j=1
i 6=j

Cov
[
f(Xi)
p(Xi)

,
f(Xj)
p(Xj)

]
(2.18)

If two random variables Xi and Xj are independent, the covariance between them is zero.
This means that for i.i.d. samples, the second term is already minimized and the entirety
of the error comes from the first term.

The balance heuristic tries to mathematically minimize the variance of the estimator,
and to do that, it assumes that the covariance is zero. In the original paper, Popov et
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al. [PRDD15] note that these variance-reduction guarantees no longer hold when the
covariance term is present.

It should be noted that sometimes, correlated samples are desirable. In some scenarios,
allowing some covariance to be present can enable other improvements which in turn
reduce the overall error. These improvements could either come from reducing the
variance to such a degree that the covariance term is negligible, or from simply allowing
for quicker evaluation, i.e., making more samples possible in the same amount of time.
In fact, many Monte Carlo integration techniques, such as stratified sampling or the
Metropolis-Hastings algorithm rely, at their core, on generating correlated samples.

In the following sections, we introduce the path tracing algorithm as a way of using MC
integration to estimate the rendering equation, and show how importance sampling and
multiple importance sampling can be integrated into the algorithm. We also discuss
the Bidirectional Path Tracing algorithm as the basis for Probabilistic Connections for
Bidirectional Path Tracing, and discuss how MIS can be used to improve the original
algorithm as presented by Lafortune and Willems [LW93].

2.3 Solution techniques

2.3.1 Path Tracing

Path tracing is an algorithm which tries to estimate the rendering equation (as seen in
equations 2.3 and 2.4) by relying on Monte Carlo integration. On a higher level, the idea
is to produce Monte Carlo samples by sampling the path space in order to evaluate the
incoming radiance at a pixel. As with the general MC estimator, the algorithm averages
all of the contributions. The MC estimate for the contribution of paths of length l is
therefore equal to

Ĩl = 1
N

N∑
j=1

f(x̄j)
p(x̄j) , (2.19)

where x̄j is the jth generated path of length l, f(x̄j) is the contribution of that path, and
p(x̄j) is the probability of sampling that path.

In practice, the naive path tracing algorithm works as follows: To generate a path, we
start off by generating a ray starting from a pixel, and following it into the scene until it
intersects with an object. This represents a path of length one, i.e. x̄ ∈ Ω1. If the object
we intersected is emissive the contribution will be non-zero and we add it to the estimate.

Next, we generate another ray starting from the intersection point by randomly sampling
the ray’s direction from a spherical distribution around the point. Once we have calculated
the nearest intersection point of this ray, we have generated a path from Ω2. In theory,
we would need to continue increasing the path length l so that l→∞. In practice, we
continue generating paths of increasing length until some breaking condition is met. To
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get the final image, the entire procedure is repeated a desired number of times for each
pixel.

The mentioned breaking condition could either be a manually chosen limit on the path
length, which would make the estimator biased, or it could be based on a technique
named Russian Roulette. For more information on this technique, we refer the reader to
section 2.7.2 of Veach’s PhD thesis [Vea98].

In order to evaluate the equation 2.19, we need to divide the contribution of the path,
f(x̄), defined in 2.5 and 2.6, by the probability of sampling the entire path. We define
the probability of generating the path x̄ of length l, with the vertices (x1,x2, . . . ,xl), as

p(x̄) =
l∑

i=1
p(xi), (2.20)

where p(xi) represents the probability of sampling the vertex xi.

One thing to note is that we have a lot of freedom in choosing the sampling distribution
from which we generate directions for rays in paths longer than one. This is where
importance sampling comes into play in the context of rendering. Instead of generating a
uniform point on a sphere, it might be beneficial to sample the ray in a direction which
points towards a light source. If the material properties are suitable (for example, if we
are sampling from a point on a diffuse material), we will always generate a path with a
non-zero contribution this way.

On the other hand, highly reflective materials generate zero contributions for all but a
tiny subset of possible directions. Another way of putting this is that for such materials,
ρ from equation 2.6 equals zero for almost all points in the scene. In this case, it would
make little sense to sample the light source, as the light contribution would almost
certainly end up being attenuated to zero by the material properties. Instead, we would
like to have a high probability of sampling along the subset of directions which generate
non-zero contributions.

These two importance-sampling schemes are often used in conjunction within the path
tracing algorithm. The first strategy, named light sampling, is based on the heuristic
that the contribution will be high in directions pointing towards the light sources. The
second strategy, called BSDF sampling, assumes that the contribution will be high in
directions with low material attenuation.

In Figure 2.4, we see the results of using these sampling strategies, in an example
analogous to the that in Figure 2.3. It is clear from the images that using either of them
alone leads to suboptimal results.

As with our example from Section 2.17, using the balance heuristic greatly improves the
convergence in this scenario as well. To use MIS in this context, we would perform path
tracing by generating samples from both of the strategies and using the balance heuristic
to weight them. Figure 2.5 demonstrates the benefits of this approach.
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(a) Sampling the BSDF. (b) Sampling the emitters.

Figure 2.4: Comparison of two importance sampling-strategies. Notice that they both
have different deficiencies. The smaller spheres are better sampled by light sampling
(right), whereas the highly reflective planes are better served by sampling the BSDF
(left). The scene was originally presented by Veach and Guibas, [VG95], here rendered
using Mitsuba [Jak10].

Figure 2.5: Using MIS to combine light sampling and BSDF sampling. Notice that the
bright pixels caused by high variance are now gone, and the image has significantly less
noise.

2.3.2 Bidirectional Path Tracing

The original Bidirectional Path Tracing (BDPT) paper, as presented by Lafortune and
Willems [LW93], presents two major advantages over the standard path tracing algorithm.
In standard path tracing, if a scene had an occluded emitter, it could be hard for the
sensor ray to reach it. This could potentially waste a lot of computational resources as
only a small subset of all sensor rays would actually make a non-zero contribution to the
pixel value. BDPT tries to deal with this problem by creating an emitter subpath which
would often “escape” the occlusion. The second contribution of BDPT is that it reuses
the generated sensor and emitter subpaths to generate more full paths than possible in
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regular path tracing.

The basic idea behind the algorithm is to start tracing rays not just from the sensor
(path tracing), but from the emitter as well (light tracing). Once the tracing procedure
is finished, we have generated a set of emitter subpaths of increasing length, as well as a
set of sensor subpaths of increasing length. We can connect each sensor subpath to each
emitter subpath to create full paths.

For illustrative purposes, imagine having traced two paths of infinite length: a sensor
path z̄ with vertices (z1, z2, . . . ), and an emitter path ȳ with vertices (y1,y2, . . . ). In
practice, this process actually generates two sets of paths of increasing length, called
subpaths. Since they were generated by the same procedure as in path tracing, each
subpath includes all of the vertices of the subpath generated before it, plus one additional
vertex,

S = {(z1), (z1, z2), . . . }, and (2.21)
E = {(y1), (y1,y2), . . . }. (2.22)

From here on, we could simply follow the same procedure as in naive path tracing and
add the contributions of each of those paths to the estimate. However, a much more
powerful technique relies on the idea that we can connect two subpaths to create a longer
full path. To generate path of length l, such as in equation 2.19, we simply prepend the
vertices of the emitter subpath of length s to the vertices of the sensor subpath of length
t,

x̄ = (z1, . . . ,zt,ys, . . . ,y1). (2.23)

BDPT uses this idea to generate many full path contributions. In fact, it does a Cartesian
product over the two sets and generates |S × E| full paths by combining each emitter
subpath with each sensor subpath.

The contribution of such a path is calculated in the same fashion as the contribution of a
path in path tracing. To be able to do this, we need to pay attention while creating the
emitter subpaths to keep track of the BSDF function values as if they were evaluated
from the reverse direction. The final contribution of a full path then evaluates to

f(x̄) = Le(y1 → y2)Πs(ȳ)f conn(ȳ, z̄)Πt(z̄)W (z2 → z1), (2.24)
f conn(ȳ, z̄) = ρ(ys−1 → ys → zt)G(ys ↔ zt)ρ(ys → zt → zt−1). (2.25)

Calculating the path probability is straightforward. We use p→(x̄) to symbolize the
probability of a path being sampled in the direction away from the emitter, and p←(x̄)
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for the direction away from the sensor. The probabilities of sampling the subpaths, p→(ȳ)
and p←(z̄), are calculated as a product of the probabilities of sampling each vertex in the
path, in the same way as in regular path tracing. The connection between the subpaths
is made deterministically, which means that the probability of connecting ys with zt

equals one. This makes the probability of sampling the full path simply equal to

p(x̄) = p(ȳ)p(z̄). (2.26)

The big improvement to BDPT was brought about by Veach and Guibas [VG95] after
they introduced MIS to the algorithm. The strategies in the sense of BDPT are given by
the location of the deterministic step. Therefore, a path of length l = s+ t could have
been generated in l + 1 different ways, (s = 0, t = l), (s = 1, t = l − 1), . . . , (s = l, t = 0),
where t = 0 is the case where the emitter path intersected the camera directly, and s = 0
is the strategy of standard path tracing. Note that we can evaluate the probability of
each full path being generated by any of these strategies by also calculating what the
probability of sampling the vertices would have been, had they been sampled from the
other direction.

Since the sampling strategy depends on the length of the subpaths, we will opt to use t,
representing the length of the sensor subpath, to indicate the current strategy. Following
equation 2.15, we define the MIS contribution of the jth sampled path x̄j

Ĩt(x̄j) = wt(x̄j) f(x̄j)
pt(x̄j) , (2.27)

and the full MIS estimator for paths of length l as

Ĩl =
l∑

t=1

1
Nt

Nt∑
j=1

Ĩt(x̄j), (2.28)

where Nt is the total number of samples made from strategy t. We define the balance
heuristic for paths analogous to equation 2.16 as

wt(x̄j) = pt(x̄j)∑l
i=1 pi(x̄j)

. (2.29)

In order to make the evaluation more efficient and numerically stable, Veach and Guibas
also presented a recursive evaluation scheme, which allows us to calculate the balance
heuristic weights in linear complexity, instead of the O(n4) which would be required by a
naive implementation [VG95].

BDPT as presented here is a powerful and robust algorithm which is capable of handling
many different scenes. However, some situations still remain solved in a suboptimal
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fashion. This is apparent in highly occluded scenes, or scenes with specular-diffuse-
specular paths. The first issue is directly addressed by Popov et al. in Probabilistic
Connections for Bidirectional Path Tracing [PRDD15]. In the following chapter, we will
explore the theoretical background of this algorithm, and how it contributes to solving
this problem.

2.4 Related Work
Bidirectional path tracing [LW93, VG95] introduced many ideas upon which Probabilistic
Connections for Bidirectional Path Tracing (PCBPT) builds. Lafortune et al. [LW93]
originally provided with the general framework for BDPT. In BDPT, one sensor and one
emitter path are generated, and each pair of subpaths from the two generated paths were
connected to create full paths. PCBPT generalizes this idea so that many emitter paths
are generated and kept in a cache, and, during the evaluation, we connect to many of
them.

Importance sampling introduces the idea of shaping the sampling probability distribution
functions in such a way that variance is minimized. There has been a lot of research
regarding effective importance-sampling strategies.

The idea was first introduced by Jensen [Jen95], who stored a hemispherical histogram
of the particle distribution in a photon map, as viewed from a point in the scene, to
approximate the light distribution in the scene. Hey and Purgathofer [HP01] recognized
that a fixed bin size histogram solution was suboptimal, and opted for a an adaptive
approach, where the histogram bins change in size to allow for a more finely grained
probability distribution for sampling. Vorba et al. [VKv+14] use Gaussian Mixture Models
to learn the particle distribution while rendering. More recently, Müller introduced a novel
data structure known as the SD-tree which is capable of representing an approximation
of the light distribution [MGN17].

All of these methods try to create an importance-sampling scheme which tries to best
choose the what direction which should be sampled next, given a current path vertex
and the incoming direction to that path vertex. Note that PCBPT is orthogonal to any
such method, since it only importance samples light subpaths and has no effect on how
the paths are generated.

Veach and Guibas [VG95] introduced multiple importance sampling (MIS) in the context
of BDPT, and showed that it is an effective way of combining the many different sampling
strategies employed by the algorithm. The MIS weights suggested by them perform
suboptimally when sample correlation is present. As this is the case with PCBPT, Popov
et al. [PRDD15] extend the idea to perform well even with sample correlation present.

Importance Caching [GKPS12] has a number of similar ideas to PCBPT, except in
the context of Instant Radiosity [Kel97]. In their work Georgiev et al. cache the
probability distribution functions (PDFs) for sampling virtual point lights at a discrete
set of importance-cache points. Each PDF optimizes for different lighting conditions
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and represents a different sampling strategy. Additionally, they combine the strategies
in a multiple importance-sampling scheme. Note that a similar MIS approach could be
combined with PCBPT, although this is not mentioned in the original paper.

Other works which sample connections in the context of Instant Radiosity are Bidirectional
Instant Radiosity [SIMP06] and Light Cuts [WFA+05]. As noted in the original paper by
Popov et al. [PRDD15], these approaches rely on intrinsic properties of Instant Radiosity
and are inherently limited compared to full global illumination solutions.

Combinatorial BDPT [PBPP11] introduced the idea of connecting multiple emitter
subpaths with multiple sensor subpaths. No importance sampling of the connections was
done and the connections were made on the GPU. In Bidirectional Light Cuts, Walter et
al. [WKB12] also connect to multiple emitter subpaths. Similar to PCBPT, they try to
keep the number of connections low while preserving the quality of the results. However,
their algorithm produces biased results, whereas PCBPT does not.

At its core, PCBPT tries to solve the problem of highly occluded scenes. It would
therefore be practical if it were easily extensible to include methods which try to handle
other difficult scenarios. Indeed, the fact that PCBPT only samples connections and
makes no assumptions about how the paths are generated makes it compatible with
many other state-of-the-art rendering techniques. For example, it would be straight-
forward to combine it with Vertex Connection and Merging (VCM) [GKDS12] as the two
methods have similarities in their implementation. VCM tries to improve the handling
of specular-diffuse-specular (SDS) paths, a notoriously difficult problem in rendering,
by merging BDPT with stochastic progressive photon mapping [HJ09]. It would also,
theoretically, be possible to combine PCBPT with Markov Chain Monte Carlo methods,
such as Metropolis Light Transport [VG97], or more recently with a work by Šik et al.
[vOHK16], which combines VCM with Metropolis Light Transport

The Mitsuba renderer [Jak10] was designed to be modular, performant and research
oriented. It concentrates on implementing various techniques which might be of interest
to researchers, but which are not implemented in most production-oriented renderers.
This allowed us to provide comparisons to both classical and state-of-the-art algorithms.
It is open sourced under the GPL licence, enabling anybody to see and modify the
existing algorithms. In our work we use Mitsuba’s BDPT implementation as a starting
point. Mitsuba also comes with a out-of-the-box parallel rendering support, which we
utilize in chapter 5 to test our results on a commodity laptop, as well as a 20 CPU cloud
virtual machine. Lastly, due to Mitsuba’s plugin architecture, adding our code to an
existing installation should require minimum changes to the rest of the codebase.
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CHAPTER 3
Methodology

3.1 Algorithm Overview
Bidirectional Path Tracing (BDPT) is a powerful algorithm, capable of handling many
difficult scenes efficiently. However, even though each vertex in the two subpaths can be
importance sampled using standard methods, the connections between the two subpaths
are made in a deterministic fashion. Therefore, BDPT cannot “sample” the connection
towards a direction where the contribution would be large. BDPT also connects each
emitter subpath to each sensor subpath, even if the connections might not produce a
large contribution. Furthermore, BDPT discards the two paths after their contribution
has been accounted for. These factors present potential sources of inefficiency as BDPT
potentially wastes computational resources on low-contribution paths.

If we were instead able to choose which subpaths we connect from a set of possible options,
we could then concentrate the work where it really matters while reusing subpaths to
potentially generate more samples than would be possible with standard BDPT. This is
the idea behind Probabilistic Connections for Bidirectional Path Tracing (PCBPT) by
Popov et al. [PRDD15].

In each iteration, PCBPT first generates W ×H emitter and sensor paths of infinite
length, where W is the image width and H the image height. It takes the first M emitter
paths and stores them in a cache. Then, for each pair of paths, it first evaluates the
standard BDPT contribution for subpaths where either s < 2 or t < 2. For each sensor
subpath of length t ≥ 2, PCBPT importance samples K emitter subpaths to which it
can connect. We discuss the exact theoretical details behind this in Section 3.2.

The subpath-length threshold between BDPT and PCBPT, here set to 2, could be
changed to an arbitrary number larger than 2. In practice we want to utilize the benefits
PCBPT offers, and therefore set the threshold as low as possible. Note that it would not
be possible to use PCBPT for paths where t = 0 or s = 0 since these paths represent the
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case where the sensor and the emitter are intersected during the tracing procedure. For
paths where t = 1 or s = 1, we follow standard BDPT practice and use direct sampling
of the sensor or emitters, respectively.

In order to sample the emitter subpaths, PCBPT uses an importance-sampling scheme
similar to the one presented by Georgiev et al. [GKPS12]. As we show in Section 3.2.3,
generating the perfect probability mass function (PMF) for importance sampling the
connections implies evaluating all of the connections. In order to avoid this cost, PCBPT
stores the perfect PMF only at a small subset of importance-cache records, created at the
vertices of C sensor paths. In order to get the final PMF for sampling emitter subpaths
given a sensor vertex, PCBPT interpolates the 6 spatially nearest importance cache
points. We present one iteration of the high level PCBPT algorithm in Algorithm 3.1.

Algorithm 3.1: One iteration of the PCBPT algorithm.
1 Generate the emitter paths.
2 Generate the sensor paths.
3 Evaluate the path tracing and light tracing contributions.
4 for i← 1 to C do
5 Generate sensor path z̄c.
6 for zc

t ∈ z̄c, where t = 2 to lcz̄ do
7 Generate the PMF for zc

t .
8 Create an importance-cache record from zc

t .
9 end

10 end
11 for i← 1 to number of pixels in the image do
12 Generate a sensor path, z̄.
13 Find the closest importance-cache records.
14 Interpolate the PMF.
15 Sample the interpolated PMF.
16 Add the contribution to the ith pixel estimate.
17 end

We can see that PCBPT potentially reuses the same emitter subpaths when connecting
to a sensor subpath. While this can save on computational resources, the downside is
that it also potentially introduces correlation between two sampled paths. As we saw
in Section 2.2.3, using correlated Monte Carlo samples increases the total variance, and
the variance-reduction guarantees given by the balance heuristic no longer hold. To
help mitigate this, Popov et al. [PRDD15] also present a novel derivation of the balance
heuristic for correlated samples. We give the definition of the modified balance heuristic
in Section 3.3.
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3.2 Importance Sampling Emitter Paths

3.2.1 Connecting to Multiple Emitter Subpaths

The PCBPT algorithm is constituted of a number of building blocks, the most basic of
which only involves connecting a sensor subpath to multiple emitter subpaths, similar
to [PBPP11]. The part of the algorithm dealing with probabilistically connecting to
a subset of these connections can be thought of as an additional optimization. In the
following sections, we ignore the connections between subpaths which are handled by
standard BDPT methods, and concentrate on subpaths where s ≥ 2 and t ≥ 2. As in
the original paper, we will also limit our discussion to the evaluation of the integral
over paths of length l, Il, without loss of generality. Therefore, we will be observing the
connections between a sensor subpath of length t and M emitter subpaths of length s,
such that s+ t = l.

As previously mentioned, PCBPT caches M emitter paths of infinite length, or, in other
words, M emitter subpaths for each possible length of the emitter subpath. It then
connects each sensor subpath of length t to each of the M emitter subpaths of length
s, such that s + t = l. This can also be seen as taking M different samples from Ωl.
Following the definitions from equations 2.27 and 2.28, our MIS MC estimator can be
written as

Ĩl =
l∑

t=1

1
M

M∑
j=1

Ĩt(x̄j). (3.1)

In PCBPT the path x̄j is generated by connecting the sensor subpath of length t with
the jth emitter subpath of length s. To generate Nt = M samples, this procedure is
repeated for all cached emitter subpaths of length s.

While this facilitates path reuse and could save some computational resources, it still does
not allow us to importance sample the connections. To do that, Popov et al. [PRDD15]
introduce the concept of probabilistic connections.

3.2.2 Probabilistic Connections

In order to importance sample emitter subpaths, Popov et al. [PRDD15] suggest using
another MC estimator over the inner sum. In other words, they suggest evaluating a
Monte Carlo estimate of

St =
M∑

j=1
Ĩt(x̄j), (3.2)

by importance sampling an interpolated PMF to generate K samples of Ĩt(x̄j) .
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Monte Carlo estimation of sums works analogous to Monte Carlo integration, except
that all of the domain being sampled is discrete, instead of continuous. In our case, the
sample space is the emitter cache and the PMF is given by the interpolated cache records.
The MC estimator of the above sum is then given by

S̃t = 1
K

∑
x̄k∈K

Ĩt(x̄k)
pmf(x̄k) , (3.3)

where K represents the set of sampled paths. The full PCBPT estimate of the contribution
of paths of length l is therefore given by

Ĩl =
l∑

t=1

1
M

1
K

∑
x̄k∈K

Ĩt(x̄k)
pmf(x̄k) . (3.4)

3.2.3 Probability Mass Function Caching

In order to importance sample the emitter cache, we need a way of generating a sampling
PMF which will prefer subpaths with a higher contribution. To do this, we could evaluate
each of the full path contributions for each sensor vertex, and create the PMF such that
the probability of sampling an emitter subpath is proportional to the contribution of the
path which would be generated by connecting to that subpath. This would create the
perfect sampling PMF for that vertex and the variance of the estimator S̃t would equal 0.

Assuming the sensor subpath z̄, and assuming cache contains M emitter subpaths,
ȳ(1), ȳ(2), . . . ȳ(M), the probability of connecting to the jth emitter subpath is given by
normalizing the contribution of the full path x̄(j) by dividing it with St so that the PMF
would sum up to one,

pconn(j) =
f(x̄(j))
p(x̄(j))∑M

k=0
f(x̄(k))
p(x̄(k))

. (3.5)

However, creating such a PMF incurs the same computational cost as evaluating the full
sum. Thankfully, the value of pconn only depends on the emitter subpath, and the last
vertex in the sensor subpath, as can be shown,

pconn(j) =
f(z̄)
p(z̄)

fconn(ȳ(j),z̄)f(ȳ(j))
p(ȳ(j))

f(z̄)
p(z̄)

∑M
k=0

fconn(ȳ(k),z̄)f(ȳ(k))
p(ȳ(k))

=
fconn(ȳ(j),z̄)f(ȳ(j))

p(ȳ(j))∑M
k=0

fconn(ȳ(k),z̄)f(ȳ(k))
p(ȳ(k))

(3.6)

Due to this, we can instead only calculate the PMFs at a small set of importance-cache
records in the scene and then interpolate them for other vertices. The interpolation
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3.3. Multiple Importance Sampling for Correlated Paths

scheme is described in the supplemental material to the original paper by Popov et al.
[PRDD15].

We can intuitively see why this PMF calculation performs well. It only samples visible
vertices due to the visibility calculation in f conn, it prefers subpaths with larger through-
puts, and importantly, importance samples based on the throughput of the connections,
also contained in f conn.

It should be noted that, whereas in regular importance sampling, we handcraft strategies
for which we believe will produce paths with high contributions, here, we are circum-
venting assumptions about strategies, and simply sampling based on the approximated
contributions. The only assumption we are making in this scenario is that the interpolated
PMFs approximate the perfect PMF sufficiently.

3.3 Multiple Importance Sampling for Correlated Paths
The strength of PCBPT lies in the fact that light subpaths are reused, meaning we have
to trace fewer new paths. On the other hand, reusing paths leads to sample correlation,
which, as we have seen in Section 2.2.3, leads to an overall increase in variance.

Popov et al. [PRDD15] provide a modified balance heuristic which minimizes an upper
bound on the variance, given the presence of correlated samples. They offer the exact
derivation in the supplemental material to their paper. To achieve this, they observe
the sets of uncorrelated samples, Su, and the set of correlated samples, Sc separately.
This separation is necessary as the full PCBPT algorithm contains both correlated and
uncorrelated samples. The uncorrelated samples are the ones handled by standard BDPT,
i.e. samples where either t < 2 or s < 2. All of the samples which are generated using
PCBPT are treated as correlated.

The final modified MIS weights, as originally derived by Popov et al. [PRDD15], are
given by

wt(x̄) = Ntpt(x̄)∑
i∈Su

Nipi(x̄) +
∑

i∈Sc
pi(x̄) , t ∈ Su (3.7)

wt(x̄) = pt(x̄)∑
i∈Su

Nipi(x̄) +
∑

i∈Sc
pi(x̄) , t ∈ Sc. (3.8)

Comparing this to the standard balance heuristic from equation 2.16, we notice that
the Ni and Nt terms are missing for the correlated samples. Intuitively, due to the
path reuse present in PCBPT, one “bad” emitter subpath which produces high-variance
samples when connected to can influence many pixels. In order to mitigate the increase
in covariance, the modified balance heuristic decreases the weights assigned to these
samples. Therefore, the modified balance heuristic reduces the negative effects caused by
path correlation.
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CHAPTER 4
Implementation

In this section we will discuss in more detail how we implemented the Probabilistic
Connections for Bidirectional Path Tracing (PCBPT) algorithm into the Mitsuba ren-
derer. Our practical implementation of PCBPT differs somewhat from the theoretical
explanation presented in the previous chapter. We discuss these differences and provide
justifications for them in Section 4.1. In Algorithm 4.1, we show the detailed pseudo-code
for our implementation. In Section 4.3, we give a short summary of the path we found
useful when taking PCBPT from theory to implementation.

4.1 Modifications

The first modification we made concerns the memory consumption of the algorithm
presented in 3.1. Directly implementing this pseudo-code would require us to store
W ×H emitter and sensor subpaths. We opted for a more optimized implementation,
which, at any point only requires saving the M = 100 emitter paths, and the importance-
cache records with their respective PMFs.

The second necessary modification is due to the fact that Mitsuba features sensors
that can be intersected by rays. In the original paper by Popov et al. [PRDD15], the
renderer only supported pinhole cameras, and connections where t = 0 were impossible.
Therefore, our algorithm differs from the original implementation in that it supports
these connections, and treats them with standard BDPT methods.

The third modification is due to the way Mitsuba handles light-tracing contributions. In
the standard BDPT algorithm, the number of light rays coming to a pixel potentially
equals the total number of rays emitted into the scene. Due to this, the number of
samples for strategies t = 0 and t = 1 in one iteration would typically be treated
as N0 = N1 = W × H. However, we were unable to verify that this is the case in
Mitsuba, as Mitsuba saves these contributions in a separate buffer, named the light image.
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4. Implementation

Furthermore, when calculating the balance heuristic weights, Mitsuba assumes that the
number of connections for these samples equals one, i.e., N0 = N1 = 1. Due to these
differences, the variance of the estimator might differ from the standard MIS estimator.
We were unable to verify whether variance-reduction guarantees of the modified balance
heuristic still hold assuming N0 = N1 = 1 within Mitsuba.

4.2 Algorithm

In our implementation, we start off by generating and saving the M emitter paths.
Note that it is not necessary to store the emitter subpaths which would have a zero
probability of being sampled from any possible importance cache point. This includes
emitter subpaths with zero throughput, and those shorter than two. Subpaths with zero
throughput include vertices where the throughput has been attenuated to zero by Russian
Roulette, as well as subpaths to which we can never connect to by random chance such
that we produce a non-zero contribution. One example of such a subpaths includes those
where the last subpath vertex is located on a material with a Dirac delta BSDF (i.e., a
perfectly specular material). We also do not need to reserve space in the cached PMFs
for subpaths shorter than two, as those are not handled by PCBPT, and the probability
of sampling them needs to equal zero. This seemingly small optimization decreases the
memory consumption to about one third in our tests. We also noticed a slight decrease
in execution times, which we attribute to improved cache locality.

To build the importance cache, we generate C = 0.04×W ×H sensor paths, following
the original paper’s suggestion. At each vertex of each path, z̄c of length lcz̄, we create
an importance-cache record, zc. For each zc, we iterate over all of the cached emitter
subpaths, and store the luminance of its contribution in the PMF. We chose the luminance
as creating a multi-dimensional PMF based on the spectral contribution would make
little sense in practice.

We store these cache records in a kD tree, which is already implemented in Mitsuba.
This allows us to perform fast k-nearest-neighbor queries when searching for the nearest
importance-cache points to use for interpolation. We then normalize the PMF and do a
prefix sum over the values to create a cumulative distribution function (CDF).

The original paper suggests using low discrepancy sampling to generate importance cache
paths uniformly over the screen. During our implementation in Mitsuba, we realized that
there is no way to explicitly seed the low discrepancy sampler plugin. Due to this, we use
the uniform random integer sampling capabilities offered by the Boost library [Boo17].
As Boost is already distributed with Mitsuba, we introduce no new dependencies to the
build.

After the CDFs have been generated, we start with the evaluation of the path contributions.
In order to save some computational resources, we reuse the M emitter paths for the first
M BDPT connections as well. After that, we generate a new emitter path for each pixel
to use for the BDPT contribution. This entire procedure is detailed in Algorithm 4.1.
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4.2. Algorithm

Algorithm 4.1: One iteration of the PCBPT algorithm.
1 for i← 1 to M do
2 Generate and cache an emitter path.
3 end
4 for i← 1 to C do
5 Generate sensor path z̄c.
6 for zc

t ∈ z̄c, where t = 2 to lcz̄ do
7 Generate the PMF for zc

t .
8 Add zc

t to a kD tree as an importance-cache record.
9 end

10 end
11 for i← 1 to number of pixels in the image do
12 Generate a sensor path, z̄.
13 if i < M then
14 ȳBDP T ← ith emitter path from the emitter cache.
15 end
16 else
17 ȳBDP T ← generate a new emitter path.
18 end
19 contribution← EvalBDPT (z̄, ȳBDP T ) + EvalPCBPT (z̄);
20 Add contribution to the ith pixel estimate.
21 end

The function EvalBDPT from Algorithm 4.1 represents the standard BDPT subpath
connection algorithm, except that, in this case, it only connects subpaths where s < 2 or
t < 2. The function EvalPCBPT evaluates the PCBPT contribution and is shown in
more detail in Algorithm 4.2

To evaluate the PCBPT contribution, we start by iterating over the vertices of the sensor
path. For each sensor vertex, in order to accumulate the contribution of K subpaths, we
repeat the following procedure K times. First, we query its 6 nearest importance-cache
points by using Mitsuba’s k-nearest-neighbors functionality. At no point we explicitly
interpolate the entire CDFs. Rather, we use a lazy evaluation scheme.

To sample from a CDF, we first generate a uniform random sample between 0 and 1.
As in standard inversion sampling practice, we find the lower bound for the uniform
sample within our CDF, i.e. the largest CDF value which is smaller than our sample.
We can rely on using the binary-search algorithm to find the lower bound since the CDF
is monotonically increasing per definition. We proceed in standard binary-search fashion
with an index pointing to the middle of the CDF arrays. We interpolate the 6 CDF
values only at that index, and based on that information, move either to the right or to
the left of that index. After the emitter subpath has been sampled, we accumulate its
contribution to the estimate.
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4. Implementation

Algorithm 4.2: EvalPCBPT
Input: Sensor path z̄
Output: PCBPT Contribution to the pixel estimate

1 contribution← 0
2 for zt ∈ z̄, where t = 2 to lz̄ do
3 z̄t ← subpath ending in vertex zt.
4 Query 6 importance-cache points which are spatially closest to zt.
5 for k ← 1 to K do
6 Use binary search to lazily inversion sample the interpolated PMF and

choose an emitter subpath ȳ(j)
s .

7 s← length of the subpath ȳ(j)
s .

8 pconn(j)← probability of having sampled ȳ(j)
s from the PMF.

9 x̄← (z̄t, ȳ
(j)
s ).

10 contribution← contribution+ ws(x̄) f(x̄)
pconn(j)p(x̄) .

11 end
12 end
13 contribution← 1

KM contribution
14 return contribution

Following Mitsuba’s practice, we assume that the number of uncorrelated samples per
iteration equals one. Setting these numbers in equation 3.7, we see that the separation
between the correlated and uncorrelated samples becomes irrelevant, and that the final
MIS weight becomes simply

wt(x̄) = pt(x̄)∑
i∈Su∪Sc

pi(x̄) , (4.1)

for all t.

Note that the final weights assigned to the correlated samples still get weighted down
to account for sample correlation, as the number of samples Nt where t ∈ Sc equals M .
Furthermore, Mitsuba provides no way of specifying the number of samples for a strategy
during the MIS calculation, and assumes that it equals one for all strategies. Due to this,
our implementation simply reuses Mitsuba’s MIS functionality.

4.3 From Theory to Practice
When implementing the algorithm, we found it useful to separate the algorithm into
smaller testable pieces. In our implementation we have discovered a potentially useful
path for taking PCBPT from theory to practice. We present here the steps which we
took in order to arrive at the end result.
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4.3. From Theory to Practice

1. Firstly, we created the Mitsuba boiler-plate code necessary for a new integrator
plugin. Note that the PCBPT integrator is not tile-based, like the BDPT one, but
rather iteration based. This means that each thread is rendering an entire image,
instead of just a tile inside of a larger image.

2. We then created a function which connects two paths and evaluates their contri-
bution. This function can be reused to calculate the final sample value for both
BDPT and PCBPT contributions.

3. Next, we implemented the generation ofM emitter paths and allocated the memory
for the PMFs accordingly. We save the PMFs in contiguous memory and only save
iterators to the beginning of the PMF at each importance-cache point.

4. We implemented an intermediary step, where the t ≥ 2 subpaths were connected
to each vertex of all M emitter paths, and calculated the contribution as given
in equation 3.1. Note that the algorithm at this point equates to Combinatorial
Bidirectional Path Tracing [PBPP11], without the offloading of connections to the
GPU.

5. We continued by including probabilistic connections. At first, we used a uniform
PMF to sample K connections and evaluate equation 3.4, replacing equation 3.1.

6. Next, we replaced the uniform PMF with the PMF of the first nearest neighbor of
the sensor path vertex. The results of PCBPT should start being visible.

7. Finally, we implemented the lazy-evaluation binary search on the 6 nearest neighbors
to sample from the CDF.

We also found it important to be able to display PCBPT connections separately from
the BDPT connection during the development and during the testing. It was also useful
to have scenes with highly occluded emitters since this is where PCBPT has the largest
effect. In Chapter 5, we show how large this effect is, by evaluating the algorithm in a
number of different scenarios.
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CHAPTER 5
Results

It is clear that PCBPT induces the same path-generation cost as BDPT since both
algorithms generate W ×H paths. PCBPT, however, has additional cost for generating
the caches, as well as calculating and interpolating the PMFs. This usually means that
BDPT will manage to produce many additional new paths in the same time compared to
PCBPT. However, the benefits of PCBPT become visible when most of the contribution
is caused by inner paths, i.e., paths where either s ≥ 2 and t ≥ 2. In such cases, the
computational cost is made up for by the faster convergence of inner paths caused by
importance sampling the connections.

Based on this knowledge, we designed our tests to cover a number of different scenarios.
First, we verify that our algorithm converges to the correct result using a very simple
scene, namely the Cornell Box. Furthermore, we create equal-time comparisons with
BDPT on three difficult scenes – the Veach Ajar Door scene, The Breakfast Room scene,
and our own modification of the The White Room scene. For each of the scenes, we
render the images once using all paths for both BDPT and PCBPT, and once using
only the inner paths. We also present the reference images, as well as the normalized
Root Mean Square Error (RMSE) of the equal-time comparisons. All of the used scenes
were obtained from Bitterli’s Rendering Resources page [Bit16]. The rendering was done
on a commodity Lenovo Y50-70 laptop, with an Intel i7-4710HQ processor operating
at 2.50GHz, and 16GB of RAM. All of the scenes were rendered with M = 100 cached
paths, and K = 10 connections.

5.1 Verification
In order to verify our algorithm, we rendered the Cornell Box scene using both BDPT
and PCBPT. The results are presented in Figure 5.1. Note that the images look nearly
identical, as corroborated by the RMSE values. During the development, we have noticed
a major performance penalty for such scenes when using PCBPT. This is to be expected
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as the Cornell Box represents a very simple scene with little geometry and a large visible
emitter. As such, most BDPT connections do actually make non-zero contributions, and
the cache-generation overhead of PCBPT offers no benefits in return.

(a) BDPT, 200 samples per pixel, RMSE 0.004. (b) PCBPT, 100 samples per pixel, RMSE 0.005.

Figure 5.1: The Cornell Box scene which we used for verifying our implementation.
RMSE measured against a reference image rendered at 1000 samples per pixel, RMSE .

5.2 Comparisons
We created equal-time comparisons between PCBPT and BDPT on a number of difficult
scenes. For these scenes, we rendered the ground-truth images using a large number of
samples per pixel, against which we calculated the normalized RMSE. We present the
ground-truth images as well as the results in Section 5.3.

The Veach Ajar Door represents a scene with an occluded emitter. More precisely, the
emitter is located directly behind a slightly ajar door, emitting light into the room through
the opening. This scene is potentially difficult for classical path tracing, as the sensor
paths are unlikely to find the emitter. Figure 5.2 shows the comparison between the two
images rendered using all paths, i.e., both the inner as well as the outer connections,
whereas Figure 5.3 shows the comparison of only the inner paths.

BDPT and PCBPT had a comparable error on the comparison where all paths were
taken into account, with PCBPT being slightly better than BDPT. This is justified
by the fact that even though the emitter is occluded, due to its position, most of the
rays coming from it still reach the sensor. This means that light tracing actually has a
significant contribution to the final estimate. In Figure 5.3, we can see that the inner
paths for PCBPT do converge a lot faster than for BDPT. For the inner paths, RMSE
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improved by around 4% for the inner paths, compared to the 1% for the image rendered
using all paths. This leads to the conclusion that most of the noise in the image rendered
using PCBPT comes from the outer paths, and that BDPT is able to create more outer
subpath contributions in the same time to overcome the lack of quality in the inner paths.

(a) BDPT, 120 samples per pixel, RMSE 0.073 (b) PCBPT, 32 samples per pixel, RMSE 0.061.

Figure 5.2: Veach Ajar Door all paths comparison.

(a) BDPT, 120 samples per pixel, RMSE 0.088. (b) PCBPT, 32 samples per pixel, RMSE 0.040.

Figure 5.3: Veach Ajar Door inner paths comparison.

We modified The White Room scene to produce a more difficult lighting condition, by
resizing the blinds covering the windows such that most of the illumination coming
into the room is due to a small opening in the middle window. We notice significant
improvements for this scene when using PCBPT. The RMSE error for the images where
all of the paths were accounted for improved by 11%, and by 13% for images where only
inner paths were used. This is to be expected as only a small subset of rays actually
makes it into the scene. Therefore, it makes sense to importance sample the rays to
which we can connect.

The Dining Room scene represents a failure case. It contains a large emitter on the side
of the room, behind a partially occluded window. However, given that the emitter is only
somewhat occluded, most of the paths from the camera can actually directly sample the
emitter and vice versa. Furthermore, most of the vertices are connectable as they are
all located inside of the room. This makes this scene highly suitable for BDPT, as is
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(a) BDPT, 120 samples per pixel, RMSE 0.130. (b) PCBPT, 32 samples per pixel, RMSE 0.022.

Figure 5.4: The White Room all paths comparison.

(a) BDPT, 120 samples per pixel, RMSE 0.147. (b) PCBPT, 32 samples per pixel, RMSE 0.013.

Figure 5.5: The White Room inner paths comparison.

also visible from the results. PCBPT does show a much lower RMSE on the inner path
comparisons, but this is overshadowed by the many outer path contributions BDPT is
able to evaluate. Furthermore, in the PCBPT image, more noise is visible on the chair,
where the BSDF is mostly specular. As it is impossible to connect to a vertex on a
specular surface, PCBPT can offer no improvement in this situation, and most of the
contributions need to come from standard path tracing.

5.3 Ground-Truth Images and The Root Mean Square
Errors

In order to provide RMSE values, we generated a number of ground-truth images, shown
in this section. The images are shown in Figures 5.8, 5.9, and 5.10. For an easier overview,
we show all of the RMSE in Table 5.1, as well as the ratio between the RMSE for the
BDPT image, EB, and the RMSE for the PCBPT image, EP .

38
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(a) BDPT, 150 samples per pixel, RMSE 0.022. (b) PCBPT, 48 samples per pixel, RMSE 0.035.

Figure 5.6: The Dining Room all paths comparison.

(a) BDPT, 150 samples per pixel, RMSE 0.021. (b) PCBPT, 48 samples per pixel, RMSE 0.011.

Figure 5.7: The Dining Room inner paths comparison.

All Paths Inner Paths
BDPT PCBPT EB

EP
BDPT PCBPT EB

EP

Veach Ajar Door 0.073 0.061 1.20 0.088 0.040 2.20
The White Room 0.130 0.022 5.90 0.147 0.013 11.31
The Dining Room 0.022 0.035 0.63 0.021 0.011 1.91

Average 0.075 0.040 2.60 0.085 0.021 5.14

Table 5.1: Normalized Root Mean Square Error for the images from Section 5.2. A lower
value means a better result.
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(a) All Paths. (b) Inner paths.

Figure 5.8: Veach Ajar Door ground-truth images.

(a) All paths. (b) Inner paths.

Figure 5.9: The White Room ground-truth images.

(a) All Paths. (b) Inner paths.

Figure 5.10: The Dining Room ground-truth images.
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CHAPTER 6
Conclusion

We implemented Probabilistic Connections for Bidirectional Path Tracing, and showed
that it significantly improves the convergence of inner paths, as well as the overall
convergence of scenes with very difficult lighting conditions. However, in scenes where
the emitter was easily reachable by the sensor rays and vice versa, PCBPT incurred an
overhead.

In this sense, our results are in line with those of Popov et al. [PRDD15]. They reported
an average ratio of 6.4 between the L1 errors of BDPT and PCBPT for images rendered
using the inner paths, whereas, for our tests, the average ratio of the RMSE equaled 5.4.
It should be noted that all of our tests were done with the same value for K. We are
confident that further improvements can be attained by fine-tuning of the parameters.
We were unable to test our implementation on the scenes they used as they were not
available to the general public.

The method could be improved by automating the procedure of choosing the values for
M and K, such that there is less overhead for relatively simple scenes. Improving paths
where s < 2 or t < 2 would potentially provide a large improvement, as PCBPT makes
no advances in this regard. Another improvement could be made regarding specular-
diffuse-specular paths. Currently, PCBPT does nothing to help with these, and is, in
theory, orthogonal to methods such as Vertex Connection and Merging [GKDS12], or
Metropolis Light Transport [VG97]. Other PMF sampling strategies could be devised
and joined together with MIS. Regarding our implementation, future work would need to
verify the correctness of the MIS weights. Further experimentation could be done with
the parameters, as all of our tests were done using the same values for M and K.

As shown in our results, PCBPT is a simple, yet powerful method for variance reduction
of contributions produced by inner paths. For the most difficult scene, we were able to
improve the RMSE metric by 11% compared to BDPT when taking into account both
inner and outer paths, and by 13% for just the inner paths.
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