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Figure 1: Occlusion-aware cutaway generation. From left to right: User-drawn curve, selected region (shaded green), cutout
revealing interior, final illustration using consecutive cutaways.

ABSTRACT

Surface selection operations by a user are fundamental for many
applications and a standard tool in mesh editing software. Unfor-
tunately, defining a selection is only straightforward if the region
is visible and on a convex model. Concave surfaces can exhibit
self-occlusions, which require using multiple camera positions to
obtain unobstructed views. The process thus becomes iterative and
cumbersome. Our novel approach enables selections to lie under
occlusions and even on the backside of objects and for arbitrary
depth complexity at interactive rates. We rely on a user-drawn curve
in screen space, which is projected onto the mesh and analyzed with
respect to visibility to guarantee a continuous path on the surface.
Our occlusion-aware surface-processing method enables a number
of applications in an easy way. As examples, we show continuous
painting on the surface, selecting regions for texturing, creating
illustrative cutaways from nested models and animate them.

Index Terms: Computer Graphics [I.3.3]: Picture/Image
Generation—Line and curve generation Computer Graphics [I.3.3]:
Picture/Image Generation—Viewing algorithms

1 INTRODUCTION

Selecting regions of a model’s surface is part of the workflow of
many 3D designers. One application is to continuously paint on the
surface of the model, without having to rotate it when occluding
parts cover the brush path. Similarly, a segmentation of the surface
is needed for texture assignments. Hiding surface selections is
also useful to remove otherwise hidden elements, e.g., spurious
primitives in the interior resulting from isosurface meshing. Finally,
hiding surfaces is at the basis of cutaway illustrations, which are
the standard for technical illustrations, but also have applications in
the medical domain; from pre-operative planning to post-operative
visualization.

The process of defining a region boundary on an object with
moderate or high depth complexity is non-trivial. Tools in current
3D design software products, such as Maya or Blender, only permit
simple strokes to select a region. Additionally, complex occlusions

may make it impossible to find a viewpoint that maps a screen-
space curve to the surface. Most existing methods for cutaways only
work on manually pre-defined primitives [16] or take minutes of
processing [6], while 3D artists require interactive speed.

Figure 2: Occlusion-aware surface cut from 2D curve in screen
space. A 2D curve is projected onto the surface in a closed curve.
Thanks to occlusion-awareness the cut-out is performed on the body,
removing the arm entirely, instead of a "cookie-cut" (simple removal
of surface points mapping back inside/onto 2D curve).

In this paper, we propose a new method for occlusion-aware
surface selections, inferred from a user-drawn curve, which aims at a
plausible outcome. The input 2D curve is projected onto the surface,
resulting in one or more potential selection-bounding curves. For
high depth complexity, the selection can be ambiguous and we offer
a control to specify the desired candidate boundary via a selection
point on the screen-space curve. To provide an example, Figure 2
illustrates how to “amputate" a bear’s arm without having to rotate
the object into a view, where the arm does not occlude the body.

Our main technical contribution is the interactive inference pro-
cess that determines interactively a plausible selection boundary on
3D meshes from a single screen-space input curve without requir-
ing any pre-processing. The input mesh can have arbitrary depth
complexity, self-intersections, and can even contain holes, as long
as the connectivity between the triangles is manifold. The curve can
be modified in screen space, or dragged on the surface of the mesh.
Further, we support animation, which can be of interest for many
illustrative purposes.

Our contributions are:

• Efficient mapping of a screen-space curve onto a mesh with
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Figure 3: We explicitly want to select the left ear of the BUNNY from different views. In each pair of sub-figures, the boundary curve C is
outlined green and the bounded region shaded red. In all cases, C is selected by the default position of the selection point. The selection point
p̂, colored green, is traced forward in drawing direction to p̂′ in the two cases at bottom.

arbitrary depth complexity.

• Interpreting user input to derive a plausible selection boundary.

• Dynamically extending a selection boundary in an occlusion-
aware manner.

• Sample applications: Illustrative cutaway, texturing, painting
and animation.

We summarize and review previous and related approaches
(Sec. 2), before explaining our surface selection algorithm (Sec. 3).
We then cover the details of our discrete implementation (Sec. 4),
and present applications to the approach (Sec. 5).

Finally, we discuss the time performance results (Sec. 5.4) and
conclude (Sec. 6) with an outlook on future work.

2 RELATED WORK

User-driven region selection. Our method can be categorized as a
user-driven region-selection method, which is – unlike data-driven
segmentation approaches [1, 17, 20] – based on user input with
drawing tools. In the approach of Fan et al. [8], the user places a
brush stroke inside the region to be selected and the final selection is
based on a shape diameter function. Two strokes are used in the easy
mesh cutting approach of Ji et al. [14], one for the selected region and
one for its complement, which then derives the selection boundary
via an optimization process. Alternatively, like our method, the
user can define the boundary of the selection directly. This is more

intuitive according to a recent comparative study [9]. The iCutter
method [18] constructs a scalar field on the surface and finds the best
isoline based on centerness and concavity. The intelligent-scissors
method [11] defines a cost function over the mesh edges – based
on concavity, length, and closeness to the stroke – and solves a
constrained least-cost path problem to find the optimal curve. In
semi-automatic mesh scissoring [15], the user-drawn contour on the
visible side is completed by a weighted shortest path that is attracted
to concave features. In the cross boundary brush [21] of Zheng
and Tai, the user is asked to draw the stroke across the boundary,
and selects an isoline extracted from a harmonic field. The dot
scissor [22] asks the user to place a circle in a single click, and finds
the best cut passing through the circle from a number of isolines
of concavity-aware harmonic fields. All these approaches assume
that the user wants to place the boundary along surface lines with
concave features, based on the minima rule [5, 12], and the curve
is optimized accordingly. Our method gives the 3D designers the
freedom to draw the boundaries precisely as they want, allowing for
arbitrary shapes. Furthermore, our stroke drawing does not have to
stop at occlusions (from other objects or a self-occlusion). If desired,
however, attracting curves to concavities as in the above approaches
can complement our method.

Cutaways. Our method can be used to create manual cutaways
without having to change the view, and it can even automatically
generate cutaways to reveal objects of interest.

In the interactive cutaways method [16] of Li et at., it is assumed
that the model is subdivided into basic shapes from a set of common
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geometric shapes. They associate a parameterized cut to each of
these shapes. Dynamic cutaways are generated by automatically
cutting the parts which occlude the object of interest. Our approach
can be used to create cutaways without any prior segmentation of the
model. A method for adaptive cutaways [2] reveals objects of interest
by generating a cutaway surface in a depth image, and excludes
parts of the occluding objects during rendering at interactive rates.
However, removing a part of an occluding object can lead to separate
elements, which are typically avoided in illustrative cutaways. Our
method can remove the entire region of the model bounded by a
selected curve via a flood-filling process.

Occlusion-aware painting. The interactive texture-generation
system Chameleon [13] features an intelligent brush that extends
painted strokes to occluded regions in order to keep the continuity.
The system starts with a visible polygon and then adds adjacent
polygons intersecting with the stroke in screen space, but behaves
like a 2D stencil – in case a connected part occludes the brush
boundary, the region outside of it will not be painted. LayerPaint is
a multi-layer painting tool presented by Fu et al. [10], that can draw
long strokes across different depth layers. The method is based on
the work of Eisemann et al. [6], in which the mesh is decomposed
based on a graph analysis, whose nodes are view-dependent regions
of constant visibility connected by “adjacent to" and “occludes"
relations. However, the decomposition requires minutes of pre-
processing time and painting is only possible inside a single visibility
layer along a view ray. Our method is interactive and maps the brush
boundary as a single loop onto the 3D model, so that it also paints
protruding parts.

3 THE OCCLUSION-AWARE SELECTION ALGORITHM

Our method can be applied to arbitrary manifold meshes but is
particularly beneficial for objects with high depth complexity. The
surface can contain holes, and its triangles can even intersect each
other, as long as mesh connectivity is not affected. The user draws
a closed 2D curve in screen space, which we map to selection
boundaries on the 3D mesh. Our goal is to find a curve which
projects to the user-defined 2D curve and limits the desired region.
In principle, there can be more than one correspondence; however,
each point on the 2D curve implies a unique selection on the mesh,
when enforcing the inclusion of the underlying visible surface point.
This insight provides a simple interface to select the desired solution;
the user can investigate alternative choices by moving the selection
point along the previously-drawn curve, and choose the selection
boundary they want. Figure 3 illustrates the ease of selecting the left
bunny ear in different views.

Now we describe the theoretical concept, while the practical
implementation in discrete screen-space is covered in Sec. 4.

3.1 The Mapping of Screen Space Curves to the 3D Model

The input to our algorithm is a two-dimensional surface S (possibly
with boundary) embedded in R

3 and a closed and simple non-self-
intersecting 2D curve Ĉ drawn by the user in the view plane H.
This closed curve Ĉ is defined by the boundary of the largest closed
area defined by an input stroke drawn by the user, i.e., the user
does not have to provide a point-accurate loop, but can draw a
self-intersecting curve.

This closed manifold boundary curve in screen space Ĉ results in
a cone (a 2-manifold) that when intersected with S (a 2-manifold)
results in a set of curves C (1-manifold). A single point can then be
used to identify the desired curve C, and the local differentiability of
the 1-manifolds can be used to cut the surface by visiting the local
neighborhood of faces. C will then separate S into two connected
components, unless it cuts through a handle (then an additional curve
cutting through that handle is required).

Let Π be the projection from 3D space to the view plane. We
define the set of boundaries C as the set of all curves on S, whose

Figure 4: The blue curve Ĉ drawn on the view plane is projected onto
the model surface as a number of curves C0..2. The curve segments
are colored red (visible), or magenta (occluded). C= {C0,C1,C2},
while the candidate set is Cvis = {C0,C1}, as C2 is entirely invisible

. p̂ on Ĉ is the selection point, and p is its closest projection onto
the surface. In the figure, p lies on C0, so C =C0 is the boundary
curve selected.

projection is contained in Ĉ, i.e.:

C := {C ⊆ S|Π(C)⊆ Ĉ∧C is closed} (1)

Note that the projection of a curve Π(C) is a subset of Ĉ, but not
necessarily equal, e.g., when C is partially backfacing (e.g., C0 in
Figure 4). In order to extract the selected subset from the model
surface S, we require a singly-connected curve (loop) C ∈C forming
the boundary of the selected region in S. We assume that while
the user is drawing Ĉ, they would not expect the boundary curve
to be entirely occluded. So, C ∈ Cvis, where Cvis ⊆ C is the set
of visible and partially visible curves. Any point p ∈ C uniquely
determines a Ci, since the Ci ∈ C are disjoint. Therefore, to extract
C, it is sufficient to provide a single such point. To this extent, the
user provides a selection point p̂ ∈ Ĉ (see Figure 4), which is then
associated to a visible point p ∈C on the surface that projects to p̂.
By moving p̂ along Ĉ, the user can select any C ∈ Cvis.

By default, p̂ is initialized with the first intersection point of the
input stroke that resides on Ĉ. In case p̂ does not project on S, we
displace p̂ on Ĉ along the drawing direction of the input stroke until
S is hit. Figure 5 shows how the user can instantly select a specific
finger by positioning p̂ while drawing the stroke. Other ways to set
the initial location of p̂ are possible, such as to position it on the
curve with the longest visible subset. Nonetheless this is not crucial,
as moving p̂ to the desired curve is usually easy and quick.

Given C, a flood fill is performed on the surface from an arbitrary
visible point on it, such that it spreads into its interior as determined
by the current view (Figure 6).

In some cases, it may be useful to select additional boundary
curves, which can be done by picking more selection points. In this
case, the flood fill stops at any boundary of the selected set. This is
required to handle cases such as the one cutting through a handle
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Figure 5: The user indicates the selection point p̂ by the self-
intersection of the stroke in order to select the intended finger.

Figure 6: Flood-filling determines the “interior" of the selection.
Left: The detail shows the boundary C on the surface shaded green,
the marked subset of the surface shaded red. The orange arrows
show the direction of flood-filling from the selection point p on the
boundary towards the interior of the closed curve Ĉ in screen space.
Right: The object viewed at large.

in Figure 7, where it is not possible (and is easily detected since
the flood fill reaches back to the starting boundary from the other
side) to bound the desired region with a single boundary. Further, it
facilitates cutting out regions which break up a model into parts (see
Figure 13).

4 IMPLEMENTATION IN DISCRETE SCREEN SPACE

Our solution could be implemented by working directly on the ge-
ometry but it would require intersecting view rays with possibly
complex geometry, which can be costly and might prohibit interac-
tivity, especially as static structures would have to be rebuilt each
time the geometry changes or is deformed. Instead, we use a hybrid
approach, which traces the actual curves on the surface by following

Figure 7: Intersecting handles: The user-drawn curve intersects a
single handle, resulting in two partially visible curves C1 and C2.
In order to select the handle region, the user has to choose both
boundary curves C1 and C2. Flood-filling starts from C1 to the
interior direction and stops at C2 to mark the red shaded region.

the mesh connectivity, but the starting positions of the curves are
derived in image-space with a standard O(N) rendering pass. Once
the boundary curve is extracted, we can determine the region by a
flood-filling process.

From the user-provided curve, we extract the largest connected
area by a flood-fill process in screen space, and derive its 4-pixel
connected boundary. The resulting pixel curve is then transformed
into a polyline representing Ĉ, that connects the centers of adjacent
pixels. The first observation is that for each vertex pi of the polyline
Ĉ, we can easily find the triangle ti that contains its projection: as Ĉ
aligns by construction with the pixel raster, we can draw the scene
and output triangle indices instead of colors. The indices underneath
Ĉ correspond to candidate starting triangles for the curve extraction.
A single depth-buffered rendering is sufficient to extract the front-
most triangle. This approach might miss subpixel curves, but given
that they would also be invisible to the user, this does not represent
an important limitation.

Figure 8: Finding curves on a mesh. Upper right: Discrete user input
in screen space (thinned to an 4-connected curve) on the BUNNY

model. Upper left: Detail of input (shaded grey). Bottom: Detail of
two pixels on the curve. The triangle index of the visible fragment
at the center of each pixel is stored (t0 for L0 and t1 for L1). Assume
the tracing starts at pixel L0 to find C. The projection of [p0, p1]
intersects triangles t0, ta, tb, and t2, and they are all added to C. The
process continues with [p1, p2] and subsequent line segments, until
C is completed when t0 is reached in L0 again.

We will now determine a list of all triangles along the boundary
selected by the user. These triangles will later be cut to adhere to the
corresponding region boundary on the surface.

To extract C, we take the pixel of the selection point as the start-
ing point. For illustration, let us assume the starting point is p0.
Let [p0, p1] be the line segment between p0 and p1 in Ĉ. When
projecting [p0, p1] onto t0, which is the first triangle added to our
list, we may intersect its boundary. In this case, we cross over to
the adjacent intersected triangle and add it to our list as well. If
this triangle is front-facing, we intersect it again with [p0, p1]. If it
contains p1, we continue with [p1, p2], else we visit the next adja-
cent intersected triangle. If the adjacent triangle is backfacing, the
traversal direction is flipped and the process continues with [p1, p0].

This also handles the case where the projection of Ĉ intersects a
boundary of the mesh, as the orientation changes between the two
adjacent triangles on the boundary. The process (see Figure 8 for
an example) is repeated until the entire curve C has been processed.
The algorithm is outlined in Algorithm 1,

In case the user selects multiple boundary curves (Figure 7), we
simply execute the algorithm for each curve and its selection point.
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Algorithm 1 Collecting triangles on the selected boundary

Input: pi0 � the center of the pixel that p̂ projects on
Input: ti0 � the triangle which pi0 lies inside

Output: C � list of triangles that Ĉ passes through

1: i ← i0 � index of current point on Ĉ. initialized.
2: t ← ti0 � current triangle. initialized
3: C ← [ ]
4: Finish ← false
5: while not Finish do
6: a ← i
7: if t is front facing then
8: b ← i+1
9: else

10: b ← i−1 � flip direction of tracing
11: end if
12: project segment [pa, pb] on t
13: if projected segment intersects an edge e of t j then
14: C ←C+ t � add t to the list
15: t ← triangle sharing e with t
16: else
17: i ← b
18: end if
19: if i = i0 And t = ti0 then � first point and triangle re-visited
20: Finish ← true � stop tracing
21: end if
22: end while

Figure 9: The user-drawn curve intersects a mesh boundary: The
curve is traced along that boundary between the intersection points.

Because the traversal itself is performed on the mesh, we handle
self-intersecting meshes successfully, as long as the connectivity
between the triangles remains manifold. If we encounter a mesh
boundary (Figure 9), we follow it until its next intersection with Ĉ.

Given the curve represented by lists of triangles with barycen-
tric coordinates and indices, we can split the mesh – by splitting
the triangles along the curve. The triangles resulting from a split
are marked as interior/exterior, depending on whether they project
inside/outside of Ĉ. To extract a selected region from the mesh, we
perform a stack-based flood-fill on the mesh, which is initialized by
the interior triangles adjacent to the selected starting point of the
boundary. Propagation stops at triangles already marked as interior.

5 APPLICATIONS AND RESULTS

We have tested our method on various data sets, including self-
intersecting meshes. Figure 10 shows an example of selecting differ-
ent parts of the ARMADILLO model, all from a single viewpoint.

In the following, we show three applications: applying textures,
cutting for inspection and illustrations, and painting the surface
with a brush. We classify these applications based on whether the
selection is static or is transformed dynamically. Furthermore, we
also analyze the performance of our approach.

Figure 10: The selection tool permits selecting both an arm and any
leg of the Armadillo from a single view.

(a) (b) (c)

Figure 11: Painting a texture on the surface: (a) The user draws a
curve. (b) The selected region is marked. (c) A texture is associated
with it. (e) The model with the textured arm (different viewpoint).

5.1 Static Selection

The user draws a curve once, which is mapped to bounding curves
on the mesh, and a bounded region is selected by the user. To this
selection, one of the following operations can be applied:

Texture Mapping. This is especially useful for surfaces of un-
segmented models with texture coordinates already assigned. After
selecting a region, the user can choose the texture image which
is assigned to the segmented area, and further adjust the texture
transformation, e.g., by dragging the texture inside the region. An
example is shown in Figure 11.

Inspection with Cutting. Another application of our method
is to explore models with significant depth complexity, such as in
Figure 12. Many models are self-occluding, and some even contain
numerous interleaving components (e.g., wires, tree branches, or
blood vessels) that occlude the view of other parts from most or
even all camera positions. Using our method, the user can quickly
reveal the hidden areas by cutting away the occluding parts with
simple curve sketching. Figure 13 shows an example where several
candidate-for-selection regions are detected by drawing a single 2D
curve. The user can move the selection point along the screen space
curve to choose a region.

Quick Generation of Cutaways. Once experts have inspected
a complex model, they may wish to show selected features to non-
expert users. Cutaways (either as holes or just as transparencies) are
a very good tool to expose and highlight details of complex objects.
For centuries, drawings with cutaways have been used in medical
instruction and biology. For example, The work of Burns et al. [3]
shows that inner components can be revealed by manipulating the
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Figure 12: Inspecting the SKULL model. The user interactively
widens the cut by drawing composite curves to better see the interior.

Figure 13: Inspecting the interior of the HEART. Different possible
regions selected by the yellow selection point. Note that in (b) &
(c) the figure shows the selection point on only one curve, but the
user selected an additional curve to bound the red region. (d) three
arteries cut.

visibility of the (occluding) outer layers. Our algorithm is ideally
suited to quickly create such illustrations. Figure 1 shows a cutaway
of the HEART model, and Figure 14 shows a transparent illustration,
together with the steps used to create it. We were able to create
each of these drawings in less than a minute, just from a single
viewpoint. The key advantage of our method in this scenario is that
thin structures might occlude only little, but add to understanding of
shape. In consequence, it can be useful to leave them intact, like the
thin blood vessels in the HEART model.

Automatic Cutaways. A cutaway shape can also be generated
based on an (occluded) object of interest O that the user picks. To
do so, we generate Ĉ automatically as the boundary of the projection
of O onto the current view (e.g., using the convex hull of Π(O)),
with some margin. In order to remove parts that extend outside the
bounding curve in screen space, as explained in Sec. 2, each curve
in C is treated as C, and a corresponding region is bounded by this
curve only. The surface regions that occlude O are then marked
and removed. Since regions bounded by entirely occluded curve
boundaries are also be extracted and checked, we use depth peeling
[7] to find occluded boundaries in C using the same algorithm.

5.2 Dynamic Selection

Since the outline and selected region is calculated in real time, our
method also supports interactive region modification.

Continuous Painting. A perfect application for this mechanism
is to paint on the surface by dragging a brush without being bothered
by occlusions, as shown in Figure 15. Unlike the chameleon sys-
tem [13] and the LayerPaint [10], our algorithm maps a screen-space
curve to a surface boundary. Therefore, the brush does not have to
cover the whole desired region. Figure 17 shows example cases:

Figure 14: Generating a transparent illustration of the HEART in
under a minute: (a) The user draws a curve, and the selected region
is turned transparent (b). Tw other regions turned transparent to get
the final illustration (c), also shown from another perspective (d).

Figure 15: The user paints a texture with a brush onto the model.

The brush is moving along two layers at the same time (c, d), and
the whole arm is textured because it is bounded by curves of C even
if it is not entirely covered by the brush in screen space (e, f). Both
previous methods do not handle such cases.

For this application, Ĉ is constructed and extended with the out-
line of the brush, usually a disk. We additionally need a representa-
tive point in the brush, which is responsible for selecting the painting
layer in case the brush covers multiple layers, and for the starting
frame 0 as with curve selection we require that point to lie on the
curve Ĉ0 (the brush outline). When extending the painted region
in screen space in consecutive frames i, Ĉi becomes the outer hull
of the union of the brush region in frame i and the region bounded
by Ĉi−1 in screen space in order to avoid holes. We pick the new
selection point p such that p is on the boundary curve of frame i-1
and Π(p) ∈ Ĉi ∩ Ĉi−1. Figure 16 illustrates this with an example.

Points P0 and P′
2 lie on both Ĉi and Ĉi−1, and therefore either one of

them can be the selection point.

5.3 Animating the Position of the Selection

Instead of extending the selected region as in painting, we can also
move the boundary across the surface.

Animating Cutaways. An example of this are animated cut-
aways, where the cutaway shape is dragged along the surface, obliv-
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Figure 16: Occlusion-aware region extension by the example of
brush painting. Left: Frame i− 1: The brush is outlined in white.
Ĉi−1 projects to segments S0..3 (only S0 and S1 are visible). Assume
the selected region is bounded by S0 ∪S2. Right: Frame i: P0 and P′

2

project back to both Ĉi and Ĉi−1, therefore tracing from either will
get the intended region, which is bounded by S4 ∪S6. P′′

2 and P4, on
the other hand, do not satisfy the condition.

ious to any occluding objects, as shown in Figure 18.
In each frame, the curve Ĉ is dragged by the user into a new

position. For starting frame 0, the desired boundary C0 is chosen
using the selection point p̂0 on Ĉ0. Then, for subsequent frames i,
the curves Ĉi are displaced by relative mouse input movement, and
the selection points p̂i move along with Ĉi. At frame i, we project
the selection point p̂i to all corresponding pi on the surface and
choose the one geodesically closest to pi−1 to trace and find Ci. This
ensures that the curve moves in an occlusion-aware fashion between
these close “key frames".

5.4 Performance

curve radius 50 pixels 100 pixels

model # faces trace split fill trace split fill
BEAR 19K 3.2 0.9 0.9 10.1 4.7 3.3

BUNNY 70K 4.4 6.0 3.9 5.7 4.0 5.8
HEART 177K 9.2 7.9 10.2 11.5 5.7 10.1

Table 1: Runtimes (in ms) of our algorithm for 3 models and 2
curves covering varying area sizes (radii in pixels), are recorded for
the main steps: tracing the candidate curves, splitting the triangles,
and flood-filling. Projecting the curve is negligible (always <1 ms).

viewport rad trace split fill

400X400 25 2.7 1.4 52.6
800X800 50 5.4 1.5 52.8

1600X1600 100 13.5 1.9 53.4

Table 2: Runtime measures for the HAPPY model, with different
viewport sizes (and different corresponding curve radii).

Table 1 shows the runtime of the algorithm on models of different
sizes and varying curve sizes. The input is a 2D curve centered
in the middle of a 512× 512 pixel window, with radius either 50
or 100 pixels. The timings show that the tracing, triangle splitting,
and marking are linear as expected. The recorded runtime of the
projection on the GPU is always less than one millisecond in all
experiments. However, CPU-GPU data transfers take between 15
to 30 ms. In a future implementation, the entire processing could
be performed on the GPU, which would eliminate that bottleneck.
Table 2 shows that the runtime of tracing the curves scales linearly

with the viewport length, while the processing of the mesh (splitting
and flood-filling) which takes most of the time, is mostly constant, as
expected. The algorithm was implemented with C++ and OpenGL
and tested on a Core2 Quad 2.4 GHz CPU with 4 GB RAM and
GeForce GTX 680 GPU.

6 CONCLUSION

We proposed a novel selection method that enables users to perform
operations on meshes without being blocked by, or having to remove
occlusions of the mesh itself or from other objects. Our method
even works for meshes which self-intersect and/or contain holes. We
show that these surface subset selections can be created very easily,
and the user can determine a preference between different choices
of occlusion if they exist. These occlusion-aware selections can
also be performed interactively, which enables artists to use them
in state-of-the-art 3D design software. By adding our algorithm
into such a product, many already included operations could be
enhanced,such as extrusion, mesh simplification, mesh mixing, and
many more. As the method is simple, it is especially convenient
for implementing it as an add-on module in 3D modeling systems.
Several different operations can be performed either on the selection
boundary or on the surface subset marked by its interior: painting,
cutting, modifying surface attributes (e.g., transparency), extrusion,
deforming. We have demonstrated the first three as examples, as
well as animating illustrative cut boundaries.

Limitations. Our implementation does currently not handle non-
manifold meshes, where more then two triangles are connected
by one edge, but it could be extended by performing the tracing,
while maintaining a stack. This is not a severe limitation since the
kind of meshes used as input usually are manifold. Currently, our
implementation handles only triangular meshes, but it is trivial to
extend it to handle any polygonal mesh.

Except in automatic cutaway generation and continuous painting
applications, our algorithm also does not capture regions bounded
by entirely occluded boundaries, as we assume it is not intuitive for
the user. Those boundaries can be extracted using depth peeling [7]
and then allow the user to select occluded curves as well. Depth
peeling can be efficiently performed using the illustration buffer [4],

Another limitation is cutting through triangle soups; a commonly
encountered artifact of isosurface meshing. Such triangles lack
the structure of a connected manifold, which our method assumes.
However, in case the triangle soup is just spurious and hidden, our
cutting method can aid the user to remove it. Figure 19 shows an
example, where the user temporarily cuts the (manifold) outer part
of the mesh in order to reach and select the spurious primitives -
with a tool capturing connected components enclosed in a rectangle.
The selected components are removed and the cut is undone.

Future Work. We are currently extending our method to process
other surface representations, such as point clouds with recovered
connectivity, since that suffices for both curve tracing and bounded
region marking. Using a discretized data structure for connectivity
recovery, e.g., the one proposed by Radwan et al. [19], could permit
those operations on implied connectivity of sensed data.

Aside from cutting and painting, other surface operations (e.g.,
extrusion, deformation, mesh simplification, etc.), as well as op-
erations on surface subsets like mesh mixing, could be applied to
regions selected with our tool. Converting the code into a plug-in of
an existing 3D software (e.g., Blender or Maya) would allow this.

While one advantage of our method is that the final boundary is
faithful to the curve sketched by the user, it is not unlikely that the
user will want to smooth it out. Therefore, in order to enhance the
usability of the tool, we will implement a postprocessing boundary
smoothing phase on the mesh.

Our method could also be used for user-guided segmentation:
Since the user-drawn 2D curve cuts the object, it could serve as
initial 3D curve to fit with local optimization criteria, e.g., based on
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(a) (b) (c) (d) (e) (f)

Figure 17: Several screen shots of a painting session, each followed by a yellow outline of the region boundaries (occluded segments dashed).

Figure 18: Animating the position of a cutaway: A few frames of a cut that is being dragged along the surface.

Figure 19: (a) A tooth mesh reconstructed from an isosurface
of a CT scan, with the selected region shaded red, then cut (b),
revealing spurious connected components. (c) Selected artifacts
(with a different tool). (d) Cut undone after removal of artifacts.

concavity isolines as proposed by Au et al. [1].
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