
Collaborative Procedural
Modeling driven by User

Feedback

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Medieninformatik und Visual Computing

eingereicht von

Andreas Winkler
Matrikelnummer 1129264

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr. Michael Wimmer
Mitwirkung: Mag. Martin Ilčík

Wien, 19. April 2017
Andreas Winkler Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Collaborative Procedural
Modeling driven by User

Feedback

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Media Informatics and Visual Computing

by

Andreas Winkler
Registration Number 1129264

to the Faculty of Informatics

at the TU Wien

Advisor: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr. Michael Wimmer
Assistance: Mag. Martin Ilčík

Vienna, 19th April, 2017
Andreas Winkler Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Andreas Winkler
Neunkirchnerstraße 17
2732 Willendorf

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 19. April 2017
Andreas Winkler

v

Abstract

In this work a user centered procedural modeling framework is proposed which combines
rule based content generation with the concepts of recommendation systems. Using the
ACGAX modeling language, artists are able to write grammar scripts for the creation of
diverse and complex 3D scenes, controlled with a simple goal notation. These scripts are
evaluated and executed by the system to generate 3D-shapes using stored production
rules from the cloud. The rule selection process is based on content based information
filtering systems to create results matching the user’s preferences. User feedback is
collected in a way that integrates explicit feedback into the modeling work flow via
manual locking operations. These actions allow users to directly control the derivation
process of grammars by fixing certain parts of the derivation tree. The goal of this
research is not only to create a modeling tool, but a growing database of grammars,
rules and feedback records. By observing how users interact with the grammars, the
system learns which rules are most suitable for certain goals. The proposed system
is designed to to learn from a user’s actions to improve the cloud based rule selection
process for future modeling tasks.

vii

Contents

Abstract vii

Contents ix

1 Introduction 1
1.1 Motivation . 1
1.2 Problem statement . 1
1.3 Scalability . 2
1.4 Michelangelo modeling system . 3
1.5 Existing framework . 5
1.6 Approach . 7
1.7 Structure of the work . 8

2 Related Work 9
2.1 Procedural content generation . 9
2.2 Recommendation systems . 12

3 Concept 15
3.1 Scenario . 15
3.2 Challenges . 16
3.3 Approach . 17

4 Technical Details 21
4.1 Feedback . 21
4.2 Rule probability . 24
4.3 Goal sequences . 26

5 Implementation 29
5.1 User interface . 29
5.2 Use cases . 31
5.3 Program architecture . 32

6 Results 41
6.1 Example scene . 41

ix

6.2 Cloud development . 44
6.3 Performance . 51

7 Conclusion & Future Work 55
7.1 Limitations . 55
7.2 Future work . 56

List of Figures 59

List of Tables 59

List of Algorithms 61

Bibliography 63

CHAPTER 1
Introduction

Procedural modeling is a popular approach to create detailed 3D environments for the
use in entertainment media or urban planning. Most procedural applications generate ar-
chitectural content via symbolic matching of design grammars, which are able to generate
a vast variety of visual content from a set of rules and parameters. While artists provide
rules and grammars, the modeling framework generates visual scenes via automatic rule
selection. With large scale projects and multiple artists involved, the complexity of the
rule selection process increases greatly. In this work, the possibilities of a collaborative
procedural modeling framework are explored, with the focus on user interaction.

1.1 Motivation
The core motivation behind this work is content creation. Any application of com-
puter graphics requires visual content to be displayed. While the scope of computer
generated (i.e. algorithmically generated) content is nearly limitless, it often misses cer-
tain aspects of user orientation. In most applications, manual content generation is not
only far more specific to a user’s needs but also incorporates an artists’ skill into the
generation process, which is something that modeling algorithms cannot really achieve.
The motivation for this work is to combine the huge possibilities of procedural modeling
with the user centered design of a manual modeling tool. The goal is to create a versatile
modeling framework for procedural creation of 3D shapes while incorporating manual
tools which allow artists to incorporate detailed design decisions into the procedural
generation process.

1.2 Problem statement
With a steady increase in computation power comes a higher demand for digital assets,
both in quality and quantity. This demand also driven by increasing standard screen

1

1. Introduction

resolutions for most devices. Moving to HD and 4K resolutions, the differences in the
required level of detail of the displayed content is significant. Procedural content
generation or procedural modeling describes the task of creating digital assets such as
3D models, textures, sounds, etc. from the ground up by using code statements and
scripts rather than recording or directly modeling objects and assets from the real world
[STN16].
One important approach - in the scope of this thesis - at procedural modeling is the use of
formal languages to describe the construction of an object. In the context of 3D-modeling,
symbols are used to describe shapes which are then processed and transformed into other
shapes by a set of production rules. By applying a combination of rules, weighted by
certain criteria, a potentially endless variety of objects can be created from very little
amount of code. While many languages for the creation of shapes have been developed,
a significantly lower amount of research has been done for a meaningful selection and
weighting of rules.

1.3 Scalability

With the use of procedural modeling frameworks in large scale projects, modeling tasks
might greatly exceed the capacity of a single artist. Therefore, collaborative work on a
shared rule-base is necessary, which results in a very large amount of data that needs
to be managed. With more rules to choose from, the complexity of the rule selection
process increases. Ideally, a modeling framework would select rules in a way that is
restrictive enough to solve a specific goal, but allows for meaningful variation to utilize
the benefits of collaborative work. The difficulty of this task increases with the number
of involved artists and their supplied rules. In such a scenario, a purely automatic rule
selection process can no longer fulfill these requirements. Therefore, some level of control
has to be shifted to the user.

1.3.1 User feedback

Complex grammars are able to create highly detailed and versatile scenes, which makes
it very important that the user can rely on the system to respect his or her preferences.
Ideally, rules should be automatically selected matching not only the context but also
the user’s preferences and feedback. In a large collection of grammars and rules, specific
results could be generated from few lines of code. The difficult part is to choose the
most suitable rules to create results matching the users’ demands. The selection of rules
therefore depends on the collection and evaluation of large amounts of user feedback. As
a part of this problem it is necessary to find suitable representations for a user’s feedback
as well as a way to retrieve it. For the selection of rules, the user’s preferences need to be
extracted from this information in order to create suitable end results for the user. This
challenge can be defined as user-centered rule selection and is the main problem I
am addressing in this thesis.

2

1.4. Michelangelo modeling system

1.3.2 Recommendation systems

The general concept of user-centered rule selection is closely related to the idea of rec-
ommendation systems [FJN+14]. A recommendation system is a type of information
filtering system, which aims to select information or data for a user by predicting his
interests and preferences based on previous user feedback. Unrelated to procedural con-
tent generation, these systems are utilized in a wide area of fields, mostly for search
queries and ranking systems to provide the most meaningful and relevant items for the
user. Advanced systems not only consider the preferences of a single user, but derive
them from other users with common interests. A growing userbase results in a constant
learning process for the system.
While the utilization of user feedback is tightly coupled in the software of online shops,
media databases or social networks, these features are insufficient in the context of pro-
cedural modeling. The concepts described in this thesis aim to close this gap.

1.4 Michelangelo modeling system
The procedural modeling language used in this project is based on the Michelangelo col-
laborative modeling framework by Martin Ilčík and Michael Wimmer [IW16]. Michelan-
gelo is the first cloud based collaborative design framework. Its main contributions
are a cloud repository of grammars containing rules which are shared between multiple
artists over different grammars. The authors focused on advancing the possibilities of
current procedural modeling frameworks to a cloud environment suitable for multiple
users, greatly reducing the required management effort.

1.4.1 Overview

The framework generates 3D-shapes by parsing grammar scripts based on C# syntax.
The files serve as a runnable script containing coding elements such as variables or loops
which help to generate containers for grammar symbols and rules. In the most basic
case, a grammar script defines Axioms and Rules, whereas Rules are applied based on
an Axiom’s goals.

1.4.2 Grammars

A grammar serves as a ’recipe’ for a 3D model. It is a script file containing combination
of code statements and definitions for axioms and rules. Axioms are initial shapes, rules
are the operations transforming them into different, more refined shapes.

Axioms of a grammar are evaluated step by step: The system selects a single non-
terminal axiom and requests a rule. If a rule is found, the shape is transformed accord-
ingly and the system continues with the next axiom. If no more rules can be applied to
an active axiom, it becomes a terminal shape and its derivation is finished.

3

1. Introduction

1.4.3 Axioms

An axiom is a basic non-terminal symbol representing a three-dimensional box, which
can be initialized with specific position, size and goals. Rules are applied to axioms,
changing its appearance and semantics. When no more rule can be applied to an axiom,
its derivation is finished and its shape is final. Axioms are always limited to the grammar
they were defined in. They are not pushed into the database and are never accessed by
other grammars.

1.4.4 Rules

Rules are operations iteratively applied to axioms in order to form more complex shapes.
There are different types of rules applying both geometric and semantic changes to
axioms. These include:

• Transformation rules include most basic geometric transformations, such as
translation, scaling and rotating. Advanced parameters are available to specify
rotation origins or selecting between local and global scaling.

• Shape rules are more complex transformations, changing the dimension of a
shape, or creating multiple new shapes by splitting, copying or repeating an exist-
ing shape.

• Material rules change the color, hue or saturation of a shape.

• Deformation rules taper, shear or bend a shape.

• Semantic rules include rules to add goals and attributes to an object, or to set
a shape’s final geometry to a specific geometric primitive.

• Concat is a special rule which sequentially applies a collection of other rules to a
shape in the same step.

Rules are not limited to the grammar they are defined in. When parsing a grammar,
the framework selects any matching rule from all available grammars to apply to an
axiom. Local rules (i.e. rules from the current grammar) are preferred over global rules.
Grammars therefore do not necessarily have to contain both Axioms and Rules. When
parsing a grammar with axioms, but no rules, the framework will attempt to apply global
rules. A grammar without axioms, will provide rules for other grammars’ axioms.

1.4.5 Goals

Goals are fundamental for the derivation of an axiom, as they steer the selection of rules.
Rules are selected based on matching goals with the axiom. When an axiom is defined,
a list of goals is provided. The goals are strings, serving as keywords to describe the
purpose of the object.

4

1.5. Existing framework

As counterpart to the goals provided by axioms, rules fulfill goals. Each rule is defined
with a list of goals that it is supposed to fulfill. This means a rule can only be applied
to an axiom containing the goal(s) it fulfills.

1.4.6 Attributes

Attributes can be seen as additional parameters for axioms which can be added via a
specific rule. An attribute consists of a key and a primitive value. When applying a rule,
attribute values can be used as parameters. Alternatively, additional constraints based
on attributes can be added to rules.

1.5 Existing framework

The modeling framework used in this project is an offline version of Michelangelo which
provides all the necessary tools to create and parse grammars and render the resulting
objects.

1.5.1 Rule selection

The rule selection process is the core component of this system. When a grammar
is executed and evaluated, the system needs to choose a rule to be applied. Before
probabilities for the actual rule selection process are calculated, the system needs to
find out which rules can be applied in the given context. A rule is only applicable if
it meets certain requirements, which are composed of goals, tags and attributes. Goals
are the key elements of a grammar and control the order of rule application. During
derivation, the system first selects one of the shape’s goals. Then, the system searches for
applicable rules which fulfill this goal (Rules which fulfill multiple goals are currently not
considered). Finally, one of these rules is chosen at random. In the proposed extension
to the framework, the probabilities for the rule selection are calculated with the aid of
retrieved user feedback.

Rule sources

A major aspect of this project is that rules are not limited to a single grammar. While
building a specific 3D object with a specialized grammar script is an important task,
this system focuses on the combination of rules from different grammars. For the task
of rule selection, the system either retrieves rules from the local grammar, or from the
cloud. Whenever a rule to fulfill a specific goal is sought, rules defined in the grammar
that is currently parsed are preferred. If no local rule is applicable, the system looks for
stored rules in the cloud which originated from a different grammar.

This also means that any local rule within a grammar has to be made globally available
for other grammars. For this task the system utilizes a database were the a grammar’s

5

1. Introduction

rules are stored when it is parsed. Global rules are retrieved from this database during
the derivation of a grammar, when no matching local rule was found to fulfill a specific
goal.
Rules are retrieved in this order to give users more control over their grammars. Defining
rules locally will ensure some level of deterministic results within the grammar and allows
the user to control for which parts of his grammar he wants to retrieve rules from the
cloud.

1.5.2 Goals

When defining a grammar, goals are assigned to both axioms and rules, in the form of
strings. These goals provide the semantic information required to steer the derivation
process. An axiom is always defined with a set of goals. While this may differ depending
on how rules are set up by the user, an axiom’s goals should describe the desired end
result of the shape. For instance, creating an axiom with the goal "chair", provides the
basis for the derivation and creation of a chair model, assuming appropriate rules are
provided.
To achieve this, goals are also assigned to rules, to specify which goals this rule is
supposed to fulfill. In our example, in addition to an axiom with the goal "chair", the
user could define a rule which fulfills the goal "chair". When this rule is applied, the
axiom’s goal is fulfilled (i.e. it becomes inactive). In order to create detailed results,
rules can also assign new goals to a shape. While fulfilling the goal "chair", a rule could
split the shape into new parts and assign different goals to them. E.g: a rule fulfills
"chair" and creates three new shapes with the goals "lean", "seat" and "legs". The user
could then define rules to fulfill these goals to further refine the model.
When an axiom is defined with multiple goals, only one of them is fulfilled at a time in
the most common case. This leaves the resulting shape with an unfulfilled goal from the
initial definition, in addition to possibly multiple goals that were added by the applied
rule. When a shape has multiple unfulfilled (=active) goals, the order of assignment
is important. Within an axiom and its derived shapes, the system keeps track over
the timestamps (i.e. the index of the derivation step) of assigned goals. For further
derivation of a non-terminal shape, the system always attempts to fulfill the oldest goal
first. If the system cannot find an applicable rule to fulfill the oldest goal, the second
oldest goal is next in line. However, the oldest unfulfilled goal is kept in the shape
and will be evaluated first again in the next derivation step. As an addition to the
framework, the special case when multiple goals were assigned in the same derivation
step is addressed. A special algorithm is applied to find the optimal order of application
(see Section 4.3).

The assignment and selection of goals basically follows a First-in-First-out strategy. This
chosen application order is important for the quality of created results for more complex
grammars. Generally, goals that were specified earlier correspond to the general appear-
ance of a scene (e.g. "chair", "house", etc.), while later goals describe more detailed
features.

6

1.6. Approach

1.5.3 Attributes

While goals control the derivation of axioms in a grammar, attributes are used for de-
tailed rule selection and application. Attributes are identified with a name and contain
numerical values, boolean values or strings. Attributes can be assigned to a shape by
applying specific rules. Attribute values can then be used by other rules as parameters.
For instance, an attribute "size" with the numeric value 1.5 is assigned to a shape. Later,
a scaling rule reads the "size" attribute from the shape and scales the object by a factor
of 1.5. Attributes can also be used for rule selection by adding constraints to a rule. In
the above example, a constraint could be assigned to the scaling rule, so that it can only
be applied to shapes with the attribute "size".

1.6 Approach
This project’s goal is to extend the versatility of the existing procedural modeling frame-
work while focusing on user feedback. The main idea is to provide a tool which allows
a user to define grammars for the creation of 3D shapes and to provide feedback on
the resulting objects. The presented project aims to combine the field of procedural
content generation with the possibilities of recommendation systems. The main benefits
I attempt to achieve with the proposed concept are the following:

• A scalable system, able to contain large amount of assets and user input.

• A user centered design, allowing to create matching results, with very little
input required.

• An adaptive environment, capable of learning suitable rules.

1.6.1 Scalable system

The system is designed to work with an arbitrary amount of available data. The goal is
to provide suitable results for a user-defined grammar. Depending on the context of the
grammar, the selected rules could origin from the user’s grammar itself, or it could be
selected from one grammar out of thousands of available ones in the database, based on
context and user feedback.

1.6.2 User centered design

Procedural modeling languages describe the construction of 3D Objects with symbols
and code statements. Mostly depending on the code length, this ranges from a simple
box to a large cathedral with detailed ornaments. While processing power and rendering
time certainly impose a limit on the level of detail of a 3D Object, the modeling process
itself is mostly limited by the amount of work an artist is willing to do.
The proposed system attempts to greatly simplify this process, by meaningful and con-
text specific selection of rules from a database, while allowing the user to improve the

7

1. Introduction

engine itself by providing positive or negative feedback for a created object. With a prop-
erly filled database, the required amount of rules for a specific task should be greatly
lowered.

1.6.3 Adaptive environment

Procedural content generation is used to create a vast amount of unique assets. The
dynamic nature of generated content is mostly due to variable parameters. While this
does allow for a large variety, the objects created from a single script or grammar often
only differ in scale, size, or color of shapes.
Each created grammar will provide new rules for the database. My approach is ex-
panding this aspect through an adaptive learning process: Provided user feedback will
improve the selection process for the rules for a particular shape. Even in an environ-
ment with unsuitable rules (i.e. rules which do not meet the user’s demands in a specific
application), user feedback will continue a steady learning process which moves the focus
of the selection algorithm to more suitable rules. The goal is to provide a self-sustaining
dynamic procedural modeling engine, which constantly improves its average results.

1.7 Structure of the work
The following chapters of this work describe the theoretical background for the methods
used for this project. An overview of related techniques and interesting projects in the
fields of procedural modeling and information retrieval is provided (Chapter 2).
The proposed concept, its challenges and goals, as well as alternative approaches are
presented. I give an insight in the decisions made during development of the proposed
system (Chapter 3).
In the next chapters, I will describe the technical details and the implementation of the
project in detail (Chapter 4). This includes a description of the architecture, algorithms
and user interface, as well as an overview of the recommended usage of the tool (Chapter
5). Last but not least, various results from different applications of this systems are
presented (Chapter 6). I go into detail about the benefits and limitations of this system
as well as possible future extensions and improvements (Chapter 7).

8

CHAPTER 2
Related Work

The use of design grammars is very common in procedural modeling applications. The
languages used in recent frameworks such as Michelangelo are mostly based on a range of
notable developments from the last few decades. In this chapter an overview of the most
groundbreaking research in procedural modeling is presented. As user feedback is an
important part of this work, an introduction to recommendation systems and its origins
is shown. Recommendation systems as well as the retrieval of user feedback exist in
various forms and variants, all with different challenges and benefits which are explored
in this chapter.

2.1 Procedural content generation

The field of procedural content generation is evolving rapidly. Most recently developed
algorithms and projects are however largely dependent on a few basic techniques.

L-systems

L-systems, or Lindenmayer-systems are a type of a formal grammar. They were intro-
duced by the Hungarian theoretical biologist Aristid Lindenmayer in 1968 [Lin68] to
describe the behavior and growth process of plants. In procedural modeling, this tech-
nique is used to generate realistic plant models as well as self-similar fractals.
An L-system is a parallel rewriting system: Starting with an initial string, symbols are
iteratively replaced by applying production rules. An L-system consists of:

• An alphabet of symbols including terminal and non-terminal elements

• An axiom, or initiator string, containing symbols from the alphabet defining the
initial state.

9

2. Related Work

• A set of production rules, transforming a string of symbols from the alphabet into
a successor string.

Starting with the initial string, in each iteration all symbols are derived in a parallel
manner. When a production rule matching a symbol exists, it is replaced by that rule’s
output symbol. The system terminates when no more symbols can be changed. For the
creation of 3D objects, additional procedures are required to translate terminal symbols
into 3D shapes. Parametric L-systems additionally allow attributes to be assigned to
symbols. This allows to add additional constraints to production rules based on attribute
values. A vast amount of procedural modeling projects either directly utilize L-Systems
or a language that is based on them.

Shape grammars

Shape grammars are a type of production systems for the generation of geometric shapes.
They were first presented by George Stiny and James Gips in 1971 [SG71] to describe
paintings and sculptures. The formalism has since then been adapted and utilized in
various fields such as architecture, industrial design and engineering.
Shape grammars are closely related to L-Systems, but instead of working with strings,
production rules are directly applied onto geometric shapes. A shape grammar consists
of a collection of shape rules as well as a generation engine which steers the rule selection
and application processes. Shape rules describe how shapes are transformed. Each rule
consists of an input and output side, both sides containing a number of shapes as well
as a marker. The marker is a non-terminal symbol which helps to orient and position
the new shape. A minimal shape grammar contains a start rule, at least one production
rule and a termination rule, which is required to stop the process - this is usually done
by removing the marker.

2.1.1 Recent developments

Based on basic techniques such as L-systems or shape grammars, numerous procedural
modeling applications based on formal grammars have been developed. In this section
a few of the most influential contributions are presented.

CityEngine

Parish and Müller [PM01] introduce CityEngine, a procedural modeling framework for
the creation of 3D scenes of cities (not to be confused with ESRI’s CityEngine, its in-
direct successor based on a different approach). The system is user-controllable and is
capable of creating entire urban environments from geographical and statistical input
data. This includes the generation of road networks, distribution of structure space as
well as the creation of building models.
In the scope of this thesis, we are mostly interested in the building modeling process.
CityEngine uses a procedural modeling system based on parametric L-Systems. For the

10

2.1. Procedural content generation

modeling of a building, an arbitrary ground plan is used, generated from a previous step
in CityEngine. The bounding box of the structure, created from the ground plan, is
used as axiom. In successive steps the system selects and applies suitable rules to the
shape, refining, transforming it, or splitting it into multiple shapes. In each step, the
building model gets more detailed. As a result, the level of detail is easily scalable.
Although CityEngine produces a variety of visually complex building types, the re-
searchers note that these simple rules are not sufficient to represent actual functionality
of buildings.

Split grammars

Wonka et al. [WWSR03] present a tool for automatic modeling of architecture. To de-
rive building models, the researchers introduce split grammars, a new type of parametric
set grammar. The idea of split grammars is to make them both powerful and simple, to
produce a large variety of results but also allow to a controlled and automatic derivation.
The split grammar is used to derive a 3D model of a building, starting from a simple
initial shape (e.g. a cuboid, cylinder or prism). The grammar then decomposes basic
shapes into individual parts such as windows, doors or ornaments to model detailed
building facades. Attributes are assigned to the shapes to provide semantic information
used to assign geometry and material in the post processing step. Interleaved with the
split grammar, the system also uses a control grammar which steers the derivation pro-
cess.
Production rules are stored in a large database of grammar rules and described with
attributes. In a derivation step, the split grammar searches the database for rules with
attributes matching those of the current shape. A rule is selected and applied to gener-
ate new shapes. Attributes for new shapes are inherited from the previous shape. The
control grammar is used for calculates and assigns attributes to the shapes based on
additional design constraints.

CGA shape

Müeller et al. [MWH+06] introduced CGA shape, a type of a symbolic shape grammar
developed for the generation of computer graphics architecture.
CGA shape is an extension of split grammars introduced by Wonka et al. The system
refines basic shapes by sequentially applying production rules. In practice, CGA shape
is used to model detailed buildings including facades, windows, doors and ornaments.

The production process with CGA shape starts with a configuration, a finite combination
of shapes, which is used as axiom. Sequentially, shapes from the configuration are
selected and matching production rules are applied. The resulting shape is then added
to the configuration. This is repeated until no more non-terminal shapes exist.
Depending on the detail, a priority is assigned to each rule. This ensures a controlled
derivation from low detail to high detail. In the modeling process, semantic information

11

2. Related Work

such as the hierarchical structure and annotation are specified and stored, allowing the
system to reuse design rules for different buildings.
The researchers achieved an unprecedented level of detail for large scale building models.
CGA shape was developed with the goal in mind to improve the achievable complexity
and detail of generated Buildings in urban modeling systems such as CityEngine.

2.2 Recommendation systems
Recommendation systems or recommender systems emerged as a subclass of information
retrieval or information filtering systems [FBY92]. The basic goal of these systems is
to manage information overload. When a user is confronted with a large amount of ei-
ther unwanted or redundant data, information filtering systems aim to retrieve the most
important pieces of information while discarding anything deemed unnecessary. This is
basically as a binary classification task: Any unseen piece of information is classified as
either relevant or irrelevant to the user. The classifier is based on a training set of items
that the user found interesting.

2.2.1 Classes of recommendation systems

Recommendation systems predict the rating that a user would give to an item, or any
piece of information. In order to determine the predicted level of importance of infor-
mation, the system evaluates the user’s characteristics. Depending on the type of data
model used for the rating prediction, we distinguish collaborative filtering and content
based filtering [FJN+14].

• Collaborative filtering focuses on the characteristics of multiple users. The
system collects preferences and statistics from a large set of users to find matching
interests. This approach is based on the assumption that if user X share’s user
Y ’s opinion on item A, it is more likely that X will share Y ’s opinion on item B,
than that of a random person.
The basic process to predict the rating of an active user for a specific item works
in two simple steps:

1. Find users with a similar rating pattern as the active user (i.e. Users with
common interests).

2. Calculate a predicted rating for the active user from the ratings of the found
users.

• Content based filtering focuses on item profiles. The system describes items
with keywords and attributes and constructs user profiles based on keywords and
attributes of items the user previously rated. This means that if a user assigns a
rating to a certain item, the system assumes that he would assign a similar rating

12

2.2. Recommendation systems

to an item with a similar description.
To describe and item, relevant features have to be found and abstracted. Depend-
ing on the type of data, there are various algorithms which can be used to identify
the most important features and present the item in a vector space.
The user model is constructed based the user’s history of rated items and inter-
actions with the system. The user’s profile is represented as a weighted vector of
item attributes. The system uses these weights to calculate a prediction for an item.

In many applications, both collaborative and content based models are combined to
a hybrid approach. Recommendation systems are used in a wide area of fields, most
commonly on web applications to list specific items to a user either automatically or
as a result of a search query. These applications include movies, music, advertisement,
products, news articles, social contacts and many more.

2.2.2 Relevance feedback

Relevance feedback is a technique in information retrieval (IR) to improve search queries
and was first described in 1971 [Roc71]. The basic concept is to utilize a user’s feedback
on existing search results to refine the search query and therefore provide more relevant
results in consecutive searches. An information retrieval process utilizing a basic rele-
vance feedback algorithm consists of the following steps:

1. The system received an initial search query Q and returns a set of results

2. The user provides positive or negative feedback by flagging results as relevant or
irrelevant

3. The IR system calculates a modified search query Q’ where (depending on the
used model) the weights are shifted towards the relevant items and away from the
irrelevant ones.

4. A new set of results is retrieved based on Q’ and returned to the user.

5. The user is again asked for feedback on the new set of results (return to step 2)

2.2.3 Implicit and explicit user feedback

A recommendation system generally distinguishes between implicit and explicit user
feedback [RRS11].

Explicit feedback is retrieved from direct user input. Commonly the user is asked to
rate a specific item on a scale or to simply ’like’ or ’dislike’ an item. The collected data
from explicit user feedback is easy to process, as a record only consists of references to a
user and an item as well as a numerical value representing the given rating. An obvious

13

2. Related Work

disadvantage is the additional required effort for the user to provide feedback. Therefore,
feedback can only be sparsely collected.

Implicit feedback can be retrieved by analyzing the user’s behavior. The recommendation
system makes assumptions of the user’s interests depending on what items he or she
viewed. Implicit feedback is more convenient for the user but it is more difficult to
implement, as the data is much more complex than in the explicit case [OK+98].

2.2.4 Related work

Very few applications of information filtering techniques in the area of procedural mod-
eling have been researched in the past. In the field of computer graphics, content based
filtering has mostly been used for image and shape retrieval.

Content based image retrieval

In 1997 Rui et al. [RHM97] introduced MARS, a content based image retrieval system.
The researchers aimed to combine developments from the fields of image processing
systems and information retrieval. While the extraction of information from an image
is inherently different from the processing of 3D shapes, content based image retrieval
serves as an example for the filtering of visual content within a recommendation system.

The information filtering in this work is based on the vector model, using term weight-
ing and relevance feedback. This means that different weights are assigned to different
keywords of the document, and additionally items are weighted by similarity. The re-
searchers developed methods to translate image data into documents suited for their
information retrieval algorithms. Related to the system proposed in this thesis, MARS
was a first step for the integration of information retrieval into a computer graphics
application.

3D shape retrieval

With an increasing number of 3D models available, various techniques for the retrieval
of 3D shapes have been developed [TV08]. These methods solve the goal of retrieving
shapes from a large database, via browsing or via queries, which are directly specified
or constructed from a reference 3D model. The main tasks for shape retrieval systems
are to extract and manage suitable descriptors from 3D models to measure similarities.

14

CHAPTER 3
Concept

The goal of this project is to include the concepts of recommendation systems and user
centered design into the existing modeling framework, to benefit both from automatic
generation and user feedback. In order to achieve this, the rule selection process has to
take the user’s preferences into account. This requires a method to collect and store user
feedback and to incorporate it into the rule selection process. The proposed concept as
well as certain limitations of the current framework introduce a number of challenges
which need to be addressed.

3.1 Scenario

The system was developed with a few scenarios in mind, which greatly influenced the
chosen architecture and methods.
In the chosen modeling language, the rule selection is mainly controlled with a simple
goal notation. Generally, a user will define various axioms with a small number of goals
each. The goals describe the type of object this axiom is supposed to be transformed in,
i.e. the desired end result. In order for proper models to be created, appropriate rules
are required to process these axioms. These rules are defined within different grammars
and stored in a database, from where they can be retrieved in order to apply them to a
shape.
The system is designed to allow multiple users to work on the database, adding and
retrieving rules to the same global grammar. When users attempt to complete the same
practical tasks with their grammars (e.g. two users independently want to model a
chair) it is assumed they will use the same goals for the axioms. As a result the same
set of rules will be applicable in their gramars. This set of rules could also include newly
created rules from one of these users’ grammars. Multiple users would therefore affect
each others’ grammars, wheter this side effect was intended or not.

15

3. Concept

Additionally the results of an existing grammar might differ from its results at a later
point in time because new rules could have been added that fulfill goals that are used
within the grammar. Newly added rules could completely change the rule selection pro-
cess for an axiom of an existing grammar.

This creates a scenario where the results of a grammar might differ from the user’s
expections, depending on other users’ contributions. It also cannot be guaranteed that
a grammar that created pleasing results at one point will still satisfy the user’s need at
a later point in time. In this scenario a number of challenges arise.

3.2 Challenges
To keep the results of a certain grammar deterministic over time, it would be necessary
to maintain older grammars, which could prove to be unsuitable in a lot of cases. In
order to guarantee deterministic results, every version of a grammar that was successfully
parsed at one point in time would have to be preserved. The system would essentially
have to manage vast amounts of versions for most grammars in the database, since
every newly added rule could affect the results of existing grammars. As a result, the
biggest challenge for such a large scale system is to allow existing rules to evolve with the
increasing knowledge of cloud. Previously created rules need to adapt to future changes
without changing their source code.

In the most basic case, the rule selection process is controlled by the user via simple
goal declarations. In order to improve this process beyond the context of a simple goal
notation our goal is to fine-tune the rule selection by including all the available semantic
and statistical information.

In cases were a user requires specific results for the creation of a generic object within
this global system, it is necessary to ensure that the system provides results in a way that
considers the user’s specific needs. When a user models a scene of an airplane interior,
he will not be pleased with a row of classic dining chairs. In the same context, this user’s
custom rule for the creation of a plane seat must not disturb the creation process of a
dining room. It is necessary for the system to know the suitability of rules in specific
situation in addition to the general context of goals.

In a large scale system, these challenges cannot be seen as fixed constraints but rather
dynamic requirements, that grow with the scale of the database of rules. Ideally, the
cloud would learn the optimal behavior for the selection of rules along with the addition
of new rules, goals and grammars. Our biggest challenge is to find a suitable learning
process for this task. We need to take numerous factors into account in order to find
the best suited solution: It needs to be determined how the learning process would look
like and what data it is based on.

In the scope of this system, a verification for the learned knowledge is required. The
quality of a created shape in this system is mostly based on the user’s preferences. While

16

3.3. Approach

the system must provide contextually relevant information, it is entirely possible that
the user himself or herself does not have an optimal result in mind and wants to try
creating different results until he or she is satisfied. In such a system there is no suitable
way of verifying a result without manual user input. Therefore, unsupervised learning
is not a suitable choice. The goal is to find a level of supervision that minimizes the
required user input but provides enough information to create fitting results.

3.3 Approach

In order to master these challenges, numerous concepts are introduced in the proposed
approach. The core concept of this work is to provide a dynamic interface between the
user and the cloud that observes the user’s natural behavior, while providing suitable
results. The system extracts feedback from the observed user interaction in order to
learn from his or her behavior. This idea is the central part of this work.

3.3.1 Learning approach

In the development process of this system numerous approaches for a learning process
which fulfills the proposed requirements have been considered, such as reinforcement
learning, or artificial neural networks [Bis06]. Generally, the decision comes down to
the type of data that is available, as well as the level of supervision that is required.
The data used in our model mainly consists of semantic descriptions of shapes. It is a
mostly unstructured mix of goals, tags and attributes with variable length. This makes
it difficult to extract fixed-sized feature vectors which are required in various approaches,
such as neural networks. In addition to the complexity of the data, the knowledge of the
system constantly evolves. Therefore, a train-once-use-forever approach is not applicable
for this scenario. The definition of training data would be an additional challenge for
such an approach. The correctness of a solution can only be determined manually by the
user after creation. Filling a set of training data would take a large number of iterations
until a proper decision model can be built.

3.3.2 Recommendation system

The chosen approach for this work is based on a recommendation system (as described
in Section 2.2). This decision was made based on several factors: When a user creates
a 3D-scene, he or she is not limited to any scope by the system. There are no predefined
constraints for the content of a scene. Our goal is to allow the user to model whatever
he or she wants. The item filtering process is based on the user’s preferences, not on
any general classification. Therefore, the system should help the user to find his or her
preferred solution rather than limit the possible solutions. As the only reliable way of
determining the quality of a resulting shape is to find out the user’s opinion, there has to
be some level of supervision. The dynamic nature of the cloud requires the information
about the user’s preferences to be constantly updated and expanded. A recommendation

17

3. Concept

system fits both these requirements. The classification of objects in our system directly
corresponds to user feedback.

A recommendation system either relies on implicit user feedback based on observation of
the user’s behavior, or explicit user feedback, where some level of direct input is required.

Implicit approach

In the context of this system, the implicit collection of user feedback would revolve
around the usage statistics of grammars, goals and rules. At an earlier stage, the prob-
ability model for rule selection was based on an implicit user feedback approach. This
means that any grammar that was parsed at one point by the user was considered for
the calculation of weights during rule selection. The probability of a rule was based on
the rate of application of similar rules in a similar context (i.e. a shape with similar
goals, attributes, etc.). So whenever a grammar was parsed, the weights for rule selec-
tion shifted. An obvious advantage of this approach was that the user would not have
to be bothered with providing feedback. In theory this should speed up the workflow
and overall make the program easier to use. However, this approach proved to cause one
major problem:
Rules were weighted depending on their usage, which could lead to rules dominating
the system when their grammar was parsed repeatedly. This proved to be very counter-
productive when a grammar was still work in progress and the created objects were not
actually desired results. Modeling 3D shapes is after all a complicated task, we cannot
assume that a created object does not contain any unwanted design flaws. As a result,
this purely implicit approach was rejected.

Explicit approach

In order to improve the shortcomings of the implicit approach, it was decided to rely
on user input for the rule probability calculation. This is necessary because there is no
reliable way to determine the quality of a grammar’s result based on the user’s behavior.
We cannot extract any meaningful information only from the usage statistics of rules. A
rule that was applied a large number of times, is not necessarily perfectly suited for the
context. We need more (reliable) information in order to rate and classify the created
result as well as the applied rules.

For the collection of explicit user feedback we need to clearly define both the type of
feedback and the corresponding items, which the feedback is based on. The most basic
choice for an item is the resulting shape produced by a grammar. A user could rate this
shape and through that influence the probabilities for the creation of the next shape. This
solves the classification problem from the implicit approach, but it does not yet meet our
requirements. As the creation process for a shape consists of multiple iterations where
different rules are applied, we decided on a more detailed level of feedback: Instead of
rating the result, a user is asked to rate the application of a single rule. This additional

18

3.3. Approach

information makes it much easier to extract the probabilities for the rule selection process
from the user feedback. However, this approach comes with a number of challenges:
Rating the applied rules instead of the results is a lot less intuitive for the user and
requires more detailed visualization of data and a more advanced user interface. The
proposed approach provides a basic visualization of a shape’s derivation tree with various
possibilities for user interaction. In the future, this could be expanded to improve the
usability for providing feedback.

Combining implicit and explicit feedback

Although the downsides of the proposed approach based on explicit feedback outweigh
the benefits of implicit feedback, we want to improve the usability by combining it
with implicit feedback. By integrating the manually applied feedback into the modeling
workflow, the explicit feedback is no longer an additional task, but instead becomes a
part of the actual modeling process. Our approach could be seen as a hybrid solution
between explicit and implicit user feedback, with the goal of providing a high level of
usability while retrieving meaningful and clear feedback data.

Content-based filtering

The system in its current state does neither distinguish between different users, nor
does it store any user-specific data. The probability calculation for the selection of rules
(which represent the items in our recommendation system) is based on their context,
which is the shape they are applied to and the previously applied user feedback (i.e. to
the particular rule in a similar context), disregarding any information about the user
himself. This strategy is based on content-based filtering described in Section 2.2. The
decision for content-based filtering rather than collaborative filtering was very easy to
make, considering our focus on items (i.e. Rules) rather than different users.

3.3.3 Parse tree

In order to collect user feedback in the proposed hybrid manner, a visual representation
of the scene’s parse trees is introduced. A parse tree is a structure representing the
exact order of applied rules responsible for the generation of a 3D shape in the scene.
For each axiom, the root node of a tree is generated. Inner nodes of the tree represent
intermediate derivation steps. Each child node represents the result of an applied rule to
its parent node. The leaves of the trees represent the terminal shapes (i.e. the generated
models which are rendered on screen).

Locking operations

The feedback is collected from a user’s interaction with the generated parse tree. Fol-
lowing the hybrid feedback approach, a set of novel methods are introduced to integrate
the feedback collection process into the modeling work flow rather than having to rely
on explicit feedback.

19

3. Concept

• Lock to root. By locking a node of the parse tree, the user tells the system to
keep this rule in place for the next derivation of the scene. As a result its preceding
nodes up to the root are locked as well. This corresponds to positive feedback on
the applied rule and its predecessors in the parse tree.

• Lock descendents. For additional positive feedback, locks can be extended to
include all children of a node down to its leaves. This locks an entire sub-branch
of the tree.

• Reject. By rejecting a node in the parse tree the scene will be regenerated. For
this derivation, the rule corresponding to the rejected node will not be considered.
This operation provides negative feedback for the affected rule.

20

CHAPTER 4
Technical Details

The existing system consists of a few tightly coupled components:
The procedural modeling framework parses user input (i.e. a grammar of rules,
axioms or other code), handles rule application and visualizes the resulting 3D shapes.
The rule selection component is used in every derivation step of the grammar to choose
from matching rules based on their compatibility to the current shape. At this point the
feedback data is consulted to fine-tune the rule selection based on the current context.
A probability is calculated and assigned to each matching rule, before one of them is
randomly chosen.
An additional component is introduced to handle the provision of user feedback. After
generating a 3D model, a visual representation of the derivation steps which resulted in
the model is shown. This is where the user is able to provide explicit feedback on the
created model and the rules that have been applied. This information is used to improve
the results of future iterations.
In this chapter, these contributions and the used algorithms are described in detail.

4.1 Feedback

In this project, the selection of rules from the database, as well as the determination of
goal sequences is dependent on stored user feedback. This section gives an overview how
this feedback is collected.

4.1.1 Parse tree

When generating a scene from a grammar, the system constructs a parse tree for each
axiom. This tree represents an axiom’s derivation steps. Starting with the initial shape
of an axiom, every time a rule is applied to a shape, a corresponding node is added to

21

4. Technical Details

the tree. Rules which result in multiple shapes (e.g. split, repeat) have multiple children
at their respective node in the parse tree. After the final scene is created, the parse
tree shows all applied rules from the initial shape as root, down to every rule which
resulted in a terminal shape as leaf. The parse tree is visualized in the UI and allows
the user to provide direct input on his perceived quality of the rule selection for the
current grammar. The user can interact with the nodes within the parse tree to modify
the conditions for rule selection in the next derivation of the grammar.

4.1.2 Locking

Locking allows a user to select a node in the parse tree, and lock it’s state for the next
derivation. This provides feedback for future derivation steps on three separate levels.

1. When a node in the tree is locked, the system is forced to re-use the corresponding
rule when the grammar is parsed again. In order to ensure that a rule within the
parse tree is used again, all it’s preceding rules in the tree have to be locked as
well, up to the initial shape of the axiom.
In the next derivation process, the system will skip rule selection for any locked
node in the previous parse tree, and will only select rules for those shapes which
are unaffected by any locks. This means that the locked parts of the parse tree
and its corresponding shapes will stay the same in the next derivation. This way a
user can directly tell the system which parts (or rather steps within the derivation)
of the object to keep and which to change.

2. When a user locks a node in the tree, the system stores information about this rule
and the shape it was applied to in the database, along with a positive feedback
value depending on the node’s position within the tree. This information is later
used in the rule selection process, to calculate the relevance of a rule within a
certain context.

3. Locking a node will also store the order in which goals were fulfilled for its cor-
responding shape in the database. This information provides the base for the
probability calculations for the determination of sequences for simultaneous goals.

In the proposed system, the user has multiple options how to lock a node. In the most
basic case, the user locks a node in the parse tree up to the root of its axiom. This
provides positive feedback for all nodes, while the actual weighted value decreases up
towards the root.
Additionally, is is possible to extend an existing lock to the node’s children. This opera-
tion will lock all descendent branches in the parse tree down to the leaves starting from
the specified node. A constant positive feedback value is provided for all affected nodes.

22

4.1. Feedback

4.1.3 Rejecting

In a similar way to locking, the user can also provide negative feedback on a created 3D
shape, by rejecting a node within the parse tree. The reject operation is also referred to
as ’regenerate’ as it causes a branch of the derivation tree to be newly generated. This
operation will lock every node except the rejected one and its decedents and force the
system to start another derivation process on the grammar. In the next derivation steps,
the system will select the same rules as before for the locked nodes and will be forced to
use a different rule instead of the rejected one. As a result, all rules which were applied
on descendants of the rejected node will be regenerated as well.
This operation allows users to change certain parts of a generated 3D object, while
keeping everything else in place. A basic example would be a grammar for the creation
of a house. The user is pleased with the resulting 3D object, except for one window.
Therefore, he or she will look for the node or branch in the parse tree responsible for
the creation of the window, and reject it. The system will keep the house as it is, but
with a different rule selected for the window. This allows for more detailed modeling
and allows the user to refine the results while keeping the grammar itself unchanged.
In addition to these constraints on the rule selection, rejecting a node will also store
negative feedback on the corresponding rule in the database. Therefore, rejecting a
node will not only affect recurring derivation processes of its local grammar, but also
modify the weights for future rule selections for other grammars. When a user rejects
an applied rule within a certain context, this will reduce the chance of this rule being
selected on shapes in other grammars with a similar context.

4.1.4 Numerical feedback value

Performing one of the described operations on the parse tree will store a feedback record
in the database for each affected node. Depending on the type of operation, different
values will be applied. For each node, a feedback record consists of the applied rule, the
shape it was applied to as well as a feedback value V in the range of [-1, 1]. Each node in
the parse tree corresponds to a shape and an applied rule. For the different operations,
the values are specified as:

• Reject: V = -1 for the rejected node.

• Lock to Root: V = level(n)/level(m), where n is the node corresponding to this
feedback entry and m is the node which the lock was originally applied to.

• Lock descendants: V = +1 for every descendant node.

Rejecting a node will only store negative feedback (-1) for the exact node it was applied
to. Any descendants nodes are not directly affected, but the negative feedback on their
parent node will of course indirectly affect their total probability. The lock to root
operation will always apply a feedback of +1 to the node it was applied to, while for
any preceding nodes up to the root the feedback values decrease down until a value of

23

4. Technical Details

1/level(n) for the root node, where n is the node the lock was applied to, and the root
node corresponds to the axiom and the rule that was first applied to it. Additional
feedback via the lock descendants operation is always +1 for any affected node.

4.2 Rule probability
To determine the probabilities for the rule selection process, in addition to the feedback
values that were applied to these rules, the relevance of the feedback has to be considered.
When evaluating feedback entries for a rule, the current semantic context (i.e. the shape)
has to be compared to the context where the feedback was applied. For this, semantic
similarities between shapes have to be determined. The following calculations for the
shape similarity as well as the total rule probability are adopted from the work of Ilčík
et al. [IW16].

4.2.1 Shape similarity

The similarity between a pair of shapes is determined by comparing its semantics, which
are separate sets of goals, tags and attributes. In this system, goals and tags are repre-
sented as string values, while an attribute is a pair of a key (string) and a value, which
is either a boolean or numeric value or a string. Before a probability can be calculated,
the similarity between the semantics have to be defined. For this, the Jaccard index
[Jac12] is used, which describes the similarity between two sets A and B as:

J(A, B) = |A ∩ B|
|A ∪ B|

(4.1)

Representing the semantics of a shape s, the sets of goals and tags are denoted as Gs

and Ts. The set of string keys for the shape attributes with Boolean, numeric and string
values are denoted as Bs, Ns, Ss respectively.

The similarity between goals and tags of a pair of shapes is defined as the weighted
average of the Jaccard similarities between the respective sets.

simGT (a, b) = |Ta ∩ Tb| + |Ga ∩ Gb|
|Ta ∪ Tb| + |Ga ∪ Gb|

(4.2)

The similarities between attributes are limited to attributes which exist in the sets of
both shapes. For Boolean values the similarity is defined as the ratio of equal elements
to the count of all elements.

simB(x, y) =
∑

k∈keys(x)∩keys(y)

|xk = yk|
|keys(x) ∩ keys(y)|

(4.3)

24

4.2. Rule probability

Numeric values additionally use a precomputed factor rk which is the difference of the
minimum and maximum values of the respective attribute within the feedback dataset.

simN (x, y) =
∑

k∈keys(x)∩keys(y)

|xk − yk|
rk|keys(x) ∩ keys(y)|

(4.4)

The similarity between string values is calculated from the average of the Jaccard simi-
larities between the strings.

simS(x, y) =
∑

k∈keys(x)∩keys(y)

|Jstring(xk, yk)|
|keys(x) ∩ keys(y)|

(4.5)

The combined function for the semantic similarity between two shapes is defined as:

sim(a, b) = 1
Z

 ∑
X∈{T,G}

|Xa ∩ Xb| +
∑

Y ∈{B,N,S}

√
|Ya ∪ Yb||Ya ∩ Yb|simy(Ya, Yb)

 (4.6)

with

Z = |Ta ∪ Tb| + |Ga ∪ Gb| + |Ba ∪ Bb| + |Na ∪ Nb| + |Sa ∪ Sb| (4.7)

4.2.2 Probability calculation

The similarity function is used to determine the relevancy of a specific feedback record in
comparison to the context of the current shape where a rule should be applied. Feedback
entries on shapes with a greater similarity to the current shape are more relevant. The
probability prediction for a rule r on a shape i where Fr is the set of feedback records
regarding r is defined as:

P (i, r) = 1
2

(
1 +

∑
f∈Fr

sim(i, Sf)2 ∗ Vf)∑
f∈Fr

|Vf |

)
(4.8)

where Sf and Vf are shape and the value of the respective feedback record. The result
is shifted to the interval of [0, 1]. For rules where no feedback records exist the result is
0.5. In the rule selection process for a specific shape, the probabilities for all candidate
rules are calculated and normalized. The system chooses one rule at random based on
their probabilities.

25

4. Technical Details

4.3 Goal sequences
When an axiom has multiple active goals, the system chooses the oldest one first. If
multiple goals were added in the same derivation step the system will reach a state
were there is more than one oldest goal. In this case, we have to determine the or-
der in which these goals are to be processed. The order of the goals directly affects the
order of applied rules and is therefore a crucial step in the creation of a specific 3D object.

As an extension of the previous example, we define an axiom with the goals "chair" and
"wood". Now depending on which goal is fulfilled first, this could create completely differ-
ent results. If we assume that the matching rules for "chair" model the shape of a chair,
and "wood" results in a brown colored shape, then the order of goals decides whether
the initial shape is first transformed into multiple shapes that form a chair, or into a
piece of wood. In the first case, each created shape of the chair still has the "wood" goal.
In the following steps a rule fulfilling "wood" will be chosen for each shape of the axiom.
This might result in a chair made from different types of wood. In the second case, when
"wood" is chosen first, a wooden shape with the goal "chair" is created. In successive
steps, this wooden shape will be split and transformed into a chair. In general, we would
assume this case to be more desirable. There might be a case however, were the first
option is preferred. It is therefore important to find a probability model which allows
all orders of goals, but assigns weights according to relevance and importance.

The basic approach to solve this problem is to determine a probability for each goal to
come before or after another goal. This information is retrieved from user feedback on
the order of goals in previous derivation steps. For each terminal shape (i.e. the end
result of a parsed grammar) its sequence of fulfilled goals (i.e. the order in which the
goals were fulfilled) is tracked. The stored sequences are weighted based on explicit user
feedback on the resulting shape (see Section 4.1). When an axiom has to fulfill multiple
goals simultaneously, a probability is calculated for each possible order for this particular
set of goals. In further derivation steps the system will then attempt to fulfill goals in
this order.
To determine a probability for each possible order of goals, the system first calculates
the probability for pairs of goals based on their order and distance in tracked sequences
(where the user has given feedback). The optimal solution for this problem would be
to find the global maximum from all permutations. This means in a graph, with the
goals as nodes and their pairwise probabilities as weights, we need to find the spanning
path with maximal weight. While this computationally expensive operation could be
approximated, it is not feasible for this problem. This is because we do not only need to
find the globally optimal sequence, but the probability for all possible sequences, so we
must not skip any nodes or paths within the graph. Therefore the system would need
to aggregate all permutations of the set of goals, which has factorial complexity.
A far less complex approach that was considered, is to find a sequence by randomly
(weighted with the pairwise probability) selecting the next unused goal until the se-

26

4.3. Goal sequences

quence is completed. While this local approach is far less computationally expensive, it
provides less desirable results (i.e. there is a notable difference between the local solution
and the optimal global results).

For this project a hybrid approach was chosen: If the number of goals exceeds a set
threshold, the sequences are calculated locally, up until the threshold. For all goals
below the threshold, all possible combinations are evaluated. Even for complex gram-
mars which create detailed objects, the number of simultaneous goals is way below the
threshold and therefore it should be possible to calculate global results in most cases.
For higher numbers the hybrid approach still provides decent results, while keeping the
computational complexity at a reasonable level.

For the calculation of a goal sequence for a shape S and a set of goals G we define Q
as the set of relevant sequence records (i.e. sequences containing at least two goals from
G). The weight of a sequence record is defined as Wq. Vq is the feedback value assigned
to this record.

Wq = sim(q, s) ∗ |Gq ∩ G|
|Gq ∪ G|

∗ Vq (4.9)

The connectivity between two goals a, b ∈ G is defined as:

con(a, b) =
∑

q∈Qab

Wq (4.10)

Qab is a subset of Q containing all sequence records where the goal a was assigned one
derivation step earlier than b (i.e. b is a direct successor of a).

In global mode, the probability is assigned to each permutation of the set of goals G.
The sum of connectivity values for a permutation p is defined as:

acc(p) =
n−1∑
i=1

con(pi, pi+1) (4.11)

The final global weight for p is defined as:

Wg(p) =

−1

acc(p) if acc(p) < 0
1 + acc(p) else

(4.12)

27

4. Technical Details

In local mode, weights are iteratively calculated for pairs of goals. G′ refers to the subset
of goals ∈ G which have not been completed yet (i.e. goals that are left to choose from)
and g′ is the goal that was previously chosen. We define the initial value of g′ as a
virtual starting goal that is always chosen first. For following iterations the local weight
for each goal g ∈ G′ is defined as:

Wl(g) = con(g′, g) + (1 − min) (4.13)

min is the minimum weight of the elements of G′.

28

CHAPTER 5
Implementation

The client software is implemented in C# and is in its core an offline version of the
Michelangelo web system. A modeling system consisting of a text-based grammar editor,
a 3D window and basic controls is provided. A local database system stores all the cloud
based information. In this chapter, the user interface, the architecture of the system as
well as various use cases are described.

5.1 User interface
This implementation features a basic graphical user interface (5.1) to interact with the
program logic. The GUI itself was developed mainly for research purposes and is not
intended for large scale use. Instead it provides a single user a quick and easy access to
the grammar-database and provides visual elements to display created results and allow
the necessary user input.

The system’s main window consists of several components: A 3D window to render the
created shapes, a text area for the grammar’s code, various control elements for database
access, as well as a visualization of the parse-tree, to perform locking operations.

5.1.1 3D window

The 3D window provides basic mouse controls to modify the (orbiting) camera and allows
the user to view his or her creations from different angles and positions.

5.1.2 Code area

On the left hand side of the window, a text area shows the current grammar’s code and
allows user to view, modify and create grammars for the use in this system. Any errors
that occur when the grammar is parsed will be shown at the top of the text area.

29

5. Implementation

Figure 5.1: The graphical user interface of the client program

5.1.3 Control area

The control area below that grammar code features a list of the currently available
grammars in the database as well as a set of buttons to perform basic operations to
allow the user to access the database.

• Parse. This executes the current grammar script.
• Default. Restore the default grammar text.
• Open File. Load a grammar script from a file.
• Save As. Save the current grammar script to a file.
• Load. Load the selected grammar from the DB.
• Delete. Remove the selected grammar from the DB.
• Save. Save changes made to the selected grammar to the DB.
• Save New. Save the current grammar to a new DB entry.

5.1.4 Parse tree

Once a grammar has been parsed, a tree view will be visible on the right side of the
screen. In this area, the derivation process of the parsed grammar is visualized in the
form of a parse tree. Every axiom defined in the grammar is represented in the tree by a
root element. Any child elements represent a derivation step result, i.e. a shape as well
as the rule that was applied to it. The leafs of the tree are the terminal shapes which

30

5.2. Use cases

are shown as visible objects in the 3D-window. Right clicking any of the tree nodes, will
give access to the different locking operations described in Section 4.1.2. Performing
said operations will modify the tree accordingly. Active locks in the tree are visualized
with differently colored text. Locks can be manually removed the same way they were
added. Rejecting a node will cause the grammar to be re-evaluated immediately.

5.2 Use cases
The client program containing the graphical user interface serves as an entry point for
the system’s global grammar stored in the cloud. The user interface is designed for
advanced users with a programming or scripting background, rather than artists. In-
depth knowledge about the ACGAX language is not required, but it is recommended to
read the provided tutorials.
Apart from the complexity of the language itself, the basic work flow for the creation of
3D-Objects is very simple:

1. Create a grammar, by defining axioms, rules and corresponding goals.

2. Parse/execute the script to view the result and the parse tree.

3. Provide feedback to refine the derivation process in future iterations.

4. Repeat the process at step 1 or 2 to either edit the grammar script or re-create
results based on the modified probabilities from the retrieved feedback data.

5.2.1 Common use cases

For the general usage of the client software a number of actions are required. In this
section the common use-cases to create and execute grammars and provide feedback on
created results are described in detail. All use cases refer to a single-user scenario, since
in the system no users will directly interact with each other. While the decisions (e.g.
feedback, goals, etc.) of a user will indirectly affect other users, they do not interact
with each other. With each parsed and executed grammar, the cloud data is retrieved
(and updated, whenever user feedback was added).

Creating a grammar

This scenario occurs, when the program is started and connected to the database. By
default, the code window is filled with a predefined grammar script. The user can start
editing this script, or load an existing grammar script. These can be loaded from a
text file, or directly from the database. After the user has finished writing his grammar
script, he or she can either save the script to a local file for later use, or parse the script
to use it in the system. Storing a grammar in the database, and thereby inserting its
rules into global pool of rules in the cloud will automatically start a parse attempt first.
Parsing a grammar will check for correct syntax and notify the user of any detected

31

5. Implementation

errors. When the grammar script was successfully evaluated, its rules will be loaded
into the database. A grammar that has not been saved to the database will exist as a
temporary grammar. In this case its rules can be used locally, but will not persist for
different grammars in the future. The common approach for a user to create a grammar
is to work with temporary grammars and local files until a (to some degree) satisfying
solution is reached. Working grammars can be saved to the database after naming them.

After successful evaluation of the grammar, the derivation of its defined axioms is started.
If the parsed grammar does not contain any axioms, no derivation takes place and
no visual results are created. In that case a grammar can still provide rules for the
databases. This process results in a 3D-model shown in the respective window as well
as the corresponding parse tree. The user can observe the created shapes and perform
edits to the grammar if needed. When the user is satisfied with the general appearance
of the created result he or she can continue with locking.

Locking

After a grammar was successfully parsed and a 3D object was created, the user can per-
form advanced edits via the locking operations described in Section 4.1.2. The controls
to perform these actions are accessible in the context menu of the parse tree. The user
can perform either lock to root, or regenerate on any of the nodes. Lock descendants
requires a lock to root to be applied first.
Locks are visualized with colored text in the parse tree, and can be removed via the
context menu. Placed locks will persist over multiple parsing operations until they are
removed or the grammar is edited.
The regenerate operation automatically starts another derivation process and does not
persists for further iterations. It is currently not possible to reject multiple nodes si-
multaneously. Regenerating an inner node of the tree, will also cause its descendants to
change, since the original rules might not be applicable anymore in the changed context.

5.3 Program architecture

The client software is implemented in C# and is composed of three, tightly coupled
major components. The GUI and the grammar parser handle the user interaction and
the parsing process of the grammar. Construction of the parse tree as well as user
feedback retrieval are also part of this component. The rendering of the created shapes
relies on various external libraries which will not be explained in detail. The database
client and cloud interfaces are responsible for storage and retrieval of information to or
from the cloud. The modeling language’s functionality is enclosed within the ACGAX
component. This is where the derivation of a grammar, as well as the application of
rules and manipulation of shapes their semantics occurs. The database system itself can
be seen as an exchangeable independent component.

32

5.3. Program architecture

Figure 5.2: Overview of the system’s components and their interactions

5.3.1 Grammar parser

The grammar parser can be seen as the main component of the program. It handles all
the communication with the other components of the system and is directly coupled with
the user interface. It’s tasks are both the management of grammars as well forwarding
requests between the database and the user.

Any user input in the GUI is evaluated in this component. User performed requests
including database access or a parse or feedback operation are evaluated and forwarded
to the other components accordingly.

Grammar management

The grammar parser component initiates and steers the derivation process of a grammar.
When a user sends a parse request via the GUI, the grammar parser accesses the exter-
nally stored ACGAX language definitions to parse the code and build the grammar. This
is also where the system checks for errors in the grammar. During these processes, the
system creates a grammar object from the script. This means that scripting commands
such as loops are transformed into actual rules or axioms. When the parsed grammar
is a previously existing grammar that was modified, the system checks for differences
to its previous version stored in the system. This step is performed to evaluate if the
corresponding existing feedback records are still relevant to the rules of the modified

33

5. Implementation

grammar. At the end of the building process, the grammar is compiled to a DLL file
and inserted into the database. Granted the previous steps were successful, the created
grammar’s derivation process is started.

After each successful derivation, a parse tree is returned from the ACGAX component.
For this tree a corresponding tree view GUI element is constructed and rendered. Locking
operations performed by the user are stored with the previous parse tree. In the next
parse step, the component provides the parse tree including any locking information to
the ACGAX component for derivation of the grammar.

5.3.2 ACGAX

The ACGAX component contains libraries with all the information and definitions of the
modeling language required to parse and execute a grammar script. This information
is used in other components to perform the necessary operations. Additionally, this
component contains classes representing the elements of the ACGAX language within
the system, most notably grammars, shapes and rules.

Grammar evaluation

Grammars are the central items of the modeling language and contain definitions for
axioms and rules. The derivation of a grammar is the main task of this component.

The axioms of a grammar are the starting points for the derivation of a grammar. Any
grammar can contain an arbitrary amount of axioms. The derivation processes of differ-
ent axioms are completely independent of each other. At least one axiom must exist to
evaluate a grammar.

During the evaluation process (Figure 5.3) the system maintains a list of active axioms.
Each axiom starts as active, containing it’s initial shape. In each iteration, an active
axiom is selected and it’s next derivation step is executed. When this step finishes the
derivation of the axiom (i.e. no rule is applicable to the shape or the number of maximum
derivation steps has been reached), its shape is added to the set of terminal shapes (i.e.
the evaluation results of the grammar) and the axiom becomes inactive. The evaluation
of the grammar is finished when there are no more active axioms. The resulting shapes,
alongside the created parse tree, are returned to be visualized in the GUI.

Derivation step

During the evaluation of a grammar, an axiom is stepwise derived. In other words, rules
are applied to the shapes of the axiom.
As the number of shapes in an active axiom can be changed by some rules, an axiom
might have multiple non-terminal shapes. In each derivation step, one of these shapes
is chosen at random. The application of a rule is based on matching a single goal. As a
shape might contain multiple goals, the system attempts to match the goals in order of

34

5.3. Program architecture

Figure 5.3: Overview of the evaluation process of a grammar.

their priority. As described in Section 1.5.2, oldest goals are matched first. When the
matching was successful (i.e. at least one rule was found), the system continues with the
rule selection, otherwise the next goal in order is matched. When no more goals are left
to match, the shape is finalized and the derivation is over. When no more non-terminal
shapes of an axiom are left, it becomes inactive.
A special case occurs, when a shape has multiple highest priority goals that originated
from the same derivation step. In this scenario, the system retrieves an optimized
ordering for goals, based on the calculations described in Section 4.3 (i.e. Based on
user feedback, certain orderings are preferred). The system stores the sequence for this
axiom and attempts to match the first goal of the sequence. When no match was found,
its successor is next. If none of the sequences’ goals could be matched, newer goals are
considered. The calculated sequence persists and will be evaluated again in the next
derivation step.

35

5. Implementation

Rule selection

When the system attempts to find matching rules for the highest priority goal, it will first
search for locally stored rules from the current grammar. When no rule was matched,
the system will attempt to retrieve rules from the cloud. In either case, the system
has to evaluate whether a rule is applicable in the context. For this task, the system
compares the respective shape’s semantics with the available rules. Generally, only rules
which fulfill the required goal are applicable. In addition, the constraints and conditions
of those rules must match the shape.

After a set of matching rule was retrieved for a selected goal, the system will determine
the probabilities of these rules and pick one, based on a weighted random selection.
The probabilities are calculated according to the functions presented in Section 4.2.2,
depending on the existing feedback values for the particular rule. For the application of
the selected rule, the system performs the following steps:

• The shape which the rule is applied on will have its semantics modified accordingly.
The goal that was being fulfilled is added to the list of tags and removed from the
set of active goals of the shape. If the particular goal was part of a goal sequence
it is removed from the corresponding sequence.

• A parse tree node is created for the shape-rule pair and appended at the proper
position in the parse tree. The node’s parent is the node corresponding to the
rule that this shape was created from, or the tree root, if its the first rule, directly
applied to an axiom’s shape.

• The actual rule application is performed. This task is performed by the ACGAX
library and returns a set of shapes. These shapes are the results of the of rule that
was applied, with their geometry and semantics set accordingly. Depending on the
type of rule the returned set may consist of multiple shapes, which are all added
to this axiom’s set of non-terminal shapes.

5.3.3 Cloud interfaces

The cloud interfaces component contains all the logic necessary for communication with
the database. This module also contains the implementation of the described algorithms
for the calculations of rule probability, shape similarity and goal sequences. The database
system used for this project is MongoDB, an open source document-oriented database
program. Item records stored in the database are represented as JSON-like documents.
Our system includes a MongoDB database client which provides all queries to store and
retrieve items to or from the database. The database consists of various collections that
are managed in this component:

• Grammars: The identification and code of all grammars are stored here, for quick
and easy access

36

5.3. Program architecture

• Rules: Likewise, rules are stored in the DB. This collection is used to identify
rules within the code of a grammar script.

• CloudSemantics: This collection includes all the semantics of rules in a grammar
and is used for the matching of rules.

• CompiledGrammars: The compiled grammar DLL files are stored here.

• Feedback: This collection contains all records of user feedback which are created
by locking operations. The probability calculations for rule selection depends on
this data.

• Sequences: The sequence records store the order in which goals were fulfilled
within a shape. This information is required to determine the most fitting goal
sequences for the derivation of an axiom.

The cloud interfaces component contains the necessary operations to retrieve these
records from the database, or to provide new information for the cloud. The JSON
schemata of selected documents are shown in listings below (5.1, 5.2, 5.3 and 5.4).

Listing 5.1: Feedback
"Rule": {

"type": "string"
},
"value": {

"type": "integer"
},
"Goals": {

"items": { "type": "string" },
"type": "array"

},
"Tags": {

"items": { "type": "string" },
"type": "array"

},
"Attributes": {

"items": { "type": "string" },
"type": "array"

},
"AttributeValues": {

"items": { "type": "Object" },
"type": "array"

}

Listing 5.2: Sequences
"Goals": {

37

5. Implementation

"items": { "type": "string" },
"type": "array"

},
"Time": {
"items": { "type": "integer" },
"type": "array"

},
"Value": {
"type": "integer"

},
"sGoals": {
"items": { "type": "string" },
"type": "array"

},
"sTags": {
"items": { "type": "string" },
"type": "array"

},
"sAttributes": {
"items": { "type": "string" },
"type": "array"

},
"sAttributeValues": {
"items": { "type": "Object" },
"type": "array"

}

Listing 5.3: CloudSemantics
"Grammar": {
"type": "string"

},
"Goals": {
"items": { "type": "string"},
"type": "array"

},
"Tags": {
"items": { "type": "string"},
"type": "array"

},
"Attributes": {
"items": { "type": "string" },
"type": "array"

},
"NotGoals": {
"items": { "type": "string"},
"type": "array"

},
"NotTags": {

38

5.3. Program architecture

"items": { "type": "string" },
"type": "array"

},
"NotAttributes": {
"items": { "type": "string"},
"type": "array"

}

Listing 5.4: Rules
"Rule": {
"type": "string"

},
"Grammar": {
"type": "string"

},
"Index": {
"type": "integer"

},
"Code": {
"type": "string"

}

39

CHAPTER 6
Results

In this chapter, various generated scenes are presented. In further tests, the functionality
of the system is evaluated with focus on the effects of user feedback. In addition, the goal
sequence algorithm is looked at in detail. The tests are performed in various practical
and generic scenarios to verify the expected behavior of the different algorithms.
In the next part, the performance of the framework for basic use cases is evaluated. More
specifically, run times of individual algorithms for large amount of data are compared.

6.1 Example scene

This section shows an example of a created scene using this program and aims to give
some insight about the possibilities of this tool as well as the connection between gram-
mar scripts, rules and goals.

41

6. Results

(a) The created 3D model.
(b) The corresponding parse
tree.

Figure 6.1: Example 1: Wooden chair

Figure 6.1a above shows a model created from a simple grammar script (Listing 6.1):

Listing 6.1: Grammar: wooden chair
new Axiom("chair", "wood").Size(0.4, 0.8, 0.4);

The parsed grammar contains a single axiom with two goals and does not define any new
rules. Figure 6.1b shows the parse tree corresponding to the chair model. As we can
see, multiple rules were applied to the axiom. The actual rules that have been applied
to fulfill the goals chair and wood originate from different grammars (Listing 6.2)

Listing 6.2: Grammar: wood
new Rules.Paint(x => Material.Brown((byte)x.GetInt("wood_color")))

.Fulfills("wood").IfHas("wood_color");

for (byte i = 0; i <= 9; i++) {
new Rules.Paint(Material.Brown(i))

.Fulfills("wood").IfNotHas("wood_color");
}

In this grammar script, multiple rules fulfilling the goal wood are created. For the
application on the axiom in the wooden chair example, one of these was picked at random
(weighted based on pre-existing feedback records). In the system were this example was
created, a number of matching chair rules exist in the cloud. One of these rules is
shown in Listing 6.3.

Listing 6.3: Grammar: chair

42

6.1. Example scene

new Rules.Split(Axis.Y,
Relative(0.3).Goal("Legs").Attribute("LegsRelativeDiameter",

Rnd(0.05, 0.10)),
Relative(0.15).Goal("Sit"),
Relative(0.75).Goal("Lean"))
.Fulfills("chair")
.Name("ChairSplit");

new Rules.Split(Axis.X,
Absolute(@GetDouble("LegsRelativeDiameter")).Goal("Leg").Note("row"),
Relative(1).Void(),
Absolute(@GetDouble("LegsRelativeDiameter")).Goal("Leg").Note("row"))
.Fulfills("Legs")
.IfIs("chair")
.Name("LegsHSplit");

new Rules.Split(Axis.Z,
Absolute(@GetDouble("LegsRelativeDiameter")).Goal("Leg"),
Relative(1).Void(),
Absolute(@GetDouble("LegsRelativeDiameter")).Goal("Leg"))
.Fulfills("Leg", "row")
.IfIs("chair", "legs")
.Name("LegsVSplit");

new Rules.Split(Axis.Z,
Absolute(0.08).Note("partA"),
Relative(1).Void())
.Fulfills("Lean")
.IfIs("chair")
.Name("LeanSplit");

new Rules.Split(Axis.Y,
Relative(0.2).Note("partB"),
Relative(0.1))
.Fulfills("partA")
.IfIs("chair", "Lean")
.Name("LeanYSplit");

new Rules.Split(Axis.X,
Relative(0.1),
Relative(0.15).Void(),
Relative(0.5),
Relative(0.15).Void(),
Relative(0.1))
.Fulfills("partB")
.IfIs("chair", "lean")
.Name("LeanXSplit");

43

6. Results

This code is an example for a set of rules that was selected to created the pictured chair
model. It is worth noting, that the goal wood was fulfilled before chair. This is a direct
result of the goal sequences algorithm. Based on recorded feedback, the system deemed
the sequence wood -> chair to be much more suitable than chair -> wood. As
a consequence, the chair model uses a single wood color, instead of colors chosen for
each part independently. The effects of user feedback on the chosen ordering of goals is
evaluated in detail in Section 6.2.2.

6.2 Cloud development

In this section various large scale test results are presented, showing the development of
the cloud in theoretic long lasting scenarios. These are generic scenarios with artificial
semantics.

6.2.1 Rule probabilities

For the evaluation of the rule selection process, we consider a grammar with a single
single axiom, containing one goal. For the context of a specific shape, or rather a
specific goal, only rules which fulfill this goal will factor into the probability calculations.
Therefore, all rules considered in this test scenario fulfill the shape’s goal.

We assume that the cloud is filled with a set number of rules, initially with no user
feedback provided. In this scenario, the probabilities are equally distributed and each
rule has equal chances at the beginning. We now want to observe the changes of the
rule probabilities over time in different scenarios.

Growing user feedback

In this scenario, a set of 10 rules R exist in the database which fulfill our generic goal.
Each of these rules has 100 feedback records stored in the database. The feedback values
as well as the similarity to the grammar’s shape are uniformly distributed. In this test
we apply feedback to each of the 10 rules in multiple iterations. The applied feedback
values are equally spaced from -1 to +1 (i.e. R1 to R5 receive ascending negative values,
R6 to R10 receive ascending positive values).

44

6.2. Cloud development

Figure 6.2: Test result visualizing the effects of growing user feedback on the probabilities
of individual rules.

The shown area plot diagram (figure 6.2) shows the probabilities for individual rules
after n iterations. At n iterations, n + 100 feedback entries exist for a particular rule.
The diagram shows that additional feedback entries had a higher effect on the proba-
bility at earlier iterations, where the total amount of feedback entries is lower, which
should be obvious considering the nature of the probability calculation. From a practical
standpoint, this makes it clear that for the long time usage of the system, giving addi-
tional feedback on very old rules could prove to be a pointless effort for the user. This
could potentially cause users to give up on existing rules and create new ones instead.
It is noticeable that the probabilities for rules which received very low positive feedback
values (yellow) grow almost at the same rate as rules with high values (dark red). The
sign of the received feedback is much more important than the actual values.

For a different perspective on the effects of growing user feedback another test was
performed (figure 6.3). In this scenario, just two rules exist in the database, initialized
with 100 random feedback records each. Over the course of 1000 iterations, positive
feedback is added to the first rule (red) and negative feedback to the second one (green).
The diagram shows the changes of probabilities of the initially equally weighted rules
over multiple iterations.

45

6. Results

Figure 6.3: Test result visualizing the effects of growing user feedback on the probabilities
of individual rules.

Growing rule database

The second test scenario shows a growing number of rules in the database and its effects
on the probabilities of existing rules. In this scenario, 3 rules (R1, R2 and R3) exist in
the database. R1 initially has 100 records of random positive feedback, while R3 received
100 random negative entries. R2 has no existing feedback records. Over 1000 iterations,
one additional rule fulfilling the grammar’s goal including random user feedback is added
into the system in each step. The diagram in Figure 6.4 shows the probabilities of R1
(red), R2 (green) and R3 (blue) after n iterations on a logarithmic scale. The white area
represents the summed probabilities of the n additional rules that have been added.

46

6.2. Cloud development

Figure 6.4: Test result visualizing the effects of a growing rule database on the probabil-
ities of individual rules.

Initially, the feedback has a clearly visible impact on the probabilities. After more and
more rules are added to the database, the individual rules get less likely to be chosen.
Relatively the probabilities of the three original rules stay the same over multiple itera-
tions. Generally, the system allows all rules to be chosen and assigns equal probability
to rules with neutral feedback. This behavior could however lead to a ’flood’ of newly
created rules dominating existing positively received rules even with a large amount of
feedback records.

To show some practical results, we consider a simple grammar to generate a colored
chair model. In this grammar, an axiom with the goal coloredchair is used, which
is fulfilled by a range of material rules which apply a color to this shape. In addition,
these rules assign a new goal chair to the shape, in order to continue with the gen-
eration of the chair geometry. We would like to generate a wooden chair model, and
therefore want the system to choose the rule for brown color. An axiom with the goals
coloredchair, wood is used, but no rule in the system exists which would fulfill the
goal wood. Therefore, we need to apply positive feedback on applications of the brown
color rule, in order to teach the system, that wood equals brown in this particular
context.

In this test scenario, 7 different material rules (which fulfill coloredchair) exist, each
with random initial user feedback. To evaluate the expected behavior, positive feedback

47

6. Results

for the brown color rule and a shape with the goals coloredchair, wood is applied
over 1000 iterations.

Figure 6.5 shows the probabilities of the 7 available material rules. Starting with equal
weights, additional feedback applied to the brown color rule (deep blue) increases its
chances to be selected for a shape with the coloredchair and wood goals.

Figure 6.5: Test result visualizing the probabilities of rules depending on feedback and
context.

The results show, that we can influence the rule selection via context specific feedback.
The system learns that shapes with the goal wood are supposed to be brown. The
probabilities for the other material rules are still very high, which makes it obvious that
this feedback alone is not enough to actually enforce specific rules for specific goals.
Controlling the selection process via feedback is no direct replacement for the use of
goals.

6.2.2 Goal sequences

The next set of tests aims to evaluate the goal sequence algorithm (see Section 4.3),
which is executed when a non-terminal shape of a grammar that is derived has multiple
active goals from the same derivation step. In the following test scenarios, the algorithm
is applied on a shape with a set of generic goals. In each test run the goal sequence
is determined a set number of times to evaluate the distribution between the possible

48

6.2. Cloud development

sequences. We perform these runs in multiple iterations where in each step additional
feedback is added.

The first test scenario considers two different goals with multiple matching rules for
each. This scenario applies to the wooden chair example that was described earlier (Sec-
tion 6.1). The executed grammar script contains a single axiom with the goals wood
and chair. The grammar contains several rules for the generation of a chair model
as well as rules to apply a brown material. The database is initialized with 100 posi-
tive feedback entries, equally distributed for the sequence orders {wood, chair} and
{chair, wood}. In each iteration, positive feedback with the sequence {wood, chair}.
The diagram (Figure 6.6) shows the probabilities of the possible sequences to be chosen
(red = wood before chair, blue = chair before wood).

Figure 6.6: Test results visualizing the probabilities of goal sequences adapting to user
feedback (Red = wood before chair).

In the practical example, these results show that with positive feedback on results where
wood was fulfilled before chair, the system is more likely to consider wood first.
In the next test runs, a set of three different goals is used ({A, B, C}). Three goals
could be applied in six different sequences ({A,B,C}, {A,C,B}, etc.). The diagrams in
Figure 6.7 show the relative number of times these sequences were chosen. The sequences
starting from the bottom in the diagrams are ordered alphabetically (i.e. {A,B,C} cor-
responds to the first area at the bottom of the diagrams).

49

6. Results

(a) positive feedback added (b) negative feedback added

Figure 6.7: Probabilities of goal sequences.

For the first run (Figure 6.7a), in each iteration, a positive feedback record is added for
the goal sequence {A, B}. With more feedback being added, the number of occurrences
for the sequences where A comes before B increases ({A,B,C} and {A,C,B} in deep
blue and light blue as well as {C,A,B} in orange), while those where B comes before A
become less likely.

In the second run (Figure 6.7b), negative feedback records are added on the sequence
{A, B}. According to the definitions in 4.3, negative feedback penalizes only directly
succeeding goals. As a result, the occurrences of the sequences {A,B,C} (deep blue),
and {C,A,B} (orange) decrease over the course of multiple iterations.

Global vs. local mode

In this test the differences between the global and local mode for goal sequence calcula-
tions are evaluated. In this scenario, sequences for the goals {A, B, C} are calculated.
In practice, the system only uses the local mode when a certain number of goals is
reached, but for the purpose of this test, this threshold was set to 1. The test scenario
is initialized with the same random sequence feedback for both runs. In each iteration,
manual user feedback is simulated and specific positive feedback is applied. The test
shows how the two calculation modes calculate the probabilities. For the proposed cal-
culation model we consider the global solution to be optimal, as all possible sequences
are evaluated. The purpose of this test is therefore to evaluate the local results in com-
parison. The plots in Figure 6.8 show the approximate probabilities for each of the 6
possible sequences.

50

6.3. Performance

(a) (optimal) global result (b) (approximate) local result

Figure 6.8: Probabilities of goal sequences.

The most obvious differences in the results is that the local mode puts a stronger weight
on applied feedback. This leads to the sequence {C,B,A} (dark red) being almost
completely eliminated. In the current system, the local mode is seen more as a safeguard
than an actual alternative to the global solution. Cases where a sequence has to be
calculated from an extremely high number of goals are seen as very unlikely. However,
for future improvements and to allow better scaling, the global approximation could be
optimized.

6.3 Performance

In this section the run time of the system is evaluated in various scenarios. All tests
were performed locally on a PC with the following specification:

• CPU: Intel Core i7-4770K @ 3.5GHz

• RAM: 16 GB

• GPU: RADEON HD 7970

6.3.1 Example scenes

The grammars for the example scene shown for the previous tests as well as some more
complex grammars were executed multiple times and their average run time was recorded.
As an additional metric the average number of matched rules is noted. This is calculated
from the total number of rules which were considered for selection (i.e. each rule that a
probability was calculated for) in each derivation process.

51

6. Results

Table 6.1: Grammar execution performance

grammar avg. run time avg. rules
Chair 256.0 ms 33
Room 1871.6 ms 320
Table set 590.8 ms 93
4x4 chairs 2647.6 ms 501

The results show run times between 0.25 and 3 seconds. In a system with the purpose of
creating visual content, these run times are borderline acceptable for the user. While a
quarter of a second is arguable fast enough, the run times for the derivation of complex
grammars is very high. In the current implementation, users should preferably work on
smaller pieces (i.e. rules for single objects) of a large scene and put them together in the
last step. This is obviously not an optimal solution and the system’s overall performance
should be top priority for future improvements.

6.3.2 Rule selection

To evaluate the performance of rule selection in a large scale scenario a test database
was filled with large amounts of generic data. For these tests, a grammar containing a
single axiom with a single goal was executed. Before each of the test runs the cloud was
filled with a number of generic rules (which fulfill the provided goal) and randomized
feedback on these rules.

Table 6.2: Performance in large scale scenarios

matching rules feedback per rule total feedback records average runtime
10 1 10 0.025 s
10 10 100 0.044 s
10 100 1000 0.323 s

100 1 100 0.454 s
100 10 1000 3.112 s
100 100 10000 30.775 s

1000 1 1000 30.384 s
1000 10 10000 315.071 s
1000 100 100000 >30 min

The results from Table 6.2 show very high run times for high numbers of rules and
feedback entries. In a practical application these scenarios would occur when a very large
number of rules fulfill a common goal and match the required constraints. This means
that the system needs to calculate the probability which in turn requires all the relevant
feedback records to be evaluated. In this test scenario all applied feedback was relevant
to the derived shape, which may not be the case in most situations. Nonetheless, this

52

6.3. Performance

shows that the current implementation of the database is not suited for such large scale
queries. For future work it would be wise to either optimize the probability algorithm
or limit the amount of rules that can be matched at the same time by adding additional
constraints.

6.3.3 Goal sequences

In this section the performance of the goal sequence algorithm is evaluated. The tests
solely focus on the performance of the sequence calculations and do not contain any
database queries. This test is therefore not an indicator for the performance in practice
but instead shows the differences between the local, global and hybrid modes of the
algorithm. In multiple tests, the run time for the calculation of a sequence of 5 to 10
goals with 100 feedback entries was recorded.

Table 6.3: Goal sequence performance

Goals Global Local Hybrid (T=7)
5 0.525 ms 0.243 ms 0.491 ms
6 2.545 ms 0.237 ms 0.288 ms
7 24.10 ms 0.246 ms 2.418 ms
8 238.7 ms 0.252 ms 2.413 ms
9 ∼2.3 s 0.283 ms 2.492 ms

10 - 0.288 ms 2.350 ms

Table 6.3 shows the extremely high increase in run time of the global algorithm with
increasing number of goals and makes it very clear why the local solution is required for
a high amount of goals. The local algorithm has almost constant run time for 5-10 goals.
As for the hybrid approach it is easy to see that the local run time is simply added to
the global values once the set threshold is reached. This makes it very easy to adjust
the threshold depending on the run time that is required in a real scenario.

53

CHAPTER 7
Conclusion & Future Work

The proposed system is a versatile framework for procedural content generation. The
used ACGAX modeling language allows users to create a huge variety of different scenes
from grammar scripts. Combined with the concepts of recommendation systems, the
cloud based rule selection system responds to the user’s preferences The application of
explicit user feedback is integrated into the actual modeling work flow. When executing a
grammar, its axioms are stepwise derived. For this task, the system matches the shape’s
goals with the stored rules from the cloud. Based on recorded feedback, probabilities
are assigned to the matching rules and one of them is chosen. The core element of the
derivation process is the goal notation. Axioms in a grammar are initialized with goals.
Each rule of a grammar fulfills at least one of these goals and in turn may add new goals
to the resulting shape, which become relevant in the next derivation step. This continues
until no more goals exist or no more rules are applicable. The end result of a derived
grammar is a scene of 3D objects. The system visualizes the derivation process in a
tree structure and provides an interface to perform locking operations. These actions
provide feedback for the rule selection and directly control the next derivation process
by preserving certain rules of the grammars’ previous derivation.

7.1 Limitations
While the system in its current state allows users to create a variety of scenes, there are
some limitations in the modeling language and in the framework which possibly hinder
the user’s design process.

One limitation is the preservation of details. The provided locking operations allow
users to provide specific feedback on detailed parts of a scene. With the current features
however, a user can only effectively lock or regenerate outer details of the scene. Locking
or rejecting an inner node of the parse tree (corresponding to an earlier derivation step)
will also affect any succeeding nodes. This means that if a user is unhappy with a rule

55

7. Conclusion & Future Work

that was applied early, the whole scene starting from with that node is newly generated.
Likewise, it is not possible for a user to lock details of an object, without locking the
preceding rules which led to the generation of this detail. To provide a practical example,
we assume a user is writing a grammar to model a house. The grammar is made to build
up the house from the ground up. First its outer walls are created, then its rooms are
modeled and finally the interior is generated. Now the user might be totally satisfied
with the created interior, but might dislike structural parts of the house. Since these
elements were created in an earlier derivation step and the interior is a successor within
the same axiom, it is not possible to regenerate the outer elements of the house while
preserving the interior. To overcome this limitation, the modeling language needs to be
further extended.

7.2 Future work
The conclusions in the previous paragraphs and in various parts of this thesis make
room for a lot of future improvements. While possible extensions of the modeling lan-
guage have been discussed already, I want to focus on the possible improvements for the
implementation of the system as well as the database.

7.2.1 Performance

As the results in Section 6.3 have shown, the system’s performance has lots of room for
improvements. As the general performance for the creation of scenes is lacking, there
are multiple areas where optimization is required.

Parallelization

In multiple parts of the system, different tasks are performed independently. While
some level of parallelization is already present, the run times for a lot of processes could
potentially be shortened with multi threading. The following is a list of some noteworthy
examples:

• Derivation: When a grammar is derived, it potentially consists of multiple axioms
where each could have more than one active shape. The rule matching processes
for these shapes are generally independent from each other and could be performed
in a parallel manner.

• Rule probability: The evaluation of probability for matching rules is one of the
most expensive tasks in the system. It would seem possible to speed up this task
by splitting the set of matching rules into multiple parts to perform the probability
calculation in multiple threads.

• Goal sequences: The global method for the calculation of goal sequences iter-
ates over all permutations of a set of goals. To improve the performance, these
permutations could be split up and evaluated in a parallel manner.

56

7.2. Future work

Database optimizations

One of the biggest bottlenecks within the system is the database connection. While the
use of more efficient database systems or clients might improve the performance, in a
lot of cases the actual queries might need to be revised. As the results from Section
6.3.2 have shown, the amount of data that is queried at once has a huge impact on the
performance. The growing nature of the cloud creates additional issues. The amount
of feedback that has to be evaluated for the application of a rule will only increase over
time, as there is no expiration for feedback.

For future work a solution for these problems should be found. As mentioned above, one
simple way to prevent feedback from flooding the database would be an expiration timer
which invalidates feedback after a set amount of time or a number of parsing steps have
passed. For a more elegant solution to reduce the overall amount of entries that need to
be evaluated, it could be possible to merge similar feedback entries together.

These database optimizations could also be applied to the rule matching process in a
similar way. Reducing the number of rules that are matched, could greatly limit the
amount of feedback records that need to be processed. However, with any of these
potential improvements it is important to keep their limitations on the possibilities of
the system in mind.

7.2.2 Multi-user support

The end goal for this project is a collaborative modeling system for a large number of
users. The proposed system is currently operating with only one client system with
a single user. While connecting multiple clients to the same database should not be
a huge difficulty, there are various additional challenges that emerge with a multi-user
system. For one the GUI would need a lot of improvements to provide some level of user
account management and allow the use of collaborative features. Second, the system
needs to identify the responsible user and keep track of his actions in various parts of the
system. With multiple users involved, the dynamic scaling of the cloud would be even
more important. Therefore, the performance improvements for database queries would
have an even higher priority in a multi-user scenario.

57

List of Figures

5.1 The graphical user interface of the client program 30
5.2 Overview of the system’s components and their interactions 33
5.3 Overview of the evaluation process of a grammar. 35

6.1 Example 1: Wooden chair . 42
6.2 Test result visualizing the effects of growing user feedback on the probabilities

of individual rules. 45
6.3 Test result visualizing the effects of growing user feedback on the probabilities

of individual rules. 46
6.4 Test result visualizing the effects of a growing rule database on the probabil-

ities of individual rules. 47
6.5 Test result visualizing the probabilities of rules depending on feedback and

context. 48
6.6 Test results visualizing the probabilities of goal sequences adapting to user

feedback (Red = wood before chair). 49
6.7 Probabilities of goal sequences. 50
6.8 Probabilities of goal sequences. 51

List of Tables

6.1 Grammar execution performance . 52
6.2 Performance in large scale scenarios . 52
6.3 Goal sequence performance . 53

59

List of Algorithms

61

Bibliography

[Bis06] Christopher M Bishop. Pattern recognition. Machine Learning, 128:1–58,
2006.

[FBY92] William B Frakes and Ricardo Baeza-Yates. Information retrieval: data
structures and algorithms. 1992.

[FJN+14] Alexander Felfernig, Michael Jeran, Gerald Ninaus, Florian Reinfrank, Ste-
fan Reiterer, and Martin Stettinger. Basic approaches in recommendation
systems. In Recommendation Systems in Software Engineering, pages 15–37.
Springer, 2014.

[IW16] Martin Ilčík and Michael Wimmer. Collaborative modeling with sym-
bolic shape grammars. Complexity & Simplicity - Proceedings of the 34th
eCAADe Conference, 2:417–426, aug 2016.

[Jac12] Paul Jaccard. The distribution of the flora in the alpine zone.1. New Phy-
tologist, 11(2):37–50, 1912.

[Lin68] Aristid Lindenmayer. Mathematical models for cellular interactions in de-
velopment i. filaments with one-sided inputs. Journal of Theoretical Biology,
18(3):280 – 299, 1968.

[MWH+06] Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc
Van Gool. Procedural modeling of buildings. In Acm Transactions On
Graphics (Tog), volume 25, pages 614–623. ACM, 2006.

[OK+98] Douglas W Oard, Jinmook Kim, et al. Implicit feedback for recommender
systems. In Proceedings of the AAAI workshop on recommender systems,
pages 81–83, 1998.

[PM01] Yoav I. H. Parish and Pascal Müller. Procedural modeling of cities. In
Proceedings of the 28th Annual Conference on Computer Graphics and In-
teractive Techniques, SIGGRAPH ’01, pages 301–308, New York, NY, USA,
2001. ACM.

63

[RHM97] Y. Rui, T. S. Huang, and S. Mehrotra. Content-based image retrieval with
relevance feedback in mars. In Proceedings of International Conference on
Image Processing, volume 2, pages 815–818 vol.2, Oct 1997.

[Roc71] Joseph John Rocchio. Relevance feedback in information retrieval. 1971.

[RRS11] Francesco Ricci, Lior Rokach, and Bracha Shapira. Introduction to recom-
mender systems handbook. Springer, 2011.

[SG71] George Stiny and James Gips. Shape grammars and the generative specifi-
cation of painting and sculpture. In IFIP Congress (2), volume 2, 1971.

[STN16] Noor Shaker, Julian Togelius, and Mark J. Nelson. Procedural Content
Generation in Games: A Textbook and an Overview of Current Research.
Springer, 2016.

[TV08] Johan W Tangelder and Remco C Veltkamp. A survey of content based 3d
shape retrieval methods. Multimedia Tools and Applications, 39(3):441–471,
2008.

[WWSR03] Peter Wonka, Michael Wimmer, François Sillion, and William Ribarsky.
Instant architecture, volume 22. ACM, 2003.

64

	Abstract
	Contents
	Introduction
	Motivation
	Problem statement
	Scalability
	Michelangelo modeling system
	Existing framework
	Approach
	Structure of the work

	Related Work
	Procedural content generation
	Recommendation systems

	Concept
	Scenario
	Challenges
	Approach

	Technical Details
	Feedback
	Rule probability
	Goal sequences

	Implementation
	User interface
	Use cases
	Program architecture

	Results
	Example scene
	Cloud development
	Performance

	Conclusion & Future Work
	Limitations
	Future work

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

