
Projecting Openstreetmap Tiles onto 3D-Surfaces

Tobias Sippl 0820552

October 27, 2017

1 Project Description

The algorithm/software should project map-data from a tile-based map-service
onto 3d Geometry or point clouds. Different levels of detail should be available
and tiles should be downloaded on the fly, while the program is running.

2 First Concept

The first concept was to use very large sparse textures and correctly position
them on some geometry. When new tiles are downloaded they would be written
to the correct positions in the sparse textures. As sparse textures only need
memory when there is texture information written to them, many textures can
be used that are only very sparsely filled with tiles. The advantage would be
that no further information is needed in regards to how the texture has to be
positioned once the tile is written to its correct location and mipmapping and
other common techniques could be applied.

2.1 MercatorProjection

The OpenStreetMap project uses the Mercator projection which has the advan-
tage that latitude and longitude are always orthogonal after projection. Care
has to be taken as object size increases the further the latitude moves away from
the equator.

2.2 Slippy Map Tilenames

The tile system used by the OpenStreetMap Project is called Slippy Map Tile-
names. By default each Tile covers 256x256 pixels (there are also high-res
versions available) over different zoom levels. At zoom level 0 the entire earth
is covered by a single tile, each increase in zoom doubles the amount of tiles
in both directions resulting in 2n ∗ 2n tiles, where n is the zoom-level. Most
tileservers allow for a maximum zoom-level of 18 or 19 resulting in 274.9 billion
tiles at level 19. At zoom level 19 a texture with an edge length of 524.288 tiles
would be needed, resulting in a square with a sidelength of 134.217.728 pixels.

1



Figure 1: A Tile of Vienna, Zoomlevel 12. Generated from an Openstreetmap
Tileserver. http://[a.tile.]openstreetmap.org

2.3 Sparse Textures

A feature available on most modern graphics cards is called sparse textures.
When creating a new texture-handle no memory is allocated for the texture
right away. Instead the memory has to be made resident on the GPU before
it can be read or filled. The size limitation is the Address-space available on
graphics cards. A Nvidia Geforce 1080 allows for a 32768x32768 Sparse Texture,
which would fill 4GB without mipmaps and 4 color channels.

2.4 Sparse Texture Pyramids

As the size of sparse textures is not unlimited, a pyramid of textures was needed,
where each level was made up of multiple textures. To make use of mipmaps,
the pyramid had to be dynamically generated, depending on the maximum
required zoom-level and the region which was to be covered. The complexity
was increased further as when zooming out, soon a lot of sparse textures would
have to be displayed. A texture at maximum resolution of 32768x32768 on
zoom-level 19, would only cover 256 pixel on zoom level 12. With a screen
resolution of 1920x1080 this would result in having to display 8x5 textures at
once.
To limit this to a maximum of 4 textures at once, each texture would only cover
a reduced amount of zoomlevels.

2.5 Conclusion

The idea did not prove to be very useful overall, as sparse textures did not
alleviate the problem of having to use many textures. Organizing and selecting
such a large range of textures over a texturepyramid quickly increases the com-
plexity and usability of this concept. The proof-of concept did show nice results
as long as no more than a few (3-4) zoom levels were required.

2



3 Second Concept

Instead of storing the tiles in sparse textures with fixed positions the tiles are
stored in a tile-atlas. When drawing an object, each fragment needs to know
which tile to read the color information from. The most direct way to do
this would be to find the fragments geo-location, transform that to its slippy
tilename, find the corresponding tile in the tile-atlas and read the texel. There
are some issues with this. First of all, these calculations need double precision
on high zoom levels, the calculations are somewhat expensive, and all knowledge
about the tiles would have to reside on the GPU. Also, many fragments will be
part of the same tile, so many of the calculations will be redundant. As the
CPU-side of the algorithm deals with selecting, downloading and storing the
tiles, most of the information is already present on the host system. To reduce
the amount of data sent to the GPU, the algorithm resolves the tile-selection
on the CPU.
First, a plane with geometric coordinates is embedded into the 3d object, which
the map will be projected on. This plane is then clipped against the viewing
volume to find a bounding box of geometric area of which we will need tiles.
The tiles are then selected based on the area each tile covers in screenspace (the
closer the camera, the higher the zoom-level), or discarded if they are off-screen.
The tiles are then reduced to a maximum of 16x16 tiles per zoomlevel. At this
point, all tiles needed to be displayed for the current frame are known. The
indices for all tiles are looked up or added to the download-list, if not already
downloaded. These indices are then written into a 16x16 single channel uint
texture, one for each zoom-level and sent to the GPU. Each texture covers a
part of the object, all textures combined cover the entire object visible on the
screen in this frame.
In an earlier implementation only one texture (although 32x32) was used with
multiple zoom levels. This led to low resolution at positions close to the camera
when simultaneously looking at the horizon.

Figure 2: Left: A 3D Model, Centre: The model with the embedded plane,
Right: Three zoomlevels on the embedded plane, more tiles and therefore higher
detail close to the camera

3



3.1 Tile-Atlas

A technique to store tiles is called Tile-Atlas. Instead of writing the tiles to
their correct location in a texture on some object, each tile is stored next to the
previous one, with no regards to their actual position. The downside being that
it is now necessary to decide which tiles are required and where the tiles need
to be displayed. As Tile-Atlases are very popular, opengl provides a texture-
container called array-texture. The advantage being that instead of having a
x and y coordinate for each tile inside a larger planar texture, each tile can be
adressed by a single coordinate. Tiles are stacked instead of spread over a square.
The sparse-texture extension also provides a sparse texture container for array
textures, which means that the texture can be procedurally increased in size
instead of having to allocate the entire atlas at once. On the hardware available
to me the maximum size of a sparse array texture is 2048 layers of 256x256
pixels per tile. This results in a texture of 512MiB when fully populated.

3.2 Object to geometric coordinates

To find the correct pixel in the tile atlas, for an object to be rendered, some
reference from object space to texture position needs to be made. Assuming
that the object is flat, we can orthogonally project the object positions onto a
virtual rectangle with geometric coordinates on the corners. As this is a linear
transformation (basically a orthogonal camera) it can be used in conjunction
with the common Model-View-Projection matrices. The most direct way would
be to calculate the geometric coordinates inside the fragment shader, and look
up the pixel with these coordinates. Unfortunately the conversion from object
space to geometric coordinates to slippy tilenames along the latitude depends
on logarithmic and exponential functions. These functions are only available
in single precision in OpenGL, leading to loss of precision, resulting in very
noticable noise along the tile-borders and some less noticable noise throughout
the tile. To circumvent this, the coordinates are first calculated on the CPU,
then normalized and these normalized coordinates are then used on the GPU.

3.3 Finding the correct Tile

Knowing the coordinates of the tile/pixel, the corresponding index inside the
Texture-Atlas has to be found. As the Tiles are not ordered in any particular
way inside the atlas, checking the coordinates against every single entry would
be rather slow.

3.4 Tile-Map

On the CPU the tiles are stored as an unordered-map. Each tile has a unique
Key by using the following formula: x + y*sideLength[z] + sumTiles[z] Where
sideLength is the side length in tiles at zoom-level z and sumTiles is the total
amount of tiles of all previous zoom levels up to z. This allows for a very efficient
lookup, with the only overhead being the hash-calculation of the key.

4



3.5 Quad-Tree-Generation

Imagine looking at (part) of some object representing a part of the world. De-
pending on the size of the object on screen a number of tiles will be needed to
cover (part of) the object. In slippy tilenames, when increasing the zoom-level,
each tile is split into four subsequent tiles, a quad-tree is the natural choice to
represent this structure. A virtual planar rectangle is embedded into the object
we want to find tiles for. Each corner is also assigned geometric coordinates (a
latitude and longitude). This represents the mapping of the object-coordinates
to geometric coordinates. The rectangle is clipped against the viewing volume
and a bounding box is drawn around the geometric coordinates. This results
in the minimum and maximum geometric coordinates visible on screen in this
frame.
The quad-tree is now built by starting at the root with a zoom level of 0 (covering
the entire world in one tile). The root tile is appended to the a list of to-do-
tiles. For each tile the following steps are taken. If the tile is entirely outside the
geometric-bounding box it is discarded. If the tile is at least partially inside the
bounding box, the screen coordinates of its corners are calculated. If the tile is
entirely outside the screen, it is discarded. If the tile is at least partially inside
the screen, the length of each edge is calculated in screen coordinates and the
longest edge is checked against the tile-size in pixel. If the edge covers more than
tile-size (256 pixel) the zoom-level is not appropriate and the subtiles are added
to the to-do-list (as long as they are within geometric bounds and on screen). If
the edge is smaller than tile-size (256 pixel) the zoom-level is appropriate and
the tile is marked as necessary. When looking directly top down on a map, this
means that a 4k screen can be covered in (3840/256, 2160/256) 15x9 tiles, with
a map-texel for each screen-pixel.
When looking at the object at an angle, the necessary resolution decreases the
further away the part of the object is from the camera. Worst case the camera
is very close to the object while looking at the horizon, with a zoom level of
18 or 19 near the camera and almost 0 at the horizon. To deal with this issue,
each level of the quad-tree is restricted to a maximum of 16x16 tiles. After the
quad-tree is built, it is stepped through bottom up, removing the tile furthest
from the center of all tiles on the current level until all tiles on this level are in
a 16x16 area. When a tile is removed this way its parent is requested instead.
This way if a tile is removed at a higher zoom-level it is covered in a lower
one. At this point the entire object is covered by tiles, on each zoom-level a
maximum of 16x16 tiles is necessary.

3.6 Lookup-Textures

For each of the tiles found in the previous step, the storage is queried if the tile
is available and downloaded if it was not. Also the last time it was requested is
noted, so it can be replaced if the tile has not been used for a while and storage
is needed for a new tile. Each tile in the tile-atlas is represented by a single
number. Zero and one are reserved for not requested and not yet downloaded,

5



all numbers higher than one represent their index in the texture atlas. For
each zoom-level a 16x16 (uint, red channel only) texture is generated and all
found tiles are written to it as their index in the texture atlas. This results in
a 16x16x20 array texture covering all zoom levels. Usually only a few of the
layers are actually used. Transferring this texture to the GPU costs roughly
5120 Byte (without overhead) per frame or 150kiB/s.
Additionally the normalized latitude tile-positions are also transferred as an
array of uniforms, which is necessary as the latitude coordinates are normalized
on the CPU to circumvent the precision loss mentioned earlier. Resulting in an
additional 16x20 float values (16 normalized latitude coordinates), so 320 Byte
per frame or 9.5kiB/s at 30 FPS. Finally each zoom-level-texture is assigned a
position in normalized geometric space(the part the texture covers).

Figure 3: Three lookup-textures. The further away from the camera, the lower
the zoomlevel. Each field would be filled with a uint containing the tile-number
in the tile-atlas.

3.7 Vertex and Fragment shader

As an additional input, the vertex shader also receives the Geo-Matrix, which
transformes the object coordinates into normalized geometric coordinates. Along
the screen-position and other outputs, the normalized geometric position is also
forwarded (and interpolated) to the fragment shader.
The fragment shader inputs are:

The fragments geo-position.
One bounding box per zoom-level, bounding the area covered by each lookup-
texture.
Sixteen latitude-bounds, as the tilesize is not constant along the latitude.
One lookup-texture per zoom-level, containing the tile-indices of the tiles on
this zoom-level.
The lookup-array-texture containing the tiles.

6



A min and max zoomlevel.
Each fragment is tested if it is inside the bounding box. If outside the zoom
level is reduced and the test repeated. In case the fragment is inside, its tile
(x-, y-)coordinates are calculated. The texel is fetched from the lookup-texture
at these coordinates. If the returned value is 0, the tile was not requested, the
fragment must be part of a lower resolution tile, the zoom-level is reduced and
the steps are repeated. If the returned value is 1, the tile was requested but
not available at the time the lookup-texture was generated. There is no texel
available, display a placeholder at this position.
Otherwise an index is returned which points to the tile in the array-texture.
Finally the relative coordinates inside the current tile are used to lookup the
texel in the atlastexture.

3.8 Removing old tiles

As texture-memory is limited, tiles which have not been used in a while should
be replaced once the texture memory is full. Each Tile also keeps a reference
to its position in a list when it was last used. This is realized by the way a
doubly linked list functions. The Tilestorage object keeps a reference to the
newest and oldest tile. Whenever a new tile is added, it replaces the newest
item and the references are updated. Whenever a tile is retrieved from storage,
it is pushed to the front and the gap it leaves is closed. Every time a Tile has to
be replaced, the Tilestorage object simply picks the last item in the list (which
it has a reference to directly). The only downside is that 2 additional pointers
have to be stored per tile.

3.9 Temporary tiles

In case the user zooms in, new tiles will have to be downloaded first. To avoid
displaying blank textures, the lower zoom-level texture information will be used
instead. When constructing the quad-tree all tiles of lower zoom levels will also
be retained (¡20 in most cases), which provides lower-level texture data for a
large area in case the camera is moved.

4 Relevant Files

The most important parts of the project were implemented in the following files:

4.1 New Files

Tilemath.h Contains math and other helper functions used in calculating tile-
coordinates.

Tilemap.h Contains definitions for TileManager, TileStorage, TileDownloader
and Tile.

7



Tilemap.cpp Contains all major parts of the algorithm. Most noteworthy the
quad-tree generation, downloader and storage.

OSM.h Contains the definitions for the OSM class, which extends other Sce-
neObjects to include OSM data. Also contains the defintion for MapMesh and
PoindCloudOctreeMap, which are Mesh and PointCloudOctree SceneObjects
extended by OSM data.

OSM.cpp Contains functions for the OSM class.

maptomesh.fs/.vs The shadercode for displaying tiles on a mesh

pointcloudmap.fs/.vs The shadercode for displaying tiles on a pointcloud

4.2 Modified Files

glrenderarea.cpp Added code to load the new Scene-Objects PointcloudMap and
MapMesh.

GLRenderer.cpp Added code to display the new Scene-Objects PointcloudMap
and MapMesh.

8


