
Responsive Real-Time Grass Rendering for General 3D Scenes

Klemens Jahrmann∗ Michael Wimmer†

TU Wien TU Wien

Figure 1: This figure shows an example of our rendering technique. The collision reaction is visible at the trail of the bowling ball. The right
side is rendered in wireframe mode to show the accuracy of our occlusion culling method.

Abstract

Grass plays an important role in most natural environments. Most
interactive applications use image-based techniques to approximate
fields of grass due to the high geometrical complexity, leading to vi-
sual artifacts. In this paper, we propose a grass-rendering technique
that is capable of drawing each blade of grass as geometrical ob-
ject in real time. Accurate culling methods together with an adapt-
able rendering pipeline ensure that only the blades of grass that are
important for the visual appearance of the field of grass are ren-
dered. In addition, we introduce a physical model that is evaluated
for each blade of grass. This enables that a blade of grass can react
to its environment by calculating the influence of gravity, wind and
collisions. A major advantage of our approach is that it can ren-
der fields of grass of arbitrary shape and spatial alignment. Thus,
in contrast to previous work, the blades of grass can be placed on
any 3D model, which is not required to be a flat surface or a height
map.

Keywords: real-time rendering, vegetation, hardware tessellation

Concepts: •Computing methodologies → Rendering; Physical
simulation; Visibility;

1 Introduction

Rendering outdoor scenes is an important task for many interac-
tive applications. Almost all of these outdoor scenes contain grass

∗e-mail:klemens.jahrmann@net1220.at
†e-mail:wimmer@cg.tuwien.ac.at

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org. c© 2017 Copyright
held by the owner/author(s). Publication rights licensed to ACM.
I3D ’17,, March 04 - 05, 2017, San Francisco, CA, USA
ISBN: 978-1-4503-4886-7/17/03
DOI: http://dx.doi.org/10.1145/3023368.3023380

or grass-like vegetation. Due to the high geometrical complex-
ity, fields of grass are often rendered using billboards or other
image-based techniques. However, image-based techniques have
the drawback that the realism depends on the position and the
viewing direction of the camera. To remedy this, modern grass-
rendering techniques draw each blade of grass as geometrical ob-
ject. While this enables the animation of each blade according to
its environment, it also requires acceleration structures to handle
the high amount of geometrical objects. Therefore, most of these
techniques use hardware instancing to draw patches of grass in a
grid-based data structure. This limits the shape of a field of grass to
height fields, which is a problem since many terrains are not equiv-
alent to height maps.

In this paper, we propose a rendering technique that is capable of
rendering fields of grass on arbitrary 3D models by drawing each
blade of grass as geometrical object indexed by a geometry-agnostic
acceleration structure. For the rendering of each blade, we use
hardware tessellation to apply dynamic level of detail, and the shape
of a blade is defined by an analytic function. Each blade of grass
is influenced by environmental forces, like gravity, wind and col-
lisions with both simple and complex objects. In addition, several
culling methods ensure that only those blades are rendered that have
an impact on the visual appearance of the field of grass. In addition
to standard occlusion culling, we also use the orientation and the
distance to the camera as culling criteria. All of these computations
are carried out completely on the GPU through indirect rendering,
avoiding costly round-trips between CPU and GPU.

2 Previous Work

Current grass-rendering techniques can can be divided into image-
based, geometric and hybrid approaches. Image-based rendering
techniques are used most often in interactive applications because
they are fast. Most of these techniques draw billboards with semi-
transparent grass textures. The billboards can be camera-facing
[Whatley 2005] or arranged in star-shaped clusters [Pelzer 2004].
Orthmann et al. [2009] introduce a billboard technique that is able
to react to collisions with complex objects. Other image-based tech-
niques use transparent texture slices that are placed in a grid [Habel
et al. 2007]. The major drawback of all image-based techniques
is that the visual quality is different when viewed from different

http://dx.doi.org/10.1145/3023368.3023380


angles. In addition, wind animation and reaction to collisions can
heavily distort the used textures, which leads to rendering artifacts
and lack of realism.

Similar to our rendering technique, there are several methods that
draw single blades of grass as geometrical objects. Most of them
draw patches that consist of many blades of grass multiple times
using hardware instancing. However, this requires that the field of
grass is placed on a height map, which limits the field of applica-
tion. The advantage of geometric methods is that each blade can
be individually influenced by its environment. This influence can
be processed in different ways. A skeleton [Wang et al. 2005] can
be added to each blade of grass that can be animated to simulate
wind effects. Another approach simulates collisions using wave
calculations [Chen and Johan 2010]. Jahrmann et al. [2013] trans-
late the tip of a blade of grass according to a wind animation and
use image-based methods to approximate collisions. More sophis-
ticated collisions are introduced by Fan et al. [2015], who evaluate
collisions between single blades of grass and spheres. However, the
wind is calculated separately using an analytic function. In contrast
to these methods, our rendering technique is not limited to height
maps. Furthermore, a single consistent physical model is evaluated
for each blade of grass to calculate natural forces like gravity or
wind, and collisions with both simple and complex objects, while
no previous method combines all these effects.

An alternative to pure geometry-based or image-based rendering
is to draw a billboard only as a proxy geometry and evaluate the
exact curve geometry in the fragment shader [Loop and Blinn
2005], however, this was not implemented for grass yet. Finally,
Boulanger et al. [2009] propose a hybrid grass-rendering technique
that uses both geometric and image-based approaches as different
static level-of-detail stages. Grass that is near the camera is drawn
as geometric objects, whereas grass that is further away is drawn by
rendering multiple horizontal and vertical texture slices. This ap-
proach is able to render realistic images in real time, and was used
in production video games such as Madden NFL 25 (EA Sports R©).
However, the blades of grass are static and cannot react to colli-
sions or natural forces. The idea of multiple level-of-detail stages
can be added to our approach as future work to further increase the
rendering performance.

3 Overview

In a preprocessing phase, the blades of grass are distributed on
the surface of a 3D model, and subsequently divided into mul-
tiple patches, where each patch contains approximately the same
number of blades. Note that the patches can have arbitrary shapes
and alignments, since they are only container objects of individual
blades of grass. During the rendering of each image, three steps are
performed:

1. The physical model is evaluated for each blade of grass.

2. The culling methods cull the blades that are not important for
the final rendering, based on occlusions and the orientation
and distance of the blade to the camera.

3. Each blade of grass is rendered as tessellated geometric object
using an indirect rendering approach.

The following sections describe each step in detail.

4 Preprocessing

During the preprocessing step, the blades of grass are generated on
the surface of a 3D model and the patches are generated from these

Figure 2: Illustration of the definition of a blade of grass.

blades. We start by introducing our model for a single blade of
grass.

Grass blade model In our system, a blade of grass consists of
three vertices, v0...2, which are the control points of a quadratic
Bézier curve. The first control point v0 indicates the fixed position
of the blade of grass, v2 is moved according to the physical model
described in the next section, and v1 is positioned according to v2.
In addition, a blade of grass has several further attributes: height,
width, stiffness coefficient, up-vector and direction angle, which in-
dicates the alignment of the blade on the local plane defined by the
up-vector. Altogether, a blade of grass can be completely described
by four 4D vectors. An illustration of a blade of grass is shown in
Figure 2.

Grass distribution During the generation of the blades of grass,
either single blades or whole tufts of grass can be generated. The
amount of blades that are generated is defined by a user-defined
density value and the total area of the 3D model. In case of gen-
erating tufts of grass, we use Poisson-disk sampling on the surface
[Cline et al. 2009] to ensure that the tufts are not clumped together.
The blades of a tuft are placed randomly in the vicinity of the tuft
center, and orientation and attributes are also assigned randomly
within certain ranges. In case of generating single blades of grass,
the blades are distributed randomly on the surface of the 3D model,
without Poisson-disk sampling, since random clumping of blades
is beneficial for a natural grass distribution. Single-blade seeding
is good for covering fields of grass with equal density, whereas tuft
seeding generates a more natural grass distribution. Therefore, a re-
alistic meadow can be generated using a combination of both seed-
ing methods. Each blade of grass is generated in an initial pose
where the control points v1 and v2 share the same position, which
is above the ground position v0 according to the height and the up-
vector.

Patch generation After the blades of grass have been generated,
patches are formed. The number of patches generated from the
blades is crucial for the performance of our rendering algorithm,
and the optimal number depends on the graphics hardware. The
evaluation of the physical model and culling will be performed
using compute shaders. To maximize parallelism, the number of
blades in a patch should therefore be (1) the same in all patches and
(2) allow maximum occupancy in compute shader dispatches. In
practice, we use a multiple of the maximum number of workgroup
invocations reported by the hardware. Furthermore, the shape of a
patch should be as compact and rectangular as possible to achieve
a tight bounding box, which improves the effectiveness of culling.



Splitting the blades into compact and equally sized patches can be
seen as balanced clustering problem [Malinen and Fränti 2014],
which has the constraint of equal-element clusters. The balanced
clustering problem can be efficiently solved using linear program-
ming or graph-theoretical approaches. In our case, the elements are
the blades of grass, the resulting clusters are the patches and the
metric used for clustering is proximity. For measuring the proxim-
ity, we use the Euclidean and the Manhattan distance metrics. After
the division into patches, the blades of each patch are sorted to en-
sure that nearby blades have similar indices, which is necessary for
our algorithm. Currently, a simple lexicographical sort according
to the coordinates has proven efficient, although more sophisticated
sorting algorithms (like Morton order) could be investigated.

5 Physical Model

Our physical model simulates natural forces and collisions with
other objects, represented as collections of spheres, and is evalu-
ated for each blade of grass separately for highest realism. Figure
3 shows an illustration of the different influences. The calculations
are performed completely on the graphics card using a compute
shader. In order to allow free movement for a blade of grass, the
forces first manipulate only the tip of the blade (v2), followed by
three correction steps to achieve a valid state for the blade. This
validation procedure is explained in Section 5.2.

The translation ~δ of v2 is calculated by using three natural forces
(recovery r, gravity g and wind w) and a displacement d caused by
collisions. The forces are applied to the translation by a heuristic.
This heuristic uses the natural forces directly as displacement that
is normalized by a time interval ∆t, which corresponds to the time
required for the last frame. The collision reaction is already calcu-
lated as displacement and must not be normalized. This leads to a
reaction of the blade to the environment that is independent of the
frame rate.

~δ = (r + g + w) ∆t+ d (1)

The final translation is saved in a texture, called force map, where
each blade of grass has a distinct texel. In addition, the fourth di-
mension of a texel in the force map saves the strength of the col-
lisions that influence this blade of grass. This collision strength is
used in later frames to have a persistent crippling effect of collisions
on each blade of grass. Over the time, this value decreases, which
makes the blade stand up after some time if no further collisions are
detected. In order to simulate the fading over time of the collision
strength η, we multiply a constant user-defined amount of decrease
a with ∆t:

η = max (c− a∆t, 0) (2)

5.1 Natural Forces

In our physical model, we consider three different natural forces:
recovery, gravity and wind. Most related algorithms, like Fan et al.
[2015], focus more on collisions than on the natural forces and only
simulate wind by procedurally modifying the geometry during the
rendering.

Recovery The recovery force is the counterforce to previously
applied forces, which follows Hooke’s law. It is directed towards
the initial pose of the blade of grass Iv2 and its strength depends
on the stiffness coefficient s of the blade. In order to simulate the
crippling effect of a blade, the collision strength η is added to the
equation to suppress the effect of the recovery force r.

r = (Iv2 − v2) smax (1− η, 0.1) (3)

Figure 3: Illustration of the different influences that are considered
in the physical model.

Gravity The influence of gravity on a blade of grass consists of
two additive forces. One force represents the gravity of the whole
scene. We call this influence the environmental gravity, gE . In
order to be adaptable to various scenes, the environmental gravity
can be represented in two different ways: It can be a global gravity
direction that is the same for the whole scene, or it can be a gravity
center to which all gravity forces point. In practice, we allow both
representations to be used simultaneously and interpolate them with
a user-defined parameter t:

gE = m

(
Dxyz

‖Dxyz‖
Dw (1− t) +

Cxyz − v0

Cxyz − v0
Cw t

)
(4)

In this equation, m is the mass of a blade and D is the four-
dimensional gravity direction, where the fourth component indi-
cates the gravitational acceleration. In the same way, C is the cen-
ter of a gravity force. The vector of the other influencing force is
orthogonal to the width of the blade of grass. Based on the direc-
tion of this influence, we call it front gravity, gF . This simulates the
elasticity of a blade of grass, which causes the tip of the grass being
bent by the influence of the gravity. The strength of gF depends on
the strength of gE , which is expressed in the following equation:

gF =
1

4
‖gE‖ f , (5)

where f indicates the front direction that is perpendicular to the
width of the blade. The total gravity force g is computed by the
sum of both gravity forces:

g = (gE + gF ) (6)

Wind The third natural force is the wind influence, which is com-
puted by using analytic functions that represent wind waves moving
through 3D space. The influence of this wind wave on a single blade
of grass depends on three criteria: the direction and strength of the
wind wave at the position of the blade of grass, and the alignment of
the blade towards the wind wave. Thus, the analytic wind function
is responsible for computing a vector wi (v0) that represents the
direction and the strength of the wind influence at the position of a
blade of grass. The analytic functions can be modeled heuristically
using multiple sine and cosine functions with different frequencies.
This can simulate wind coming from some direction or a specific
source, like a helicopter or a fan. Figure 4 shows some examples of



Figure 4: This figure shows the results of two different wind func-
tions in 2D space. The height of the red surface indicates the
strength of the wind at the respective position and the black ar-
rows illustrate the direction of the influence as well as the move-
ment of the wind wave. The upper function simulates a common
wind comming from a direction, whereas the lower function shows
the influence of a specific wind source.

2D representations of wind functions. The alignment of the blade
towards the wind wave is developed following two ideas: First, a
blade of grass that is standing in its straight position should be influ-
enced more by the wind than a blade that is pushed to the ground. In
addition, if the direction of the force caused by the wind is directed
along the width of the blade, the influence should be less than if the
direction of the wind is orthogonal to the blade. Thus, the align-
ment value θ (wi (v0) , h) consists of two factors: the directional
alignment fd (wi (v0)) towards the wind influence wi (v0) and the
height ratio fr (h) that indicates the straightness of the blade with
respect to the up-vector up.

fd (wi (v0)) = 1−
∣∣∣∣ wi (v0)

‖wi (v0)‖ ·
v2 − v0

‖v2 − v0‖

∣∣∣∣
fr (h) =

(v2 − v0) · up
h

θ (wi (v0) , h) = fd (wi (v0)) fr (h)

(7)

Finally, the resulting wind force on a blade of grass is defined by
the following equation:

w = wi (v0) θ (wi (v0) , h) (8)

5.2 State Validation

A valid state of a blade of grass is defined by three conditions: v2

must not be pushed beneath the ground, the position of v1 has to
be set according to the position of v2, and the length of the curve
must be equal to the height of the blade of grass. These conditions
have to be fulfilled for a blade of grass before it is used for collision
detection or rendering.

Since it would require too much time to check whether v2 is pushed
inside the underlying 3D model, we assume that the surface is a
plane defined by the up-vector of the blade locally. By this assump-
tion, a position of v2 above the local plane can be ensured by a
single equation:

v2 = v2 − up min (up · (v2 − v0) , 0) , (9)

where up represents the up-vector of the blade.

After a valid position for v2 is found, the position of v1 can be
calculated. This position is constrained to be always above v0 ac-
cording to the up-vector of the blade. For the position calculation,

Figure 5: Illustration of the relation between v1 and v2. The dif-
ferent colors symbolize different states of the blade of grass.

the length of the vector from v0 to v2 projected onto the ground
plane lproj is computed:

lproj = ‖v2 − v0 − up ((v2 − v0) · up)‖ , (10)

where up is the up-vector of the blade. If this length is zero, v2

rests in the idle position and v1 has the same position. Otherwise,
the more v2 is pushed away from the idle position the lower is the
position of v1. However, in order to ensure that the blade of grass
always has at least a slight curvature, the position of v1 is never the
same as the position of v0. This is illustrated in Figure 5 and can
be calculated using the following equation:

v1 = v0+h up max

(
1− lproj

h
, 0.05 max

(
lproj
h

, 1

))
, (11)

where h is the height of the blade, up its up-vector and 0.05 is the
constant factor to ensure that the position of v1 is not equal to the
position of v0.

The last validation step has to ensure that the length of the Bézier
curve is not larger than the height of the blade. Without this step, the
length of a blade of grass would not be consistent if it is influenced
by forces, which is a major drawback of the algorithm of Jahrmann
et al. [2013]. However, calculating and correcting the length of
a curve precisely for each blade of grass requires too much time.
Therefore, we use an approximation for the length L of a Bezier
curve of degree n [Gravesen 1993]:

L =
2L0 + (n− 1)L1

n+ 1
, (12)

whereL0 indicates the distance between the first and the last control
point and L1 is the sum of all distances between a control point and
its subsequent one. After the length of the curve is measured, the
ratio r between the height of the blade and the measured length
is calculated. Finally, the correction of the length is performed by
multiplying each segment between the control points with r, which
is shown in Equation 13, where v1corr respectively v2corr are the
corrected positions of the control points.

r =
h

L
v1corr = v0 + r (v1 − v0)

v2corr = v1corr + r (v2 − v1)

(13)

5.3 Collision

In order to simulate natural behavior of a blade of grass, it has to be
able to react to its environment. Therefore, we detect and react to



Figure 6: Illustration of two possible collisions between a blade of
grass and a sphere.

collisions for each blade of grass separately. We use spheres as ob-
ject representation, which allows fast calculation with a low mem-
ory footprint since a sphere can be completely defined by a 4D vec-
tor. Thus, complex objects have to be approximated using spheres.
In our application, we use a sphere-packing approach [Weller and
Zachmann 2010] to generate the sphere representation, but repre-
sentations with overlapping spheres [Stolpner et al. 2012] should
be applicable as well. Since it would require too much time to mea-
sure the exact intersection between a curve and a sphere, we use
two points for the calculations, which are v2 and the center point
m of the curve, which can be computed using curve interpolation:

m =
1

4
v0 +

1

2
v1 +

1

4
v2 (14)

However, our physical model can only modify v2. Thus, a collision
reaction of m has to be translated to a reaction of v2, which can be
easily achieved by multiplying the translation vector by 4.

In order to detect a collision, we test whether one of the two points
is inside the sphere. If a collision is detected, the reaction is the
translation of the point to the nearest point on the surface of the
sphere. Both steps can be formulated by a single equation:

d = min (‖c− p‖ − r, 0)
c− p

‖c− p‖ , (15)

where d is the resulting translation, p is the point that is tested and
c and r represent the center position and the radius of the sphere.
Figure 6 shows an illustration of the collision calculation. Each
time a collision is detected, the squared length of the translation is
added to the collision strength η, which is stored in the force map
for the following frame:

η = η + d · d (16)

6 Rendering

For rendering a field of grass, we draw each blade as a tessellated
2D object. Similar to the method of Jahrmann et al. [2013], we
use the tessellation pipeline to provide dynamic level of detail to
the shape of a blade. However, instead of using an alpha texture to
create the shape of the blade, we use analytic functions that directly
modify the geometry, which is explained in Section 6.3. Since each
blade of grass has its individual state and position, we cannot render
multiple instances of a single patch. In order to achieve real-time
performance, we use culling on the basis of single blades to render
only the blades that have an impact on the appearance of the field of
grass. The culling of single blades requires a rendering pipeline that
allows a varying amount of geometry to be rendered each frame.
Therefore, we use an indirect rendering approach, which is de-
scribed in the following section.

6.1 Indirect Rendering

In contrast to common direct rendering, an indirect rendering call
does not include the parameters of the draw command. Instead,
the parameters are read from a buffer in GPU memory. This en-
ables the parameter buffer to be modified inside a compute shader
without synchronizing with the CPU. In our technique, we use a
compute shader to cull unwanted blades of grass. The definition of
an unwanted blade of grass is given in the following section. Each
blade that is not culled increases the object count of the parameter
buffer and writes its index to an index buffer.

6.2 Culling

Culling is performed in two steps. First, the bounding box of the
patches are tested against the camera’s view frustum. Note that in
preprocessing, bounding-box calculation takes the potential blade
movement into account to avoid false positives. Then, each blade
of grass of visible patches is tested based on occlusions by other
objects and its orientation and distance to the camera. This leads to
four tests that each blade has to pass to be rendered. These tests are
explained in the following.

Orientation test This test culls a blade based on its orientation
towards the camera. This is important due to the pseudo three-
dimensionality of a blade of grass, as it has no thickness. Thus,
blades that are approximately parallel to the viewing direction can
cause unwanted aliasing artifacts since their projected pixel width
is less than the size of a pixel. Therefore, we calculate the absolute
value of the cosine of the angle between the viewing direction dirc
and the vector along the width of the blade dirb and cull the blade
if this value exceeds 0.9.

0.9 > |dirc · dirb| → blade culled (17)

View-frustum test The second test checks whether a blade is in-
side the camera’s view frustum. Since it is impossible to test each
point on the blade against the view frustum, we only consider three
points (v0, midpoint of the curve m and v2) and add some toler-
ance to the calculation. The calculation of m is shown in Equation
14. In order to test a point against the view frustum, we project the
point to normalized device coordinates using the view-projection
matrix VP and homogenous coordinates. After the projection, the
test can be performed by comparing the x-, y- and z-coordinates
with the homogenous coordinate. This is shown in the following
equation for some point p, where p′ indicates the normalized de-
vice coordinates of the point, t is a small tolerance value and h is the
homogenous coordinate with added tolerance. The boolean result v
indicates if a point is inside the view frustum. If the test results in
false for all three points, the blade is culled.

p′ = VP p

h = p′w + t

v = p′x ∈ [−h, h] ∧ p′y ∈ [−h, h] ∧ p′z ∈ [−h, h]

(18)

As an optimization, this test could be omitted for patches that are
fully inside the view frustum.

Distance test The third test culls blades of grass according to
their distance towards the camera. This is important since a field of
grass appears to be more dense near the horizon due to perspective.
This high density can cause two problems during the rendering.
First, due to the lower precision of depth values in the distance, z-
fighting can occur. Second, blades at high distances are smaller than



Figure 7: Illustration of the effect of the occlusion test in wireframe
mode. The left image is rendered with occlusion test, the right one
without.

a pixel, which can cause aliasing artifacts. Note that the density
increase due to perspective is stronger near the horizon than when
the field of grass is viewed from above. Therefore, the distance
from the camera to the blade of grass is projected onto the local
plane defined by the up-vector before it is used for distance culling:

dproj = ‖v0 − c− up ((v0 − c) · up)‖ , (19)

where dproj is the projected distance, c is the position of the cam-
era and up the blade’s up-vector. According to this distance, the
blade is classified into one of n distance levels, which are evenly
distributed over the interval [0, dmax], where dmax is a user-defined
maximum distance. The lowest level culls no blades. The second-
lowest level culls one out of n blades, etc., until the nth level culls
all blades. In order to determine which blades of the same distance
level are culled, the index id of each blade is used, which is shown
in the following inequality:

id mod n <

⌊
n

(
1− dproj

dmax

)⌋
→ blade culled (20)

The distance test assumes that nearby blades have similar indices.
Thus, the blades must not be indexed in an arbitrary way, otherwise
the distance test can introduce bare spaces. This is ensured by the
patch generation algorithm, which is described in Section 4.

Occlusion test The last test checks whether a blade of grass is
occluded by another object. Similar to the view-frustum test, this
test is applied to three points of the curve, which are projected to
screen coordinates. These coordinates are used to sample a previ-
ously generated texture that represents the linear depth values of
opaque scene objects. The sampled depth values are compared to
the blade’s distance to the camera. If the depth value is smaller,
the blade of grass is culled. Similar to the problems of shadow
mapping [Everitt et al. 2001], unwanted artifacts can appear from
aliasing if the sampled depth values refer to surfaces which are not
perpendicular to the viewing direction. Therefore, a small bias has
to be added to the depth values. Figure 7 shows the result of the
occlusion test.

6.3 Blade Geometry

During rendering, each blade is drawn as 2D object positioned in
3D space. The generation of the shape of a blade is performed
in the tessellation evaluation shader, which is uses the information
of the hardware-tessellation unit to position the generated vertices.
Initially, the blade geometry is a flat quad that is defined by the
interpolation parameters u and v, where u indicates the interpola-
tion along the width of the blade and v the interpolation along the
height. By evaluating the curve interpolation of the control points
for each generated vertex, the quad becomes aligned to the Bézier

Figure 8: Illustration of the four basic shapes: quad, triangle,
quadratic and triangle-tip. The red and green dotted lines repre-
sent the positions of c0 and c1.

curve. This is achieved by using De Casteljau’s algorithm [Farin
and Hansford 2000], which also calculates the tangent vector t0 as
intermediate results. The bitangent t1 is given directly by the di-
rection vector along the width of the blade, which is calculated in
advance. With the two tangent vectors, the normal n can be com-
puted by using the cross product. These calculations are shown in
the following equation, where c is the curve point using interpola-
tion parameter v and c1 and c2 are the two resulting curve points
that span the width w of the blade. In addition, a respectively b are
auxiliary vectors.

a = v0 + v (v1 − v0)

b = v1 + v (v2 − v1)

c = a + v (b− a)

c0 = c− wt1
c1 = c + wt1

t0 =
b− a

‖b− a‖

n =
t0 × t1
‖t0 × t1‖

(21)

In order to apply more sophisticated shapes to the blade of grass, we
use analytic functions to calculate the final position of the generated
vertices. The input of these functions are the interpolation parame-
ters u and v generated by the tessellation, the resulting curve points
c0 and c1, and the normal vector n. The parameter u can only have
the distinct values 0, 0.5 and 1, where a value of 0.5 indicates the
middle axis of the blade. The specific values of v that are inside the
interval [0, 1] depend on the grade of the tessellation. In the follow-
ing, we present four basic shapes, which are illustrated in Figure 8.
In addition, we also show the possibility to create complex shapes
with analytic functions by introducing a function that represents a
dandelion leaf. Furthermore, two additional features can be added
to the shape of a blade, which are a 3D displacement and a width
correction that reduces aliasing for tipped shapes by forcing a quad
shape if the width becomes too small due to perspective.

Basic shapes The position p of a vertex for a basic shapes is
computed by interpolating between the two curve points c0 and c1
using an interpolation parameter t that depends on u and v:

p = (1− t) c0 + tc1, (22)

The quad shape simply uses the parameter u as interpolation pa-
rameter, t = u, so that either c0, c or c1 is emitted. The trian-
gle’s interpolation parameter is calculated by applying the equa-
tion: t = u + 0.5v − uv. The quadratic shape is formed like
a quad on one side and like a parabola on the other side. This
is achieved by using the parameter t = u − uv2. Finally, the
triangle-tip shape is a combination of a quad near the ground and



Figure 9: Illustration of the dandelion shape. The left image repre-
sents the graph of the analytic dandelion function, where the x-axis
represent v and the y-axis represent u. The different colors cor-
respond to different tessellation levels. The right image shows a
rendering of a dandelion tuft.

a triangle further up. The border between these two shapes is de-
fined by a threshold τ , which is in the interval [0, 1). The inter-
polation parameter for this shape is calculated using the equation
t = 0.5 + (u− 0.5)

(
1− max(v−τ,0)

1−τ

)
.

Dandelion In the same way as the basic shapes, the dandelion
function interpolates between c0 and c1. The interpolation param-
eter is calculated by a complex equation that uses trigonometric
functions that we developed heuristically. Figure 9 shows an illus-
tration of the graph of this function together with a rendered image
of a dandelion leaf. In order to not lose any spikes due to aliasing
when the tessellation level is low, the tessellation level is included
in the equation.

3D displacement The 3D displacement is an additional feature
that can be added to the shape of a blade, where the middle axis of
the blade is translated along the normal vector, resulting in a “v”-
shape in its cross-section. If the shape has a tip, it is important
that the translation has to decrease the nearer the generated point
is to the top. Otherwise, the blade has a depth but no width at the
tip. Equation 23 shows the calculation of the displacement vector
d, where n is the normal vector and w the width of the blade. By
adding this displacement, the shape has approximately a right angle
and the unfolded width of the blade increases by the factor

√
2.

d = w n (0.5− |u− 0.5| (1− v)) (23)

Width correction When rendering blades at greater distance, es-
pecially tipped shapes can be thinner than the size of a pixel, which
can lead to aliasing artifacts. This effect can be reduced by mod-
ifying the interpolation parameter of the respective shape with a
correction value based on the width in pixels, so that blades of
grass at far distances are rendered as quads regardless of the cho-
sen shape. The pixel width of the blade is calculated in four steps.
First, the curve points are transformed to screen coordinates in the
range [0, 1]. Second, the difference between these screen coordi-
nates is calculated. Third, this difference vector is multiplied with
the screen resolution. Finally, the length of the difference vector
wp represents the width of the blade in pixels. The correction value
Φ can be calculated with respect to two constant values, wmin and
wspan. The value ofwmin indicates the minimum width for a blade.
If the width of a blade is smaller than or equal towmin, Φ is equal to
one, which enforces the blade to be shaped as a quad. If Φ is equal
to zero, the interpolation of the shape is not influenced at all. The
second value wspan indicates the length of the interval, in which
the shape is corrected. Thus, if wmin is set to 1 and wspan is set to
2, the shape of all blades having a pixel size in the range [0, 3] are
corrected. The following equation shows the calculation of Φ and

how it is applied to the shape’s interpolation parameter t:

Φ = 1−min

(
max

(
wp − wmin

wspan
, 0

)
, 1

)
t = t (1− Φ) + u Φ2

(24)

7 Results

In this section, we present the results of our rendering technique
and compare them to related algorithms. The evaluation of our
results is based on visual appearance, elapsed time on the graph-
ics card and the total time required for a frame. The results
are rendered in a testing framework that focuses on the geome-
try and the animation of the field of grass, but lacks additional
photo-realistic rendering techniques that are common in modern
engines like shadows, ambient occlusion or atmospheric effects.
Note, however, that this is not a limitation of the method: since
the grass blades are drawn as geometrical objects, it is straightfor-
ward to integrate our method into an engine that supports such tech-
niques. The framework is implemented in C++ and OpenGL, ver-
sion 4.5. The results are generated on a machine using an NVIDIA
GeForce GTX 780M graphics card and an Intel Core i7-4800 @
2.7 GHz CPU with 32 GB Ram. The resolution that is used for
the renderings is 1024x768 pixels. In order to reduce aliasing arti-
facts, MSAA with 8 samples is used. A representative open-source
demo application of our grass-rendering technique is availlable at
https://github.com/klejah/ResponsiveGrassDemo.

In the following, we present two scenes that are evaluated and dis-
cussed. The evaluation is based on different measurements, which
are: the rendered frames per second, the time for rendering the
frame, the number of blades that are drawn, the number of blades
that are culled, the time used for the evaluation of the physical
model, the time used for the visibility calculation and indirect ren-
dering setup, the time used for rendering and the number of colli-
sion spheres that are considered in the force update. The time values
are measured in milliseconds. The measurements are gathered un-
der three different circumstances: all features are enabled, collision
detection disabled, culling disabled. In order to guarantee a reason-
able comparison, all measurements of a scene are taken from frames
having the exact same input data from a fixed reference viewpoint
as shown in the respective renderings (Figures 10,11). Animated
renderings of these scenes can be found in the accompanying video.

7.1 Nature scene

The nature scene consists of several 3D objects and resembles an
outdoor scenario. A rendering of this scene is presented in Figure
10. The field of grass is generated on a terrain with smooth hills.
It consists of 397,881 blades of grass. Each blade of grass has a
moderate width, which leads to a high density. The scene contains
a bunny model, which is represented by 1000 collision spheres in
total. The effect of the physical model is shown by two rolling
balls, which leave a trail behind. Additionally, several objects are
added for a better visual representation. Table 1 presents the mea-
surements of the nature scene.

The evaluation proves the advantage of the culling methods based
on each blade of grass. Almost three-fourths of all blades of grass
of visible patches are culled by our algorithm. Nevertheless, the
appearance of the meadow is still dense without any bare spaces.
Table 2 shows the number of blades that are culled by the different
tests. Note that the sum of culled blades is larger than the number
of blades, since some blades fail multiple tests. The visibility test
that culls the most blades is based on the view frustum. If all culling

https://github.com/klejah/ResponsiveGrassDemo


Figure 10: The left image shows the rendering of the nature scene
as it is evaluated. The right image visualizes the sphere representa-
tion of the bunny model.

Measurement All Collision Culling
features disabled disabled

FPS 123 129 78
Frame time 8.130 7.742 12.821
Blades drawn 43,128 43,128 168,333
Blades culled 125,205 125,205 0
Time physical model 0.547 0.041 0.519
Time visibility 1.401 1.392 2.375
Time rendering 2.057 2.082 3.872
Amount collision spheres 183 0 183

Table 1: Evaluation of the nature scene. The most interesting mea-
surements are highlighted.

methods are disabled, an interesting phenomenon occurs. The re-
quired time for the visibility test increases, although no visibility
tests are performed. This shows that more time is required to set
up of the indirect buffer if more blades are visible. Thus, the less
blades are culled the more time is required for both the update and
the rendering pass.

Visibility test Blades culled
Orientation test 44,695
View-frustum test 79,533
Distance test 46,965
Occlusion test 6,025

Table 2: The amount of blades culled by each visibility test in the
nature scene.

Another important fact is shown in the time used for the evalua-
tion of the physical model. Even though many collision spheres
have to be checked for collision, the calculation is performed in
less time than one millisecond. However, if the collision detection
is disabled, the force update requires almost no time, which shows
the high performance of the calculations, especially considering the
fact that the physical model is evaluated not only for visible blades
of grass.

7.2 Helicopter scene

The helicopter scene shows the impact of the wind effect together
with the rendering of a field of grass of extreme density. Since the
only other 3D model is a helicopter that flies above the ground, no
blades can be culled due to occlusion, which resembles a worst-case
scenario for our algorithm. The field of grass consists of 900,000
blades. The wind effect of the helicopter is simulated by a point-
based wind with the helicopter being the wind source. Figure 11
shows a rendering of this scene and Table 3 presents the measure-
ments.

Figure 11: This figure shows a rendering of the helicopter scene.

Measurement All Collision Culling
features disabled disabled

FPS 56 56 35
Frame time 17.860 17.692 28.624
Blades drawn 165,135 165,135 503,382
Blades culled 338,247 338,247 0
Time physical model 1.421 1.372 1.570
Time visibility 6.817 6.792 8.142
Time rendering 5.471 5.398 9.149
Amount collision spheres 0 0 0

Table 3: This table shows the evaluation of the helicopter scene.
The most interesting measurements are highlighted.

Since the helicopter scene does not contain any collision spheres,
there is obviously no significant difference if the collision detection
is disabled. Similar to the previous measurement, a huge amount of
blades can be culled without a noticeable difference in the density
of the field of grass. The high amount of blades makes the im-
provement of the performance even more significant if the culling
methods are enabled. Note that distance and orientation culling can
introduce some popping artifacts for moving cameras, depending
on the number of levels used, as can also be seen in the accompa-
nying video.

7.3 Comparison to related work

In contrast to many related grass rendering techniques, especially
geometrical approaches, our technique is capable of processing
fields of grass of arbitrary shape and spatial alignment. This en-
ables a variety of different scenes that can not be modeled as a
heightmap. In addition, grass that is able to grow on top of a 3D
model can also simulate fur or hair. Figures 12 and ?? show grass
growing on three models of different topologies, which cannot be
represented as heightmaps.

A major contribution of our technique is the physical interaction.
The work of Orthmann et al. [2009] as well as the work of Fan et
al. [2015] focus on the interaction between grass and environmen-
tal colliders. Orthmann et al. use billboards for the grass represen-
tation that are able to react to the collision with complex objects.
When a collision is detected, the vertices of the billboard are dis-
placed and after a fixed time the billboard regains its original state.
The algorithm of Fan et al. follows a similar procedure. However,
the blades of grass are represented as 3D objects and the collision
detection is limited to spheres. As reaction to the collision, the
vertices of the corresponding blades are displaced and after a fixed
time period the blade resets to its initial state.



Figure 12: This figure shows grass growing on two complex 3D
models with different color textures.

Figure 13: This figure shows grass growing on a model of a Möbius
strip.

In contrast to these approaches, our technique is able to operate on
each single blade and can react to collisions with both spheres and
complex objects. In addition, each blade saves its individual an-
imation state, which allows that the time until a blade regains its
initial state can depend on the collision that occurred and no fixed
time period has to be set. In comparison to the technique of Orth-
mann et al., we modeled a scene where a hand moves over a field
of grass. As it is shown in Figure 14, the trails of the fingers are
clearly visible where the blades were pushed down. The rendering
of Orthmann et al. shows the drawbacks of using billboards, be-
cause the trails are also visible, but the textures of the billboards
are heavily distorted due to the displacement. In comparison to Fan
et al., we generated a scene with many balls being thrown over the
field of grass, which is shown in Figure 15. Since the meadow is
much denser in our rendering, the collision reaction is more visible.
Table 4 summarizes the differences of our method to Fan et al.’s
method.

The work of Wang et al. [2005] represents realistic natural forces
that are applied to each blade of grass. The technique is capable of
producing special variants of wind influence that can simulate the
effect of a landing helicopter or even a tornado. For the calcula-
tion of the wind influence, the authors assume the blade to be in its
straight up position and compute the displacement that is cause by
the wind effect. In comparison, our physical model has a persistent
state over more than a single frame, which allows the implementa-
tion of natural forces and collisions with one physical model. Fig-
ure 16 represents two scenes with special wind effects that simulate
a helicopter and a tornado.

Jahrmann et al. [2013] use a similar rendering approach, which uses
the tessellation pipeline to render smoothly shaped blades of grass.
The shape of the blade is generated by an alpha texture and invisi-

Figure 14: This figure shows the comparison between the technique
of Orthmann et al. [2009] (left) and our technique (right). Both
scenes show a complex objects moving through a meadow. This
illustrates the advantage of drawing each blade as geometric object
instead of using billboards.

Figure 15: This figure presents the comparison between the tech-
nique of Fan et al. [2015] (left) and our technique (right). Both
scenes show a field of grass with hundreds of balls being thrown
around. The collsion effect is more visible in the right image, since
the field of grass has more density.

ble fragments are discarded. This enables an easy way to generate
different shapes. However, the resolution of the texture that is used
is crucial for the visual appearance, since texture sampling artifacts
can appear if the resolution is too low. The higher the resolution
of the alpha, the higher is the memory footprint of the technique
and the method becomes slower. In comparison, we generate the
shape by modifying directly the geometry of a blade using ana-
lytic functions. This reduces the amount of fragments that has to
be computed and the edges of the shape have the same smoothness
regardless of the distance to the camera. Figure 17 shows a closeup
view of a blade of grass of both techniques.

8 Conclusion and Future Work

In this paper, we have proposed a novel grass-rendering technique
that is capable of rendering dense fields of grass in real time. In
comparison to related work, the field of grass can have any shape
or spatial alignment. In addition, our approach renders each blade
as geometric object that can react to its environment. This reaction
to its environment is performed by evaluating a physically based
model for each blade separately. This model includes the influ-
ence of gravity, wind, and collisions with both simple and complex
objects. We use a sphere-packing approach to represent complex
objects during the collision detection. In order to achieve real-time
performance, we introduce culling methods that are able to cull sin-
gle blades based on occlusion and their orientation and distance to-
wards the camera. The culling methods are able to cull up to 75%
of all blades of grass in a standard frame without decreasing the
density of the field of grass significantly. However, the rendering of
each blade of grass is still the bottleneck for the performance. Dif-
ferent level-of-detail representations like in the work of Boulanger
et al. [Boulanger et al. 2009] can be introduced as future work to



Feature Proposed method Fan et al.
grass field arbitrary geometry height field only
blade geometry three control points with dynamically tessellated quads fixed number of quads
LOD dynamic tessellation, culling based on orientation and distance distance culling only
effects wind, gravity, collisions wind, collisions
physical model integrated model separate models for wind and collision
colliders complex objects using sphere packing single spheres only
collision recovery recovery time depends on original displacement fixed recovery time

Table 4: This table shows the most important differences between the method of Fan et al. [2015] and ours.

Figure 16: This figure presents the comparison between the tech-
nique of Wang et al. [2005] (left) and our technique (right). Both
techniques are capable of creating special wind effects that are
more complex than calculating the influence by trigonometric func-
tions.

further reduce the rendering time.

References

BOULANGER, K., PATTANAIK, S. N., AND BOUATOUCH, K.
2009. Rendering grass in real time with dynamic lighting. IEEE
Comput. Graph. Appl. 29, 1 (Jan.), 32–41.

CHEN, K., AND JOHAN, H. 2010. Real-time continuum grass. In
2010 IEEE Virtual Reality Conference (VR), 227–234.

CLINE, D., JESCHKE, S., RAZDAN, A., WHITE, K., AND
WONKA, P. 2009. Dart throwing on surfaces. Computer Graph-
ics Forum 28, 4 (June), 1217–1226.

EVERITT, C., REGE, A., AND CEBENOYAN, C. 2001. Hardware
shadow mapping. White paper, nVIDIA 2.

FAN, Z., LI, H., HILLESLAND, K., AND SHENG, B. 2015. Simu-
lation and rendering for millions of grass blades. In Proceedings
of the 19th Symposium on Interactive 3D Graphics and Games,
ACM, New York, NY, USA, i3D ’15, 55–60.

FARIN, G. E., AND HANSFORD, D. 2000. The essentials of
CAGD. AK Peters Natick.

GRAVESEN, J. 1993. Adaptive subdivision and the length of Bezier
curves. Mathematical Institute, Technical University of Den-
mark.

Figure 17: This figure presents the comparison between the tech-
nique of Wang et al. [2005] (left) and our technique (right). Both
renderings show a closeup view of a blade of grass. The shape
generated by an alpha texture shows texture sampling artifacts,
whereas the analytic functions generate smooth edges.

HABEL, R., WIMMER, M., AND JESCHKE, S. 2007. Instant ani-
mated grass. Journal of WSCG 15, 1-3, 123–128.

JAHRMANN, K., AND WIMMER, M. 2013. Interactive grass ren-
dering using real-time tessellation. In WSCG 2013 Full Paper
Proceedings, M. Oliveira and V. Skala, Eds., 114–122.

KLEBER, G., 2015. Ea sports madden nfl: Breakthroughs in real-
time rendering for next-gen consoles. SIGGRAPH 2015 Talks.

LOOP, C., AND BLINN, J. 2005. Resolution independent curve
rendering using programmable graphics hardware. Transactions
on Graphics 24, 3.

MALINEN, M. I., AND FRÄNTI, P. 2014. Balanced K-Means for
Clustering. Springer Berlin Heidelberg, Berlin, Heidelberg, 32–
41.

ORTHMANN, J., REZK-SALAMA, C., AND KOLB, A. 2009. Gpu-
based responsive grass. Journal of WSCG 17, 65–72.

PELZER, K. 2004. Rendering countless blades of waving grass. In
GPU Gems, R. Fernando, Ed. Addison-Wesley, 107–121.

STOLPNER, S., KRY, P., AND SIDDIQI, K. 2012. Medial spheres
for shape approximation. IEEE Transactions on Pattern Analysis
and Machine Intelligence 34, 6 (June), 1234–1240.

WANG, C., WANG, Z., ZHOU, Q., SONG, C., GUAN, Y., AND
PENG, Q. 2005. Dynamic modeling and rendering of grass wag-
ging in wind: Natural phenomena and special effects. Comput.
Animat. Virtual Worlds 16, 3-4 (July), 377–389.

WELLER, R., AND ZACHMANN, G. 2010. Protosphere: A gpu-
assisted prototype guided sphere packing algorithm for arbitrary
objects. In ACM SIGGRAPH ASIA 2010 Sketches, ACM, New
York, NY, USA, SA ’10, 8:1–8:2.

WHATLEY, D. 2005. Toward photorealism in virtual botany. In
GPU Gems 2, M. Pharr, Ed. Addison-Wesley, 7–25.


