
Lens Flare Prediction based on
Measurements with Real-Time

Visualization

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Visual Computing

eingereicht von

Walch Andreas, BSc
Matrikelnummer 0926780

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Prof. Dr.Dr.h.c. Purgathofer Werner
Mitwirkung: Dipl. Ing. Luksch Christian

Dipl. Ing. Dr. Maierhofer Stefan
Dipl. Ing. Mag. Schwärzler Michael

Wien, 2. März 2017
Walch Andreas Purgathofer Werner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Lens Flare Prediction based on
Measurements with Real-Time

Visualization

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Visual Computing

by

Walch Andreas, BSc
Registration Number 0926780

to the Faculty of Informatics

at the TU Wien

Advisor: Prof. Dr.Dr.h.c. Purgathofer Werner
Assistance: Dipl. Ing. Luksch Christian

Dipl. Ing. Dr. Maierhofer Stefan
Dipl. Ing. Mag. Schwärzler Michael

Vienna, 2nd March, 2017
Walch Andreas Purgathofer Werner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Walch Andreas, BSc
Zur Spinnerin 53/8/1

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 2. März 2017
Walch Andreas

v

Acknowledgements

Many thanks to all the people at the VRVis and the Vienna University of Technology
who supported and guided me during my studies. In particular to Werner Purgathofer
and Stefan Maierhofer, who supervised my work on this master thesis. I want to thank
Michael Schwärzler and Christian Luksch for their useful hints and comments.

I want to thank the Vienna University of Technology and the Faculty of Informatics for
the financial support, which allowed me to acquire the needed hardware for this project.

Many thanks to all my friends and university colleagues who helped and accompanied
me on may way through all the exercises and exams. In particular to Attila Sabzo and
Simon Brenner, who proved to be awesome team members and true friends.

Finally, I want to thank my family for their support, help and patience. Special thanks
to my parents for providing me the possibility to study and their never-ending trust and
patience.

I want to dedicate this work to my former supervisor Robert F. Tobler.

vii

Kurzfassung

In dieser Diplomarbeit wird eine neue Methode zur Visualisierung von realistischen
Linsenreflexionen (Lens Flare) entwickelt. Linsenreflexionen werden durch verhältnis-
mäßig helle Lichtquellen im Bild sichtbar und entstehen durch interne Reflexionen im
Linsensystem der Kamera. Das Auftreten von Lens Flare wird meist als störend empfun-
den, da sie das eigentlich aufgenommene Motiv überblenden und den Gesamtkontrast
verringern. In künstlich generierten Bildern werden Lens Flare jedoch oft nachgeahmt,
um einen höheren Grad an Realismus zu suggerieren. In der Computergraphik wird für
die Generierung von Lens Flare oft das gesamte Linsensystem einer Kamera simuliert.
Die exakte Beschaffenheit aller eingebauten optischen Elemente, im speziellen der Anti-
Reflexions-Beschichtungen, sind hingegen meist nur schwer einzusehen und können oft
nur geschätzt werden. Die Qualität der Simulation hängt stark von den verfügbaren
Beschreibungen ab. Die Simulation ist daher sehr unflexibel.

Die in dieser Arbeit entwickelte Visualisierungsmethode ist nicht auf die exakte Beschrei-
bung des Linsensystems einer Kamera angewiesen, da sie direkt mit den aufgenommenen
Daten der Kamera arbeitet. Durch Analysieren der aufgenommenen Bilder kann ein
Model erstellt werden. Das Model kann für Prognosen von Lens Flare unter verschiede-
nen Beleuchtungssituationen verwendet werden. Dank GPU-Implementierung ist es für
Realtime-Visualisierungen geeignet.

ix

Abstract

Lens flare is a visual phenomenon caused by interreflection of light within a lens system.
This effect is often undesired, but it gives rendered images a realistic appearance. In the
area of computer graphics, several simulation based approaches have been presented to
render lens flare for a given spherical lens system. An accurate model of the lens system
and all its components is crucial for a physically reliable result. Since the effect differs
from camera to camera, these methods are not flexible, and the internal parameters –
especially the anti-reflection coatings – can only be approximated.

In this thesis we present a novel workflow for generating physically plausible renderings
of lens flare phenomena by analyzing the lens flares captured on a camera. Furthermore,
our method allows to predict the occurrence of lens flares for a given light setup. This
is an often requested feature in light planning applications in order to efficiently avoid
lens flare prone light positioning. A model with a tight parameter set and a GPU-based
rendering method allows our method to be used in real-time applications.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Overview 1

2 Introduction 3
2.1 Problem Definition . 3
2.2 Aim of the Work . 5

3 Background - Lens Flares 9
3.1 Camera and Lens System . 10
3.2 Lens Flare Elements . 12
3.3 Physiological effects . 16
3.4 Countermeasures to Avoid Lens Flare . 17

4 Related Work 23
4.1 Lens System Models . 24
4.2 Light Propagation Formulation . 26
4.3 Camera Models . 27
4.4 Lens Flare Simulation and Rendering . 28

5 Data Acquisition 37
5.1 Sampling A Lens Flare . 37
5.2 Assumptions . 38
5.3 Prototype Setup . 38

6 Ghost Rendering Primitive - Lens Flare Model 41
6.1 Analyzing the Sampled Ghosts . 41
6.2 Requirements For the Rendering Primitives 42
6.3 Creating the Model . 42

xiii

7 Optimization - Finding the Ghost 49
7.1 Cost Function . 50
7.2 Optimization Strategy . 53
7.3 Finding Lens Flare in the Acquired Images 54

8 Real-Time Visualization 57
8.1 Interactive Visualization . 57
8.2 Lens Flare Incorporated Into An Application 58

9 Lens Flare Occurrence Prediction 61
9.1 Occurrence Estimator . 61
9.2 Context . 62

10 Results 63
10.1 Result - Acquisition . 63
10.2 Result - Lens Flare Model . 66
10.3 Result - Optimization . 68

11 Conclusion and Future Work 75

List of Figures 77

List of Algorithms 78

Acronyms 79

Bibliography 81

CHAPTER 1
Overview

To generate lens flare renderings based on measurements, we introduce a novel workflow.
The thesis provides background information and current rendering approaches. Our
whole workflow is described in detail. The thesis is structured as follows:

Chapter 2 of this thesis states the problem definition and the aim of the work. By
providing an example case, we demonstrate how affected fields, like light planing, could
benefit from our solution.

Chapter 3 gives background information on lens flares and cameras – especially, where
lens flare occurs, and how its appearance in terms of shape or color is influenced by the
lens system. Additionally, the associations with lens flare and possible countermeasures
are described.

Chapter 4 explains the available optical system models, and how these models are
incorporated in the field of computer graphics in terms of camera models. The progress
of lens flare rendering over the years, up to the current state-of-the-art simulations, are
described in detail.

Chapter 5 describes how the data for our data-driven workflow is generated. The
developed prototype and its components are discussed thoroughly.

Chapter 6 discusses how lens flare can be described by a model and what assumptions
the model has to fulfill to generate a valid visual representation. The developed lens flare
model is necessary for the next stages of our workflow to compress the captured data
and for real-time rendering.

Chapter 7 gives insight on how the lens flare rendering elements (Chapter 6) can be used
to optimally describe a sample from the acquisition stage (Chapter5). The developed
optimization algorithm and its cost function as well as the encountered problems are
described in detail.

1

1. Overview

In chapter 8 the results from the best fitted models (Chapter 7) of the captured data
(Chapter 5) can be used to describe the appearance of lens flare elements over the
captured range. To generate a smooth real-time visualization, each parameter of the
model is compressed over the whole range by a function, which allows to fill the gap for
uncaptured sub-images.

Chapter 9 describes how the real-time visualization (Chapter 8) can be reused to predict
the occurrence of lens flare for a given camera-light constellation.

Chapter 10 presents results from the different workflow stages.

In chapter 11, we conclude our work and point out possible future improvements.

2

CHAPTER 2
Introduction

This chapter describes the problem definition and lists possibly affected application fields
and scenarios.

2.1 Problem Definition
This work is a practical approach to gain information on lens flare occurrences for a lens
system for which no specifications are known. Lens flare is a visual effect that appears
due to internal reflections within a lens system or due to scatterings caused by lens
material imperfections(Chapter 3). Lens flares and glares reduce the image’s information
content, since actual image features are overdrawn by them (Figure 2.1). Apart from
these visible lens flare shapes and artifacts, the output image is also overcast by haze,
which heavily influences the image quality. For these reasons, lens flare is often regarded
as a disturbing artifact, and camera producers therefore develop countermeasures to
reduce their visual impact (Chapter 3.4). In other applications though, lens flares are
used as a stylistic element, and are therefore a desired effect in photography or movies.

The intensity of lens flare heavily depends on the camera to light source constellation. In
controlled environments like broadcast or movie studios, the light sources can be adjusted
and set up according to their requirements – but in general, most light setups are static
and cannot be easily changed. The light placement for static scenes are defined in a
planning or construction stage. In case of large scale projects like sport arenas, museums
or industry buildings, a vast number of lights have to be placed in the light planning stage.
While in sport arenas live TV broadcasts play an important role, museums and industry
facilities have to deal with surveillance systems. In both examples, many cameras with
different lens systems and lights are included, which implies the possibility of lens flare
occurrence. Both affected fields are sensible to image quality, making the occurrence
of lens flare therefore an undesired effect. While ignoring the possible occurrence of
lens flare in the planning stage, affected combinations have to be rearranged afterward.

3

2. Introduction

Modifications in a late stage can become quite costly, especially if equipment has to be
changed or the building has to be modified. In case of flexible camera to light constellation,
the adjustment is still time consuming, and often based on trial-and-error methods.

Figure 2.1: Outdoor lens flare1

A lens flare-aware light planning stage allows the light designer to carefully elaborate an
optimal camera and light setup to avoid lens flares. In such an early phase, the costs
are quite low, and problematic constellations can easily be prevented. For inevitable
constellations, the lens flare occurrence can at least be minimized by choosing the optimal
camera or by changing the light source. Moving lights or cameras can also benefit from
lens flare occurrence prediction by analyzing the occurrence over time or moving ranges.
In outdoor scenes, the sun triggers lens flares quite easily due to its extreme brightness.
In case of live sport broadcasts, the sun trajectory can be included into the lens flare
occurrence prediction for the given time span. By knowing the time dependent sun
position, the camera to light constellation can be simulated over the whole broadcasting
period. This allows to find the optimal camera position for a single camera setup in order
to avoid lens flares. Additionally, for multiple camera setups, the timetable of which
cameras to use can be optimized in advance by suggesting a switching order.

1Source: https://commons.wikimedia.org/w/index.php?curid=642778

4

https://commons.wikimedia.org/w/index.php?curid=642778

2.2. Aim of the Work

One approach to predict lens flare occurrences is simulation. A precise description of the
lens system and all its properties are essential to carry out a physically correct simulation.
The lens flare characteristics depend heavily on the lens system parameters. Especially
the anti-reflection coatings (Chapter 3.4) have a great impact on lens flare occurrence.
But these carefully designed anti-reflection coatings are mostly kept under wraps by the
camera manufacturers, or cannot be accessed easily for any camera system, because the
quality of the lens system depends on them. Due to this inaccessible or hardly available
information and incomplete knowledge about the lens system, in most cases only the
camera producers themselves are able to carry out a completely accurate simulation. In
general, the lens system parameters can only be approximated, which leads to erroneous
simulations. Another aspect to consider when using simulations for lens flare prediction,
the simulation run-time increases drastically the more complex the lens system gets.

Simplified or even artificially generated lens flare effects, as used in computer games, are
not suitable for lens flare prediction. These lens flare renderings are primarily focused
on artistic aspects and visual output, but not much attention is paid to their physical
accuracy (Chapter 4.4.2).

Another way to predict lens flare occurrence can be done by examining real-world
measurements. The camera and all its hidden parameters can be interpreted as a black
box. The input is a bright light source, and the black box’s output are raw images.
The raw images contain all lens system-dependent transformations of the input light,
including physically accurate lens flares. This approach does not rely on any internal
specifications of the lens system, and is therefore very flexible and independent from the
camera manufacturers. To generate a model from measurements, a lot of data has to be
captured, analyzed and compressed, though.

Due to the shortcomings of the above-mentioned simulation based approaches, we intend
to find a data driven workflow to generate a physically accurate simulation of lens flares.
Furthermore, there exists no tool in the light planing stage so far to predict the occurrence
of lens flares. Such a tool could enrich the planning stage to be more efficient in many
aspects: Apart from decreasing overall cost and planning time, the solution’s quality
could also be increased. The development and need of such a tool can be underlined by
scenarios as depicted in Figure 2.2, where a live football broadcast is disturbed by lens
flare.

2.2 Aim of the Work

The overall goal of this work is to find a workflow to predict lens flare occurrences for a
certain camera light constellation without knowing any specific internal parameters of
the lens system (except known camera parameters, like focal length and aperture stop).
A measurement-driven approach seems to be the only option left, which is physically
accurate, and does not rely on any approximations.

The workflow contains multiple stages, which have to be first specified and later optimized.

5

2. Introduction

Figure 2.2: Football live broadcast with disturbing lens flares2

As it is a data-driven approach, the first step is to gather sample data of lens flares for
different light camera constellations. To efficiently capture the required large amount
of data, a hardware setup has to be developed (Chapter 5). Afterwards, the sampled
data has to be analyzed (Chapter 3), and a model has to be found to represent the lens
flare elements (Chapter 6). The model’s parameters have to be adjusted to best fit the
sampled data (Chapter 7). By combining the results of the best fitted models, a com-

2Source: Sky Bundesliga HD1, Borussia Dortmund vs. FC Bayern München at 28.04.2015

6

2.2. Aim of the Work

pressed representation for the whole captured range can be generated. This compression
can be further be used for real-time visualization (Chapter 8) and lens flare occurrence
prediction (Chapter 9).

The proposed method can be of great use in the planning stage, allowing to place luminar-
ies as well as cameras in a more effective way by avoiding lens flare artifacts. Additionally,
this prediction can also be useful to find especially likely lens flare constellations to
produce artistic camera shots.

7

CHAPTER 3
Background - Lens Flares

Figure 3.1: Complex lens flare [HESL11]

Lens flare, also known as veiling glare in the field of photography and video, is a visual
effect which can be observed while a lens system receives light from a considerably
brighter light source than the rest of the scene [HESL11]. The lens flare shape and
appearance changes from camera to camera, and strongly depends on the built-in lens

9

3. Background - Lens Flares

system. Still, lens flare effects can also differ within the same camera when adjusting
its parameters (Chapter 3.1). However, the characteristics of the occurring lens flare
elements are generally similar in most cases [Kes08].

Lens flare is often regarded as an undesired effect, as it reduces the image quality and
information gain. While the bright light source is visible in the field of view, the close
area around the light source is heavily affected by haze and glare. In case of strong haze,
the image’s contrast can be noticeable reduced [Mch05]. The close surroundings of the
bright light source overexpose the image background drastically. Lens flare is caused by
interreflections within the lens system (Chapter 3.2) and can even occur while the light
source is outside of the angle of view due to stray light (Figure 3.2).

Figure 3.2: Illustration of stray light and angle of view [Mch05]

On the other hand, lens flare can also be used intentionally like in movies [Woe09] as part
of an artistic expression, or in photography by careful composition. Animation movies
[Pix08] and recent computer games [Tow12] use lens flares as stylization element, or to
imply a higher degree of realism.

3.1 Camera and Lens System
A camera is an optical device, consisting of a lens system and a light sensitive sensor
to record images. The main changeable camera parameters are aperture, exposure time,
film speed and optionally a focal length (Figure 3.3). Each of these parameters influences
the final image in a visually noticable way, and depending on their combined overall
configuration, they generate different visual effects. The focal distance of a camera
depends on the lens system’s arrangement and lens properties. Zoom-able cameras allow
to change the focal distance by moving lenses or lens groups within the lens system. While
changing the lens groups, the non-image-forming paths are also affected (Chapter 3.2.1).
The aperture controls the opening size, through which light must travel to reach the
sensor (Figure 3.14). Focal length and aperture in combination define the depth of field.

10

3.1. Camera and Lens System

The sensor size and the focal length form the angle-of-view. The exposure time sets the
amount of time the sensor is exposed to light. In case of a moving object and adequate
exposure time, the object can be mapped multiple times onto the image plane (i.e. the
sensor). These multiply captured light rays generate a blurred shape behind the moving
object, also known as motion blur. The film speed is responsible for the sensitivity of the
film or sensor.

Figure 3.3: Camera model illustration [Mch05]

The simplest camera consists of a single simple convex lens, but suffers heavily from optical
aberrations. Optical aberrations can defocus and distort the output image. Unfortunately,
a simple convex lens cannot eliminate these unwanted transformations and is therefore
not used in consumer cameras. To reduce optical aberrations, an arrangement of multiple
lenses along the optical axis is used (Chapter 3.2.3). The shape and material properties
of each lens affects the behavior of the passing light. A lens is made out of a translucent
material and can be used to focus light onto a certain point, or to disperse light into
different directions. Snell’s law describes the angles of incidence θi and refraction θt while
light passes through an interface of two different materials, depending on the material’s
refraction index n1 and n2 (Equation 3.1).

sin θi

sin θt
= n2
n1

(3.1)

The refraction index describes how different wavelengths change their direction while
passing another medium. The Fresnel Equation (Equation 3.2) describes the amount of
reflected light for polarized incoming light. In case of unpolarized light, the amount of
reflected light R is simply the average of Rs and Rp. The reflection depends on Snell’s
angles θi and θt and on the material’s refraction indices n1 and n2. The amount of
refracted light (transmitted) T is due to the conservation of energy T = 1−R.

Rs =
∣∣∣∣n1 ∗ cos θi − n2 ∗ cos θt

n1 ∗ cos θi + n2 ∗ cos θt

∣∣∣∣2 Rp =
∣∣∣∣n1 ∗ cos θt − n2 ∗ cos θi

n1 ∗ cos θt + n2 ∗ cos θi

∣∣∣∣2 (3.2)

11

3. Background - Lens Flares

Visible light consists of a range of wavelengths, which get bent into different directions
according to the Fresnel Equation. This leads to chromatic aberrations, where the
incoming white light gets refracted and is split up into multiple visible colors. To control
and reduce unwanted reflections within a lens system, camera producers carefully design
anti-reflection coatings. The anti-reflection coatings have an impact on the lens flair’s
color. Further details in chapter 3.4.

3.2 Lens Flare Elements

Several visible lens flare effects originate from the center of the light source. The effect can
be distinguished into three different kind of element types. The visibly most prominent
effect is a star-shaped element, where multiple bright streaks are radiating outwards
from the light source center [Kes08]. This glare streaks are caused by diffraction at the
edge of the aperture (Figure 3.7). For non-circular aperture shapes, the number of flares
depends on the n-polygon. Perpendicular to each edge are yielding two spikes 180◦ apart
[Kin92]. In case of an even number of edges, the flares overlap, resulting in n streaks,
while an odd number of edges results in 2 ∗ n flares (Figure 3.4).

The close area around the light source is also affected from a less distinct glare, called
halo, which fades out gradually from the light source center. According to [Cha07], the
halo effect is caused by intense scattering of light in the lenses.

The other prominent effect is a series of circles and rings aligned on a line, which crosses
the light source center and the image center. The shapes on this array are so-called
ghosts, and their position and shape differ strongly from camera to camera. These ghosts
are the most complex lens flare elements, and their occurrence is non-trivial to predict
compared to the other source-centered lens flare elements.

Figure 3.4: Comparison of diffraction spikes for different apertures1

1Source: By Cmglee (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/
by-sa/3.0)], via Wikimedia Commons

12

http://creativecommons.org/licenses/by-sa/3.0
http://creativecommons.org/licenses/by-sa/3.0

3.2. Lens Flare Elements

3.2.1 Ghosts Occurrence

In a lens system, it is intended that the image-forming light rays find a direct way to
the sensor while passing all lens elements to create the desired image. But in reality,
imperfections in the lens material and certain lens combinations can cause internal
reflections. As a result, the light passes the lens system in an unexpected way while
getting reflected multiple times within the system (Figure 3.5). If these non-image-forming
paths reach the sensor, they form visible artifacts called ghosts [HESL11].

Figure 3.5: A possible double-reflection path [HESL11]

The number of ghosts depends on the possible reflections within a lens system. Only
an even number of reflections have the possibility to reach the sensor, while an odd
number of reflections are most likely to end up at the entrance pupil [LE13]. According
to Koren [Kor07] the formula 3.3 states the exact number of possible ghosts, where R is
the total reflections, and M the number of air-to-glass surfaces. In case an additional
filter is applied, the number even increases to RwithF ilter = R+ 4M + 1. More complex
lens systems contain a lot of lens groups, and therefore offer a higher number of possible
non-image-forming paths than simpler systems. Zoom-able lens systems generally tend
to be more complex than prime systems (Figure 3.6). Therefore, when not considering
the camera construction quality, prime systems are less likely to be affected by lens flares
than zoom-able devices.

R = (2M − 1) + (2M − 2) + (2M − 3) + . . .+ 1 = M(2M − 1) = 2M2 −M (3.3)

Still, not all possible reflection paths carry enough energy to produce a visible ghost in
the resulting image. According to the Fresnel Equation (3.2), the light energy is split

13

3. Background - Lens Flares

up at each material-intersection into reflected and refracted energy, which implies that
each reflection step reduces the amount of energy carried on by the light ray. Therefore,
only paths with a low number of even reflections are able to carry enough energy to have
an impact on the resulting image [HESL11]. In zoom-able lens systems, the focal length
can be adjusted by moving the lenses within the lens system. These lens system changes
affect also the ghost forming paths, which causes the ghosts to change their occurrence
even within the same camera.

Figure 3.6: Geometry comparison of zoom systems - Nikon 80-200mm f/2.8 vs prime
system - Angenieux Biotar 100mm f/1.1 [HESL11]

3.2.2 Ghost Shape

Each valid ghost path has to pass the aperture at least once. The aperture shape alters
the appearance of the resulting ghost. A path which passes the aperture multiple times
can even have a more complex shape due to multiple clippings by the aperture. The
aperture controls the opening size via mechanical components. They are intended to
adjust the circular-like opening to various sizes. The components are usually blade-shaped,
and by increasing the number of used components, the desired circular shape can be
better approximated. In case of a fully opened aperture (smallest f -stop), the shape is a
perfect circle, as the blades rotate behind the aperture ring of the camera body. While
increasing the f -stops (reducing the opening size), the blades are moved and rotated
together (Figure 3.14). According to the number of blades, the ghosts have a regular
n-polygon-like shape (Figure 3.7).

Figure 3.7: Different aperture shapes caused by varying blade count2

2Source: http://www.tested.com/tech/photography/2286%2Dhow%2Dyour%2Ddslr%
2Dcamera%2Dlens%2Daperture%2Dreally%2Dworks/

14

http://www.tested.com/tech/photography/2286%2Dhow%2Dyour%2Ddslr%2Dcamera%2Dlens%2Daperture%2Dreally%2Dworks/
http://www.tested.com/tech/photography/2286%2Dhow%2Dyour%2Ddslr%2Dcamera%2Dlens%2Daperture%2Dreally%2Dworks/

3.2. Lens Flare Elements

Higher-end lenses put a lot of effort into developing mechanical components that maintain
the circular aperture shape at all aperture-stops. Therefore, the visual appearance of
the ghosts can also differ within the same camera when changing the aperture-stop.
Additionally, the shape of the ghost can also be clipped by the entrance pupil’s shape of
the lens system [HESL11]. The ghost’s shape is featured by ringings close to the edges,
which are caused by near-field Fresnel diffraction [JKL+16].

3.2.3 Ghost Position

The camera position and its orientation and light position is vital for the position of the
ghosts on the image plane. Depending on the enclosed angle α between the camera’s
optical axis and camera to light-vector the non-image-forming light paths reach the sensor
at different spots (Figure 3.8). The ghosts are more or less aligned on a ray, which runs
through the image center and the light source center [Kes08]. The small offsets are likely
to be caused by lens irregularities or imperfections. While rotating the camera toward
the light source, the ghosts are getting closer together. On the other hand, while rotating
the camera away from the light source, the ghosts start to fan out, and they are less
likely to overlap (Figure 3.9). When the camera directly faces the light source, the ghosts
overlap each other completely.

Figure 3.8: Illustration of a camera light constellation3

3Camera-Model By Rama (Own work) [CeCILL (http://www.cecill.info/licences/
Licence_CeCILL_V2-en.html)], via Wikimedia Commons

15

http://www.cecill.info/licences/Licence_CeCILL_V2-en.html
http://www.cecill.info/licences/Licence_CeCILL_V2-en.html

3. Background - Lens Flares

Figure 3.9: Illustration of how ghosts behave while the camera is rotated [Kes08]

As mentioned in chapter 3.1, camera lenses are usually aligned on the optical axis, which
coincides with the axis of rotational symmetry and the image center. The distance of the
projected light on the image plane and the image center is equivalent to the angle between
light position and camera orientation. While maintaining a certain angle and rotating
either the camera or changing the light position, the ghost’s positions are constant with
regards to the image center and rotate accordingly. The rotational symmetry property
simplifies the investigation of the ghosts’ behavior drastically, as their behavior only
differs while changing the distance of the optical axis to the light source. This allows to
capture the complete behavior by simply rotating the camera from the light source along
the horizon away.

3.3 Physiological effects

As lens flare is a real-world phenomena in lens system dependent imagery, their occurrence
is well-known. The absence of lens flare in artificially generated images can reduce the
perceived realism. Like other lens system dependent effects (depth-of-field or motion blur),
lens flare is a well-trained visual perception and helps the viewer to extract additional
information from an image or scene. The occurrence of lens flare indicates the presence
of very bright light sources within a scene – even while the light source is outside of the
camera frustum. By observing the ghosts behavior, the unknown light source position
can be approximated outside of the camera frustum. Overexposed areas can also indicate

16

3.4. Countermeasures to Avoid Lens Flare

lens flare, as lens flare and bright light sources can clearly exceed the physical boundaries
of a display device [RIF+09].

3.4 Countermeasures to Avoid Lens Flare

In various applications, the occurrence of lens flare is regarded as an undesired phenomena.
Therefore, camera manufacturers try to eliminate or to reduce their occurrence rate and
intensity. There are many ways to reduce lens flares either from the technical side or
from photography theory.

3.4.1 Staging

By avoiding certain constellations, the occurrence of lens flare can be drastically reduced.
This can be the result of an effective light planing stage, where camera and light source
are well-placed in advance to avoid lens flare. The simplest solution is to place the bright
light source behind the camera, but this changes the appearance of the scene extremely
and probably in an undesired way. In another scenario, where the camera or light source
cannot be moved freely within the scene, a well-used scene composition can reduce lens
flare – for example by staging the scene elements in a way that the light source is obscured
from the camera, which can help to avoid or at least reduce lens flares (Figure 3.10).

Figure 3.10: Scene composition can be used to reduce lens flare [Kor07]

17

3. Background - Lens Flares

3.4.2 Lens Hood

Lens flare is often caused by stray light. Camera manufacturer therefore try to design
the barrel of the lens system in a more efficient way to prevent stray light from entering
(Figure 3.11). In most cases, the regular barrel can be extended by a lens hood. The
lens hood surrounds the entrance pupil and extends the barrel’s shape into the scene.
In case of heavy stray light within the scene, the lens hood can be attached in front of
the camera. The theoretically best way to prevent any stray light from entering the lens
system would be an extension to the furthest object following closely the angle of view.
Therefore, the longer the extension, the more efficient it can blocks stray light. The lens
hood is bound to the angle of view of a lens system. For zoom-able cameras, the lens
hood is restricted by the widest possible angle of view – otherwise it would be visible in
the resulting image. For wide-angle and zoom-able cameras, the lens hood cannot be
optimized as easily as for long focus systems due to their large or changing viewing angle.

Figure 3.11: Illustration of how a lens hood can reduce stray light [Mch05]

More complex lens hood shapes also include the sensor ratio and reduce mechanical
vignetting. Generally, the barrel inside as well as the lens hood itself is covered by a
non-reflective material to prevent light from getting reflected in the first way [Mch05]. A
lens hood is highly effective to reduce lens flare caused by stray light, but cannot reduce
lens flare from visible light sources within the angle of view.

3.4.3 Anti-reflection coatings

A lens system, exposed to a bright light source within its angle of view, offers the incoming
light many possible reflection paths to the sensor. Each reflection reduces the transported
energy, but a sufficient bright light can still cause lens flare. Uncoated air-to-glass surfaces

18

3.4. Countermeasures to Avoid Lens Flare

reflect about 4% of the incident light. By using a simple anti-reflection coating, the
reflection can be reduced to around 2%. Complex coatings composed of multiple layers
can further reduce the reflectivity to 1% or less [Kor07] (Figure 3.12). By reducing the
overall reflection possibilities, lens flare is less likely to occur.

Figure 3.12: Reflectivity per wavelength and coating composition [SDHL11]

While light is getting reflected within the lens system, the reflected waves can superimpose
and interfere with each other. Anti-reflective coatings intend to modulate light waves in
way that the reflected light interferes with other light waves to cancel themselves out.
This can occur if light waves share the same amplitude, but have the opposite phase.
The incident angle and wavelength of the incoming light as well as the lens material are
responsible for the reflection behavior of the incoming light. The anti-reflection coatings
are designed to minimize reflections of a certain wavelength, causing the remaining
reflected light to change its visible color. The color of the ghosts therefore depends on
the anti-reflection coatings and their constellation.

The reflectivity of a lens system is therefore bound to the anti-reflection coating and
their composition. To design an efficient coating combination is a complex optimization
task and needs a high expertise in the field of optics. A wide range of parameters like
light direction have to be considered. Therefore, the anti-reflection coatings are a seal of
quality for the lens system, and the manufacturers keep their exact composition mostly
unpublished [HESL11]. Figure 3.13 shows how much impact lens coatings can have, and

19

3. Background - Lens Flares

how the optimization process has been improved in the recent years (both images are
shot under similar condition and settings) [Hen15].

Figure 3.13: Comparison of coatings [Hen15]. Top: 1980’s Vivitar Zoom Bottom: 2014
Sony FE28-70

3.4.4 Aperture and Camera Type

The choice of camera type and used aperture stop can also reduce the amount of ghosts. In
case of an high f -stop, the narrow opening restricts the possible light paths (Figure 3.14).
The number of ghost forming light paths are therefore also strongly reduced. The
possibility of a non-image-forming path to get reflected multiple times through the

20

3.4. Countermeasures to Avoid Lens Flare

aperture is also reduced. Therefore, the shape of the ghost is more likely to be rather
simple than complex.

The lens system complexity often depends on the camera type. Prime cameras (fixed
focal length) tend to be less complex than zoom-able devices. The lens system complexity
limits the possible amount of inter-reflections paths within a camera. Hence, the amount
of ghosts is generally smaller for less complex camera types than for more complex
cameras [Kor07].

Figure 3.14: Different aperture stops and the resulting aperture shapes4

4Source: https://picsart.com/blog/post/use-aperture-to-your-advantage-part-two/

21

https://picsart.com/blog/post/use-aperture-to-your-advantage-part-two/

CHAPTER 4
Related Work

A major research field in computer graphic deals with the rendering of realistic images.
The light exchange and the light interaction within a virtual environment are important
factors for the generation of a plausible image depicting the real world. These illumination
computations depend on how well the different models describe the real world. The
material model describes the behavior of light interactions within scene objects. The
light transport can be significantly modified by the object’s material properties. A
too simplified material model can only approximate the complex material properties.
Anti-reflection coatings have a complex reflectance and refracting behavior, and need
a more sophisticated material model. The camera model mimics the characteristics of
a real world optical system and is responsible for mapping the virtual scene onto the
virtual image plane.

Depending on the quality of the camera model (Chapter 4.3) and the material model, the
resulting image can become increasingly physically plausible. Simplified camera models
lack of realism, as they cannot reproduce familiar visual real-world phenomena, like
depth-of-field, motion blur (Chapter 3.1) and lens flares (Chapter 3). These effects are
important visual cues and imply a high degree of realism. Depending on the application,
some of these effects can be simulated by a well described camera model or can be
approximated in a post-processing step.

In the movie industry, special effects are a frequently used tool to enrich real world
images with artificially generated images. In case of a too simplified camera model, the
rendered image cannot be seamlessly merged with real-world images, because artifacts
are visible. An accurate simulation of cameras and sensors is also of high importance for
machine vision or optical system design.

23

4. Related Work

4.1 Lens System Models
In the field of optic design, various lens models have been developed to describe optical
systems and their components.

4.1.1 Thin Lens Model

A camera contains a set of lenses (Chapter 3.1), which manipulate the incoming light by
refraction and reflection. To simplify a simulation process, the thin lens approximation
assumes the thickness of a simple lens, which is similar to the lens system characteristic, to
be infinitesimally small. The refraction within the lens body is therefore not considered,
and the passing rays are refracted only once at a single plane, the principal plane
(Figure 4.1).

Figure 4.1: Thin lens model [BHK+03]

Light rays passing the focal point F and F ′ are refracted in parallel to the optical axis to
the other side. The distance between the center of the lens and the focal point is called
focal length f and f ′. Points of a certain distance l to the principal plane are projected
on the other side of the lens to a certain distance l′. If the image plane is equal to the
distance l′, the point lies on the focus plane and its projection is a sharp point on the
image plane. Points which do not lie on the focus plane are projected onto the image
plane as blurred circles, as their projected points lie in front or behind the image plane.
This simplified lens model is capable of generating depth-of-field, but is only appropriate
for lens system simulations where the thickness of the lens is relatively small compared
to the focal length [BHK+03].

4.1.2 Thick Lens Model

The thin lens model is suitable for approximating a lens system by one circular symmetric
lens with negligible thickness, but real camera systems are based on a complex set of

24

4.1. Lens System Models

various lenses, where the thickness has a great visual impact. To describe a camera in a
more accurate way, the lens system can be better approximated by a Thick Lens Model.
The thick lens model includes the thickness of a lens into its model to describe the light
traversal through the lens in a more accurate way.

Figure 4.2: Thick lens model [BHK+03]. The dashed lines show the actual path of light
rays. The dotted lines show how the light path is approximated by the thick lens model.

In contrast to the thin lens model, each side of the lens is described by its own principal
plane (primary principal plane H and secondary principal plane H ′). The distance
between primary and secondary principal plane describes the lens’ effective thickness.
The thickness of the model can also be negative, if the secondary principal plane is in front
of the primary principal plane [KMH95]. Each principal plane has its focal point F and
respective F ′, and the resulting focal distance f and f ′ (Figure 4.2). Rays intersecting
the focal points F or F ′ refract (as described in the thin lens model chapter 4.1.1) and
pass the principal plane parallel to the optical axis. The light propagation through the
lens is thereby described by two thin lens models, where the light passes the gap between
the principal plane parallel to the axis [BHK+03].

4.1.3 Optical System Description

An optical system can be specified algebraically up to a certain point. In case of
spherical lenses, each lens can be described by its signed radius (convexity/concavity),
thickness, material property and aperture stop position (Figure 4.3). These details are
of high importance for a realistic light propagation simulation through a lens system.
The data sheets are available from specialized sources [SO05] or from available patents.
Unfortunately, in most cases these data sheets are not complete – especially the exact
composition of the used anti-reflection coatings are not publicly available.

25

4. Related Work

Figure 4.3: Opptical system description [SO05]

4.2 Light Propagation Formulation

For ray tracing techniques various models can be used to simulate the light flow through
an optical system. By assuming a lens model to fulfill certain criteria or by accepting a
certain amount of approximations, different methods are available. The general approach
for ray tracing applications is to express the ray to interface intersection geometrically or
analytically.

4.2.1 Ray Transfer Matrix

While accepting paraxial approximation, which assumes that all rays have a small angle
and distance to the optical axis, an optical system can be approximated by a linear
system [Gre04]. The optical system can be split up into its containing optical interfaces,
where each interface also represents a linear system. A linear system can be expressed
as a matrix. As all components of an optical system can be formulated as matrices,
their concatenation results in a single matrix, which describes the whole system. A path
through the whole system can be evaluated in constant time by applying the single matrix
to its input vector. The transformation of a light ray by an interface can be expressed
as a 2x2 Ray Transfer Matrix [LE13]. The translation T , reflection L and refraction R
ray transfer matrices are defined for simple optical components. Where d is the distance
from the optical ray, n1 and n2 are the refraction indices, and R the radius of curvature
[Hen15].

T =
(

1 d
0 1

)
Rcurved =

(
1 d

n1−n2
R∗n2

n1
n2

)
Lcurved =

(
1 0
− 2

R 1

)

26

4.3. Camera Models

4.2.2 Polynomials

Polynomials are a generalization of ray transfer matrices (first order approximation) and
can be formulated for any desired order. The possible higher order allows to describe
also non-linear effects and aberrations. The polynomials express the light propagation
analytically through a geometric optical system in a similar fashion as transfer matrices.
Generally, the method can be used for any shape as long as the ray intersection has a
valid analytical solution. The ray intersection with an optical element can be interpreted
as a function. By concatenating the functions (using function output as input for the
next function) the ray propagation can be completely described. This concatenation
increases the complexity of the resulting polynomial expression, but by truncating terms
of a certain degree the net complexity can be kept constant. This allows to approximate
an optical system to a certain degree without increasing the complexity [HHH12].

4.3 Camera Models

To allow a higher degree of realism, more advanced camera models have to used within
the rendering process. The physical more reliable camera models are based on optical
descriptions to describe the light transformation within a lens system.

4.3.1 Camera Obscura

The theoretical model of the Camera Obscura (pinhole camera) can be analytically
described and can be used as an artificial camera model. The Camera Obscura model is
based on an infinitesimal aperture (pinhole). The aperture is also the center of projection
and perfectly maps each point of the scene onto the image plane. Therefore all objects of
the scene appear to be in sharp focus [BHK+03]. Based on this theoretical model, a real
camera can be crafted, but due to the extremely small aperture the resulting images are
to dim to observe [HSS97]. This simple camera model is able to produce perspectively
projected images without any distortion. Due to its simplicity, it is an often used camera
model in computer graphics, but it does not incorporate real lens data to describe the
lens system or any camera parameters.

4.3.2 Camera Model Incorporating Optical System Descriptions

Kolb et. al. [KMH95] developed a realistic camera model using the thick lens model
to describe a lens system. By using distributed ray-tracing, the parameter of the thick
lens model can be approximated quite well. The model also considers aperture stops for
a valid depth-of-field and includes exposure time by weighting the ray accordingly for
correct irradiance mapping. Vignetting and non-linear geometric transformations like
fisheye-lenses can be depicted. The model falls short in terms of wavelength-dependent
effects such as chromatic aberrations and internal reflections as well as lens imperfections
and diffraction.

27

4. Related Work

Steinert et. al [SDHL11] introduce an advanced path traced rendering approach. The full
spectral path tracing algorithm converges well due to efficient Monte Carlo weighting. The
approach also includes lens design data to describe the lens system. To simulate various
aberrations and wavelength-dependent effects, laws of physical optics are considered by
the simulation. Diffraction-based effects, like the star-shaped lens flare effect caused
by the aperture shape, can be evaluated for rays within a certain range around the
aperture by geometrical diffraction theory. This approach allows to simulate lens flares
and chromatic aberrations and can be used as a reference application due to its exact
and non-optimized ray propagation formulation.

Hanika et. al. [HD14] present an advanced camera simulation approach based on
polynomials. This work extends the previous work of Hullin et. al. [HHH12], which used
higher polynomials to describe light propagation through a geometric optical system. The
more sophisticated approach by Hanika et. al. [HD14] improves the simulation quality by
precisely solving the polynomial approximation of an optical system. The simulation is
based on bidirectional path tracing, including multiple importance weight sampling. To
find suitable weights, the Jacobians of the polynomials is used. The optimized simulation
process allows to produce results close to the ray traced ground truth. This approach
supports vignetting, all aberrations and faithfully reproduces point spread functions.
Furthermore it allows to change the focus by shifting the sensor. Fresnel’s laws are not
considered while evaluating ray transmissions, which results in constantly too bright
images – but as lens manufacturers intend to craft high transmission lens systems, the
results are quite close to reality.

Joo et. al. [JKL+16] propose an efficient ray-tracing method to include aspherical
lenses. The previously mentioned approaches are all based on spherical lens models. An
aspherical lens has non-linear deviations to its spherical base curvature. Modern lens
systems include aspherical lenses due to their good convergence of peripheral rays on
the focus plane and to reduce aberrations. To optimize such non-linear lenses is not a
trivial task that needs high expertise and care in optics. To find the intersection point of
a ray with an aspherical lens, Joo et. al. use a bracketing-based root-finding method.
For efficient use, the initial interval is evaluated by approximating the aspherical lens
by a tight proxy geometry. The simple sample-based ray intersection method can be
used for aspherical lenses as well as for more general lens forms. Fresnel diffraction is
approximated by a fraction Fourier Transform to generate a realistic bokeh effect.

4.4 Lens Flare Simulation and Rendering

Lens flare simulations strongly depend on the underlying optical system model. An optical
system solely described by thin or thick lens model is not capable of simulating lens flare
or complex optical effects (aberrations of higher order). Complex light paths within the
system cannot be described accordingly, therefore this description approximations are
too crude. Nonetheless, these lens approximation models are still useful to reduce the
complexity of the simulation process in various simulation approaches. Depending on the

28

4.4. Lens Flare Simulation and Rendering

application’s intentions, different kinds of optical system models are used.

Other applications are primary concerned with the correctness of the simulation process
and therefore tend to use very precise lens systems descriptions. These applications focus
on quality evaluations of a lens system and not mainly on rendering (Chapter 4.4.1).
For other applications, the rendering of lens flare is of high importance. Depending
on the need for realism, different approaches have been developed. A possible way to
render lens flare is based on artistically inspired heuristics, which are not based on any
real-world data. For these applications, the correct occurrence and shape of lens flare is
negligible, because they only want to mimic the lens flare effect in a pretty and fast way
(Chapter 4.4.2). In contrast to artistic lens flare renderings, there are also renderings
inspired by a high degree of realism. The visual appearance of the lens flare elements as
well as their correct position is a result of a physically-inspired simulation (Chapter 4.4.3).

4.4.1 Lens Flare Simulations without Rendering

An high degree of physical correctness in the simulation of a lens system is of great
importance in the field of optical lens design. Based on physically accurate simulation
results, the optical lens designer is able to optimize the lens system in a more efficient way.
It allows to fulfill various criteria, like performance requirements and cost constraints.
High-end designing tools for optical systems like ZEMAX or Code V include various
optical effects, like wave-optical effects caused by diffraction and interferences. The main
focus of such tools is to provide correct simulation results, but they are not intended to
generate real-time renderings and only provide a very general solution [Toc07]. Figure (4.4)
shows an example how ZEMAX visualizes a lens system and its scattered light in a spot
diagram.

Figure 4.4: Lens description and simulation [Toc07]

29

4. Related Work

4.4.2 Artificial Lens Flare Rendering

Artificially created lens flare renderings are not based on lens flare simulation. The hereby
used lens flare sprites are artificially generated and do not claim to be physically correct.
The main interest of lens flare sprites are to enrich the scene with a pretty lens flare
effect and to indicate the presence of bright light within a scene. In the creation process
of these sprites, artists try to mimic the shapes and colors of lens flares. The artist are
not strictly bound by physical laws and therefore certain details can be simply skipped
or can be drawn emphasized or even exaggerated to depict some pretty aspects of real
lens flares.

Kilgard et. al. [Kil00] suggest to blend the pre-computed lens flare textures into the
frame-buffer as a post-processing effect common in real-time applications. The colorful
lens flare effect is achieved by blending different red, green and blue textures together.
The lens flare sprites are arranged along a line through the image center following an ad
hoc displacement function. Star-like textures are directly blended over the light source
position to achieve a pretty, colorful lens flare effect. Figure 4.5 shows basic gray-scale
textures and a result of this approach.

Figure 4.5: Gray-scale lens flare sprites and resulting lens flare effect [Toc07]

For a more realistic behavior of the lens flare effect, camera movement has to be taken
into account to manipulate the lens flare sprites. King [Kin00] achieves to include camera
movement by changing the opacity and size of the lens flare sprites according to the
distance of the projected light to the image center. While the light source is closer to the
image center, the flare elements become larger and more opaque. On the contrary, while
moving the light source farther away from the projection center, elements shrink and
become more transparent.

To control brightness variation of a sprite based lens flare effect, Maughan [Mau01]
suggests to scale the intensity of the effect by the amount of visible light pixels in the
rendered image. In case of a non-occluded light source, the lens flare effect becomes quite
prominent. While moving the light source behind occluding scene elements, the amount
of visible light pixels decreases and the lens flare effect scales down. Due to performance

30

4.4. Lens Flare Simulation and Rendering

Figure 4.6: Lens flare sprites used in Serious Sam 2 [Sek04]

issues Sekulic [Sek04] recommends to use the occlusion queries features of common
Graphical Processing Unit (GPU)-Application Programming Interfaces (APIs) to speed
up the evaluation of visible light source pixels. Figure 4.6 shows how a sprite-based lens
flare effect is used in a computer game.

Another way to describe lens flare elements is demonstrated by Alspach [Als09], where the
shapes of the lens flare elements are described by a set of vector shapes. The vector-based
representation is a combination of different basic vector elements, such as halos, rings
and rays. The vector shapes within a group maintain their association to each other
while manipulating the whole group by user inputs. Common editing operation such as
moving and resizing can be applied to the whole vector group.

4.4.3 Physically-Based Lens Flare Simulation and Rendering

Realistic lens flare rendering is coupled with an optical system simulation. Depending
on the rendering quality, more or less approximations are acceptable. Simulation and
rendering time can be a critical criteria for real-time applications or while restarting the
whole simulation due to lens system changes (zooming, aperture).

Chaumond [Cha07] implements lens flare rendering based on simple path tracing. The
resulting lens flare images are very noisy, because only a few ray are actually contributing
to the lens flare effect. To improve the convergence of lens flare artifacts, the path tracing
algorithm starts from the scene light towards the camera. This results in a nearly dark
scene, but better convergence of the ghosts. This approach already considers the aperture
shape, but due to poor convergence, the aperture shape does not have a visible impact

31

4. Related Work

in the resulting rendering. Lens flare coating as well as wave effects are not included.

Kesmirian [Kes08] uses photon-mapping to render lens flare. The used camera model is
based on Constructive Solid Geometry (CSG) primitives. This approach is able to render
ghosts, but it converges really slowly. Lens flare coatings are not included, therefore the
color of the ghosts cannot be determined. Wave-optical effects are also not considered in
this approach. Figure 4.7 shows a synthetic flare generated with this method.

Figure 4.7: Synthetic lens flare simulation (left: 143min | right: 149min) [Kes08]

Steinert et. al [SDHL11] present a full spectral camera model based on lens design data
(Chapter 4.3.2). The lens flare ghosts are simulated by introducing an optimized path
generation for non-image-forming paths. The colors of the ghosts are mapped according
to the unknown, but well approximated lens coatings. By incorporating geometrical
theory of diffraction, the star shape lens flare can also be simulated (Chapter 3.2). To
simulate this effect efficiently, only rays within a certain range from the aperture edges
are considered. Due to the complex simulation process, simulation time is beyond the
requirements of real-time applications. Figure 4.8 shows different lens flare elements
(aperture diffraction and ghosts) and a scene with the combination of both effects.

Figure 4.8: From left to right: diffraction simulation (30min) | ghosts simulation (130min)
| armadillo scene with lens flare overlays [SDHL11]

32

4.4. Lens Flare Simulation and Rendering

Hullin et. al. [HHH12] present an improved ray tracing approach based on a polynomial
representation of the lens system (Chapter 4.2.2). Lens flare can be efficiently simulated
by expressing lens flare forming paths as polynomial systems. The resulting systems are
used to pre-generate machine code to allow an efficient execution. The entrance pupil
is randomly sampled to map incoming light rays onto the sensor without generating
visible patterns or holes. For each ray, an additional polynomial is evaluated to find the
position where it passes the aperture. This allows to discard aperture blocked rays from
the final solution and to incorporate the aperture shape for the ghosts simulation. For
more complex light paths, which pass the aperture several times, additional polynomials
evaluations are necessary to verify a ray is not blocked by the aperture. For efficient
computation, this approach assumes lenses to be rotationally symmetrical to reduce
overall complexity. Code generation for the polynomial systems is quite time consuming
(up to 8 minutes), but afterwards, the rendering can be done quite fast (up to 4 seconds).
Aberrations can be simulated by using polynomials of degree 3 or higher, but diffraction
cannot be simulated by this approach. To reduce sampling noise, the Jacobian of the
polynomial system can be used to determine appropriate orientations and kernel size for
a Gaussian filter. This approach is more efficient than the one proposed by Steinert et.
al. [SDHL11], but also coarser due to its approximations. The method reaches interactive
performance, but is not suitable for a real-time application. Hanika et. al. [HD14]
improve the precision for this polynomial approach, but have not further investigated
the visual difference of their rendering compared to this approach. Figure 4.9a shows the
lens flare rendering of the Itoh zoom lens in comparison to Hullin et. al. [HESL11].

(a) Polynomial based rendering by Hullin et.
al. [HHH12]

(b) Texture based rendering by Hullin et.
al. [HESL11]

Figure 4.9: Itoh zoom lens

In Physically-Based Real-Time Lens Flare Rendering by Hullin et. al [HESL11], a ray
tracing-based simulation approach for lens flare rendering is presented. The camera
model, based on real lens design data, is efficiently traced by ray bundling. Ray bundling
reduces the needed amount of rays to a sparse set by grouping neighboring rays to a
single ray. To accelerate the simulation process, the sparse set of incoming light rays are
restricted to a rectangular region, depending on the entrance aperture. The region’s size
is chosen to include all rays that might reach the sensor. Each ray records its traversal
through the system, and when finally reaching the sensor, a grid with neighboring rays

33

4. Related Work

can be defined. The ray grid is used to interpolate missing rays in between without the
need to actually simulating them.

The rendering is based on realistic textures, which incorporate the aperture shape and
approximate the aperture diffraction by the Fraunhofer pattern as well as the surrounding
ring pattern of the ghost by the Fresnel approximation. The texture generation is
performed in a pre-processing step. For complex lens systems, the simulation is quite
time consuming (up to 20min). The rendering time of the flare is quite low (near real-time
frame rates can be achieved) due to pre-generated lens flare textures. The color of ghosts
is considered within the simulation process by approximating anti-reflecting coatings.
Lens imperfections are artificially generated by slightly offsetting the ghosts from the
light-to-image-center ray. The approach gives the user the possibility to manipulate lens
flare textures (color) to fulfill artistic requirements, and to adjust the simulation trade-off
between quality and speed by skipping certain flares. Figure 4.10 (bottom) shows a
complex lens flare generated by this approach.

Figure 4.10: Lens flare results from Lee et. al.[LE13] (top) and Hullin et. al. [HESL11]
(bottom)

Lee et. al. [LE13] improve the work of Hullin et. al [HESL11] regarding simulation speed,
but with coarser quality (Figure 4.10). The lens simulation is based on a first-order
approximation of the ray transfer within an optical system. This approximation can be
described by ray transfer matrices (Chapter 4.2.1). To find a possible ghost path (flare

34

4.4. Lens Flare Simulation and Rendering

matrix), the complete light propagation path has to include an even number of reflection
matrices. The flare matrix is used to directly project a quad from the entrance pupil
onto the sensor in constant time. The projected quad holds all transformations for a
specific ghost and can be re-used as a ghost sprite. As the shape of a ghost strongly
depends on the aperture, the aperture shape is integrated in the propagation path as
well as the entrance pupil. The flare matrix is split up into two parts: One describes
the path before the aperture, the other one the path from the aperture to the senor. In
between, the pre-sampled aperture texture is used to block rays accordingly. To reduce
unlikely reflection paths where the aperture is crossed multiple times, the reflection
is assumed to occur either before or after the aperture. The intensity of the ghost is
scaled by the projected quad and its color is sampled by one ray in the ghost center (one
simulation run for each color channel separately). The direct light is approximated as
in Hullin et. al. [HESL11]. Due to the first-order approximation (minimal version of
polynomial approximations), nonlinear deformation, aberrations and topological changes
cannot be expressed correctly, but generally only a few lens flare elements are affected by
non-linearity. The overall processing time depends on the lens system’s complexity, but
is usable for real-time applications (261Hz to 1615Hz). The introduced ray propagation
model can be used for sprite based lens flare rendering (Chapter 4.4.2) to describe a
realistic displacement function. For acceleration purposes, only paths of two reflections
are simulated (due to the high energy loss per reflection (Chapter 3.2.1), and ghosts with
low intensities are culled. Hennessy [Hen15] implemented this approach and suggests
to scale the ghost’s intensity by the system’s effective aperture and to sample a ghost’s
color by a random angle for each color channel to reduce the chance of complete internal
reflections.

Joo et. al. [JKL+16] present a method to simulate lens imperfection caused during
the manufacturing process. Lens imperfections can arise by grinding or polishing in
the crafting process, or by dirt in the lens material or on the lens surface. Even a few
nanometers of deviation can result in visible artifacts. An ideal parametric model does
not include such extrinsic imperfections, and their incorporation is not trivial. Joo et.
al. simulate the swinging movements of the polishing and grinding tools to generate an
imperfection texture. The imperfection texture can be used in the simulation process
as an offset look-up to bias the refraction directions of light paths. This approach is
capable of dealing with aspherical lenses, which are more prone to crafting imperfections
than spherical lenses. The simulation process is able to reproduce lens flare, but is very
costly due to a large number of lens samples to reduce noise. To allow real-time lens flare
rendering, this method can be used to generate lens flare textures which are then applied
in a sprite based rendering approach like proposed by Lee et. al. [LE13] (Figure 4.11).

35

4. Related Work

Figure 4.11: Example of imperfection textures from Joo et. al. [JKL+16] applied onto
Lee et. al.[LE13] lens flare renderings

36

CHAPTER 5
Data Acquisition

The aim of this work is to retrieve a possible workflow to predict and render lens flare,
especially ghosts, for any lens system without any specific information of the lens system’s
internal structure (Chapter 2.2). The only necessary parameters for this approach are
the generally available camera parameters: focal length and aperture stop. The first
building block of this workflow is the data acquisition stage.

The camera can be interpreted as a black box, and its output images contain all transfor-
mations caused by the lens system. Recent work in the field of physically-based lens flare
rendering show, that the lens system must be described as precisely as possible to generate
a physically accurate lens flare effect (Chapter 4.4.3). Unfortunately, the lens system
specifications are hardly available. Additionally, the specifications are not complete.
Especially the composition of the anti-reflection coatings, which are essential for the
appearance and occurrence of lens flare, are kept secret. The constellation of camera to
light source is essential for the ghosts positions and their appearance (Chapter 3.2.3). To
sample the behavior of lens flare, the camera to light constellation has to be changed in
discrete steps (rotating the camera). While using a sufficient small step size, the ghost’s
positions do not vary too much between neighboring samples. This allows to reconstruct
the behavior of each ghost over the sampled range.

5.1 Sampling A Lens Flare
While capturing a bright point light source within a dark neutral environment, the chance
to depict a clear lens flare effect in the output-image increases. A ghost’s intensity is
related to the amount of energy, which reaches the sensor via the non-image forming
paths (Chapter 3.2.1). Each reflection on the path reduces the carried energy. To produce
a valid data sample, a sufficiently bright light source is needed, to also depict ghosts with
low intensity. A longer exposure time can also be used to compensate a less bright light
source, but increases the acquisition time. On the other side, a too long exposure results

37

5. Data Acquisition

in oversaturated areas within an image, which do not hold any usable information. To
ensure reliable data, raw-data as captured by the sensor is used in the further workflow.
Therefore, the images are not tone-mapped or compressed. To increase the possible range
of intensities, multiple images with different exposure times (0.25s/1s/4s) are sampled
and combined to a High Dynamic Range (HDR) image (performed by Photoshop 5 -
HDR-Tool). The HDR images are converted from the camera-specific RAW-format to
the common open-source format OpenEXR from Industrial Light and Magic [LM14].

5.2 Assumptions
For an effective data acquisition, some assumption have to be made in advance to limit
and reduce the amount of required samples, but still ensure to capture all essential
information of a lens flare.

Symmetry: The lens system is assumed to be radial symmetrical to its optical
axis. Therefore it is enough to rotate the camera only around one axis
to sample the complete lens flare behavior (Chapter 3.2.3). The only
requirement is that the light source center is crossed by the camera’s
optical axis. This reduces the amount of possible samples drastically.

Aperture: To capture as many ghosts as possible, the aperture is fully opened,
resulting in a perfect circle aperture shape (it is hidden behind the
aperture housing). Therefore, the ghost shapes are not so complex and
can be better approximated in the next workflow stages.

Light Source: The used light source has to simulate a point light. The incoming rays
at the entrance pupil are therefore assumed to be parallel. To fulfill
this assumption, the used light is chosen to have a narrow output angle
and small exit pupil (approximately 10mm).

Stray Light: To capture stray-light caused ghosts, the camera’s optimized lens hood
is not applied.

Imperfections: To avoid extrinsic imperfections, like dust on the entrance pupil or on
the sensor, both camera elements are carefully cleaned before sampling
lens flare.

5.3 Prototype Setup
The prototype consists of a camera and a bright light source, each placed on a tripod
in such a manner, that the optical axis of the camera is on the same height as the light
source. The camera is rotated around its no-parallax point to avoid parallax shifts over
the range of captured images [Rik06]. The fixed distance of the camera to the light source
is chosen carefully to ensure that the camera’s entrance pupil is fully, but as tightly as

38

5.3. Prototype Setup

possible, illuminated by the light source. To generate a valid range sampling, the optical
axis has to cross the light source center. To ensure this position, our acquisition setup
starts with exactly that critical constellation. The light centered camera start position
allows to rotate the camera in any direction, while still recording all important ghost
movements. The rotation sampling is performed along the horizon, because the camera
format is generally wider in the horizontal dimension, than in the vertical dimension.

5.3.1 Automatic Sampling

In our first attempts, we tried to manually rotate the camera in small rotation steps. By
manually rotating the camera (even using the tripod’s angle marks and physical locks)
the sampling steps cannot be assured to be evenly spaced. To ensure equal rotation
steps, we used a programmable motorized panorama rotation head from Syrp [Syr16].
The panorama head offers an efficient and dense sampling rate (0.2◦), which should be
sufficient enough to capture all necessary ghost movements.

5.3.2 Test Light Source and Environment

To find an appropriate test light source is not trivial. Regular light bulbs are too large to
simulate a point light in a reasonable distance. Unfortunately, the tested flashlights are
to weak to trigger lens flare in reasonable time (around 30 seconds or more as depicted
in Figure 5.1). Our own crafted test light based on a single Light-Emitting Diode (LED)
is more suitable, but unhandy to mount on the tripod (still 10 seconds, but better as the
flashlight attempt as Figure 5.2 shows). Finally, the quest of finding a more powerful
and small light source lead us to a medical light system, which is designed for endoscopy
examination (Olympus CLV-S with a OES Xenon Light Source). The xenon light source
is extremely bright and allows to capture visible lens flare within seconds (fast and good
response within 1 second as Figure 5.3 shows).

The tripods are clearly visible in the first test attempts, because our setup room is not
comparable to a perfect black box. By covering the surrounding and tripods with a black

Figure 5.1: Flashlight test setup and result (30 seconds)

39

5. Data Acquisition

curtain, the background noise can be drastically reduced (Figure 5.4). To create our final
data set we used a Canon EOS 5D Mark II (1 second | f/1.4 | 24mm | ISO 100) and the
endoscopy light system (Olympus CLV-S). The setup’s complexity is intentionally kept
simple and general to be reusable for any mountable camera model or lens system.

Figure 5.2: LED test setup and result (10 seconds)

Figure 5.3: Medical light test setup and result (1 second)

Figure 5.4: Final setup with curtain and automatic panorama head

40

CHAPTER 6
Ghost Rendering Primitive - Lens

Flare Model

The captured samples of the Data Acquisition Stage (Chapter 5) show the physically
correct mapping of lens flares by a specific lens system. Unfortunately, the samples do
not contain any description about their content. From the capturing stage, only the
position of the light source within the image is known (due to the capturing angle),
but the ghosts’ positions are completely unknown. For further use in our workflow, the
position and shape of the ghosts have to be extracted from the sampled image data.
We use a simple model for ghosts consisting of shape, position and color parameters.
To best fit the elaborated ghost model to the sampled data (in the next stage of the
workflow, see Chapter 7), the model is capable to generate a visual representation. The
visual representation is directly implemented on the GPU to ensure a fast rendering,
which is important for an efficient optimization (Chapter 7) and real-time visualization
(Chapter 8).

6.1 Analyzing the Sampled Ghosts
According to the stated assumptions (Chapter 5.2), the ghosts in the captured data are
more or less circular or elliptical. Additionally, the images share a mirror-axis along the
captured horizon, except for some small variations (imperfections). Generally, in case of
an odd sided n-polygon-shaped aperture, the mirror property is not given. The position
of the light source’s height varies a little bit over the range. This can be lead back to a
non-perfectly balanced mass center of the camera while rotating. The ghosts seem to
be split-able into a left and right side while surveying the shape. This visual clue may
originate from the horizontal sampling and clipping by the entrance pupil and aperture.
The left and right side share a common height with a smooth transition. The color and
intensity of each ghost varies with the distance to the visible border of the ghost shape,

41

6. Ghost Rendering Primitive - Lens Flare Model

but the transition is generally quite smooth. Each ghost appears to have a dominant
color with slight variations. Usually, the border holds the brightest color and intensity
values and starts to fade out to both sides. Torus-like shapes are generated, while the
intensity of the border fades out to black on each side. In some cases the inner area does
not fade out completely, resulting in various filled ghost shapes.

6.2 Requirements For the Rendering Primitives

The required parameters for a ghost rendering primitive are as follows:

Shape: Due to horizontal sampling, the shape of the ghost can be clipped horizontally
by the entrance pupil. Therefore, the left and right side have to be treated
differently. Each side has to offer enough flexibility to approximate the aperture
shape (according to our assumptions, a circle). The position of the ghost is set
by the center coordinates in image space.

Color: The color or intensity depends on the distance to the visible ghost border, while
the transfer function can vary from ghost to ghost.

6.3 Creating the Model

The general position of a ghost can be expressed by a position vector (Mx and My).
Therefore, this previously mentioned requirement can easily be included into a model.
The intensity or color is mapped by a minimal distance function to the ghost’s border.
The border can become quite complex, especially as the left and right side can differ
from each other while still sharing a smooth transition. According to our assumption, the
aperture shape is a perfect circle, but the resulting ghost shapes are more complex than
a simple circle. To be able to describe the whole ghost shape, either a rather complex
curve is required, or multiple circular segments have to be smoothly combined.

6.3.1 Shape

The Bézier curve can satisfy the previously mentioned requirements, as it allows to
describe a huge variation of circular shapes and their combination. The Bézier curve
depends on a control-polygon. In contrast to other curve models like splines, Bézier
curves start and end in control points, which allows to append multiple Bézier curves in
an easy fashion. The number of control points, used for weighting the curve describe the
degree of the Bézier curve. A cubic Bézier curve is defined by four control-points: a start
point P0, two additional control points P1 and P2, which mainly influence the slope, and
an end point P3. The weighting for a point B on a cubic Bézier curve is formulated by
Equation 6.1, while the parameter t within its range [0, 1] describes all points between
the start and end point (Figure 6.1).

42

6.3. Creating the Model

Figure 6.1: Cubic Bézier curve - point construction at t = 0.25.1

C(t) =
3∑

i=0

(
3
i

)
ti(1− t)3Pi t ∈ [0, 1] (6.1)

While combining two Bézier curves it is possible to generate a very smooth transition by
placing the control points appropriately. To ensure that the curves have a C1 continuity
at the assembly point, the closest control point of each curve and the assembly point have
to share a common line. To ensure G1 continuity the control points have to be placed
evenly spaced from the assembly point on the line. To reduce the overall complexity of
the ghost shape, only cubic Bézier curves are used within our model. Cubic Bézier curves
are flexible enough to describe various forms and can be simply spit up into multiple
segments by inserting additional control points into the previous control polygon. While
various shapes can be formed by cubic Bézier curves, a perfect circle can only be faithfully
approximated by appending four cubic Bézier curves [2]. Four curve segments are also
the lower limit to be able to represent the encountered ghosts shapes, therefore this
restriction does not increase the complexity of our model.

In case of a mirror-able aperture shape (horizontal aligned) the upper or lower part of
the ghost can simply be mirrored. The left L and right R side of the ghost have to be
individually changeable. The height h of the ghost is defined by the common assembly
points of the left and right ghost side. The curvature of each side can be separately
adjusted by the control points Cl and Cr. To reduce the parameter the control points are
restricted to be shifted only axis-aligned to support C1 continuity. The model is capable
to generate simple curve segments and even a line. Figure 6.2 visualizes the concept of
the shape model. The green points represent the control points for Cr and the red points
for Cl.

To represent any n polygonal aperture shape (blade edges are not restricted to be flat),
more Bézier curve elements could be used to describe a more complex ghost shape.

1Source: By Philip Tregoning (Constructed with ImageMagick) [Public domain], via Wikimedia
Commons

2http://spencermortensen.com/articles/bezier-circle/

43

http://spencermortensen.com/articles/bezier-circle/

6. Ghost Rendering Primitive - Lens Flare Model

h

L R

C

C
r

l

M

Figure 6.2: Shape model for a lens flare element

6.3.2 Intensity

The intensity or color of a point depends on its signed distance to the ghost’s shape. The
shape of a ghost is described in our model by multiple appended cubic Bézier curves
(Chapter 6.3.1).

The minimal distance from a given point to a cubic Bézier curve cannot be directly
solved analytically, but different heuristics can be used to retrieve the point B on the
cubic Bézier curve C(t) (Equation 6.1), which has the minimal distance d(t) = |C(t)−Q|
to the query point Q.

A simple approach is to loop over the curve in discrete steps n and calculate in each
iteration i the point on the curve Ci = C(t+ i ∗ 1

n). For each sampled point the distance
is calculated di = |Ci −Q|, and the smallest encountered distance is assumed to be the
minimal distance. This method strongly depends on the sample density and can only
approximate the minimal distance very roughly and by coincidence. Only a really dense
sampling rate increases the chance to find the actual minimal distance or at least a quite
good approximation, but this approach is highly inefficient.

To reduce the number of samples and to further increase the quality of the minimal
distance approximation a divide and conquer based approach, like binary search, is used
instead of brute force sampling. Binary search iteratively splits the parameter range
into two equal parts and evaluates the distance separately for each mid-point. The
range, which holds the smaller value at its mid-point, is used for the next iteration.
In each iteration the possible range of t (starting with [0, 1]) is halved (range = 0.5i).

44

6.3. Creating the Model

This reduces the needed iterations from O(n) to O(logn) and allows to approximate the
minimal distance of our restricted cubic Bézier curve efficiently. The restriction of our
shape model allows to further accelerate the splitting process by reducing the possible
range around the unknown parameter t more efficiently. The split ratio between the
projected query point onto the connection line of start and end point, allows to reduce
the range more efficiently than by simply splitting it into halves.

Another more complex, but exact and more general method to find the closest point B
on the cubic Bézier curve C(t) can be stated by the following equation 6.2.

B = C(t) where t = argmint′ |C(t′)−Q| (6.2)

The absolute distance d of a query point Q to the points on the Bézier curve C(t) depends
on t and is defined as d(t) = |C(t)−Q|. Finding the extremes of the first derivative of the
distance function ∂d(t)

∂t allows to reduce the possible solution to a polynomial root finding
problem. The derivative is a fifth-order polynomial in t, therefore up to five possible
solution exist. The solutions have to be first filtered by excluding complex solutions and
solutions which are outside of the defined range [0, 1]. The remaining solutions values for
t are used to evaluate the absolute distances for each solution separately. The calculated
distances are compared to each other to find the exact minimal distance.

The precision of the less complex iterative binary search based approach depends on the
amount of iterations. To find the sufficient amount of iterations, we compared the iterative
approach to the analytic approach. After 12 iterations the difference of the binary search
method is negligible to the analytic method. The lightweight iterative method is suitable
to be executed directly on the GPU, while the complex analytical approach can be more
efficiently evaluated on the Central Processing Unit (CPU). Therefore we use the iterative
method to ensure efficient minimal distance calculation per pixel.

The sign of the distance indicates whether the query point lays inside or outside of the
curve. The sign of the distance can be evaluated by basic 2D-trigonometry (Equation 6.3),
where B is the closest Bézier-point, B′ its derivative and Q the query point.

rottangent = norm

(
−B′y
B′x

)

sign = sign(rottangent · (B −Q))

(6.3)

After defining the signed distance for each point its intensity or color value is applied
by a transfer function. Color can be interpreted as combination of multiple intensity
channels (RGB-model: red, green and blue channel), therefore the intensity transfer
function can be applied to each channel separately. A transfer function maps a distance
value to an intensity value by an arbitrary function. According to our analysis of the
occurring lens flare elements in the acquisition stage, the brightest color or highest

45

6. Ghost Rendering Primitive - Lens Flare Model

E E

F F

I

I

o i

b

i

io

in
te

n
s
ity

distance

Figure 6.3: Transfer function for a lens flare element

intensity values rest upon the ghost border and fade out to a constant value or completely.
Equation 6.4 describes the intensity transfer function of our model. Value Ib represents
the intensity value at the border and Ii the intensity value for the inner area and d the
signed distance value. The fade-out range is limited by Fi the inner falloff range and
respectively Fo for the outer. The fade-out slope can be adjusted by the exponents Ei

for the inner fade-out function and respectively Eo for the outer. Lerp interpolates the
border intensity value Ib to the desired intensity (Bi or0.0) value by the scale factor S.
Figure 6.3 visualizes the transfer function.

S =

1.0 if d = 0
|d|
Fo

if d < 0
|d|
Fi

if d > 0

I =
{
Lerp (Ib, 0.0, Clamp (0.0, 1.0, SEo)) if d < 0
Lerp (Ib, Ii, Clamp (0.0, 1.0, SEi)) else

(6.4)

The overall minimal signed distance form a given point to all curves can be found by
evaluating the minimal signed distance for each curve respectively and choose the smallest
distance. Figure 6.4 depicts two Bézier curves and the closest distance to a query point.

This model ensures that positive distance values (points laying inside of the ghost) are
always affected by the intensity transfer function, while the outer-side of the ghost is
fading out completely. Negative distance values farther away than Fo are not anymore
affected by the transfer function. Without any restrictions, the distance evaluation and
the coupled intensity transfer function has to be calculated for all pixels of the image.

46

6.3. Creating the Model

C1(t)

Q
d d1 2

C2(t)+
- -

Figure 6.4: Minimal distances from a query point to the Bézier curves

This is extremely inefficient. By defining a tight bounding box around the ghost, which
holds all possible affected points by the transfer function, the amount of tested pixels
can be drastically reduced.

This shading model is capable to approximate a lot of observed details from the sampled
ghosts, but can be simply extended to describe additional details. To render the ghost
primitives efficiently, the whole shape generation and shading is directly performed on
the GPU. Especially our advanced binary-search based distance calculations benefits
extremely from the efficient parallelism in the fragment stage. As each ghost solely
describes light, multiple ghosts can be additively blended into a single image.

In regard to the upcoming stages of the workflow (Chapter 7) we tried to create a powerful
and flexible model to describe various ghosts, but also limit the model’s parameter set to
a minimum. To ensure a fast and efficient execution, various optimizations are included
in the GPU based rendering.

47

CHAPTER 7
Optimization - Finding the Ghost

The previously presented lens flare rending primitives (Chapter 6) are able to generate
an artificial representation of a lens flare element based on the underlying model. By
adjusting the model’s parameters, a lens flare element of the acquisition stage (Chapter 5)
can be quite well approximated or even completely described. The problem is to find
the optimal parameter set for the lens flare model. Some special details are maybe not
depict-able by the model, and therefore the best possible approximation has to be found.

The difference between the actual, captured image and our rendered lens flare repre-
sentation has to be as small as possible. To somehow express this difference and its
cost, a so called cost function is used (Chapter 7.1). While reducing this cost function,
the difference decreases, and as a result the images become more alike. This reduction
process is a typical optimization problem, where the global minimum of the cost function
represents the best solution. To avoid a wrong behavior, the cost function has to describe
the optimal solution precisely (Chapter 7.1.2). Within the optimization process, the
cost function is evaluated very often, and a fast calculation method is needed to find
the solution in reasonable time. The data input for the cost function can be generated
in short time (lens flare rendering primitives) or can be simply accessed (sample of the
acquisition stage). As the cost function deals with images, it is obvious to use a GPU to
benefit from its optimized image processing and image representations (Chapter 7.1.3).

The simplest approach to solve this problem is a brute force based approach, where
all possible parameter constellations are evaluated and compared – but this is highly
inefficient. To reduce the amount of samples, several optimization strategies are developed,
strongly depending on the cost function’s properties. Iterative search techniques are
quite common for complex cost functions: After each iteration, the output is compared
to the previous state, and according to the improvement potential, the parameters for the
next iterations are chosen (Chapter 7.2). The optimization strategies vary on how the
parameter sets are chosen and updated. Depending on the optimization problem and the
search strategy, the correct solution can be found faster, or can be better approximated.

49

7. Optimization - Finding the Ghost

The optimization strategy uses the cost function to find the optimal parameter set to
describe a lens flare element in an image. To support the optimization process to find the
best solution, the initial values for the model parameter are crucial. After obtaining the
optimal parameter set for a sample of the acquisition stage, the just evaluated parameter
sets can be reused as initial values for the neighboring samples (Chapter 7.3). Because
the user is included in setting the initial parameters, and parameters for neighboring
samples are extrapolated from the first result, this is a semi-automatic approach.

7.1 Cost Function
To solve an optimization problem, it is important to know what impact changes cause.
To distinguish between good and bad decisions, a numeric indicator is necessary. The
cost functions maps the improvable space into a numeric value. A reduction of the cost
value indicates a good decision, while unpromising changes increase the cost. In our case,
the cost function represents the similarity between the rendered image and the captured
reference image. The similarity can also be expressed as the difference of two images.
The digital representation of images are raster images, consisting of pixels. To calculate
the difference between two images, the image can be compared pixel wise. If two pixels
share the same value, their difference is zero, and this pixel does not contribute any
additional cost. The simplest difference cost function can be calculated according to
equation 7.1, where N is the number of a all pixels and X and Y are the pixels of the
two input images.

costabs = 1
n

n∑
i=0
|Xi − Yi| (7.1)

While using this basic difference function, the convergence behavior of the simulation is
quite slow. To boost the impact of changes, the square of the differences is used for a
non-linear mapping (Equation 7.2).

costMSE = 1
n

n∑
i=0

(Xi − Yi)2 (7.2)

The Mean Squared Error (MSE) improves the convergence of the cost function by
weighting small difference less than larger ones. This metric is quite stable and successful
for artificially generated tests (comparison of two rendered images), but fails on real-world
data (comparison of rendered and captured image).

7.1.1 Encountered Problems

While solely using equation 7.2, the cost function is not able to distinguish between
background and lens flare elements. Background noise as well as in- or out-fading
lens flare elements state the biggest problem for the basic cost function. Therefore, the

50

7.1. Cost Function

current cost function (Equation 7.2) is not good enough. Additional features have to be
included, or other pre-processing steps have to applied (Chapter 7.1.2).

Color can also be a source of error, as every color space is based on multiple, dependent
channels. To generate a certain color, each channel has to be set to a certain value. To
describe a similar color, several channel values have to be changed individually. For
example, in the RGB-color space, the euclidean distance between two color is not really
similar or comparable to the human perception. We also investigated the HSV-color
space, because it seems to be suitable for color interpolation. However, the three HSV
parameters are not independent. Therefore, our optimization, which expects independent
parameters, does not converge. The problem of divergence never arose in our artificial
tests (based on promising initial values), because the test color varied only a little bit
from the original color in the same color space. The interpolation between two alike
colors is therefore often not linear.

To solve the color problem, either all channels have to be combined to one intensity
value (gray-scale image), or each channel has to be optimized separately. To not further
increase the complexity for our optimization problem, both RGB-images are converted
to a gray-scale intensity image. This reduces the lens flare model to represent the border
color only by one intensity, which is now completely independent.

7.1.2 Advanced Cost Function

The previously defined cost function (Equation 7.2) is not capable of distinguishing
between background (noise) and actual lens flare elements.

A possible way to reduce the background noise is to apply a smoothing filter (Gaussian
Filter Kernel) to both images – but this erases some details. While using a threshold
the background is clipped away completely and erases all information below the threshold
value. Additionally, the threshold value has to be chosen very carefully to not destroy
the actual lens flare elements. Finding a suitable threshold value is not trivial.

As the current cost function is based on a quite simple pixel difference, a more sophisticated
difference function can be used. In the field of image compression, the Structural Similarity
(SSIM) index is used to describe the perceived similarity of a compressed image to its
original [WBSS04]. SSIM composes three different comparison measurements (luminance,
contrast and structure) to form its index, but unfortunately these rather costly additional
features (caused by window-based sampling) do not improve the cost function, as it
behaves quite similar to the basic MSE cost function.

The cost function can also be adapted by combining it with another cost function. The
current cost function only considers the differences of intensity values, but does not
pay any attention to shapes. The shape of a lens flare element is limited by a border
edge. The edges of an image can be extracted by applying image filtering techniques.
Following the idea to use intensity differences to evaluate image similarity, the edge
images are also a valid comparison component. The discrete Laplacian Filter kernel is

51

7. Optimization - Finding the Ghost

able to detect horizontal, vertical and even diagonal intensity changes, mainly caused by
recognizable edges (i.e. the gradient changes its direction). To improve the edge filtering
result, the noise in the input images has to be first smoothed out by a Gaussian Filter
kernel. The Gaussian filter kernel is used to blur and to “wash out” an image. The
Laplacian filter kernel responds to gradient changes and therefore maps an edge as two
one pixel wide lines to the result image (see figure 7.1 second column). While calculating
the difference between two edge images, the chances are quite low to perfectly fit the
one pixel wide edges. In most cases, the slender edges only cross each other, but not
map completely. While increasing the edge width using an another Gaussian Filter, the
chance rises that two edges are overlapping, or to affect the output while being close to
each other (Figure 7.1 right column). This edge difference cost function and the MSE
cost function are linearly combined and turn out to converge also with real-world data.

Figure 7.1: Edge cost function creation. Top row shows a captured ghost of the acquisition
stage, while the bottom row visualizes a model based rendering. The first column is
the input file. The second column is the result of a Gaussian-Laplacian filtering. The
third column presents the result of the final edge cost. An additional Gaussian kernel
is applied to the second column to increase overlapping in the difference images. For
visualization purposes the edge images are brightened up.

7.1.3 Performance

The cost function is evaluated very often by the optimization algorithm, and therefore
its execution time has to be as short as possible. The GPU allows to efficiently work
with images or textures. The mean square error can be efficiently calculated in the

52

7.2. Optimization Strategy

fragment stage of the rendering pipeline by writing the difference pixel value into a result
texture. Mipmap pyramids provide an efficient representation to change the scale of a
texture. The ground level of the pyramid represents the original image, while every layer
successive downscales the image. The top of the mipmap pyramid is one single pixel,
which represents the averaged value for the whole image. Applied to a difference texture,
the mean difference of all pixels can be evaluated very efficiently.

Image filtering is based on convolution, where the filter kernel represents a discrete
convolution matrix. To filter an image, the filter kernel calculates a value for each pixel
based on the neighborhood weighting. The number of needed neighboring pixels depends
on the kernel size, and heavily influences computation time. Both Gaussian and Laplacian
filter kernel are 2D-kernels, and therefore the neighborhood evaluation is more complex
than for a simple 1D kernel. Fortunately, the Gaussian filter kernel is separable and can
be efficiently evaluated by executing the 1D-kernels sequentially. This property of the
Gaussian filter allows to speed up the blur and smoothing operations. Unfortunately, the
edge filtering operation, based on the Laplacian filter kernel, is not separable and has to
be executed without an optimization.

7.2 Optimization Strategy

To generate a rendering similar to the captured image, the optimal parameter set for
the model has to be found. The problem is to find the unknown parameter settings.
The cost function maps the quality of the current solution to a numeric value, which
indicates how close the actual state is to the wanted solution. Various approaches are
able to derive additional information from the cost function, but unfortunately our cost
function is complex, and the model parameters are not totally independent. For complex
cost functions and a large number of model parameters (optimizing multiple lens flare
primitives), an iterative optimization method is the only option to find the optimal
solution efficiently. An iterative approach successively generates better approximations of
the optimal solution. In each iteration, the current cost function output is compared to
the last state. In case of less cost compared to the old cost, the new parameter changes
are accepted and are used as start values for the upcoming iteration.

To ensure fast convergence, the optimization strategy has to decide on new values
accordingly. The gradient of the cost functions is a good indicator to decide if a
parameter has to be increased or decreased. Multivariate Gradient Descent is an iterative
optimization algorithm, which follows the gradient (the steepest descent) to the next
minimum. Due to its high complexity, the gradient of our cost function cannot be derived
in closed form (too many variables), but the gradient can be numerically approximated
by calculating the central differential quotient for each parameter (Equation 7.3).

∆y
∆x := f(x+ ∆x)− f(x−∆x)

2∆x (7.3)

53

7. Optimization - Finding the Ghost

The numerical gradient approximation allows to increment or decrement each parameter
correctly for the given state. The step size influences the convergence speed drastically.
By using a too small step size, unnecessary iterations are carried out before reaching
the solution. On the other hand, by choosing a too large step size, the optimal solution
may not be reached or is only badly approximated. Therefore, for each model parameter,
an individual step size is defined, as the parameters vary in range and magnitude. A
global learning rate is defined (as used in machine learning approaches) to scale all step
sizes. To ensure a fast convergence for not optimally initialized parameter values, the
learning rate increases the step sizes. A large learning rate is used as long as possible to
ensure a fast approximation. After various iterations, the parameters approximate the
optimal solution quite well, but the long step size prevents the parameters to actually
find a better solution. Therefore, after an unsuccessful iteration, the learning rate is
reduced for the next iteration. Depending on the reduction factor of the learning rate,
the optimal solution can be approximated more efficiently.

There are multiple update strategies to decide which parameters are manipulated within
an iteration. A simple strategy chooses one parameter randomly in each iteration, but
this approach only converges slowly with our data sets. To ensure that each parameter is
equally often changed, the parameters are changed in a fixed order. Therefore, in each
iteration, every parameter is changed once, but the parameter update can be differently
applied to the model within an iteration. The optimized parameters can either be directly
incorporated into the model before evaluating the remaining parameters (online update),
or each parameter is tested against the current state, and after the iteration, all parameter
values are updated at once (batch update) [CM06]. For our approach, the online-update
is the more efficient strategy, because our model defines a strict order of its parameters
(shape before shade).

7.3 Finding Lens Flare in the Acquired Images
By choosing initial parameters close to their optimal value, the optimization process has
only to fine-tune the solution, and is less likely to get stuck in a local minimum. To
ensure appropriate initial values the values are carefully chosen manually. To prevent
other lens flare elements to influence the start parameters, an image containing multiple
distinct ghosts is used. Furthermore, to support the user find valid initial parameters,
multiple views are offered. Figure 7.2 depicts the user interface of initial parameter
finding. The user interface fully supports our user-driven parameter finding workflow.

After the optimization process, the fine-tuned parameters represent the inspected lens
flare as precisely as possible. A certain degree of inaccuracy remains because the model
might not be capable of representing some details. The optimal model allows to compress
the captured image content to a finite parameter set. This strong compression is of high
importance for the visualization (Chapter 8) and occurrence prediction (Chapter 9).

In the acquisition stage, the samples are captured along the horizon, while the camera
is rotated away from the light source. Depending on the sampling rate, the lens flare

54

7.3. Finding Lens Flare in the Acquired Images

Figure 7.2: User interface of the user-driven initial parameter approach. Top left: cost
function of the current state – bright pixel indicate error. This view is mainly used to find
the optimal shade parameters of the model. | Top right: captured sample | Bottom right:
current rendering (where the big white ghost is placed intentionally for visualization
purpose) | Bottom left: captured sample with rendering overlay. The overlay allows the
user to fine tune the shape parameters

elements only slightly differ from one sample to the next. While using a dense sampling
rate, the difference between two samples is only marginal. The neighbor relationship is
crucial for the optimization process, because it allows to re-use the just found optimal
parameter set as start values for the closest neighbor samples. This reduces the amount
of manually chosen initial parameter drastically, but the quality for the next initial
parameters strongly depend on the sampling rate.

To improve the precision for the initial parameters of the next neighbor sample, more than
only sample can be used. As the behavior of lens flare is smooth over the whole range,
like a continuous signal, the parameter changes for several samples can be described by a
function. For the first sample no information is available, therefore the initial parameters
have to be set manually. The next neighbor sample is already able to re-use the previously
found parameter set like a constant function. For the third sample, the two previously
matched parameter sets define a linear function, which can be extrapolated to estimate
the initial parameter. For each additional available matched sample, the function becomes
more precise. A polynomial can be used, to best fit the available matched parameters
values in a least-squares sense, to define the prediction function. To avoid over-fitting
and extreme extrapolated predictions, the degree of the polynomial has to be kept as low
as possible.

55

7. Optimization - Finding the Ghost

To ease the manual initial parameter setting process, a sample of the range is chosen,
where the lens flare element of interest is clearly visible. While rotating the camera, the
lens flare element may disappear or move out of the frustum. While tracing a lens flare
element over a range of samples, other lens flare elements may fade-in and disturb the
examined lens flare element. To correct the intensity contribution of other lens flare
elements, the in-fading lens flare is ignored as long as it cannot be clearly identified.
After a possible identification of the disturbing lens flare element, the parameters are set
again manually. To correct the contribution of the freshly modeled lens flare element in
the previously optimized samples, the sampling order is simply reverted. While reverting
the sample order, the fade-in of a lens flare element is changed to a fade-out.

56

CHAPTER 8
Real-Time Visualization

The optimization stage (Chapter 7) is able to generate a best-fitted model for a lens flare
element (Chapter 6) for each sample of the acquisition stage (Chapter 5). Fortunately,
the model is capable to render its lens flare elements in an efficient way so it can be
used for real-time rendering. To generate a visualization for a given sample, all lens flare
elements are directly rendered into one image. An interactive visualization allows the
user to change the camera to light constellation. To find the optimal visualization for a
certain constellation, different approaches can be used (Chapter 8.1). The interactive
visualization can be included into a 3D software while using the visualization as a scaled
overlay in the post processing stage (Chapter 8.2). The scale factor of the overlay depends
on the camera parameters and the light source.

8.1 Interactive Visualization
The lens flare occurrence and appearance depends on the camera to light constellation
(Chapter 3.2.3). The simplest approach to visualize a certain constellation is to find the
closest sample for a given constellation, and use its compressed model representation
directly. This simple approach strongly depends on the sampling rate of the camera to
light constellation in the acquisition stage. A rough sampling leads to visible jitters,
because the appearance of lens flare changes noticeably between two neighboring samples.
To avoid these visible jitters the discrete step size of the sampling has to be reduced, but
this increases the amount of work for the whole workflow extremely.

To avoid an extremely dense sampling rate and to ensure a smooth transition of lens
flare over a range of constellations, the matched samples have to be interpolated. As
mentioned in chapter 7.3, while changing the camera to light constellations, lens flare
acts like a continuous signal. The simplest approach to avoid the visible jitters is to
interpolate the parameter values between the neighboring samples. This simple neighbor
interpolation reduces the jitter, but the transition over multiple samples may still be

57

8. Real-Time Visualization

uneven. To improve the smoothness over a range of samples, the original signal of the lens
flare has to be better approximated. Therefore, for each parameter of the model a smooth
function is necessary. The optimally matched parameter sets for each constellation are
used to approximate the unknown function by a polynomial based on Least Squares
Fitting. The resulting polynomial is guaranteed to be continuous and while trying to
restrict the polynomial to a low order, the risk of overfitting can be reduced. Furthermore,
the look-up complexity for a certain constellation is reduced for each parameter by one
polynomial evaluation.

8.2 Lens Flare Incorporated Into An Application

The interactive lens flare visualization can be incorporated into any 3D application as
long as the camera to light constellation is available. To create a lens flare effect, the
lens flare visualization has to be generated and rotated accordingly. To allow a realistic
lens flare effect, the virtual camera of the 3D application has to simulate the camera
parameters of the captured camera. Especially the focal length and aperture shape
have to be the same to produce a physically plausible lens flare effect. The lens flare
visualization can be integrated into the 3D application within a post process. Therefore,
the final visualization is scaled to match the brightness of the virtual scene and then
added to the 3d application’s rendering.

8.2.1 Constellation Angle

While knowing the camera position Cpos, camera orientation Cforward and the light
position Cpos, the rotation angle of the capturing process (constellation angle) is
defined by equation 8.1. The rotation angle α is applied to parameter functions to
generate the optimal lens flare visualization.

constellation = arccos (|Cforward| · |Lpos − Cpos|) (8.1)

8.2.2 Lens Flare Orientation

According to our assumptions, the lens system is radially symmetrical to its optical axis
(Chapter 5.2). Therefore, the lens flare rendering can be rotated around its image center
to match the roll angle of the light source and the camera’s horizon. To rotate the
rendered image counter-clockwise around the camera’s optical axis, the rotation angle β
is formulated by the following equation 8.2, where the light position Lpos is transformed
into the view space Lvs.

roll = arctan 2 (LvsY , LvsX) (8.2)

58

8.2. Lens Flare Incorporated Into An Application

8.2.3 Aperture and Focal Length

Most camera models (Chapter 4.3) in computer graphics applications integrate the focal
length as a changeable parameter to define the camera’s frustum. It is not possible to
simply scale our lens flare rendering to match a different field-of-view, because lens flare
occurrence depends on the captured focal length, and the occurrence can differ strongly.
The aperture stop also affects the occurrence of lens flare and has a great impact
on the brightness. For a realistic lens flare effect, the camera model has to match the
sampled aperture stop and aperture shape to generate the corresponding ghost shapes.
In some camera models, the aperture shape is not included, but the aperture stop is still
important for the brightness.

8.2.4 Brightness

The brightness of an image depends on various camera parameters like (aperture stop,
film speed, exposure time) and on the light sources. A physically based camera
model is able to simulate the brightness which is caused by the intrinsic camera parameters
(aperture stop, film speed and exposure time). The brightness ratio between lens flare
visualization and scene rendering is important to be able to add the visualization in the
3D application’s output.

In case the virtual camera and light source of the 3d application match the used parameters
of the acquisition stage, the brightness is equal and the lens flare visualization is simply
added to the scene rendering. In case any parameter differs from its assumed reference
value, the brightness has to be corrected. The film speed ISO describes the sensitivity
of the sensor or film. While doubling the sensitivity, the brightness is also increased
by the same amount. This also applies to the exposure time EXP (seconds). While
exposing the sensor twice as long to the light, the image becomes also twice as bright.
The f -number describes the ratio of the aperture diameter and the focal length. The
focal length has to be constant, as mentioned previously (Chapter 8.2.3. Therefore,
only the aperture is changeable. Each aperture stop is described with a corresponding
1
f -number. While decreasing the aperture diameter by 1√

2 , the f-number increases, but
the incoming light is halved. The incoming light at the entrance pupil also influences the
brightness of the lens flare. In case the luminance (l = candela

m2 and the solid angle α of
both lights sources are known, a brightness ratio can be formed. Equation8.3 describes
the brightness scale factor Bscale between the lens flare rendering F and the rendered
scene R. The brightness factor is used to scale the lens flare visualization accordingly to
match the scene brightness.

Bscale = f2
F

f2
R

∗ ISOR

ISOF
∗ EXPR

EXPF
∗ lR ∗ αR

lF ∗ αF
(8.3)

59

8. Real-Time Visualization

8.2.5 Wavelengths Distribution - Light Type

The incoming light type has an impact on the lens flare’s occurrence, because the anti-
reflection coatings are designed for specific wavelengths. Therefore, the virtual light
source has to match the sampled light’s wavelength distribution to guarantee a realistic
lens flare. Unfortunately, each light type has its unique wavelength distribution. To
ensure a realistic lens flare effect, the whole workflow has to be executed for each light
separately. By using a normed light source with a known wavelength distribution, other
light sources with a similar distribution can be roughly approximated.

60

CHAPTER 9
Lens Flare Occurrence Prediction

The interactive visualization allows to generate an artificial lens flare representation for
any camera to light constellation within the captured range (Chapter 8). The visualization
of the lens flare elements is intended to be as physically accurate as possible, but due
to approximations (lens flare element representations may not be able to capture all
details) and acceleration strategies (interpolating of model parameters), only a physically
plausible representation can be ensured. To predict the occurrence of lens flare, the
real-time visualization can be re-used, where each model parameter is described over the
whole range by a function. The interpolatable parameter functions are used to calculate
an occurrence estimator (Chapter 9.1). The occurrence estimator is than used to predict
the impact of lens flare for a certain constellation within a known scene (Chapter 9.2).

9.1 Occurrence Estimator
For a given constellation, the real-time visualization allows to retrieve various statistical
values, which are used to form an estimator. The precision of all estimators heavily
depends on how precisely the acquired image has been described by the lens flare models
(the current implementation only supports ghosts). The brightness scale factor tries to
adjust the brightness of the lens flare visualization to match the brightness of the virtual
scene approximately (Chapter 8.2).

The real-time visualization is based on models with interpolatable parameter functions.
The same idea on how to compress the model parameters to a parameter function
(least square fitting) can also be applied to each statistical term (statistic function). To
generate various statistic functions, for each best-fitted sample of the acquisition stage,
various statistical terms have first to be evaluated and then approximated by least square
fitting. The intensity values of the resulting lens flare rendering are useful to form good
occurrence estimators. The minimum and maximum intensity values are important to
define contrast. The sum and average of all intensity values are able to approximate

61

9. Lens Flare Occurrence Prediction

brightness. The logarithmic average is more stable against outliers and is often used in
tone mappers to describe the key for a scene [RSSF02].

9.2 Context
All previously described occurrence estimators represent a numerical value, but without
any context or bounds, these values are not really meaningful. Depending on the context,
different statements can be made.

While comparing the current occurrence estimator to the estimators over the whole
sampled range, the current constellation can be rated. By inspecting the statistic
function of a certain estimator, global extremes can be derived and also used to express
the quality of the current state. To classify the estimator, the range between maximum
and minimum of the inspected estimator are subdivided into several bins.

The virtual scene can be used as a context to describe the impact of lens flare. While
knowing all necessary camera and light parameters, the scene brightness is estimated.
While comparing the logarithmic average of the scene to the lens flare overlay, the ratio
is used as a glare indicator. The presence of lens flare reduces the contrast of an image.
The ideal contrast Kideal from a light is given by equation 9.1.

Kideal = Imax − Imin

Imax + Imin
(9.1)

While lens flare occurs within the scene, the real contrast Kreal decreases, because the
lens flare intensity Iflare is added equally to Imin and Imax (Equation 9.2).

Kreal = Imax − Imin

Imax + Imin + 2Iflare
(9.2)

The ratio between real contrast Kreal and ideal contrast Kideal can be used to describe
the change of the contrast while lens flare occurs (Equation 9.3) [Kes08].

Kreal

Kideal
= Imax + Imin

Imax + Imin + 2Iflare
≈ 1− 2Iflare

Imax + Imin
(9.3)

62

CHAPTER 10
Results

In this chapter the results for each stage of the workflow are presented. While imple-
menting the workflow, the results of already working stages gave great insight and helped
a lot to decide how to tackle the next stages.

10.1 Result - Acquisition
The following images are the examples results from the acquisition stage. Figure 10.1a
shows the start constellation, where the camera is directly oriented into the light source.
In this constellation the ghosts are centered around the light source and overlap each other.
While rotating away from the light source the ghost are distinguishable as figure 10.1b
depicts. Figure 10.2a shows the complex ghosts from the previous figure 10.1b in detail.
Figure 10.2b gives a rough overview how lens flare behaves, while the camera is rotated
away from the light source.

63

10. Results

(a) Camera oriented into the light source

(b) Camera rotated 22.8◦ – distinguishable ghosts

Figure 10.1

64

10.1. Result - Acquisition

(a) Closeup of ghost at 22.8◦

(b) Rough overview of our sampled data set

Figure 10.2

65

10. Results

10.2 Result - Lens Flare Model

The lens flare model holds a dense parameter set and is very flexible to render various
ghost shapes. Figure 10.3 shows how the appearance of a ghost can change, while only
manipulating the distance function (see chapter 6.3.2 for parameter information).

Figure 10.3: Circular shaped ghost with different distance function

66

10.2. Result - Lens Flare Model

Figure 10.4 depicts a selection of shapes, which our model is capable to render (see
chapter 6.3.1 for parameter information).

Figure 10.4: Various ghost shapes generated with our model

67

10. Results

10.3 Result - Optimization
The optimization algorithm uses the cost function to fine-tune the model parameters to
best fit a sample. Figure 10.5 visualizes the optimization process between neighboring
samples and their corresponding models.

Figure 10.5: Optimization process from manually placed model to the neighboring
sample. Images (a) and (b) are succeeding samples of the acquisition stage. Image (d) is
a rendering of a rough hand tuned model for the first sample (a). The parameters in
(d) are the initial values for the optimization of (b). The result of the optimization is
depicted in image (e). Images (c/d/g/h) visualize the differences of the row or column
images (bright areas indicate difference).

68

10.3. Result - Optimization

Figure 10.6 shows the progress of the cost function and its components while optimizing
the model of the previous figure 10.5.

Figure 10.6: Progress of the cost function and its components, while best fitting the
model depicted in figure 10.5(d) to (e). The first row shows the cost, which is a is linear
combination of the MSE cost (second row) and the new edge cost (third row). The
fourth row shows the old edge cost (Chapter 7.1). The last row shows SSIM index, which
behaves similar to MSE, but is more expensive to compute. SSIM and the old edge
cost are only depicted to visualize their behavior. The increase of the MSE after a few
iterations is caused by the new edge cost. The new edge cost ensures that the MSE does
not emphasize background noise too much.

69

10. Results

Figure 10.7 shows the resulting parameter value of a range optimization of 13 samples.

Figure 10.7: Shape parameter values over a range of 13 samples. The coordinates of the
center in image space describe a linear movement to the left side (decrease of x value
and nearly steady y value). The height slowly increases while the left control point to
the element is nearly static. The right control point slowly increases.

70

10.3. Result - Optimization

To generate a smooth real-time visualization the resulting values of a range optimization
have to be described by a polynomial. The approximation of the values to a function is
done by Least Squares Fitting. The polynomial allows to bridge neighboring samples. To
demonstrate the impact of the polynomial order, the center parameter of the previously
discussed range optimization (Figure 10.7) are used as an example.

0 2 4 6 8 10 12 14
785

790

795

800

805

810

815

820

825

830

835

sample
poly 1
poly 2
poly 3

(a) Lens flare element center x-coordinate

0 2 4 6 8 10 12 14
308.5

309

309.5

310

310.5

311

311.5

sample
poly 1
poly 2
poly 3

(b) Lens flare element center y-coordinate

Figure 10.8: Least Squares Fitting of the center parameters over 13 samples. A proper
polynomial order has to be chosen to avoid overfitting (poly 3) or underfitting (poly 1).
Polynomial order 2 is suitable for our case.

71

10. Results

Figure 10.9 shows the live visualization of the optimization process.

Figure 10.9: Optimization visualization. Top left is the current state of the model based
rendering. Middle left is the input image. The large image shows the overlay of the input
image (blue) and the current rendering (red). The user easily recognizes divergence and
convergence.

72

10.3. Result - Optimization

The performance evaluation in figure 10.10 shows the rendering performance versus
element resolution.

Figure 10.10: Rendering performance strongly correlates with the element resolution.
Real-time performance can be achieved for more than 100 elements when using smaller
resolutions. In real world applications only few lens flare elements are outstandingly
large.

73

10. Results

Figure 10.11 shows a complex lens flare generated with our method.

Figure 10.11: Complex lens flare generated with our method. Top is the input sample.
Bottom shows the optimized rendering.

74

CHAPTER 11
Conclusion and Future Work

In this thesis we describe a whole workflow on how to create a physically plausible lens
flare rendering from measurements. The workflow is designed from bottom-up in stages
(acquisition - optimization - rendering - prediction), and allows to stop at a certain
stage, if the current result already fulfills the application’s goal. The lens flare quality of
simulation based approaches heavily depends on the exact description of the lens system
and often approximations have to be used (especially for the anti-reflection coatings).
Our workflow is based on raw measurement data, and therefore the whole light traversal
through the optical system is captured without any approximations. This allows us to
avoid the retrieval of hardly available internal parameters of the lens system and its
complex components. The developed measurement setup is camera independent and easy
to use. Our lens flare model is able to emulate the appearance of captured lens flare
elements in the acquired data set, and can be easily extended to depict more details.
The model can be used for various applications and is a good description of a lens flare
element. The model-based representation is manually tweaked to approximate a sampled
lens flare element. To increase the similarity of the rendered lens flare element to its
sampled counterpart, we present an optimization strategy including a cost function. To
reduce the complexity and create a continuous description of the lens flare behavior over
the sampled range, we present an efficient way to compress the model data. We present
an efficient implementation to render the lens flare elements in real-time. While using the
proposed compression technique, a smooth visualization can be achieved. We describe
how the lens flare visualization can be integrated into other rendering applications as a
post processing effect. In the last stage we sketch how the impact and occurrence of lens
flare can be expressed and predicted.

This thesis describes a basic workflow to render lens flare based on measurements, but
there are many possible improvements to increase performance and quality at various
stages.

75

11. Conclusion and Future Work

By capturing more samples in the acquisition stage, also non-radial symmetrical lens
system can be approximated. The appearance of lens flare is influenced by the focal
length and aperture stop. To capture all possible variations, all aperture stops and
focal lengths have to sampled as well, which increases the net complexity drastically.
To reduce this effort, some aperture stops and focal lengths might be skipped and later
reconstructed by interpolation. By finding the optimal capture settings for a given light
source, HDR may become redundant, which could lead to a shorter acquisition time.

The current lens flare model is restricted to a fully open aperture (circle-shaped), and
can be extended to represent also more complex aperture shapes and resulting lens flare
elements. The model’s transfer function can also be changed and adapted to describe
additional details. The current optimization stage is only able to handle intensity values,
while we suggest to include color by inspecting every color channel separately. By finding
a way to correctly interpolate color, color can be treated like intensity values as one
channel. The color of the ghost heavily depends on the anti-reflection coatings and the
incoming wavelengths, different kinds of light sources can be used to detect their influence.
To fully reconstruct a captured sample of the acquisition stage, models for the star-shape
and halo lens flare elements have to be developed.

To ensure a fast convergence in the optimization stage, currently the initial parameter are
set manually. To find good initial values, (semi-)automatic methods can be developed. A
suggestion to find better initial shape parameters is to apply a scan-line algorithm onto
the edge images of a lens flare element. To avoid invalid parameter constellations which
break the model design or do not affect the rendering, regularization can be used to
“punish” certain parameter changes. The cost function can also be further improved by
improving its convergence behavior and by making it less error-prone. The currently used
optimization strategy can also be further improved by tweaking the used optimization
parameters or by dividing the optimization process into several subroutines (optimizing
the shape based on edge images first, and then solve the intensity problem in a second
run). Many other approaches can be used to track the ghost elements over the whole
range, like structure from motion or neural networks.

76

List of Figures

2.1 Outdoor lens flare with ghosts - from snty-tact (Talk). Taken at Yosemite
National Park, California, U.S., CC BY-SA 3.0 4

2.2 Football live broadcast with disturbing lens flares 6

3.1 Complex lens flare . 9
3.2 Stray light is not intended to enter the lens system 10
3.3 Simple camera model showing all essential optical elements (lenses, aperture

and sensor) . 11
3.4 Comparison of diffraction spikes for different apertures 12
3.5 Illustration of a possible double-reflection path 13
3.6 Geometry comparison of zoom systems - Nikon 80-200mm f/2.8 vs prime

system - Angenieux Biotar 100mm f/1.1 . 14
3.7 Different aperture shapes caused by varying blade count 14
3.8 Illustration of camera light constellation . 15
3.9 Illustration of how ghosts change their position while the camera is rotated. . 16
3.10 The effective use of scene elements and their composition can reduce lens flare 17
3.11 Illustration of how a lens hood can reduce stray light 18
3.12 Reflectivity per wavelength and coating composition 19
3.13 Comparison of coatings quality over the years. Both image are taken with

similar settings . 20
3.14 Different aperture stops and the resulting aperture shapes 21

4.1 Thin lens model . 24
4.2 Thick lens model . 25
4.3 Optical desing by Brendel (USP 2854889) f/2.8, 100mm effective focal length 26
4.4 Lens description and simulation in ZEMAX 29
4.5 Gray-scale lens flare sprites and resulting lens flare effect 30
4.6 Lens flare sprites used in Serious Sam 2 . 31
4.7 Synthetic flare simulation by Keshmirian [Kes08] 32
4.8 Simulation result of diffraction and ghosts [SDHL11] and example scene with

combined lens flares . 32
4.9 Itoh zoom lens . 33

77

4.10 Lens flare results from Lee et. al.[LE13] (top) and Hullin et. al. [HESL11]
(bottom) . 34

4.11 Example of imperfection textures from Joo et. al. [JKL+16] applied onto Lee
et. al.[LE13] lens flare renderings . 36

5.1 Flashlight test setup and result (30 seconds) 39
5.2 LED test setup and result (10 seconds) . 40
5.3 Medical light test setup and result (1 second) 40
5.4 Final setup with curtain and automatic panorama head 40

6.1 Cubic Bézier curve construction . 43
6.2 Shape model for a lens flare element . 44
6.3 Transfer function for a lens flare element . 46
6.4 Minimal distances from a query point to the Bézier curves 47

7.1 Edge cost function - input images (left) | edge cost function (middle) | improved
edge cost function (right) . 52

7.2 Interface of the user-driven initial parameter approach 55

10.3 Circular shaped ghost with different distance function 66
10.4 Various ghost shapes generated with our model 67
10.5 Optimization process from manually placed model to the neighboring sample 68
10.6 Cost function of the optimization process (depicted in figure 10.5) 69
10.7 Shape parameter values over a range of 13 samples 70
10.8 Least Squares Fitting of the center parameters over 13 samples. 71
10.9 Optimization GUI . 72
10.10Performance of lens flare element rendering 73
10.11Complex lens flare generated with our method 74

78

Acronyms

API Application Programming Interface. 31

CPU Central Processing Unit. 45

CSG Constructive Solid Geometry. 32

GPU Graphical Processing Unit. 31, 41, 45, 47, 49, 52

HDR High Dynamic Range. 38, 76

LED Light-Emitting Diode. 39

MSE Mean Squared Error. 50–52

SSIM Structural Similarity. 51

79

Bibliography

[Als09] Ted Alspach. Vector-based representation of a lens flare, 2009. US Patent
7,526,417.

[BHK+03] Brian A. Barsky, Daniel R. Horn, Stanley A. Klein, Jeffrey A. Pang, and
Meng Yu. Camera models and optical systems used in computer graphics:
Part i, object based techniques. In Proceedings of the 2003 International
Conference on Computational Science and its Applications, 2003.

[Cha07] Julian Chaumond. Realistic camera - lens flare, 2007. https:
//graphics.stanford.edu/wikis/cs348b-07/JulienChaumond/
FinalProject.

[CM06] Bishop Christopher M. Pattern Recognition and Machine Learning. Springer,
2006.

[Gre04] John E Greivenkamp. Field Guide To Geometrical Optics, volume 1. SPIE
Press Bellingham, Washington, 2004.

[HD14] Johannes Hanika and Carsten Dachsbacher. Efficient monte carlo rendering
with realistic lenses. In Computer Graphics Forum, volume 33, pages 323–332.
Wiley Online Library, 2014.

[Hen15] Padraic Hennessy. Implementation notes: Physically based lens
flares, 2015. https://placeholderart.wordpress.com/2015/01/
19/implementation-notes-physically-based-lens-flares/.

[HESL11] Matthias Hullin, Elmar Eisemann, Hans-Peter Seidel, and Sungkil Lee.
Physically-based real-time lens flare rendering. ACM Trans. Graph.,
30(4):108:1–108:10, July 2011.

[HHH12] Matthias B Hullin, Johannes Hanika, and Wolfgang Heidrich. Polynomial
optics: A construction kit for efficient ray-tracing of lens systems. In Computer
Graphics Forum, volume 31, pages 1375–1383. Wiley Online Library, 2012.

[HSS97] Wolfgang Heidrich, Philipp Slusallek, and Hans-Peter Seidel. An image-based
model for realistic lens systems in interactive computer graphics. In Graphics
Interface, volume 97, pages 68–75, 1997.

81

https://graphics.stanford.edu/wikis/cs348b-07/JulienChaumond/FinalProject
https://graphics.stanford.edu/wikis/cs348b-07/JulienChaumond/FinalProject
https://graphics.stanford.edu/wikis/cs348b-07/JulienChaumond/FinalProject
https://placeholderart.wordpress.com/2015/01/19/implementation-notes-physically-based-lens-flares/
https://placeholderart.wordpress.com/2015/01/19/implementation-notes-physically-based-lens-flares/

[JKL+16] Hyuntae Joo, Soonhyeon Kwon, Sangmin Lee, Elmar Eisemann, and Sungkil
Lee. Efficient ray tracing through aspheric lenses and imperfect bokeh syn-
thesis. In Computer Graphics Forum, volume 35, pages 99–105. Wiley Online
Library, 2016.

[Kes08] Arash Keshmirian. A Physically-Based Approach for Lens Flare Simulation.
ProQuest, 2008.

[Kil00] Mark J. Kilgard. Fast opengl-rendering of lens flares, 2000.
https://www.opengl.org/archives/resources/features/
KilgardTechniques/LensFlare/.

[Kin92] Rudolf Kingslake. Optics In Photography, volume 6. SPIE Press, 1992.

[Kin00] Yossarian King. 2d lens flare. In Mark DeLoura, editor, Game Programming
Gems, pages 515–518. Charles River Media, Inc., Rockland, MA, USA, 2000.

[KMH95] Craig Kolb, Don Mitchell, and Pat Hanrahan. A realistic camera model for
computer graphics. In Proceedings of the 22nd annual conference on Computer
graphics and interactive techniques, pages 317–324. ACM, 1995.

[Kor07] Norman Koren. Veiling glare (lens flare), 2007. http://www.imatest.
com/docs/veilingglare/.

[LE13] Sungkil Lee and Elmar Eisemann. Practical real-time lens-flare rendering.
In Computer Graphics Forum, volume 32, pages 1–6. Wiley Online Library,
2013.

[LM14] Industrial Light and Magic. Openexr, 22014. http://www.openexr.com.

[Mau01] Chris Maughan. Texture masking for faster lens flare. In Mark DeLoura,
editor, Game Programming Gems 2. Charles River Media, Inc., Rockland,
MA, USA, 2001.

[Mch05] Sean Mchugh. Understanding camera lens flare from cambridge in
colour, 2005. http://www.cambridgeincolour.com/tutorials/
lens-flare.htm.

[Pix08] Pixar. The imperfect lens: Creating the look of wall-e. wall-e three-dvd box,
2008.

[RIF+09] Tobias Ritschel, Matthias Ihrke, Jeppe Revall Frisvad, Joris Coppens, Karol
Myszkowski, and H-P Seidel. Temporal glare: Real-time dynamic simulation
of the scattering in the human eye. In Computer Graphics Forum, volume 28,
pages 183–192. Wiley Online Library, 2009.

[Rik06] Littlefield Rik. Theory of the “no-parallax” point in panorama photography,
2006. http://www.janrik.net/PanoPostings/NoParallaxPoint/
TheoryOfTheNoParallaxPoint.pdf.

82

https://www.opengl.org/archives/resources/features/KilgardTechniques/LensFlare/
https://www.opengl.org/archives/resources/features/KilgardTechniques/LensFlare/
http://www.imatest.com/docs/veilingglare/
http://www.imatest.com/docs/veilingglare/
http://www.openexr.com
http://www.cambridgeincolour.com/tutorials/lens-flare.htm
http://www.cambridgeincolour.com/tutorials/lens-flare.htm
http://www.janrik.net/PanoPostings/NoParallaxPoint/TheoryOfTheNoParallaxPoint.pdf
http://www.janrik.net/PanoPostings/NoParallaxPoint/TheoryOfTheNoParallaxPoint.pdf

[RSSF02] Erik Reinhard, Michael Stark, Peter Shirley, and James Ferwerda. Photo-
graphic tone reproduction for digital images. ACM transactions on graphics
(TOG), 21:267–276, 2002.

[SDHL11] B Steinert, Holger Dammertz, Johannes Hanika, and Hendrik PA Lensch.
General spectral camera lens simulation. In Computer Graphics Forum,
volume 30, pages 1643–1654. Wiley Online Library, 2011.

[Sek04] Dean Sekulic. Efficient occlusion culling. GPU Gems, pages 487–503, 2004.

[SO05] Warren J Smith and Others. Modern Lens Design, volume 2. McGraw-Hill
New York, 2005.

[Syr16] Syrp. Genie mini motion controller, 2016. https://syrp.co.nz.

[Toc07] Mike Tocci. Quantifying veiling glare (zemax users’ knowledge base), 2007.
http://www.zemax.com/os/resources/learn/knowledgebase/
quantifying-veiling-glare.

[Tow12] Justin Towell. A brief history of the most over-used special effect
in video games: Lens flare, 2012. http://www.gamesradar.com/
brief-history-most-over-used-special-effect-videogames-lens-flare/.

[WBSS04] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image
quality assessment: From error visibility to structural similarity. IEEE
Transactions On Image Processing, 13:600–612, 2004.

[Woe09] Meredith Woerner. J.j.abrams admits star trek lens flares are
“ridiculous” (interview), 2009. http://io9.gizmodo.com/5230278/
jj-abrams-admits-star-trek-lens-flares-are-ridiculous.

83

https://syrp.co.nz
http://www.zemax.com/os/resources/learn/knowledgebase/quantifying-veiling-glare
http://www.zemax.com/os/resources/learn/knowledgebase/quantifying-veiling-glare
http://www.gamesradar.com/brief-history-most-over-used-special-effect-videogames-lens-flare/
http://www.gamesradar.com/brief-history-most-over-used-special-effect-videogames-lens-flare/
http://io9.gizmodo.com/5230278/jj-abrams-admits-star-trek-lens-flares-are-ridiculous
http://io9.gizmodo.com/5230278/jj-abrams-admits-star-trek-lens-flares-are-ridiculous

	Kurzfassung
	Abstract
	Contents
	Overview
	Introduction
	Problem Definition
	Aim of the Work

	Background - Lens Flares
	Camera and Lens System
	Lens Flare Elements
	Physiological effects
	Countermeasures to Avoid Lens Flare

	Related Work
	Lens System Models
	Light Propagation Formulation
	Camera Models
	Lens Flare Simulation and Rendering

	Data Acquisition
	Sampling A Lens Flare
	Assumptions
	Prototype Setup

	Ghost Rendering Primitive - Lens Flare Model
	Analyzing the Sampled Ghosts
	Requirements For the Rendering Primitives
	Creating the Model

	Optimization - Finding the Ghost
	Cost Function
	Optimization Strategy
	Finding Lens Flare in the Acquired Images

	Real-Time Visualization
	Interactive Visualization
	Lens Flare Incorporated Into An Application

	Lens Flare Occurrence Prediction
	Occurrence Estimator
	Context

	Results
	Result - Acquisition
	Result - Lens Flare Model
	Result - Optimization

	Conclusion and Future Work
	List of Figures
	List of Algorithms
	Acronyms
	Bibliography

