
Zeitliches Upsampling von
Bild-Sequenzen mit einem

Nicht-Lokalen Durchschnitts
Algoritmus

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Visual Computing

eingereicht von

BSc. Clemens Rögner
Matrikelnummer 0825045

an der Fakultät für Informatik
der Technischen Universität Wien

Betreuung: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Mitwirkung: Dr. Johannes Hanika, Karlsruhe Institute of Technology (KIT)

Wien, 9. Oktober 2014
Clemens Rögner Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Temporal Upsampling for Image
Sequences Using a Non-Local

Means Algorithm

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Visual Computing

by

BSc. Clemens Rögner
Registration Number 0825045

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Assistance: Dr. Johannes Hanika, Karlsruhe Institute of Technology (KIT)

Vienna, 9th October, 2014
Clemens Rögner Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

BSc. Clemens Rögner
Unterzwischenbrunn 21, A-3100 St. Pölten

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 9. Oktober 2014
Clemens Rögner

v

Danksagung

Diese Diplomarbeit wurde in Kollaboration mit der Computergrafik Gruppe des Karls-
ruher Instituts für Technologie (KIT) geschrieben. Der Algorithmus, welcher in dieser
These vorgestellt wird, basiert auf einer Idee von Dr. Johannes Hanika, meinem Betreuer
in Karlsruhe. Ich möchte mich hiermit herzlich bei ihm für seine uneingeschränkte Unter-
stützung bedanken und auch all den anderen Mitarbeiter, die es mir ermöglicht haben,
diese Arbeit zu schreiben.

Weiters möchte ich mich auch noch bei Prof. Michael Wimmer bedanken, der den
Kontakt zum KIT hergestellt hat und mir beim Abschluss der Arbeit geholfen hat.

Zu guter Letzt will ich hiermit dem Land Niederösterreich für das Stipendium danken.

vii

Acknowledgements

This thesis is written in collaboration with the Computer Graphics Group of the Karlsruhe
Institute of Technology. The method presented in this thesis is the result of an idea from
my supervisor Johannes Hanika. I want to thank him for supporting me anytime his
expertise was needed, as well as the entire Computer Graphics Group for making this
thesis possible.

In addition to that, I want to thank Micheal Wimmer, who initiated the contact to
the people at the Karlsruhe Institute of Technology and for helping me in the later stages
of the thesis.

Furthermore, I want to thank the province of Lower Austria for the scholarship.

ix

Kurzfassung

Computer-generierte Video Sequenzen mit einer höheren Frame-Rate (Bildrate) als 24
Bilder pro Sekunde, wie zum Beispiel 48 oder 60 Bilder pro Sekunde, werden, aufgrund
ihrer höheren visuellen Qualität, in den entsprechenden Gebieten immer populärer. Dies
hat aber zum Nachteil, dass mehr Zeit für das Berechnen benötigt wird.

Eine Lösung für dieses Problem ist das sogenannte Frame-Rate Upsampling, welches
sich zeitlicher und räumlicher Kohärenz bedient um neue Frames (Bilder) zu approxi-
mieren, was daher die Dauer der Berechnung verringert. Dazu gibt es eine Vielzahl an
Publikationen, welche dem Zweck der Echtzeitgrafik sowohl aber auch dem so genannten
offline Rendering dienen.

In dieser These werden zwei neue Algorithmen für das Frame-Rate Upsampling
vorgestellt. Beide zielen auf hoch-qualitative Computer generierte Bilder mit verschiedenen
Global-Illumination Effekte ab. Diese zwei neuen Algorithmen verwenden eine denoising
Methode für Videos – den non-local means Algorithmus– um die Farben für die Pixel
in dem Frame zu finden, welcher approximiert werden soll. Um genau jene Farben zu
finden, verwenden die vorgestellten Methoden entweder vorhandene Farbinformationen
oder bedienen sich zusätzlicher Daten für jeden Pixel, welche mit minimalen weiteren
Berechnungen aus jedem Global-Illumination Algorithmus extrahiert werden können. Die
vorgestellten Methoden sollen so, besser als bisherige Publikationen, mit Reflexionen und
transparenten Objekten umgehen.

xi

Abstract

Computer-generated video sequences with a frame-rate higher than the usual 24 images
per second, such as 48 or 60 frames per second, have become more popular in the respective
industries, due to more visual fidelity. This, however, results in more computational costs
for the same length of the video sequence.

One solution to this problem is the so-called frame-rate upsampling, which makes
use of temporal and spatial coherence to approximate new frames and therefore saves
computational time. Several methods have been published in this field, for the purposes
of real-time rendering as well as for offline rendering algorithms.

In this thesis, two new algorithms for fame-rate upsampling are introduced. Those
are targeted at high-quality computer-generated images that feature various global-
illumination effects. The two new algorithms make use of a video denoising method –the
non-local means algorithm– to find the appropriate pixel colors for the frame, that has
to be upsampled. To find the corresponding pixels in another frame, the methods of
this thesis either use existing color information or require additional data, which can be
extracted from any global-illumination algorithm with minimal further computations.
The proposed methods are aimed at handling reflections and refractions in the scene
better than previous work.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

List of Figures xvi

List of Tables xx

List of Algorithms xxi

1 Introduction 1
1.1 Problem Description . 1
1.2 Temporal Coherence . 2
1.3 Challenges . 3
1.4 Approach . 4
1.5 Quality . 5
1.6 Thesis overview . 5

2 Background 7
2.1 Light and Color . 7
2.2 Global-Illumination . 7
2.3 Optical Flow . 11
2.4 Upsampling . 12
2.5 Image Denoising . 14

3 Previous Work 17
3.1 Coherence in Global-Illumination Algorithms 17
3.2 Upsampling Techniques in Real-time Rendering 18
3.3 Upsampling using Video Coding . 21
3.4 Non-local means denoising . 22

4 Motivation and Overview 29

xv

4.1 Motivation . 29
4.2 General Approach . 30
4.3 Adapted Non-Local Means algorithm . 30

5 Motion-Vector Technique 35
5.1 Algorithm . 35
5.2 Similarity measure . 36

6 Pixel-Similarity Technique 39
6.1 Algorithm . 39
6.2 Similarity measure . 39

7 Results and Comparison 47
7.1 Test Image Sequence . 47
7.2 Parameter Finding . 48
7.3 Comparison and Evaluation . 55
7.4 Summary . 66

8 Conclusion 67
8.1 Future Work . 68

Bibliography 69

List of Figures

2.1 Schematic of the rendering equation as it is described in Formula 2.1 8
2.2 Reflection of a light ray. 9
2.3 Problem of moving reflective objects. Figure (a) shows the initial positions

and the path that results into the green pixel. The blue arrow is the movement
of the specular surface in Figure (b). The resulting pixel color should be
brown as well. However, when the motion of the object is followed (hence
sampling the same point on the specular surface as before) this could into a
(false) green pixel. This green color is due a hit on the top of the cube in the
initial position. 10

2.4 Refraction of a light ray. 11
2.5 The orange and the green line show a possible light path through a transparent

object (blue rectangle). Due to internal reflection the path may not exist after
the second surface-interaction. 11

xvi

2.6 Optical flow of a circle moving from left to right. The according motion vector
is colored blue. 12

2.7 Curve Fitting example. Sub-figure (a) depicts the original signal with its
sampling points at ti, Sub-figure (b) shows a polynomial fitting, Sub-figure (c)
shows a natural cubic spline fitting with the blue dots marking the influence on
z(i) and Sub-figure (d) shows a Hermit cubic spline fitting with its derivatives
ṡ(i) (blue arrows) . 13

2.8 Schematic of a noisy signal. Left: A possible, not altered, signal. The goal of
denoising methods is to extract this signal. Middle: A (random) noise signal.
Right: the combination of both signals. This is the problematic signal that
has to be resolved via denoising methods. 15

3.1 Difference in the data usage of two methods proposed by Yang et al. [YTS+11].
The scene-assisted approach requires a rendering of the desired frame, whereas
the image-based approach does not. In each case the purple cube represents
the unknown shading information, the orange one represents the shading
from the previous frame and the blue depicts the shading information of the
upcoming frame . 19

3.2 Three iterations of the algorithm by Yang et al. [YTS+11] which is used to
estimate the movement of a pixel from one frame to another 20

3.3 Schematic of the non-local means algorithm for denoising introduced by
Buades et al. [BCM05]. 22

3.4 Comparison of the non-local means denoising algorithm for a single image
against other filtering methods. The number below the thumbnail images
depict the mean squared error of the entire denoised image towards the original
image. Pictures taken from Buades et al. [BCM05]. 23

4.1 Difference between using the original non-local means algorithm and the
version with the list of best fits. 31

4.2 Size notation of the neighborhood K and similarity area S. The red square
marks the center pixel. 34

5.1 The motion-vector technique in pictures. 37

6.1 The pixel-similarity technique in pictures. 40
6.2 Different types of light propagation on a surface point. 41
6.3 Validation plots of the similarity measure for diffuse surfaces. 43
6.4 Validation plots of the similarity measure for specular surfaces done for frame

000610. Figure a uses a measure using direction of the reflection and Figure
b utilizes the point from where the most contributing light comes from. . . . 44

6.5 Validation plots of the similarity measure for transparent surfaces done for
frame 002351. The figures on the left show the similarity values for two points
on the glass cube. On the right side is the result of using that measure. . . . 46

7.1 This figure shows the test sequence along the time-line with an image example
for each scene. 47

7.2 Values of the biggest dimension in motion vectors for each pair of frames
across the entire test image sequence. 49

7.3 Values of the biggest dimension in motion vectors for each pair of frames
across the entire test image sequence. 50

7.4 Polynomial fit for the function f(x) = cos(2x) ∗ sin(x/3). Figure (a) shows a
fitting with with a degree 5 polynomial resulting in under-fitting, Figure (b)
uses a 9-degree polynomial resulting in the best fit and (c) shows over-fitting
with a polynomial degree of 11 . 50

7.5 This figure shows the consequences of too small similarity-area sizes for the
motion-vector technique. Figure (a) was produced with an area size of 1 and
shows noise at the green stripes due to the failed matching. The noise around
the edges of the glass cube is also a result of the small area size. In Image (b)
the area size is 5, which results in no noise at the green lines as well as reduced
noise at the edges of the glass. Figure (c) shows the ground-truth frame,
Figure (d) shows the motion vectors (pointing from white to red) due to the
small area size of 1, and Figure (e) shows better motion vectors generated
with a similarity size of 5. Notice that in Figure (d) motion is detected on
the bumpy cube, when there is actually none. And finally, Figure (f) marks
the place of the cutout in the frame. 51

7.6 This figure shows the consequences of too big similarity-area sizes for the
motion-vector technique. Subfigure (a) was produced with an area size of 5
and shows ’color bleeding’ to some extend due to the inability of the algorithm
to find a similar pixel. In Image (b) this effect is amplified due to an increased
similarity size of 10. Figure (c) shows the ground truth frame, Figure (d)
shows the motion vectors (pointing from white to red) for the similarity area
of 5 and Figure e) shows false motion vectors due to the big area size of 10.
Notice that the vectors in Figure (e) do not cross the edge, which stands in
contrast to the objects movement downwards to the left. And finally, Figure
(f) marks the place of the cutout in the frame. 52

7.7 Tests for the size of the similarity area to use in the testing sequence. The
blue line depicts the mean squared errors without a Gaussian kernel and the
orange line shows a weighting of the area with the kernel. 53

7.8 Tests for the size of the similarity area of the pixel-similarity technique to
use in the testing sequence. The blue line depicts the mean squared errors
without a Gaussian kernel and the orange line shows a weighting of the area
with the kernel. 53

7.9 Results for different maximal list sizes when its values are averaged to make
up the resulting motion vector. The number below the pictures are the mean
squared errors of those images. 54

7.10 Results for different maximal list sizes for frame 2351. The number below the
pictures are the mean squared errors of those images. Notice the increased
blurring due to the greater list size. 54

7.11 Figure (a) shows the mean squared error to the ground-truth frames of the
motion-vector technique for each frame in the test sequence. The blue line
is the variant with the iterative search and the orange on is the brute force
variant Figure (b) shows the rendering times of both variants using an adaptive
neighborhood size with a minimum of 10 . 56

7.12 Case of iterative search variant (mean squared error: 0.00391085) of the
motion-vector technique outperforming the brute force variant (mean squared
error: 0.00464652). 56

7.13 Figure (a) shows the mean squared error to the ground-truth frames of the
pixel-similarity technique for each frame in the test sequence. The blue line
is the variant with similarity measure using the position of the surface and
the orange one uses that of the next surface-interaction of the refracted light
Figure (b) shows the rendering times with an adaptive neighborhood size
including a minimum of 10. 57

7.14 Mean squared error for the entire test sequence for the motion-vector technique
(brute-force variant) as the blue line, the pixel-similarity technique (refraction
interaction variant) as the orange line and the scene-assisten method proposed
by Yang et al. [YTS+11] as the black line. 57

7.15 Problems of the motion-vector technique when detecting edges. The images
in the upper row show the results and those in the bottom show the difference
to the ground-truth frames. The ’border-effect’ in the latter images highlight
the problems of the motion-vector technique with correct edge location. . . . 59

7.16 Small non-linear motion (camera movement in this case) leads to false edge
location. In this image an offset to the ground-truth frame of one pixel can be
seen. The vertical blue line marks the position of where the bumps should be. 60

7.17 Edges are preserved with the pixel-similarity technique. The same is true for
high-frequency textures. Slight blurring occurs due to usage of maximal list
size greater than one. 61

7.18 Edges are preserved with the scene-assisted method by Yang et al. [YTS+11].
The same is true for high-frequency textures. Slight inaccuracies due to
oversampling. 62

7.19 Ghost edges due to upsampling with video encoding. 62

7.20 Noise resulting into false motion vectors. In the case of the red and blue wall
those do not matter, but on the edges of those two walls it does, since it
results into a not discontinuous edge-line. 62

7.21 Specular surface with the motion-vector technique. Figures (a) to (i) show
a cutout of an image sequence generated by the motion-vector technique. It
shows, that small color changes do not result into problems, but as soon as
they are significant (Figure (f) and (h)), the algorithm produces artifacts
known as ’color bleeding’. In addition to that, the iterative search variant,
produces a ’tearing effect’ as seen in Figure (j). 63

7.22 Specular surface with the pixel-similarity technique. Figures (a) to (j) show a
cutout of an image sequence generated with that technique. Some noise is
visible at the highlights as well as small errors around the edges. The latter
are a result of oversampling. 63

7.23 Specular highlight in frame 611 of the test sequence with various upsampling
techniques. 64

7.24 Example of the motion-vector technique handling transparent objects. As can
be seen from the figures above, edges lead to noise whilst the surface is free
from it. 64

7.25 Example of the pixel-similarity technique handling transparent objects. This
techniques leads to blurring and false edges at the back-side of the glass cube. 65

7.26 Glass cube in frame 2351 of the test sequence with various upsampling techniques. 65

List of Tables

3.1 Comparison of the optimized non-local means denoising method by Goossens
et al. [GLPP08] on a GPU against a CPU version of the algorithm. The
neighborhood size is given in width x height x temporal-window of previous
frames . 27

xx

List of Algorithms

3.1 Non-local means algorithm for video denoising 24
3.2 Non-local means algorithm for video denoising optimized version 26

4.1 Maximal similarity detection . 32
4.2 Injecting values into a list, that keeps those with the highest weight w . . . 33

xxi

CHAPTER 1
Introduction

1.1 Problem Description

Computer-generated video sequences are used in many areas for different purposes.
Usually, those sequences consist of images (also called frames) displayed with 30, 25 or 24
frames per second. Generating one image on the computer (so-called rendering) requires
extensive computations when the entire light transport in the scene has to be resolved.
Recent developments head towards using more frames per second (either 48 or 60) to
improve the visual experience [AFH+]. This increases the time to compute the video
sequences even more, since more frames are required to produce. More details on those
issues is given in the following sections.

1.1.1 CGI and Global Illumination

Computer-Generated Imagery (CGI) content is an important part in the movie industry.
It enables the creation of scenes that otherwise would not be possible to put on screen,
as well as reduces production costs compared to various non-CGI methods [KFC+10].

Traditionally, the movie industry used software that featured only direct illumination
with several improvements to enable life-like effects. In recent years, the CGI standard
shifted towards using rendering software that computes global illumination (GI). Before
that, such rendering software was considered to restrict artists, but recent movie produc-
tions have shown that this is not true since the creative process can be altered to achieve
the same goals [KFC+10].

The down-side of using a global-illumination renderer is that generating one image
requires extensive computations since the light transport in the scene has to be calculated.
This topic is discussed in detail in section 2.2.

1

1.1.2 Higher Frame Rate

When displaying a movie in a cinema, the frame-rate standard is 24 frames per second
(fps). Displaying a video on a desktop pc is usually done at 24 or 30 fps. The display
rate for television, however, is 60 fps, although some television programs are produced in
cinema-like 24 fps [AFH+].

The benefit from a higher frame-rate is that it provides a better sense of motion,
especially fast movement, to the viewer. In general, a higher frame-rate such as 60 frames
per second resembles reality better and therefore creates an improved illusion [AFH+].

However, as mentioned before, rendering the same sequence at a higher frame-rate
subsequently requires more computations. This either results in more time to generate
the same sequence or requires better hardware to do so.

1.2 Temporal Coherence

One approach to solve this problem is to use calculations done in one frame to generate
the next or previous frame, in other words: temporal coherence. In this thesis, the frames
generated using temporal coherence are referred to as interpolated frames (I-frames),
which approximate the ground-truth frame or original frame (O-frame). Frames that are
computed by the renderer will be referred to as base frames (B-frames). The process of
generating the I-frames is also known as upsampling.

Many methods that use temporal coherence to increase performance exist. For
example, Yang et al. [YTS+11] introduce two methods that use so-called motion vectors
(vectors that show the positional change for each pixel) generated via the expected
motion of the underlying geometry for each pixel. With these motion vectors, Yang et al.
[YTS+11] can generate frames for the purpose of real-time rendering, but are unable to
deal with the problems of mirror- or glass-like objects, since these may result into image
features that do not move coherently with the motion vectors.

Video encoding techniques produce motion vectors by looking at blocks of an image
and search for their position in another frame [WSBL03]. This can then be used to
upsample a missing frame and potentially deal with the moving image features of reflective
and refractive surfaces, since the detected movement does not depend on the objects
like in the work of Yang et al. [YTS+11]. This technique does not guarantee a color
value for each pixel in the missing frame and therefore requires a heuristic to fill in the
missing values. Furthermore, video encoding standards restrict the amount of maximal
movement to reduce computing time [WSBL03].

A completely different approach was introduced by Havran et al. [HDMpS03] for
Monte-Carlo path tracing. Their rendering architecture updates samples generated via
ray tracing for each frame in relation to camera- and object movement. In addition to
that, a custom acceleration data structure for ray-tracing is utilized to create multiple
frames at once. This technique is specifically tailored to the global illumination algorithm
at hand (path tracing), but does deal with the shortcomings of the previously mentioned

2

techniques, i.e., it deals with specular and refractive scene objects and provides a value
for every pixel.

1.3 Challenges

With the shortcomings of the previously mentioned techniques in mind, the goal of this
thesis is to develop an algorithm that deals with the following challenges:

• Independence of rendering algorithm: When a technique works independently
of the global-illumination algorithm, changing the latter does not require additional
coding to apply the technique. For example, this is not possible with the previously
mentioned technique by Havran et al. [HDMpS03]. Furthermore, a technique
that is independent of the rendering algorithm is an easy way to add another
temporal-coherence method to the existing ones.

• Individual result for each pixel: A motion vector for each pixel reduces the
errors made for each image and therefore enhances the resulting generated image.
Using video encoding to do the upsampling can not achieve that, since the motion
vectors are calculated for blocks of pixels. This is a problem when objects in the
foreground move across a stationary background. In this case, motion vectors might
also be applied to pixels of the background, which leads to errors in the resulting
image.

• Independence of object movement: Global-illumination effects such as specular
or transparent objects generate image features that may not move like the object
causing it. But when the movement of the image features is bound to the object
motion, the quality of the resulting images decreases, as is the case with the
techniques of Yang et al. [YTS+11].

• Reasonable computing time: An upsampling algorithm that does not need
significantly less time than the global-illumination algorithm, defeats the purpose
of it and therefore is not desirable as such. This challenge is not a problem of the
previously mentioned techniques, but is something that should be kept in mind for
the proposed techniques if this thesis.

• Movement constraints: The amount of movement from one frame to another
should not be limited by the algorithm itself. Video encoding, for example, puts
a limit to the maximal amount of movement to save encoding time. Again, this
challenge is something that will be important for the proposed techniques. It has to
be mentioned that temporal-coherence methods in general put an indirect limitation
on the maximal movement based on the rate the ground-truth data is refreshed.

3

1.4 Approach

This thesis introduces two methods for upsampling that are independent of the global-
illumination algorithm that generates the frames, while still providing high-quality results.
Both of them are image based in order to achieve the independence of the rendering
algorithm. To overcome the accuracy issue of using the video-encoding for upsampling
and the problems of the work of Yang et al. [YTS+11], the proposed methods use the
non-local means algorithm, which was introduced by Buades et al. [BCM05], to detect
similarities between two or more frames. This algorithm defines a fixed search area (in
the spatial and temporal domain) to find a similar pixel. Whether two pixels in that
neighborhood are considered to be similar is decided by comparing their surroundings.

The first approach, the motion-vector technique, applies the non-local means algorithm
to the color of two base frames to find the movement of a pixel from one frame to the other.
The resulting motion vectors can then be used to fill a certain pixel in the interpolated
frame with the corresponding color. This technique works similar to what is done when
using video encoding to do the upsampling, but without a heuristic to fill in the missing
pixels. The motion-vector technique also counters the problems of the work by Yang et
al. [YTS+11] when it comes to specular and transparent objects.

The second technique, the pixel-similarity method, requires additional data for each
pixel in an I-frame, a so-called stubby frame. This data for each pixel is then used to
search for similar ones (using the non-local means algorithm) in the adjacent B-frames
to color the pixels in the I-frame. The data needed for this approach can be extracted
from any global-illumination algorithm without altering it. This technique guarantees a
color value for every pixel and overcomes inaccuracies of the motion-vector technique,
while simultaneously dealing better with reflective and refractive surfaces than Yang et al.
[YTS+11], but not as well as the motion-vector technique. The pixel-similarity technique
is not as accurate as rendering algorithm-specific upsampling techniques (like the spatial–
temporal architecture for animation-rendering by Havran et al. [HDMpS03]), but also
not as complex to implement, a property shared with the motion-vector technique.

The non-local means approach is chosen because of the following reasons. First of all,
it can generate an individual result for each pixel and potentially detect movement for
each pixel across the entire image and is therefore not restricted like the work of Yang et
al. [YTS+11]. Some optical flow techniques do not fulfill the requirement of unrestricted
movement detection and individual pixel results (as mentioned in Section 2.3) and are
thus not as good of a choice as the non-local means algorithm. In addition to that, the
non-local means algorithm can be optimized for parallel execution on central processing
units (CPUs) or graphic processing units (GPUs)[GLPP08]. The time to generate the
interpolated images with the proposed algorithm is therefore significantly lower than
the time to create a high-quality computer-generated image, even when the algorithm is
applied to each pixel individually. Furthermore, the proposed techniques of this thesis,
which use the non-local means algorithm, are independent of the rendering algorithm that
produces the images and can also work independently of the object movement, because
the calculations are done afterwards on data that is not bound to the objects movement.

4

The latter mentioned property allows for dealing with the shortcomings of the techniques
proposed by Yang et al. [YTS+11], and the fact that the calculations are done after
rendering puts the methods of this thesis in contrast to the global-illumination algorithm
specific temporal-coherence methods, such as the one by Havran et al. [HDMpS03].

1.5 Quality
Both methods will be evaluated against other techniques by comparing the mean squared
error against the ground-truth frames and how the proposed algorithms deal with the
following image features:

• Edge location: The positioning of the objects in the interpolated frames has to
be equal to those in the ground-truth ones.

• Texture variety: Details on textures with a high variance in color as well as
smooth transition on textures with low variance in color should be preserved. The
latter also includes transitions caused from changing intensities of the incoming
light.

• Specular surfaces: Reflective materials can result in rapid color changes in the
resulting image sequence, and the movement of perceived image features may
be different to that of the underlying geometry. The handling of surfaces with
varying magnitudes of specularity/roughness is an additional quality criteria for
the comparison.

• Transparent objects: Light traveling through the surface and into the object can
be observed on materials such as glass and crystals. Similar to specular surfaces,
those refractive materials can result in different movement of image features than
that of the geometry in the scene.

• Continuous sequence: The image series with the interpolated images should
be free of discontinuities. One reason for that is incoherent movement within a
scene. For example, when a objects in the foreground moves, but the background
is stationary.

1.6 Thesis overview
Chapter 2 of this thesis is about the theoretical background. It is followed by a description
of the previous work in Chapter 3. Chapter 4 contains a discussion of the motivation
for the proposed techniques and its relation to previous work, as well as the necessary
prerequisite for the techniques. Both techniques are then explained in detail in Chapter
5 and Chapter 6. The requirements to run the algorithms in practice and the results for
a test image sequence are discussed in Chapter 7. This thesis is concluded in Chapter 8,
which also gives an outlook to future work.

5

CHAPTER 2
Background

In this chapter, background knowledge for this thesis is provided. At first, light and its
transport throughout a scene is described, followed by an explanation of the so-called
optical flow, which describes movement of image features in an image sequence. After
that, an introduction to the theory of upsampling is given, which together with optical
flow builds the basis for frame-rate upsampling. The last section explains image denoising,
because the proposed approach originates in that field of visual computing.

2.1 Light and Color

Light describes the part of the electromagnetic spectrum that is visible to the human eye.
That part ranges from the wavelength of 380 nanometers (nm) to 780 nm. Those are not
fixed boundaries since it depends on the individual human eye at hand. In addition to
that, the part of the spectrum with a wavelength from 10 nm up to 380 nm (ultraviolet)
and from 780 nm up to 1 mm (infrared) is also refereed to as light.

Aspects of visible light include intensity, propagation direction, wavelength spectrum
and polarization. The term color usually describes the combination of the intensities of
wavelengths for a specific sampling of light, although the definition of what exactly is
meant by the term color is debatable.

Due to the fact that the human eye samples the spectrum of light at three different
areas (red, green and blue), rendering softwares often use three corresponding intensity
values to represent light. However, such an representation does not allow for computing
certain visual phenomena such as dispersion.

2.2 Global-Illumination

Light interacts with surfaces and other participating media, which result in changes of
its path and spectral properties. Computing the journey of the light from its source to

7

Figure 2.1: Schematic of the rendering equation as it is described in Formula 2.1

the observer in virtual scenes is commonly known as calculating global illumination.
As stated before global illumination is computationally expensive to compute. One

of the reason for this is the nature of light transport itself which is described via the
rendering equation [RDGK12] (as can be seen in Equation 2.1) and is depicted in Figure
2.1:

Lo(x, ωo) = Le(x, ω) +
∫

Ω
b(x, ωo, ωi)Li(x, ωi)cosθ dωi (2.1)

This variant of the rendering equation describes the outgoing light Lo coming from
the point in space x with direction ωo and integrates the incoming light into x over the
hemisphere Ω. The other parts of the equation are:

• Le: The emission of point x towards the direction ωo.

• Li: The incoming light from direction ωi towards x.

• b: Is the bidirectional reflectance distribution function (BRDF) that describes the
portion of light which is reflected from ωi towards ωo at point x according to the
material. Several different ways to model such an BRDF exist, which all vary in
their complexity and simultaneously their ability to represent various materials.

• cosθ: Describes the reduction of the lights intensity when it comes from direction
ωi and hits the surface at x with a certain angle and thus increases the area it hits.

8

Figure 2.2: Reflection of a light ray.

Since the rendering equation consists of an integral that contains the light function
itself, there is no analytical solution. In theory, this requires infinite computations to
be resolved. In practice, this is avoided by introducing numerical thresholds to stop
calculating when those do not significantly contribute to the result as well as simplified
models, specialized algorithms and data structures to increase performance [RDGK12].

According to the SIGGRAPH Course ’Global-Illumination Across Industries’ [KFC+10]
the movie industry uses methods such as Monte-Carlo ray tracing with various optimiza-
tions or Point-Based global-illumination to calculate the light transport in a scene. A
short overview of those and other global-illumination algorithms (including temporal
and/or spatial coherence based optimizations) is given in Section 3.1.

2.2.1 Ideal Reflection

An ideal reflection occurs when incoming light is bounced off the surface, away from
the object. The direction of the reflection is as follows: Given are an incoming light ray
Li, which hits a point x on a surface with a perpendicular vector n (the normal vector),
and the outgoing light ray Lo. The angle between the incoming light ray ωi and the
normal vector then is always the same as the angle between the outgoing light ray and
the normal ωo, as seen in Equation 2.2 (wheres the · operator is the dot-product between
two vectors) and Figure 2.2.

ωi = ωoor
Li

‖Li‖
· Lo

‖Lo‖
(2.2)

Figure 2.3 shows what happens when a mirror translates: The color at the surface
point will not stay the same. This highlights a problem of some previous work (for
example the techniques introduced by Yang et al. [YTS+11], as described in Section 3.2)
and the difficulties, that the proposed techniques have to deal with.

9

(a) Initial position (b) Applied movement

Figure 2.3: Problem of moving reflective objects. Figure (a) shows the initial positions
and the path that results into the green pixel. The blue arrow is the movement of
the specular surface in Figure (b). The resulting pixel color should be brown as well.
However, when the motion of the object is followed (hence sampling the same point on
the specular surface as before) this could into a (false) green pixel. This green color is
due a hit on the top of the cube in the initial position.

2.2.2 Ideal Refraction

An ideal refraction occurs when a light ray hits a material, which allows the light to enter
it. The direction of the refraction can be calculated using law of refraction or Snell’s
law (Equation 2.3), which states that the angle of the incident angle ωi and the outgoing
angle ωo must be the reciprocal of the ratio between the respective materials indices of
refraction ηi and ηo, as seen in Figure 2.4.

sin(ωi)
sin(ωo) = ηo

ηi
(2.3)

ωcrit = sin−1 ηo

ηi
(2.4)

If the light in an object with an higher refractive index tries to leave it and the
incident angle is beyond the so-called critical angle ωcrit (see Equation 2.4), the light
path will be reflected internally, a so-called total internal reflection. This leads to an
minimum of two changes in the light paths directions (as seen in Figure 2.5) before it
arrives at the observer or another surface to interact with. The same is true when the
light transport is seen in reverse with the starting point at the observer.

Refraction suffers from the same problems, in terms of moving geometry, as reflection,
which is described in the previous section.

10

Figure 2.4: Refraction of a light ray.

Figure 2.5: The orange and the green line show a possible light path through a transparent
object (blue rectangle). Due to internal reflection the path may not exist after the second
surface-interaction.

2.3 Optical Flow

Optical flow describes the apparent motion of objects through a scene from an observers
standpoint. Such an optical flow of an object or feature is described via a vector in image
space, a so-called motion vector as can be seen in Figure 2.6.

To determine the motion vectors in an image sequence, several techniques exist which
all introduce additional constraints. Common methods are the Horn-Schunck method
and improved variants of it as can be seen in the state of the art report of Sun et al.
[SRB14]. The restraint of the Horn-Schunck method is that it assumes a coherent motion
around the pixel for which it is calculated. At the edges of a moving object this will
not be true an can result into false motion vectors [SRB14]. Another method is the
Lucas-Kanade one. Its constraint is that the difference in time (and therefore change in
the images) is kept to a minimum [SRB14]. As stated earlier, this can not be guaranteed
when specular or transparent objects make up the scene.

Optical flow can be used in video compressing methods as it is described later in

11

Figure 2.6: Optical flow of a circle moving from left to right. The according motion
vector is colored blue.

Section 3.3. Furthermore, the notion of motion vectors are used in previous work as well
as in the thesis itself and describes the positional change.

2.4 Upsampling

In signal processing, upsampling is often seen as the process of extending a sampled
signal over a longer period of time. Another usage of the term upsampling, as it is used
in this thesis, is to construct missing data points between a discrete set of known data
points (aka sample points or samples). In mathematics this relates to the method of
interpolation, which is explained in the following Subsection and is set into relation
to frame-rate upsampling. Afterwards, the affinity and intricacies of upsampling for
image-based renderings are described.

2.4.1 Relation to Interpolation

As mentioned before interpolation takes sampling points and constructs new values
between those points. To define this problem properly: An unknown source function
s(t) is sampled n times at the locations i = 0, 1, 2, ..., n. Interpolation then tries to
approximate that source function with z(t) based on all values of s(i). This can also be
seen in Figure 2.7a.

One way to approximate the missing signal points is to perform a linear interpolation
on an interval between two sampled points s(i) and s(i+ 1). Unfortunately, this naive
approach does not provide sufficient visual quality for a human observer. So does any
other arbitrary weighting function of the two sampled points [AFH+].

Another way of doing so is to fit a polynomial curve through the sampled points. Such
a function extends beyond the samples on the time-line and can lead to a problem known
as ’over-fitting’, where the difference to the original signal

∫ n
0 z(t)− s(t)dt increases as

more samples are used to generate such a polynomial curve. Furthermore, this global
approach requires the original signal to be of polynomial nature for accurate results,
which the rendering equation (as in Equation 2.1) does not fulfill. A schematic of such a
polynomial fit is given in Figure 2.7b.

12

(a) original signal (b) polynomial interpolation

(c) Natural cubic spline interpolation (d) Hermit cubic spline interpolation

Figure 2.7: Curve Fitting example. Sub-figure (a) depicts the original signal with its
sampling points at ti, Sub-figure (b) shows a polynomial fitting, Sub-figure (c) shows a
natural cubic spline fitting with the blue dots marking the influence on z(i) and Sub-figure
(d) shows a Hermit cubic spline fitting with its derivatives ṡ(i) (blue arrows)

To avoid the problems of regular polynomial interpolation, spline interpolation uses
piecewise polynomials of some degree. One of those is the natural cubic spline, which
uses polynomials of degree three ż(i) to interpolate between two adjacent sample points
s(i) and s(i+ 1). To generate a continuous curve z(t) throughout all sampling points,
the first derivative ż(t) and second derivative ˙̇z(t) of the spline have to be continuous.
Furthermore, those derivatives have to be equal at the two adjacent sampled points:
ż(i) = ż(i+ 1) and ˙̇z(i) = ˙̇z(i+ 1). Therefore, someone needs to use four sampling points
to interpolate between two points as seen in Figure 2.7c.

Hermit cubic splines reformulate the natural cubic spline so that it is defined by the
values of the sampling points s(i) and the values of their first derivatives ṡ(i). Such a
definition is called the hermit form. Figure 2.7d depicts the principal of the Hermit cubic
spline.

In current frame-rate upsampling methods (as mentioned in the work of Scherzer et al.
[SYM+11] and described later in Section 3.2) the principal of using the sampled values
and their derivatives to generate missing data is employed to create frames between
those available. The motion vectors from optical flow, as described in Section 2.3, can be
interpreted as the derivatives of an image in a sequence. However, some state-of-the-art
methods do not use motion vectors that point towards the positional change of the shading
but rather use motion vectors that point to the change in position of the underlying
geometry [SYM+11]. Furthermore, the actual interpolation method of any splines can
not be employed to frame-rate upsampling, because the change in such a series of frames
is often not continuous and splines do not generate such an interpolation as can be seen
above.

13

2.4.2 Application in Image Based Rendering

When it comes to generating frames out of information stored in each pixel from adjacent
ones, there are two general approaches to finding the corresponding pixels with the data
needed [SYM+11]:

• Reverse reprojection: This approach can be used, when there is data available
for each pixel in the I-frame that points to those in the B-frame. The value of one
pixel can then be set based on the data provided by such a pointer.

• Forward reprojection: The alternative is to start from the pixels in the B-frame.
When there is a pointer towards the position in the I-frame, the data stored can
then be injected into the pixels of the I-frame.

Both reprojection variants can lead to pixels with wrong or no data since it is
essentially a non-linear warping. Reverse reprojection can have pixels with pointers that
may not point towards the correct data. In forward reprojection those faulty pixels can
be those for which no or multiple injection happen. In both cases some sort of heuristic
has to be employed to correct those wrongly associated values, if the particular method
does not allow for a ground-truth calculation of the faulty pixel values [SYM+11].

Those two approaches of finding corresponding data can be applied to upsampling
methods that do no work on a pixel-basis, but use temporal or spatial coherence otherwise.
The only requirement is that a relation between two corresponding data points is available
in some way [SYM+11].

Some of those methods that use temporal coherence also require a decision on when
to update the data that is used through time [SYM+11]. In the approach used for this
thesis the I-frames are generated by the closest B-frames in time. For the use-case of
upsampling 30 frames per second to 60, this relates to an unique pair of B-frames for
each I-frame and as accurate data as possible for those.

2.5 Image Denoising
Image noise is a random altering of the pixel colors from the ground truth image.
Denoising is then the process of restoring the original image (which can be seen as a two
dimensional signal) from a noisy image. The noise of an image can be interpreted as a two
dimensional signal itself, which is added to the original image to make up the noisy one.
A schematic of this relation for a one dimensional signal can be seen in Figure 2.8 and
is described via the Equation 2.5 for both one dimensional signals and two dimensional
images:

Px = Ox +Nx (2.5)

whereas

• Ox: Is the noise-free, original, signal at position x.

14

(a) basic signal (b) noise signal (c) combined signal

Figure 2.8: Schematic of a noisy signal. Left: A possible, not altered, signal. The goal of
denoising methods is to extract this signal. Middle: A (random) noise signal. Right: the
combination of both signals. This is the problematic signal that has to be resolved via
denoising methods.

• Nx: Is the noise at position x.

• Px: Is the combined signal of noise and the original signal.

An example of a denoising methods are local filter, which can be described by the
following formula:

Ox =
∑

K ω(x, k)Pk∑
K ω(x, k) (2.6)

whereas

• K: Is the neighborhood around x. In this neighborhood the algorithm searches for
similar pixels.

• k: Is one position in the neighborhood K.

• ω: Is the weighting function between the signal values x and k.

This thesis approach makes use of such a denoising method, which is described in
Section 3.4.

15

CHAPTER 3
Previous Work

3.1 Coherence in Global-Illumination Algorithms

As mentioned in Section 2.2, calculating global illumination(GI) [RDGK12] is done using
various optimizations due to its computational complexity. One such method is to make
use of temporal and/or spatial coherence, as the proposed algorithm of this thesis does
as well. For global-illumination algorithms, those methods are usually tailored to the
specific technique at hand. In the following list an overview of such techniques and the
according optimization (using spatial/temporal coherence) is given:

• The Finite element(FE) method (introduced by Goral et al. [GTGB84]), also
known as radiosity method, discretize the scene’s surfaces into finite elements
(surface patches) and calculates the light transport between them. This results
into solving a linear system, where the amount of light between two patches is
described via so-called form factors. Once the linear system is solved, the rendering
of each frame is fairly inexpensive, since the incoming light is known for each patch.
However, the form-factor calculation is quite expensive and the meshing of the
scene has to be performed so that GI can be calculated accurately and efficiently
[RDGK12]. Performance can be increased by using link structures to avoid visibility
computations. If the change within a scene is small enough, those link structures
can stay valid and do not need to be rebuilt [DSDD07].

• Monte-Carlo ray tracing(MCRT) calculates the path of the light via shooting
rays into the scene from an observers standpoint. As soon as the ray interacts with a
medium or a surface, the ray will be redirected into one possible direction resulting
in a path through the scene. This requires a lot of rays to be shot into the scene so
that the average of the rays converges to the solution. Increasing performance for
MCRT can be done, for example, via importance sampling (shooting rays where
the amount of light is expected to be high) and using data structures that work

17

with spatial and temporal coherence. To give an example: The former can be
done via bi-directional path tracing[LW93] or Metropolis Light Transport [Vea98]
and the latter with a method known as ‘Irradiance Caching’ which simply reuses
calculations of a previous frames [KFC+10].

• Photon Mapping(PM) works compared to MCRT from the other side via shooting
photons from the light source into the scene. Those photons are bounced around
in the scene and stored into a map each time a surface is hit. The evaluation of
incoming light at each point in space is then calculated via a density estimate or
final gathering. PM is especially good in rendering caustics in a scene. Speedups
for this method can be achieved via using tree structures for efficient storage
of photons, using correcting photons when hitting dynamic objects for utilizing
temporal coherence and many others as seen in Ritschel et al. [RDGK12].

• Instant Radiosity(IR) works similar to PM, but instead of estimating, every
photon is treated like a light source, a so-called virtual point light (VPL). The
indirect light for each point in space is then calculated by checking the contribution
(visibility) from each light. Spatial coherence is adapted into this method by
increasing the accuracy of the VPLs in areas where the contribution to the final
result is high. Such a method is Metropolis IR, which is similar to Metropolis Light
Transport for MCRT [RDGK12].

• Point-based Global-Illumination (PBGI) works similar to FE and uses VPLs.
This approach approximates the geometry via small discs (the points) which are
put into a hierarchical structure. Light is then transported between the points
(utilizing the hierarchy) and stored at them. Now one can calculate the incoming
light of a point in space by rendering the discs into a hemispherical map around
the desired point. Apart from using ‘Irradiance Caching’, one can also interpolate
the incoming light on the edges of a surface patch if the variation on that light is
small [KFC+10].

This thesis approaches differ from such tailored methods, because they are designed
to be fairly independent from the global-illumination algorithm that is used to generate
the image.

3.2 Upsampling Techniques in Real-time Rendering
In this section, an overview of frame-rate upsampling techniques is given. All of them
focus on the usage in applications which want to achieve a real-time frame-rate of 60 fps.

3.2.1 Bidirectional Image Re-projection

Yang et al. [YTS+11] proposes several methods that use motion vectors to do the
upsampling. In this case, motion vectors exist for each pixel (unlike in video compression
as seen in Section 3.3) and can be calculated through the knowledge of the objects

18

Scene Assisted Image based

Figure 3.1: Difference in the data usage of two methods proposed by Yang et al. [YTS+11].
The scene-assisted approach requires a rendering of the desired frame, whereas the image-
based approach does not. In each case the purple cube represents the unknown shading
information, the orange one represents the shading from the previous frame and the blue
depicts the shading information of the upcoming frame

position in the adjacent frame. The different methods all vary in the available data (as
seen in Figure 3.1) for the upsampling and hence in the quality of their result.

Scene-Assisted approach

This method requires a complete rendering of the scene, but without calculating the
shading. It also needs the motion vectors pointing to a frame backwards on the time line
as well as motion vectors pointing to the next frame on the time line.

Those motion vectors are then used to look up the colors in their respective frame.
It is therefore a reverse reprojection approach as described in Section 2.4.2. According
to the authors, the scene assisted method produces the best results. This technique is
used in this thesis for comparison with previous work and as a fallback for one of the
proposed methods, which is described in Chapter 5.

Image-Based approach

The other technique proposed by Yang et al. [YTS+11] does not require any rendering
of the I-frame. In this case, one has to search for the pixel in the B-frame that will move
to the location of a desired (not yet colored) pixel in the I-frame and therefore qualifies
as a forward reprojection as seen in Section 2.4.2.

This is done by executing an iterative search for the source pixel S. That search is
initialized by the target pixel T’s motion vector mT . This vector is subtracted from the
target pixels location giving a new pixel N. Then the motion vector of N is checked if it
points towards the location of T. If it does, we found the pixel that moves to our target
pixel. If it does not point to T, the motion vector of N is taken and subtracted from T.
The process is repeated until a valid pixel that leads to T is found or a maximal number
of iterations is exceeded, classifying that pixel as indeterminable. An example of such an
iterative search is given in Figure 3.2.

19

Figure 3.2: Three iterations of the algorithm by Yang et al. [YTS+11] which is used to
estimate the movement of a pixel from one frame to another

On a pixel for which no valid source location in a B-frame can be found, heuristics
have to be employed. For example, using the result of the first iteration or using the
source location which comes closest to the target pixel when the according motion vector
is added to it. Yang et al. [YTS+11] suggest a double iterative search to reduce the
number of undetermined pixels: one with the previous B-frame and one with the next
B-frame. Therefore, a heuristic only has to be employed when both iterative searches fail.

In this thesis the usage of that method is considered in the proposed techniques which
is described in Chapter 5.

Occlusion Check

The techniques described in the previous section require a check if the calculated source
pixel (the corresponding pixel in the B-frame) is actual valid. An invalid source pixel can
occur when the motion vectors indicate a movement from a point in space to another
whereas one of them is behind other geometry from the cameras point of view. To counter
that problem, someone has to check if the sampled source pixels position in space and
that of the target pixel relate to each other. Therefore positional information has to be
included for each pixel. This, for example, can be a depth buffer as it is a by-product
of rasterization, the most common method for real-time rendering. Furthermore, to
determine if the positions of the two pixels relate to each other, the motion vectors have
to contain not only the change in the two dimensional screen space, but also a third
dimension to determine the depth change.

To sum it up, in the case of the scene assisted approach: one knows the depth
information of the target and the source pixel, as well as the change of the depth
information through the motion vector. A valid source pixel is then found if the depth
change from the target pixel to the source pixel is equal or similar to the depth at the
source pixel. This entire process can also be done by using world space coordinates for
each pixel and the according three dimensional motion vectors, as it is done in both of
the proposed techniques of this thesis.

The occlusion check for the image-base approach is more limited, since no information
of the I-frame is available. In this case, one can compare the depth values which are
indicated by the B-frame before the I-frame and the depth values from the one after it.
Those depth values are computed by taking the depth of the source pixel and adding the
motion vectors depth component. The target pixel is then colored based on the source

20

which indicates a depth value closer to the camera.

Results

The method of Yang et al.[YTS+11] generates, according to them, high quality output for
their test scenarios. However they also point out that, as previously stated by Nehab et
al.[NSL+07], the method does produce noticeable errors in scenes which feature highlights,
transparency, and reflections as the lead to rapid movement relative to the object itself.

Furthermore, the image-based approach suffers from the errors that comes along
when the iterative search does not find an appropriate source pixel, which occurs when
objects move fast across frames, or when the motion vectors are inconsistent around the
target pixel which leads the iterative search to not converge.

3.2.2 Iterative Image Warping

Bowles et al.[BMS+12] introduces a faster technique, which initializes the image-based
approach described in [YTS+11] in a different way. The method subdivides one original
frame into any number of quads. A quad is subdivided if the motion vectors in that
region are not uniformly. Those quads are then rendered in the interpolated frame at the
position the motion vectors indicate. Now one can find better initialization values on the
pixels in the interpolated frames. Since this technique only improves performance and
not quality, we do not compare it to our results.

3.3 Upsampling using Video Coding

In video coding temporal coherence is used to reduce the file size. The idea is to re-
use blocks of pixels from one frame in an upcoming or previous one, so-called motion
estimation. For this, motion vectors are utilized to define such a movement from one
frame to another. The algorithm that is used in video coding to generate those motion
vectors is generally refereed to as block matching or patch matching.

The first step of block matching is to partition the frame into similar sized blocks.
The size depends on the coding standard at hand. The next step is to search in the other
frame for a similar block. This search is performed within a local range of pixels, which
again can be defined by the codec. The similarity of two blocks, with the middle pixels a
and b and a size of dx/dy, in two different frames f1 and f2 can be defined by various
measures, for example, the sum of squared errors (as seen in Equation 3.1) or sum of
absolute differences (as seen in Equation 3.2) of the per pixel differences (using the color
c). The motion vector then points towards the block with the highest similarity. For the
two similarity measures that is the block with the lowest value [MT13].

SSD(a, b) =
∑
dx

∑
dy

[c(f1, ax + dx, ay + dy)− c(f2, bx + dx, by + dy)]2 (3.1)

21

Figure 3.3: Schematic of the non-local means algorithm for denoising introduced by
Buades et al. [BCM05].

SAD(a, b) =
∑
dx

∑
dy

|c(f1, ax + dx, ay + dy)− c(f2, bx + dx, by + dy)| (3.2)

To improve performance, several strategies can be employed. Early termination at
measuring the similarity is on option and another one is to move through the local
search range in a particular pattern [MT13]. The H.264 standard also uses variable block
size (4x4 up to 16x16 pixels), sub-pixel movement detection and multi-frame motion
compensation [WSBL03].

The actual upsampling is done by moving the blocks according to their motion vectors
and paint them into the missing I-frame, in other words a forward reprojection (see
Section 2.4.2). Pixels that can not be filled by doing so are then colored by either
interpolating the colors of the pixels at the same location in adjacent frames or taking
the color of just one of those pixel.

3.4 Non-local means denoising
Apart from the local methods, as described in Section 2.5, non-local methods are another
approach for denoising images. One such method is the non-local means algorithm which
was introduced by Buades et al. [BCM05]. The algorithm works as follows: For one pixel
the similarities to all other in a spatial neighborhood (the blue-doted area in Figure 3.3)
around it are calculated. Two pixels are classified as similar when their surrounding (the
orange areas in Figure 3.3) match. The color of the pixels in the neighborhood are then
weighted by the similarity value and added together to make up the pixel color without
noise. Mathematically, this method is described via the following formula (which uses
the same notion as in Equation 2.5):

Ox =
∑

K

∑
S ω(x+ s, k + s)σ(s)Pk∑

K

∑
S ω(x+ s, k + s)σ(s) (3.3)

22

Noisy image Gauss filtering Anisotropic

120 114

Total variation Neighborhood Non-local means

110 129 68

Figure 3.4: Comparison of the non-local means denoising algorithm for a single image
against other filtering methods. The number below the thumbnail images depict the
mean squared error of the entire denoised image towards the original image. Pictures
taken from Buades et al. [BCM05].

whereas

• S: is the surrounding of a pixel on which similarity is defined by the algorithm.
This will be refereed to as the similarity area around a pixel.

• s: is one point in the surrounding.

• σ: is the contributing factor of a point in the surrounding.

Buades et al. [BCM05] tested their algorithm on two different image against various
other denoising methods. The results of one of them can be seen in Figure 3.4. The mean
squared error measure also provides proof that the non-local means algorithm performs
better than the other techniques. For more details on their findings, consult the original
paper.

3.4.1 Non-local means for video denoising

When it comes to denoising video sequences, more than one dimension has to be taken
into account. Two dimensions represent the image and affect the neighborhood of one
pixel as well as the similarity area. The third dimension represents the time in the video.

23

This temporal dimension only affects the neighborhood and not the similarity area in the
algorithm. The resulting denoising method is described in Algorithm 3.1.

Algorithm 3.1: Non-local means algorithm for video denoising
Input: An image sequence with the images Pn each of size WH
Output: An image sequence with the images On that do not contain the noise

1 for xy within WH do
2 Wsum ⇐ 0;
3 for kxyn in neighborhood K do
4 W⇐ 0;
5 for sxy in similarity area S do
6 W = W + ξ(Pn(x+ sx, y + sy),Pn+kn(x+ kx + sx, y + ky + sy))
7 end
8 W = κ(W);
9 On(x, y) = On(x, y) + Pn+kn(x+ kx, y + ky) ∗W;

10 Wsum = Wsum + W;
11 end
12 On(x, y) = On(x, y)/Wsum
13 end
14 return On

Whereas ξ(a, b) is the function that calculates the difference of pixels in the similarity
area. In this case, the function takes the absolute value of the color difference of those
two points. Goosens et al. [GLPP08] also suggest the incorporation of thresholds to map
the weight of not similar points in the neighborhood to zero. This is done in the function
κ(w), which in this case also scales the remaining range of values in a linear fashion.

When comparing pixels from two different frames X and K, the similarity measure
can be seen as the likelihood that x (within X) moved to the location of k (within K).
This reinterpretation is the key idea to the algorithm proposed in this thesis.

3.4.2 GPU accelerated non-local means denoising

From Equation 3.3 it can be seen, that the computational amount can be described as:

O(WH ∗K ∗ S) (3.4)

whereas

• WH: is the image resolution

• K: is the size of the neighborhood.

• S: is the size of the similarity area.

24

The work done by Goossens et al. [GLPP08] improves the work of Buades et al.
[BCM05] by rearranging the process of calculating the method such that it benefits exe-
cution on the graphics processing unit(GPU) as well as the central processing unit(CPU)
and therefore increases performance.

This is done by iterating over each pixels neighborhood first. The reason for this is
the splitting of the sum to calculate the weight from each point in the neighborhood,
which allows for the similarity measure to be executed in several so-called full-image
passes.

Those full-image passes are calculations done for each pixel in an image, which can
be executed independent from each other (meaning that no pixel calculations depends on
another). This benefits the architecture of the GPU as its processing units are aligned in
a parallel fashion and the memory is also optimized to be accessed in such a way.

The full-image passes that have to be done are the calculation of the difference
between every pixel, resulting in a similarity weight for each pixel. After that, the sum
of those weights has to be calculated and finally the contribution of the color with the
sum of weights has to be applied to the result. A normalization of the contribution
has to be done as well, which happens after the iteration over the neighborhood. To
further improve the performance, the calculation of the sum of similarity weights can be
split into two full-image passes, as it reduces the number of calculations and improves
the memory access pattern which again benefits the GPU architecture. The resulting
optimization to the technique can be seen in Algorithm 3.2.

Goosens et al.[GLPP08] tested their optimized version on a NVidia GeForce 9600GT
GPU using DirectX 9.1 against an CPU implementation on 2.4GHz Intel Core(2) processor
with 2048 MB RAM. The tests were executed on 99 frames of dimensions 720x480 with
an added Gaussian noise with standard deviation 25/255 (PSNR=20.17dB). The results
can be seen in Table 3.1.

For more details on the results, please consolidate the original paper of Goossens et
al. [GLPP08].

25

Algorithm 3.2: Non-local means algorithm for video denoising optimized version
Input: An image sequence with the images Pn each of size WH
Output: An image sequence with the images On that do not contain the noise

1 WS[WH]⇐ 0;
2 for kxyn in neighborhood K do
3 W[WH]⇐ 0;
4 Wsum[WH]⇐ 0;
5 WsumT mp[WH]⇐ 0;
6 for xy within WH do
7 W(x, y) = ξ(Pn(x, y),Pn+kn(x+ kx, y + ky))
8 end
9 for xywithin WH do

10 for sx in similarity area S do
11 WsumT mp(x, y)+ = W(x+ sx, y)
12 end
13 end
14 for xy within WH do
15 for sy in similarity area S do
16 Wsum(x, y)+ = WsumT mp(x, y + sy)
17 end
18 end
19 for xy within WH do
20 W(x, y) = κ(W(x, y));
21 On(x, y) = On(x, y) + Pn+kn(x+ kx, y + ky) ∗W(x, y);
22 WS(x, y) = WS(x, y) + W(x, y);
23 end
24 end
25 for xy within WH do
26 On(x, y) = On(x, y)/WS(x, y)
27 end
28 return On

26

Neighborhood Size GPU msec/frame CPU msec/frame
5 x 5 x 0 10.00 4021.00
5 x 5 x 3 24.79 N/A
7 x 7 x 0 19.06 7505.00
7 x 7 x 3 60.31 N/A
11 x 11 x 0 54.17 18230.00
11 x 11 x 3 184.48 N/A
21 x 21 x 0 231.56 50857.00
21 x 21 x 3 805.83 N/A

Table 3.1: Comparison of the optimized non-local means denoising method by Goossens
et al. [GLPP08] on a GPU against a CPU version of the algorithm. The neighborhood
size is given in width x height x temporal-window of previous frames

27

CHAPTER 4
Motivation and Overview

In this chapter a short motivation for the proposed algorithms is given, followed by an
overview of the algorithms. In the last section, the core of both methods, the adaption of
the non-local means denoising algorithm, is described.

4.1 Motivation

As mentioned before, one key feature of the proposed techniques is the independence of
the rendering technique, that produces the images. The reason for this aspect, is the
variety of methods available and the constant improvement of them, as described in
Section 3.1. Therefore, an image-based approach to upsampling is chosen.

Yang et al. [YTS+11] introduced two such upsampling techniques aimed at real-time
rendering applications. They use motion vectors, generated by the geometry of the
objects in the scene, to accomplish the upsampling. This results in a problem: The
optical features generated by specular and transparent objects may not move coherently
with the motion of the objects themselves. This problem is described in Section 2.2 in
more detail.

A solution to that is to calculate motion vectors from the color of two frames (as
do the optical flow methods seen in Section 2.3) and do the upsampling based on that.
Video encoding uses this technique to compress the data size. However, video encoding
works on a block-bases, which results in inaccuracies.

To sum it up: we propose image-based techniques that calculate the origin of the
pixels independently of the object’s movement (unlike Yang et al. [YTS+11] described in
Section 3.2.1) and are more precise than the video encoding technique (see Section 3.3),
due to a unique motion vector calculation for each pixel.

29

4.2 General Approach

The idea to accomplish the above-mentioned goals is to search for similarities for each
pixels across the frames. The way to do so is to use the non-local means denoising
algorithm, which does just that: For each pixel it searches in its neighborhood for similar
pixels based on the surroundings of the pixels. One can argue that optical flow methods
do that as well, but unlike the non-local means algorithm, those suffer from certain
constraints, such as coherence around a pixel (Horn-Schunck method) or minimal change
(Lucas-Kanade method). For more details , please consider the state-of-the-art report
of Sun et al. [SRB14] or Section 2.3. Apart from that, the non-local means can be
optimized for GPUs as well as for parallel execution in general, as described by Goossens
et al. [GLPP08] and in Section 3.4.1.

The first approach, the motion-vector technique, is inspired by the workings of the
video encoding upsampling and by the iterative search approach of Yang et al. [YTS+11].
The proposed technique finds similar pixels within a pair of B-frames, giving every pixel
a motion vector, which then can be used to generate the missing frame. Unlike in the
approach of Yang et al.[YTS+11], the motion vectors are not bound to the geometry,
which should counter the problem of reflections of refractions, as mentioned in the
previous section. With the fast non-local means algorithm, introduced by Goossens et
al. [GLPP08] and described in Section 3.4.2, it is possible to speed up the necessary
calculations significantly.

The second introduced method, the pixel-similarity technique, is inspired as well by
the paper of Yang et al. [YTS+11]. Unlike the other method, this one is based on the
scene-assisted technique for upsampling. The first step of this method is to render an
I-frame without the shading, but with data of the surfaces, which are sampled at the
pixels locations. The search for similar pixels is then done based on the surface data and
from the I-frame towards the B-frame. The latter then provides the missing color of the
pixels.

4.3 Adapted Non-Local Means algorithm

The original version of the non-local means algorithm of Buades et al. [BCM05] (as
described in Section 3.4) uses thresholds so that not every pixel of the neighborhood
area contributes to the end result of the pixel. Otherwise, all pixels would contribute to
the pixel color, leading to a ‘blurring effect’. This is because the amount of pixels in the
neighborhood area is in general big enough so that a lot of pixels with a small weight have
a significant effect on the result. An example of this is shown in Figure 4.1, which shows
some upsampled frames of the sequence with the original version of the non-local means
algorithm. However, the above-mentioned thresholds require some knowledge about the
value range of data at hand, and the required thresholds can potentially vary during the
image sequence. Those varying thresholds can happen, for example, at close-up zooming
sequences. Such a sequence starts with an arbitrary view of a scene and later-on shows
just a small part of it, but in more detail. So when the non-local means is tuned for the

30

motion-vector technique

Original version List of best fits

pixel-similarity technique

Figure 4.1: Difference between using the original non-local means algorithm and the
version with the list of best fits.

starting point of view, it can occur that the tuning does not full-fill its purpose anymore.
To counter the problem of setting thresholds, a version of the algorithm that stores

only a certain number of the neighboring pixels with the highest similarity is introduced
in this thesis. This is accomplished by allocating a list structure for each pixel and only
injecting a value of a neighboring pixel into it when its weight (which is calculated by
the non-local means similarity measure) is bigger than any of those already in the list.

The resulting version of the non-local means method, with the performance enhance-
ment proposed by Goosens et al. [GLPP08], can be seen in Algorithm 4.1. Furthermore,
this version also features a weighting of the similarity area via a kernel function K(s),
which scales with the distance to the middle of the area.

As mentioned before, the similarity between two pixels is based on their surrounding,
the similarity area. Within those similarity areas, the difference between two values
ξ(a, b) is calculated differently for both techniques and will be described in the respective
sections. The return value of that function is always a scalar (due to the nature of the
non-local means algorithm) between 0 and 1 (chosen for convenience, where 1 indicates
similar pixels and 0 the opposite).

It has to be mentioned that although the non-local means similarity detection is
commutative (ξ(a, b) = ξ(b, a)), it is not guaranteed that when a search is started at
pixel a and the highest similarity is found for pixel b, that when a second search started
at b also results in the highest similarity present at pixel a. The reason for this is the

31

Algorithm 4.1: Maximal similarity detection
Input: An image B, an image O without the color information, both of size WH

and an image-like list E containing the maximal N weights w and the
associated values e for each pixel of WH

Output: An image I that contains the color information missing in O
1 for kxy in neighborhood K do
2 W[WH]⇐ 0;
3 Wsum[WH]⇐ 0;
4 WsumT mp[WH]⇐ 0;
5 for xy within WH do
6 W(x, y) = ξ(O(x, y),B(x+ kx, y + ky))
7 end
8 for xywithin WH do
9 for sx in similarity area S do

10 WsumT mp(x, y)+ = W(x+ sx, y) ∗K(sx)
11 end
12 end
13 for xy within WH do
14 for sy in similarity area S do
15 Wsum(x, y)+ = WsumT mp(x, y + sy) ∗K(sy)
16 end
17 end
18 for xy within WH do
19 E(x, y)⇐ w = Wsum(x, y), e = B(x+ kx, y + ky)
20 end
21 end
22 for xy within WH do
23 I(xy) =

∑
E(xy) exy ∗ wxy/

∑
E(xy)wxy

24 end
25 return I

32

different set of pixels for which the search is conducted at pixels a and b. In other words:
Pixel b might find a better fitting pixel c (compared to a) in its neighborhood area which
it does not share with pixel a. To conclude this, the non-local means algorithm is not
commutative, although the similarity measure is.

The implementation of the list mentioned before is quite straight forward. First,
memory space is allocated for each pixel based on the size of the list and the size of one
list element, which includes the weight, the associated value and if the slot of the list is
used. Inserting one element into the list is described in Algorithm 4.2. One new value is
taken into the list either if there is an unused slot in the list or if the smallest weight
in the list is not as big as the one which is about to be inserted. In that case the new
element replaces the list entry with the smallest weight.

Algorithm 4.2: Injecting values into a list, that keeps those with the highest
weight w
Input: Weight w and the associated value e
Output: List E containing the best N weight/value pairs

1 wmin ⇐ inf;
2 imin ⇐ 0;
3 for i from 0 to N do
4 if E(i) is empty then
5 E(i)w = w;
6 E(i)e = e;
7 return;
8 end
9 if E(i)w < wmin then

10 wmin = E(i)w;
11 imin = i;
12 end
13 end
14 E(imin)w = w;
15 E(imin)e = e;

In the forthcoming sections, the size of the neighborhood K and similarity area S are
squares centered around one pixel. The actual size is then the number of pixels in one
axis-aligned direction as can be seen in Figure 4.2. Hence, a neighborhood K of size 2 is
a square of 5x5 with 25 pixels and one of size 3 is a square of 7x7 with 49 pixels.

33

Figure 4.2: Size notation of the neighborhood K and similarity area S. The red square
marks the center pixel.

34

CHAPTER 5
Motion-Vector Technique

The first proposed technique is the motion-vector technique. It finds optical flow based on
two fully rendered color images and generates motion vectors for each pixel. From that,
the coloring of the missing frame can be obtained. This technique works similar to what is
done in upsampling using video encoding (described in Section 3.3), but generates motion
vectors not just for a block of pixels, but for every pixel. The detection if two blocks are
similar is done in the same way, the non-local means algorithm detects similarity between
two pixels, but in the case of video encoding, the blocks themselves are the similarity
areas. The selection of the best fitting location for the video encoding is (as described in
Section 3.3) a search for the minimal difference value, which is the inverse operation of
the non-local means search for the maximal similarity. However, the key aspect is that
the motion vectors are not the same within a block of pixels when the non-local means
algorithm is applied. This technique originates in the iterative search approach by Yang
et al. [YTS+11], but in contrast to that approach, the proposed technique does not use
the motion vectors from the object movement, but generates them based on the color
information. This counters the problems of Yang et al. [YTS+11] with transparent and
specular objects, where the movement of image features resulting from those objects is
incoherent with what their motion vectors suggest.

5.1 Algorithm

This technique takes two B-frames (as seen in Figure 5.1a) and generates motion vectors
by applying the non-local means algorithm (the maximum-detection variant as in 4.2)
to the color information of those two B-frames as shown in Figure 5.1b. The next step
of this technique is to iterate over all pixels and search for the sources in the B-frames
indicated by the motion vectors as seen in Figure 5.1c. To do so, two different methods
are used in this master thesis and compared to each other:

35

• Iterative search: This method was described by Yang et al. [YTS+11] and is
explained in Section 3.2.1. As suggested by the same authors, this is done in
both directions (forwards and backwards in time) to enhance results. If non of
the two iterative searches for a pixel succeed, a heuristic to find the color for that
pixel has to be employed. One reason for such a failed search can be inconsistent
motion vectors generated by the algorithm. Another reason, as stated by Yang
et al.[YTS+11], can be thin and fast-moving geometry. Since the scene-assisted
approach of Yang et al.[YTS+11] provides reasonable results for pixels with a failed
iterative search, the motion-vector technique uses that method as a fall-back. To
avoid this problem at all, the method, described next can be used.

• Brute force: A search for the best-fitting motion vector is conducted in the
neighborhood area (as defined by the non-local means algorithm) around one pixel.
The best-fitting motion vector is the one that, when added to source pixel and
multiplied with the time factor, comes closest to the target pixel’s coordinates. The
time factor describes the relative position of the I-frame on the time-line between
two B-frames. Compared to the iterative search, this brute-force method needs
to check more pixels, but does not rely on convergence of the motion vectors. It
has to be mentioned that such a brute-force approach is only possible because the
neighborhood area of the non-local means algorithm determines the maximal extent
of the motion vectors.

In the following section, the function ξ(a, b) to calculate the difference between two
pixels is described, afterwards the configuration of the non-local means algorithm is
explained, followed by a comparison and discussion of the results.

5.2 Similarity measure
As mentioned the motion-vector approach works by comparing the color values between
two pixels a and b. Because ξ(a, b) has to return just a single scalar (as described in
Section 4.3), a mapping from the color components to that single value has to be found.
The implementation used throughout this thesis has three color components: red, green
and blue. To put this into a more general context, the amount of color components of
one color representation is C. A color is then defined as similar to another, if all color
components are somewhat similar to each other. Therefore, the product of all the color
component’s differences is used to make up the similarity measure.

Since the similarity measure returns zero when the two pixels are not similar to each
other, and the difference between two values of a pixel is zero when they are similar, a
corresponding mapping of one scalar has to be used to achieve the desired return value of
1. A normal distribution function with a mean of zero can be such a mapping. Because
only the most similar pixels, those with the highest values, are used the upsampling in
the end, the actual value of the variance for such a normal distribution does not matter.
Equation 5.2 shows a mapping of value x with the normal distribution function using the
mean m and the variance v.

36

(a) 1st Step: Starting point

(b) 2nd Step: Finding similar pixel

(c) 3rd Step: Finding motion vectors and coloring

Figure 5.1: The motion-vector technique in pictures.

φ(x,m, v2) = 1
v
√

2 ∗Π
e− 1

2 (x−m
v

)2 (5.1)

Again, because only the highest values are of interest to do the job, the fraction
before the exponential component in Equation 5.2 can be disregarded. The resulting
similarity measure for the motion-vector technique can be seen in Equation 5.2, whereas
ci(p) returns the value of the particular color component i of the pixel p.

ξ(a, b) =
C∏

ci=1
φ(ci(a)− ci(b),m, v) (5.2)

As mentioned before, the mean value m of the normal distribution has to be zero
for the difference of two color components. The variance v is set to 0.25 in the actual
implementation of the algorithm due to the range of color values of the rendering software
at hand.

37

It has to be noted that a conversion to luminance would result in a loss of dimension,
potentially increasing the possibility of an error. To be more specific: The proposed
similarity measure returns a small value when one of the color components is significantly
different. Calculating the luminance before or after the subtraction in Equation 5.2 would
not have that property.

38

CHAPTER 6
Pixel-Similarity Technique

The second proposed technique is the pixel-similarity technique. It colors the pixels of the
I-frame by looking at its surface attributes and searching for pixels in the B-frames with
similar attributes. This technique is based on the scene-assisted approach introduced by
Yang et al. [YTS+11], as it also requires a rendering of the I-frame without the shading
information.

6.1 Algorithm

First, a rendering of the I-frame without any shading but with additional information for
every pixel is generated, a so-called stubby frame, as seen in Figure 6.1a. A search for
surface points which are expected to yield similar shading results is performed afterwards
using the non-local means algorithm, as seen in Figure 6.1b. Then, pixel colors from the
B-frame are picked (Figure 6.1c) based on the similarity of the pixel’s additional data.

This technique uses the non-local means algorithm (as in Section 4.1) to get the
best match in similarity. The selection of the similarity measure between two pixels
is described in the following section, which is followed by a discussion about the right
parameters for the algorithm and concludes with an in-depth evaluation of the results
and comparison to the ground truth results.

6.2 Similarity measure

The similarity measure for of this technique is not as straight-forward as the motion-vector
method, since it has not yet been defined which data of the I-frame pixels should be
used. The search for such a metric is described in this section and separated into four
components as explained in the following section.

39

(a) 1st Step: Starting point at the stubby frame

(b) 2nd Step: Finding similar pixel according to the data

(c) 3rd Step: Coloring based on the similar pixels

Figure 6.1: The pixel-similarity technique in pictures.

6.2.1 Surface Type Separation

The first step in finding the similarity measure ξ(a, b) is to identify the types of surfaces
that the pixels a and b represent. The type of surface point in this context is its way
of redirecting light, i.e., if the incoming light is reflected above the surface (specular or
diffuse reflection) or underneath the surface (refraction). This separation is depicted in
Figure 6.2.

Similar to the final similarity measure ξ(a, b) (for pixels a and b), a function to
compare two types of surfaces ψ(a, b) returns zero (for different types) or one (for similar
types). This relates to a similarity measure as seen in Equation 6.2.1, where ξabove(a, b)
is the similarity in reflectance and ξunder(a, b) as the one in refractance.

ξ(a, b) = ψ(a, b) ∗ ξabove(a, b) ∗ ξunder(a, b) (6.1)

40

Figure 6.2: Different types of light propagation on a surface point.

In addition to comparing reflective and refractive properties, one may also want to
differentiate which kind of reflection is happening above the surfaces. In the case of
a Phong-BRDF (as it is used in the implementation) there are two kinds of reflection:
diffuse and specular, which do not exclude each other, but are more or less present,
depending on the specific surface. The Phong-BRDF is described in Formula 6.2.1 as
part of the rendering equation as seen in Section 2.2.

b(x, ωo, ωi) = (n(x) · ωi)d + k + 2
2π (r(ωi, n(x)) · ωo)ks (6.2)

where the diffuse factor d and the specular one s are limited to d + s ≤ 1 and

• n(x): is the surface normal vector at point x

• r(ωi, n(x)): is the reflection vector at point x for the direction of the incoming light
ωi.

• k: is the specular exponent, which describes the shape of the lobe.

• v · w: the dot-product between two vectors

The resulting similarity measure for refractive surfaces and Phong-Reflectance is
described in Equation 6.2.1. The three required measures (diffuse ξdiff (a, b), specular
ξspec(a, b), refractive ξunder(a, b)) are described in the following sections.

ξ(a, b) = ψ(a, b) ∗ [d ∗ ξdiff (a, b) + s ∗ ξspec(a, b)] ∗ ξunder(a, b) (6.3)

In the actual implementation of this master thesis, the type of surface can be identified
via the variance of the outgoing ray bounces (since a ray-tracing algorithm is used).
Using the factors of the underlying BRDF is another way of doing so.

41

The implementation identifies a surface as reflective or refractive, based on which
variance actually exists. Determining if a reflective surface is specular or diffuse is also
done using the variance: If the variance of the reflective bounce is maximal (over the
entire hemisphere), the surface is considered to be diffuse. When the variance is minimal
(converges to zero), the surface is of specular nature.

6.2.2 Diffuse Similarity Measure

To compare two diffuse surface points, an analysis of how the outgoing light is composed
has to be done. For a diffuse reflection, all incoming light is weighted equally. So when
two points are given with the same incoming light from all directions, the reflected color
depends on the specific texture color at that point. To put this into a more general
context, the texture color is the way of weighting the incoming light at that specific point.
The assumption of all incoming light being equal is then more likely to be true when two
points are close to each other.

Since the texture color is also bound to the surface point, one can assume that the
outgoing light (the color at the pixel) is the same when the position is the same as well.
This correlation of color and position for diffuse surface can be seen in Figure 6.3a, which
was created by analyzing the diffuse colors of one frame in scene 1. The same is done for
a frame in scene 2, as seen in Figure 6.3b. Within those plots, one point describes the
difference between a pair of two points (one hand-picked and the others are randomly
assigned to it). The horizontal axis show the value of the similarity measure for those
two points and the vertical axis depicts the difference in color. The key point of those
plots is to show that the area for when the similarity measure goes to zero (hence the
points are qualified as equal) and the color difference is not zero (hence the final shading
is not the same) is avoided. If there are points in that area, this would relate to the
similarity measure qualifying two pixels as equal shaded, when they most definitely are
not. Both of the Figures 6.3a and 6.3b show a spreading of the points along a line going
from the bottom left corner to the right side going up. The vertical spreading in both
figures shows pixels which are all of different color, but get the same measure value. The
horizontal spreading shows pixels with the same color but different similarity values. But
in the end, these observed features of the plot do not disqualify the measure, since there
are no points in the above-mentioned area.

Since the proposed technique does not compare two points at the same location on
the time-line, but on different ones, the possible movement of those points has to be
taken into account. This positional change is part of the data available for rendering the
stubby frame and leads to the measure for comparing diffuse surfaces as seen in Equation
6.2.2. In that formula, pos(x) retrieves the world position of pixel x and movpos(x, Y)
returns the change of the position x to the point in time where the frame Y is located.
Again, φ is a mapping via normal distribution (see Equation 5.2), and the variance of 0.5
does not matter since the pixel-similarity technique tries to find the maximal value of
the pixel correlation.

ξdiff (a, b) = φ(pos(a)− (pos(b) +movpos(b, A)), 0, 0.5) (6.4)

42

(a) Frame 600 (b) Frame 1250

Figure 6.3: Validation plots of the similarity measure for diffuse surfaces.

6.2.3 Specular Similarity Measure

In contrast to diffuse reflection the incoming light in the specular reflection is not equally
weighted across all directions. This is because for this kind of reflection, a (small) specific
part of all incoming light is the most important contributing factor to the final color of
the pixel. Similar to the diffuse reflection, texture color also plays a role in the resulting
outgoing light.

Taking the unequal weighting into account, one can argue that the direction where
most of the light contributes to the final result is one of the key factors for a similarity
measure. However, a lot of surface points in the image can have the same direction, which
is most important for the resulting color. What those points might not have in common
is the actual point in space from where the most contributing light is coming from. The
correlation of that position and final coloring is validated by Figure 6.4b, which again
is a comparison of colors and those particular position within a frame of scene 1. That
the plain direction is not a good measure for the needs of the proposed technique is seen
in Figure 6.4a. The reason for the latter plot disqualifying the measure are the points,
which are closest to the vertical axis (on the most left side) with others of more similar
coloring being not.

It has to be mentioned that when taking the position of the most contributing surface
point into account, the assumption is made that the incoming light from this location
stays the same over time and, more importantly, for every direction it is contributing light
to. Hence, the assumption is that this particular point has a mostly diffuse reflection.
When this is not the case, the similarity measure with the most contributing point in
space does not hold up to its task. Such a failed assumption happens in the case of a
refraction, as discussed in the following section.

The resulting similarity measure for specular reflection can be seen in Equation 6.2.3.

43

(a) Disqualified measure (b) Validated measure

Figure 6.4: Validation plots of the similarity measure for specular surfaces done for frame
000610. Figure a uses a measure using direction of the reflection and Figure b utilizes
the point from where the most contributing light comes from.

Compared to the diffuse reflection, this measure does not contain a correction of the
position over time, resulting in another restriction of that measure.

ξspec(a, b) = φ(posbounce(a)− posbounce(b), 0, 0.5) (6.5)

6.2.4 Refractive Similarity Measure

A refraction alters the path of the light when it interacts with a transparent object. Light
is then either refracted or reflected, based on the incident angle and the refractive indices
of the materials. Furthermore, when the light is inside an object, internal reflections can
occur, causing the light path to bounce inside the object. The intricacies of refractions
are described in Section 2.2 in more detail.

Hence, from an analytical stand point, a measure similar to the one for specular
surfaces will not hold up to its task, even with the same assumptions made. Taking the
point that the light path hits after it leaves the transparent object could counter that
problem, but leads to another one: This point might not be as easy to extract from then
underlying rendering algorithm, contradicting one of the key premises of this thesis: the
independence of the software used to generate the images. A ray-tracing algorithm, as it
is used for this thesis, might not have the issue of extracting the point of first surface
interaction after the transparent object. But to highlight the problem of certain surface
data not being available, the point of the first interaction after the transparent object is
not used further on.

To actually find a good similarity measure with the given data points, one can employ
another (non-analytical) way of finding the correlation between the data of a point and

44

its color: Plotting each possible measure for the available data and finding the one which
shows the best results. A selection of that process can be seen in Figure 6.5.

From Figure 6.5 it can be seen that in spite of the above statement, a measure using
the position of the most (and only) contributing point in space delivers the 2nd best
results in terms of mean squared error. Only a measure similar to diffuse reflection
performs better, but arguably results into more ‘blurring effect’ on the surface of the
transparent cube as well as false edges (those behind the surface), thus reducing the
visual quality of the measure (see Section 1.5).

Therefore, the measure for refractive surfaces is either the one using the same method
as for diffuse surfaces (Equation 6.2.4) or the one which is similar to the one for specular
surfaces (Equation 6.2.4). For the final upsampling and further testing, the variant with
the contributing point is used. This decision is based on the above statements. However,
Figure 7.13, which shows the mean squared errors of the upsampling, also features the
values of the other option.

ξrefr(a, b) = φ(pos(a)− (pos(b) +movpos(b, A)), 0, 0.5) (6.6)

ξrefr(a, b) = φ(posbounce(a)− posbounce(b), 0, 0.5) (6.7)

45

(a) Measure using the direction of the refraction. MSE: 0.01308331

(b) Measure using the distance of the refraction. MSE: 0.01419275

(c) Measure using the surface position. MSE: 0.00868144

(d) Measure using the position of the refraction next surface interaction. MSE: 0.01095594

Figure 6.5: Validation plots of the similarity measure for transparent surfaces done for
frame 002351. The figures on the left show the similarity values for two points on the
glass cube. On the right side is the result of using that measure.

46

CHAPTER 7
Results and Comparison

Before talking about the results of the actual techniques, the test image sequence is
described in the first section, followed by the an explanation on how to find the parameters
for the proposed techniques to achieve the best upsampling of that sequence.

7.1 Test Image Sequence

The test sequence (as seen in Figure 7.1) used to evaluate and compare the algorithms of
this master thesis is one minute long and features a virtual room with various objects
and materials. During the test sequence, the camera zooms in on three different sets of
objects, which basically makes up three scenes. Those scenes all serve a purpose in terms
of investigating the method’s quality with regard to the definitions of quality in Section
1.5.

The scenes of the image sequence contain the following features:

Figure 7.1: This figure shows the test sequence along the time-line with an image example
for each scene.

47

• Scene 1 - Reflection: This scene shows rotating semi-reflecting cubes with
a diffuse object in between. The purpose of this scene is to see if the methods
(proposed and those from previous work) can handle rapid color changes on specular
surfaces.

• Scene 2 - Movement and Texture: In this scene, a cube with a diffuse texture
featuring a high color variation changes its size and position. This scene determines
the method’s performance in terms of edge location and texture variety when
objects move in various ways.

• Scene 3 - Refraction and Detailed Geometry: This scene features a fast
rotating transparent cube in front of a cube with a distorted surface and a diffuse
grid-texture. The last scene represents the worst-case scenario for previous upsam-
pling techniques as well as the proposed ones, since the movement of the optical
flow is higher than in the other scenes, due to the refraction of the light and rotating
speed of the glass cube (which is higher than those in scene 1). Furthermore, the
geometry is more detailed than in any other scene.

The camera path is generated via a Catmull-Rom spline interpolation of given points.
One segment of the camera path between the points P0 and P1 is calculated using two
control points P−1 and P2. The tension of the spline is set to 0.5.

7.2 Parameter Finding

The one thing missing from running the proposed techniques is to find the parameters of
the non-local means algorithm. This search for the optimal parameters is described in
the following subsections. To be more specific: The values for the neighborhood size, the
similarity area and the list size of the non-local means algorithm for the motion-vector
and the pixel-similarity technique are discussed. All tests for the motion-vector method
are performed using the brute-force variant to detect the motion vectors to fill the missing
pixel location. Testing for the pixel-similarity technique is done by using the similarity
measure with the contributing point, as described in Section 6.2.

7.2.1 Neighborhood Size

The neighborhood size, which is the search radius, has to be equal to the maximal
movement of one pixel across the passed time. In case of the motion-vector technique,
this is the movement of a pixel across two B-frames. Since the pixel-similarity technique
does not try to find the movement of a pixel across two B-frames, the neighborhood size
has to be the maximal movement of one pixel from an I-frame to a B-frame.

Unfortunately, such a maximal movement cannot be exactly computed without
applying the algorithm across the entire image size. This is due to the nature of light
transport, which can not be predicted analytically (as seen in Section 2.2 and 2.4). An
approximation to the maximal movement of one pixel can be taken from the motion

48

Figure 7.2: Values of the biggest dimension in motion vectors for each pair of frames
across the entire test image sequence.

vectors generated by the movement of the underlying geometry, which are used in the
approach of Yang et al. [YTS+11], described in Section 3.2.

Motion-Vector Technique

The approximation for the motion-vector technique is the sum of the maximal motion
vectors of two adjacent frames for an I-frame. Figure 7.2 shows the biggest motion
vectors for each pair of ground-truth frames of the test sequence, which the rendering
software of this master thesis generated. Across the sequence, the biggest motion of
a pair of B-frames (for an upsampling from 30 to 60 fps) is 67 pixels. As can be seen
in Figure 7.2, not every frame has such a high expected motion. This can be used to
reduce computational time for the entire sequence. Calculating the expected required
neighborhood size for each I-frame independently results in reduced computation time for
many I-frames, as can be seen in Figure 7.11b. To enhance this optimization, a minimum
value for the neighborhood size of 6 is used to generate the upsampled sequence as well
as an addition of 20% to what the motion vectors would suggest.

Pixel-Similarity Technique

In contrast to the motion-vector technique, the approximation for the pixel-similarity
technique only requires the single maximal motion vector (as seen in Figure 7.3) length of
both adjacent frames, not the combined one. For the test image sequence, this corresponds
to a value of 34. Again, similar to the motion-vector technique, an optimization is made
to reduce computational time. Therefore, a minimum value for the neighborhood size of
6 is chosen to generate the upsampled sequence as well as an addition of 20% to what
the motion vectors would suggest.

7.2.2 Similarity Area and Kernel

To discuss this parameter setting, a few definitions have to made before-hand: A correct
pixel is the ground-truth target pixel (in one frame) for one source pixel (in another

49

Figure 7.3: Values of the biggest dimension in motion vectors for each pair of frames
across the entire test image sequence.

(a) Under-fitting (b) Best fitting (c) Over-fitting

Figure 7.4: Polynomial fit for the function f(x) = cos(2x) ∗ sin(x/3). Figure (a) shows
a fitting with with a degree 5 polynomial resulting in under-fitting, Figure (b) uses a
9-degree polynomial resulting in the best fit and (c) shows over-fitting with a polynomial
degree of 11

frame). A false pixel then is a target pixel which is not the ground-truth pixel. In other
words: a source pixel moves to the correct pixel in another frame.

The size of the similarity area affects the algorithm as follows: The area has to be big
enough so that the non-local means algorithm can detect differences in the area between
the correct pixel and others. On the other hand, the similarity area should not be too
big, so that there is still room for a change (caused by motion) within the area of the
correct pixel.

Overall, this problem of finding the optimal area size is similar to choosing the degree
for polynomial fitting (discussed briefly in Section 2.4). The size of the similarity area
relates to the number of degrees chosen to make up the polynomial. Hence, the right
value between over- and under-fitting has to be found. Figure 7.4 depicts the problems
of a polynomial fit.

Figure 7.5 shows the results for the motion-vector technique when the similarity area
is too small to detect the correct motion vectors. Repetitive image features (such as the
grid texture on the cube with the bumps) can enhance the problems.

Figure 7.6, on the other hand, shows the problems of a too large area for the motion-
vector technique. Bigger similarity-area sizes increase the chance of the actual best fit for
a source pixel getting a decreased similarity value. This can be due to extensive change

50

(a) Similarity area of 1 (b) Similarity area of 5 (c) Ground truth cutout

(d) False motion vectors (e) Better motion vectors (f) Entire frame

Figure 7.5: This figure shows the consequences of too small similarity-area sizes for the
motion-vector technique. Figure (a) was produced with an area size of 1 and shows noise
at the green stripes due to the failed matching. The noise around the edges of the glass
cube is also a result of the small area size. In Image (b) the area size is 5, which results
in no noise at the green lines as well as reduced noise at the edges of the glass. Figure
(c) shows the ground-truth frame, Figure (d) shows the motion vectors (pointing from
white to red) due to the small area size of 1, and Figure (e) shows better motion vectors
generated with a similarity size of 5. Notice that in Figure (d) motion is detected on the
bumpy cube, when there is actually none. And finally, Figure (f) marks the place of the
cutout in the frame.

(motion) in the surroundings of the source pixel and the pixel of the actual best fit.
One way of finding the best value for the similarity area is simply by trial and error

for a few exemplary frames of the sequence. The same also applies to determining
whether a weighting by a Gaussian kernel should be applied or not. A Gaussian kernel
in that context is K(s) = φ(s, 0, S ∗ 0.5), where S is the size of the similarity area. The
multiplication factor of 0.5 is a result of initial trial-and-error testing. Other values
between zero and one alter the results slightly depending on the similarity size, similar
to the findings described below.

Motion-Vector Technique

Figure 7.7 shows tests with various sizes of similarity areas for two different frames. From
this, it can be seen that the best similarity size varies depending on the frame, and the

51

(a) Similarity area of 5 (b) Similarity area of 10 (c) Ground truth cutout

(d) Better motion vectors (e) False motion vectors (f) Entire frame

Figure 7.6: This figure shows the consequences of too big similarity-area sizes for the
motion-vector technique. Subfigure (a) was produced with an area size of 5 and shows
’color bleeding’ to some extend due to the inability of the algorithm to find a similar pixel.
In Image (b) this effect is amplified due to an increased similarity size of 10. Figure (c)
shows the ground truth frame, Figure (d) shows the motion vectors (pointing from white
to red) for the similarity area of 5 and Figure e) shows false motion vectors due to the
big area size of 10. Notice that the vectors in Figure (e) do not cross the edge, which
stands in contrast to the objects movement downwards to the left. And finally, Figure (f)
marks the place of the cutout in the frame.

same goes for the usage of the Gaussian kernel weighting. An adaptive decision for each
individual I-frame, similar to the choice of the neighborhood area size, is not possible due
to the lack of any heuristic that can determine the best configuration in advance. Based
on the results above, the similarity area size of 5 without a Gaussian kernel is chosen to
deliver the final results for comparison.

Pixel-Similarity Technique

Again, the actual values and whether a kernel weighting should be used can be found by
trial and error. For the image sequence used in the master thesis, a value of 5 for the
similarity area size and applied weighting with a Gaussian kernel function (see Equation
5.2) provides the best results. Figure 7.8 shows the tests performed.

52

(a) Tests for frame 611 (b) Tests for frame 2351

Figure 7.7: Tests for the size of the similarity area to use in the testing sequence. The
blue line depicts the mean squared errors without a Gaussian kernel and the orange line
shows a weighting of the area with the kernel.

(a) Tests for frame 611 (b) Tests for frame 2351

Figure 7.8: Tests for the size of the similarity area of the pixel-similarity technique to
use in the testing sequence. The blue line depicts the mean squared errors without a
Gaussian kernel and the orange line shows a weighting of the area with the kernel.

7.2.3 Maximal List Size

This section is about tuning the size of the list of best values for the adapted non-local
means algorithm, as seen in Section 4.3.

Motion-Vector Technique

The maximal list size for the motion-vector technique is used for the reasons described
in Section 4.3. To get the motion vectors for this technique, the values in the list are
averaged. However, it can also happen that outliers make it into the list and therefore
alter the result in a negative way. Because of this, the list size has to be limited to a
specific amount.

A trial-and-error search for an appropriate list size for the test sequence showed that
the list size of one (hence only the best result) delivers the most accurate results. The

53

(a) List Size 1 (b) List Size 2 (c) List Size 3 (d) List Size 4

0.00573396 0.00667680 0.00737795 0.00769659

Figure 7.9: Results for different maximal list sizes when its values are averaged to make
up the resulting motion vector. The number below the pictures are the mean squared
errors of those images.

(a) Original (b) List Size 1 (c) List Size 2 (d) List Size 3 (e) List Size 4

0.00920295 0.00868144 0.00861804 0.00859306

Figure 7.10: Results for different maximal list sizes for frame 2351. The number below
the pictures are the mean squared errors of those images. Notice the increased blurring
due to the greater list size.

tests shown in Figure 7.9 show that even small list sizes lead to false motion vectors and
therefore to a worse upsampled image.

Pixel-Similarity Technique

Again, the optimal list size can be obtained via trial and error with the same problems
in mind as for the motion-vector method. However, for the pixel-similarity technique, it
is useful to take at least one pixel from the B-frame before and at least one from after
the I-frame. The optimal maximal list size for the test sequence is in conclusion to the
tests as seen in Figure 7.10, which shows decreased mean squared error for bigger list
sizes, but also increased blurring. These two contradictions lead to the decision of using
a list size of 2 for the final upsampling

54

7.3 Comparison and Evaluation

After finding the best values for the algorithm, the resulting images perform in the
following way with regard to the quality definitions (as described in Section 1.5) and in
comparison to the ground-truth frames.

7.3.1 Comparison with Ground Truth

The comparison with the ground-truth frames is done using the mean squared error
measure.

Proposed Techniques

As can be seen from Figure 7.11, the motion-vector technique without the iterative
image search has a slightly lower mean squared error than the one using it. However,
for some frames the variant with iterative search outperforms the brute-force one. One
such occasion in our test sequence is frame 2317, as seen in Figure 7.12. The reason for
this is that the brute-force variant can choose a false positive as the best-fitting motion
vector, whereas the iterative search variant has a chance to avoid a false positive due to
the convergence towards the best solution. The iterative search performed better in 46
frames out of 1800 (3 percent).

The time it took to upsample one frame is on average 12.6% higher for the version
without using iterative search on a Intel Core i7-4770K CPU with four 3.50GHz cores.
Due to the overall better performance of the brute-force variant, it is chosen for the
comparison with previous work.

Figure 7.13 shows the results of the pixel-similarity technique. From that it can be
seen that when it comes to the third scene, both variants of the similarity measure (using
the position of the surface or the next surface interaction) perform quite similarly, with
the exception that some peaks of the variant with the surface interaction are bigger and
valleys are on some occasions lower.

An Intel Core i7-4770K CPU with four 3.50GHz cores was used to generate the times
for upsampling with the pixel-similarity technique in Figure 7.13b. As mentioned before
in Section 6.2, the variant with the refraction interaction for the similarity measure is
better in terms of quality (described in Section 1.5). Therefore, it is chosen for the
comparison with previous work.

Comparison with Previous Work

Figure 7.14 shows the comparison with previous work. However, the mean squared error
of the upsampling using video encoding is not accurate, due to the quality loss of the
compression. The plot displays that all techniques have problems when the cubes in
scene 1 show a new side from one frame to another, which leads to the spikes there. As
for the diffuse scaling and rotating cube with the detailed texture, all techniques seem to
perform quite the same and the best compared to the other scenes. The motion-vector

55

(a) Mean squared error of both motion-vector technique variants.

(b) Time for calculating the missing I-frames of both variants.

Figure 7.11: Figure (a) shows the mean squared error to the ground-truth frames of
the motion-vector technique for each frame in the test sequence. The blue line is the
variant with the iterative search and the orange on is the brute force variant Figure (b)
shows the rendering times of both variants using an adaptive neighborhood size with a
minimum of 10

(a) Iterative Search (b) Brute Force

Figure 7.12: Case of iterative search variant (mean squared error: 0.00391085) of the
motion-vector technique outperforming the brute force variant (mean squared error:
0.00464652).

56

(a) Mean squared error of both pixel-similarity technique variants.

(b) Time for calculating the missing I-frames.

Figure 7.13: Figure (a) shows the mean squared error to the ground-truth frames of the
pixel-similarity technique for each frame in the test sequence. The blue line is the variant
with similarity measure using the position of the surface and the orange one uses that of
the next surface-interaction of the refracted light Figure (b) shows the rendering times
with an adaptive neighborhood size including a minimum of 10.

Figure 7.14: Mean squared error for the entire test sequence for the motion-vector
technique (brute-force variant) as the blue line, the pixel-similarity technique (refraction
interaction variant) as the orange line and the scene-assisten method proposed by Yang
et al. [YTS+11] as the black line.

57

technique is significantly better than all the other ones when it comes to the transparent
cube. The scene-assisted and pixel-similarity technique perform similar to each other
with one out performing the other depending on the position of the cube.

7.3.2 Quality Performance

As stated in Section 1.5, the proposed techniques are aimed to handle several features.
In the following subsections, the proposed techniques and previous work are compared
against each other for each feature.

Edge location

As can be seen in Figures 7.15a and 7.15c, the motion-vector technique has troubles
detecting the correct edges of rotating geometry. This is due to the nature of the non-local
means algorithm, which is not rotation invariant. The same applies to some extent when
an object undergoes scaling, as seen in Figure 7.15b and 7.15d. The scaling issues
also arise when the object is translated along the depth axis of the camera. Another
problem is when non-linear motion (in image space) occurs. Then the object’s position
is off compared to its ground-truth location, as seen in Figure 7.16, which highlights
this problem via a small camera movement (which is generated via spline interpolation)
resulting in an offset of just one pixel.

The edge location of the pixel-similarity technique is in general similar to the
ground-truth frames as can be seen in the difference image of Figure 7.17. This is due to
the partially rendered I-frame and the usage of the kernel for the similarity area, which
emphases the center pixels of it. A slight blurring with surrounding colors can occur due
to the maximal list size of two.

Similar to the pixel-similarity technique, the scene-assisted technique by Yang et
al. [YTS+11] produces exact edges due to the rendering of the stubby frame. Again,
slight inaccuracies occur due to oversampling as can be seen in Figure 7.18.

Upsampling with video encoding produces ‘ghost edges’ on the rotating cubes (as
seen in Figure 7.19a and 7.19b), due to the inability of it to detect such movement. When
it comes to scaling, slight steps along the edges are visible, as can be seen in Figure 7.19c
and 7.19d.

Texture variety

Detailed surfaces are beneficial for the motion-vector technique for small movements,
as it is more likely to find the correct target location of a pixel. Figure 7.20 depicts the
opposite case and shows that small noise (which can be seen as some sort of texture
variety) can lead to detection of motion when there is none. In our test sequence, the
actual coloring is only affected occasionally by this problem, because for the most part,
the image features stay the same along the false motion vectors.

58

(a) Rotation (b) Scaling

(c) Rotation - difference to ground truth (d) Scaling - difference to ground truth

Figure 7.15: Problems of the motion-vector technique when detecting edges. The images
in the upper row show the results and those in the bottom show the difference to the
ground-truth frames. The ’border-effect’ in the latter images highlight the problems of
the motion-vector technique with correct edge location.

The pixel-similarity technique preserves detailed surface features, as can be seen
in Figure 7.17. Again, a slight blur with the nearby colors happens due to the maximal
list size.

Again, the scene-assisted method performs similar to the pixel-similarity technique
and preserves the details of the textures as seen in Figure 7.18.

Due to the compression, the upsampling with video encoding blurs the textures and
therefore reduces the visual quality as seen in Figure 7.19c.

Specular surfaces

The motion-vector technique has no problem detecting the correct movement of
reflective image features when the coloring is similar across frames, as seen in Figures
7.21a to 7.21e. However, when one side of the mirror-like cubes disappears due to its
rotation (Figures 7.21f to 7.21i), the algorithm fails to find the correct motion vectors
around the edges, leading to the previously mentioned color bleeding (see Section 7.2.2).
Furthermore, the iterative-search variant produces some sort of ‘tearing effect’ (as can
be seen in Figure 7.21j), which the brute force does not. The reason for this ‘tearing
effect’ is the inconsistency of the motion vectors around the edges, which leads to false
convergence of the method.

59

Figure 7.16: Small non-linear motion (camera movement in this case) leads to false edge
location. In this image an offset to the ground-truth frame of one pixel can be seen. The
vertical blue line marks the position of where the bumps should be.

With the pixel-similarity technique, the highlights on those objects are tracked
correctly using the proposed similarity measure. Occasionally, the non-local means
algorithm fails, due to its rotation invariance, to find the correct surface point, resulting
into minor noise, as seen in Figure 7.22. Furthermore, over-sampling in the rendered
frames leads to altered surface values resulting into false coloring at the edges of the
reflective cubes, which is visible as a small border around them.

Unlike the proposed techniques, the scene-assisted method produces plausible
looking, yet false specular highlights on reflective surfaces when compared to the ground-
truth. As can be seen in Figure 7.23a, frame 611 of the test sequence has a pink highlight
on the lower half at the front-side of the cube. The proposed techniques produce a similar
result, as can be seen in Figure 7.23b and Figure 7.23c. However, the scene-assisted
method generates a slightly bigger highlight (Figure 7.23d), which spreads to the upper
left corner as well. The video encoding upsampling produces highlights which are not
as bright in terms of color for the same frame.

Transparent objects

Similar to the specular surfaces, the motion-vector technique picks up the correct
movement (as seen in Figure 7.24) when the amount of color change allows it. However,
the fast rotation in that particular scene results in noise around the edges, as seen in
Figure 7.24.

60

(a) Rotation (b) Scaling

(c) Rotation - difference to ground truth (d) Scaling - difference to ground truth

Figure 7.17: Edges are preserved with the pixel-similarity technique. The same is true for
high-frequency textures. Slight blurring occurs due to usage of maximal list size greater
than one.

Since the perceived color of a glass-like object mainly originates from a light-surface
interaction outside of it and data of this one is not available for the pixel-similarity
technique, it fails to provide the correct coloring of such transparent surfaces as seen
in Figure 7.25. It is possible to store such a value of the interaction, but only if the
underlying technique allows it. This also highlights a problem that can occur at specular
surfaces. Since only the information of the second light-surface interaction is available
to the upsampling technique, light traveling through multiple mirror-like objects can
result in false moving image features in the I-frames. A single transparent object acts
like such a multiple mirror scene, because the perceived color originates in a light-surface
interaction beyond the second one. These shortcomings are noticeable in blurring on the
transparent surfaces as well as false edges on the side of the glass cube which does not
face the camera.

The scene-assisted method handles transparency somewhat similarly to the pixel-
similarity technique (as was already mention in Section 6.2). As can be seen from Figure
7.26d and 7.26c, both produce ‘ghost edges’ at the side of the cube that does not face the
camera. Apart from that, both techniques generate blurred image features. In general,
the pixel-similarity technique creates these two artifacts to a lesser extent, although this
can vary depending on the frame and particular location on the cube.

Similar to the motion-vector technique, the video encoding upsampling preserves

61

(a) Rotation (b) Scaling

(c) Rotation - difference to ground truth (d) Scaling - difference to ground truth

Figure 7.18: Edges are preserved with the scene-assisted method by Yang et al. [YTS+11].
The same is true for high-frequency textures. Slight inaccuracies due to oversampling.

(a) Rotation 1 (b) Rotation 2 (c) Scaling 1 (d) Scaling 2

Figure 7.19: Ghost edges due to upsampling with video encoding.

(a) Result of noise (b) False motion vectors due to noise

Figure 7.20: Noise resulting into false motion vectors. In the case of the red and blue
wall those do not matter, but on the edges of those two walls it does, since it results into
a not discontinuous edge-line.

62

(a) B-frame (0838) (b) I-frame (0839) (c) B-frame (0840) (d) I-frame (0841) (e) B-frame (0842)

(f) I-frame (0843) (g) B-frame (0844) (h) I-frame (0845) (i) B-frame (0846) (j) Tearing

Figure 7.21: Specular surface with the motion-vector technique. Figures (a) to (i) show
a cutout of an image sequence generated by the motion-vector technique. It shows, that
small color changes do not result into problems, but as soon as they are significant (Figure
(f) and (h)), the algorithm produces artifacts known as ’color bleeding’. In addition to
that, the iterative search variant, produces a ’tearing effect’ as seen in Figure (j).

(a) B-frame (0604) (b) I-frame (0605) (c) B-frame (0606) (d) I-frame (0607) (e) B-frame (0608)

(f) I-frame (0609) (g) B-frame (0610) (h) I-frame (0611) (i) B-frame (0612) (j) I-frame (0613)

Figure 7.22: Specular surface with the pixel-similarity technique. Figures (a) to (j) show
a cutout of an image sequence generated with that technique. Some noise is visible
at the highlights as well as small errors around the edges. The latter are a result of
oversampling.

63

(a) Ground-truth
frame

(b) motion-vector
technique

(c) pixel-similarity
technique

(d) scene-assisted
method

(e) video encoding
upsampling

Figure 7.23: Specular highlight in frame 611 of the test sequence with various upsampling
techniques.

(a) B-frame (2350) (b) I-frame (2351) (c) B-frame (2352) (d) I-frame (2353) (e) B-frame (2354)

(f) I-frame (2355) (g) B-frame (2356) (h) I-frame (2357) (i) B-frame (2358) (j) I-frame (2359)

Figure 7.24: Example of the motion-vector technique handling transparent objects. As
can be seen from the figures above, edges lead to noise whilst the surface is free from it.

the optical flow of the transparent surfaces better than the pixel-similarity technique
and the scene-assisted method, as can be seen in Figure 7.26b and 7.26e. However,
the motion-vector technique is more precise when it comes to the edge location, and in
general, the video encoding method generates a ‘blurring effect’ to some extend, as can
be seen at the right side of the cube in Figure 7.26e.

Continuous sequence

Even when the resulting video is played with half of the intended 60 fps, the motion-
vector technique does not show any jumping image features. However, the artifacts of
specular surfaces are noticeable at any frame rate. The noise around the edges of the
transparent cube and the ‘tearing effect’ on the refractive cube are not recognizable at
half the playback speed.

64

(a) B-frame (2350) (b) I-frame (2351) (c) B-frame (2352) (d) I-frame (2353) (e) B-frame (2354)

(f) I-frame (2355) (g) B-frame (2356) (h) I-frame (2357) (i) B-frame (2358) (j) I-frame (2359)

Figure 7.25: Example of the pixel-similarity technique handling transparent objects. This
techniques leads to blurring and false edges at the back-side of the glass cube.

(a) Ground-truth
frame

(b) motion-vector
technique

(c) pixel-similarity
technique

(d) scene-assisted
method

(e) video encoding
upsampling

Figure 7.26: Glass cube in frame 2351 of the test sequence with various upsampling
techniques.

Unlike the motion-vector method, the artifacts of the pixel-similarity technique
that come with the specular surfaces are not visible at the intended frame-rate of 60 fps.
The noise becomes noticeable when the playback speed of the video is reduced to 30 fps.
Likewise, the problems with refraction are noticeable at half the playback speed as small
stuttering.

Small borders can be observed at half the playback speed (30 fps) of the scene-
assisted method when it comes to the specular cubes in scene 1. Again, the problems
with the refractions are not visible at 60 frames per second, but show up at half the
speed.

Upsampling using video encoding shows sometimes stuttering geometry at the
edges of the rotating cubes at the intended playback speed of 60 fps. When the video is
played at half the speed, more artifacts become visible, such as slightly shifted parts of
the detailed cube in scene 3.

65

7.4 Summary
Overall, the video encoding performs the worst of all techniques. However, the fact
that the compression reduces the quality in the first place and that the values are not
compared in the full high-definition range for colors (32 bit floating point for each color
channel) does not allow a fair comparison when it comes to the mean squared error
measure.

The scene-assisted method by Yang et al. [YTS+11] has no problems handling
diffuse reflection, but struggles with the refractions and reflections in the test sequence.
In particular, it has problems with rapid color changes, as mentioned by the authors.
This happens, for example, when a side of a cube pops up from one frame to the other.

The presented motion-vector technique successfully improves the short comings
of the video encoding and in general better than the scene-assisted method. It performs
the best when it comes to refractions out of all techniques. However, when the cubes
in the test sequence show a new side from one frame to the other, the technique has
troubles handling it and leads to some sort of ‘color bleeding’.

Last, but not least, the pixel-similarity technique outperforms all other techniques
slightly when it comes to diffuse surfaces and reflections. The problems of this technique
is the transparent cube in the last part of the image sequence. In terms of mean squared
error, it cannot hold up to the motion-vector or the scene-assisted method. The visual
quality in that case is somewhat on the same level as the scene-assisted method, but
definitely worse compared to the motion-vector technique.

66

CHAPTER 8
Conclusion

The two proposed techniques of this thesis are the first to utilize the non-local means
algorithm for upsampling. Furthermore, these methods are independent of the global-
illumination algorithm that generates the B-frames, unlike other algorithms using tempo-
ral coherence to increase performance. Furthermore, the time to upsample the frames is
significantly lower than the time to render them with a global-illumination algorithm.

The motion-vector technique uses the non-local means algorithm to detect movement
across two B-frames. The pixels of the I-frame are then filled according to those motion
vectors. It is more accurate than upsampling done via video encoding, since this one
works on a block- and not on a pixel basis. The method lacks in accuracy when it comes
to edge location, but successfully restores the optical flow of reflective and transparent
objects. The former problem is the only case when this technique performs worse than
the scene-assisted method by Yang et al. [YTS+11].

The pixel-similarity technique takes a stubby frame, i.e., a rendering of the I-frame
without the shading, but with surface data for every pixel. The color for the pixels is
then taken based on the similarity of that surface data at the neighboring B-frames. This
technique is more accurate than the motion-vector technique, when it comes to edges.
However, this technique has one major drawback: It only performs well enough when
the data available allows it. In the test sequence, the technique had no problems with
the reflective surfaces (where the appropriate data was available), but struggles with the
transparent ones due to the lack of proper data.

Overall, the proposed techniques perform better than other image-based upsampling
techniques. A downside of both techniques is the need for parameter finding, which has
to be done for each image sequence manually. Furthermore, the resulting videos of both
techniques show artifacts due to the rotation- and scale invariance of the non-local means
algorithm.

67

8.1 Future Work
As can be seen from the statements made before, the proposed techniques have room
for improvement. One problem of the non-local means similarity detection is that it can
not handle rotation and scaling as well as translations that are aligned to the image axis.
A similarity measure that deals with rotation and scaling better is therefore desirable.
Another improvement to the proposed techniques could be the re-calculation of pixels
that are considered to be part of an artifact in the resulting image. To do so, a way ro
determine such pixels has to be found.

68

Bibliography

[AFH+] Armstrong, Flynn, Hammond, Jolly, and Salmon. High frame-rate television.

[BCM05] Antoni Buades, Bartomeu Coll, and Jean-Michel Morel. A non-local al-
gorithm for image denoising. In Proceedings of the 2005 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR’05)
- Volume 2 - Volume 02, CVPR ’05, pages 60–65, Washington, DC, USA,
2005. IEEE Computer Society.

[BMS+12] Huw Bowles, Kenny Mitchell, Robert W. Sumner, Jeremy Moore, and
Markus Gross. Iterative image warping. Computer Graphics Forum (pro-
ceedings of EUROGRAPHICS), 31(2), may 2012.

[DSDD07] Carsten Dachsbacher, Marc Stamminger, George Drettakis, and Frédo Du-
rand. Implicit visibility and antiradiance for interactive global illumination.
ACM Trans. Graph., 26(3), July 2007.

[GLPP08] Bart Goossens, Quang Luong, Aleksandra Pizurica, and Wilfried Philips.
An improved non-local denoising algorithm. In 2008 International Workshop
on Local and Non-Local Approximation in Image Processing (LNLA 2008),
pages 143–156, 2008.

[GTGB84] Cindy M. Goral, Kenneth E. Torrance, Donald P. Greenberg, and Bennett
Battaile. Modeling the interaction of light between diffuse surfaces. In
Proceedings of the 11th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH ’84, pages 213–222, New York, NY,
USA, 1984. ACM.

[HDMpS03] Vlastimil Havran, Cyrille Damez, Karol Myszkowski, and Hans peter Seidel.
An efficient spatio-temporal architecture for animation rendering, 2003.

[KFC+10] Jaroslav Křivánek, Marcos Fajardo, Per H. Christensen, Eric Tabellion,
Michael Bunnell, David Larsson, and Anton Kaplanyan. Global illumination
across industries. In ACM SIGGRAPH 2010 Courses, SIGGRAPH ’10, New
York, NY, USA, 2010. ACM.

69

[LW93] Eric P. Lafortune and Yves D. Willems. Bi-directional path tracing. In PRO-
CEEDINGS OF THIRD INTERNATIONAL CONFERENCE ON COMPU-
TATIONAL GRAPHICS AND VISUALIZATION TECHNIQUES (COM-
PUGRAPHICS âĂŹ93, pages 145–153, 1993.

[MT13] Shilpa Metkar and Sanjay Talbar. Motion Estimation Techniques for Digital
Video Coding. Springer Publishing Company, Incorporated, 2013.

[NSL+07] Diego Nehab, Pedro V. Sander, Jason Lawrence, Natalya Tatarchuk, and
John R. Isidoro. Accelerating real-time shading with reverse reprojection
caching. In Proceedings of the 22Nd ACM SIGGRAPH/EUROGRAPHICS
Symposium on Graphics Hardware, GH ’07, pages 25–35, Aire-la-Ville,
Switzerland, Switzerland, 2007. Eurographics Association.

[RDGK12] Tobias Ritschel, Carsten Dachsbacher, Thorsten Grosch, and Jan Kautz.
The state of the art in interactive global illumination. Comput. Graph.
Forum, 31(1):160–188, February 2012.

[SRB14] Deqing Sun, Stefan Roth, and MichaelJ. Black. A quantitative analysis of
current practices in optical flow estimation and the principles behind them.
International Journal of Computer Vision, 106(2):115–137, 2014.

[SYM+11] Daniel Scherzer, Lei Yang, Oliver Mattausch, Diego Nehab, Pedro V. Sander,
Michael Wimmer, and Elmar Eisemann. A survey on temporal coherence
methods in real-time rendering. In EUROGRAPHICS 2011 State of the Art
Reports, pages 101–126. Eurographics Association, 2011.

[Vea98] Eric Veach. Robust Monte Carlo Methods for Light Transport Simulation.
PhD thesis, Stanford, CA, USA, 1998. AAI9837162.

[WSBL03] T. Wiegand, G.J. Sullivan, G. Bjontegaard, and A. Luthra. Overview of the
h.264/avc video coding standard. Circuits and Systems for Video Technology,
IEEE Transactions on, 13(7):560–576, July 2003.

[YTS+11] Lei Yang, Yu-Chiu Tse, Pedro V. Sander, Jason Lawrence, Diego Nehab,
Hugues Hoppe, and Clara L. Wilkins. Image-based bidirectional scene
reprojection. ACM Trans. Graph., 30(6):150:1–150:10, dec 2011.

70

	Kurzfassung
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Problem Description
	Temporal Coherence
	Challenges
	Approach
	Quality
	Thesis overview

	Background
	Light and Color
	Global-Illumination
	Optical Flow
	Upsampling
	Image Denoising

	Previous Work
	Coherence in Global-Illumination Algorithms
	Upsampling Techniques in Real-time Rendering
	Upsampling using Video Coding
	Non-local means denoising

	Motivation and Overview
	Motivation
	General Approach
	Adapted Non-Local Means algorithm

	Motion-Vector Technique
	Algorithm
	Similarity measure

	Pixel-Similarity Technique
	Algorithm
	Similarity measure

	Results and Comparison
	Test Image Sequence
	Parameter Finding
	Comparison and Evaluation
	Summary

	Conclusion
	Future Work

	Bibliography

