
Efficient Tree Modeling from Airborne LiDAR Point Clouds

Shaojun Hua, Zhengrong Lib, Zhiyi Zhanga, Dongjian Hec, Michael Wimmerd

aCollege of Information Engineering, Northwest A&F University, Xianyang, China
bBeijing New3S Technology Co.Ltd., Beijing, China

cCollege of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang, China
dInstitute of Computer Graphics and Algorithms, Vienna University of Technology, Vienna, Austria

Abstract

Modeling real-world trees is important in many application areas, including computer graphics, botany and forestry. An example
of a modeling method is reconstruction from light detection and ranging (LiDAR) scans. In contrast to terrestrial LiDAR systems,
airborne LiDAR systems – even current high-resolution systems – capture only very few samples on tree branches, which makes
the reconstruction of trees from airborne LiDAR a challenging task. In this paper, we present a new method to model plausible trees
with fine details from airborne LiDAR point clouds. To reconstruct tree models, first, we use a normalized cut method to segment
an individual tree point cloud. Then, trunk points are added to supplement the incomplete point cloud, and a connected graph is
constructed by searching sufficient nearest neighbors for each point. Based on the observation of real-world trees, a direction field
is created to restrict branch directions. Then, branch skeletons are constructed using a bottom-up greedy algorithm with a priority
queue, and leaves are arranged according to phyllotaxis. We demonstrate our method on a variety of examples and show that it can
generate a plausible tree model in less than one second, in addition to preserving features of the original point cloud.

Keywords: tree modeling, segmentation, reconstruction, airborne, point cloud

Fig. 1: Front view of a group of trees reconstructed from airborne LiDAR point clouds. Left: airborne tree point clouds. Right:
reconstructed tree models.

1. Introduction

The fast and realistic modeling of trees have been challeng-
ing problems in computer graphics for decades because natural
trees have complex branch structures and richly diverse species.
In recent years, the reconstruction of real-world trees has re-
ceived increased attention in the field of computer graphics, in
addition to photogrammetry and remote sensing. Several recon-
struction methods have been proposed to create specific geom-
etry models of existing trees from scanned point clouds [1–4].
In comparison with these methods, we propose a fast model-
ing method that can reconstruct trees from incomplete airborne
light detection and ranging (LiDAR) point clouds. Airborne
LiDAR has the advantage of covering the big picture of a large-

scale forest or urban scene. However, because of the limitations
of scanning from a large distance and reduced movement flex-
ibility, it is difficult to capture the details of tree branches, and
the raw data is sparser and more incomplete than the data cap-
tured by terrestrial LiDAR. The low density of current airborne
tree point clouds has become problematic for tree modeling be-
cause most branches are indistinguishable, even by human eyes.

To reconstruct tree models from sparse point clouds, we
first consider a divide and conquer approach to the problem by
segmenting a group of point clouds into individual tree point
clouds. However, the segmentation problem of airborne LiDAR
point clouds cannot be solved by the spanning tree method [3],
which is suitable for segmenting dense point clouds. Thus, we
propose a robust normalized cut method to segment airborne

Preprint submitted to Computers & Graphics July 10, 2017

LiDAR point clouds. Once the individual point clouds are seg-
mented, the problem is how to efficiently reconstruct natural
tree skeletons from the sparse data. To achieve this, we add
new trunk points and simulate a direction field to enrich the s-
parse point clouds. To improve efficiency, we reduce possibly
redundant points using a sequential thinning algorithm, and use
a fast bottom-up greedy algorithm to locate skeletons from a
connected graph, which is constructed on a k-dimensional (k-d)
tree structure. Finally, to increase realism, we use a pipe model
to determine the branch thickness, and arrange leaves according
to botanical rules.

The main contribution of our work is the robust segmenta-
tion and efficient reconstruction of feature-preserving tree ge-
ometries from airborne point clouds, even without visible ma-
jor branches, through (a) using a normalized cut segmentation
method, (b) adding trunk points and creating a connected graph
based on a k-d tree structure, (c) approximating a direction field
from the observation of real-world trees and (d) using a new
bottom-up greedy algorithm to produce branch structures.

2. Related work

A vast number of approaches have been proposed to gener-
ate efficient and realistic tree models. The earliest theoretical
research on branching patterns was introduced by Ulam [5] and
Honda [6], and an integrated introduction to these approach-
es was provided by Prusinkiewicz and Lindenmayer [7], and
Deussen and Lintermann [8].

Generally, tree modeling methods can be classified into rule-
based or procedural-based methods [9, 10], sketch-based meth-
ods [11–13] and image-based methods [14–17]. With the ad-
vances in laser scanning technology, many studies have been
conducted to model trees directly from LiDAR scanned point
clouds [1–4]. In this paper, we only focus on tree modeling
methods from point clouds [1–4, 9, 15, 18]. The point clouds
can be simulated by a set of attraction points in an envelope [9],
reconstructed from image sequences using structure from mo-
tion [15] or directly captured using a laser scanner [1–4, 18].

Runions et al. [9] modeled realistic tree structures from u-
niformly distributed points in a crown volume using a space
colonization (SC) algorithm. Palubicki et al. [19] and Longay
et al. [20] extended Runions et al.’s method to generate more
realistic tree models in a more efficient manner. The SC algo-
rithm has the advantage of generating natural skeleton points
iteratively in a specified envelope. However, it is difficult to p-
reserve the branch details because the skeleton points are not
selected from the original point cloud.

Tan et al. [15] reconstructed tree point clouds from im-
age sequences and modeled occluded branches by replicating
visible branch patterns. The visible branches were generat-
ed from graph construction and a subgraph refinement process
with some user interactions, by referring to a source image.
However, airborne point clouds are extremely sparse; thus, it
is difficult to identify visible branches in most cases, and pho-
tographs are not available to complement the reconstruction.

Xu et al. [2] and Cheng et al. [1] generated tree branch
structures from terrestrial laser scanned point clouds. Specif-

ically, Xu et al. [2] used a semi-automatic method to extract
the skeleton structures of trees by connecting the centroids of
adjacent bins, which were generated from clustering after using
the shortest path algorithm, and synthesized skeletons for inad-
equately sampled branches. Livny et al. [3] presented an auto-
matic global optimization method to reconstruct multiple trees
from overlapping tree point clouds without pre-segmentation.
The reconstruction time was reduced from minutes to seconds
compared with the algorithm in the work of Xu et al. [2]. More
recently, Livny et al. [4] proposed a novel and real-time lobe-
based method to generate tree models that are suitable for in-
teractive rendering. Moreover, tree species were classified and
rendered using different parameters from the pre-processing of
species information. All of the aforementioned methods as-
sume that the main branches of the trees are sampled, which
is a reasonable assumption in the case in which the original tree
point clouds are captured by terrestrial laser scanning with rel-
atively high precision. However, there is a significant density
difference between airborne and terrestrial point clouds. The
terrestrial laser scanner captures dense tree point clouds with
visible branches on the ground, whereas the airborne laser sys-
tem can only sample sparse point clouds without clear branch
structures. Thus, it is a challenging task to segment and re-
construct tree models from large-scale airborne LiDAR point
clouds. Zhou and Neumann [18] introduced a method for the
reconstruction of residential urban areas from airborne point
clouds, but the tree model lacked branches and individual leaves
because they were generated by fitting surfaces to segmented
point clouds.

In the community of photogrammetry and remote sensing,
Pfeifer et al. [21] proposed an automatic cylinder fitting method
to capture the diameters and lengths of trunks from point cloud-
s. Gorte and Pfeifer [22] used a sequential thinning method [23]
to extract branch skeletons, and constructed a tree structure us-
ing the shortest path algorithm, which was extended to locate
centroid points in the work of Xu et al. [2]. Bucksch and
Lindenbergh [24] implemented a novel skeletonization algo-
rithm to extract branch skeletons from an octree graph in O(n)
time. Côté et al. [25] reconstructed tree models from terrestrial
LiDAR scans and quantitatively evaluated the tree structures.
Raumonen et al. [26] used an efficient method to automatical-
ly generate accurate tree models from terrestrial LiDAR point
clouds. Hackenberg et al. [27] implemented highly accurate
branch modeling by fitting cylinders from terrestrial LiDAR s-
cans. Unfortunately, these methods are limited to terrestrial L-
iDAR point clouds and difficult to apply to extract skeletons
from airborne data. Edson and Wing [28] estimated the tree
height and biomass from airborne tree point clouds and veri-
fied the potential ability of airborne LiDAR to measure forest
biomass. Bucksch et al. [29] extracted the breast height diam-
eters of trees from airborne point clouds by computing point-
skeleton distances. However, all these methods proposed in the
field of photogrammetry and remote sensing aim to derive pre-
cise tree parameters for an ecological purpose but not visually
realistic tree models with fine details in computer graphics.

2

Fig. 2: Overview of our tree modeling system for airborne point
clouds.

3. Overview

In this paper, we develop an integrated system to recon-
struct tree models from airborne LiDAR point clouds. Fig. 2
illustrates the steps of our tree modeling system.

Because the original point clouds consist of many individ-
ual tree points, it is difficult to directly reconstruct tree models
from the unorganized point clouds. Thus, we first detect and
segment individual tree point clouds from the input point cloud
using a robust normalized-cut method as shown in Fig. 2 (a,
b). Because of the lack of stem positions of the sparse point
cloud, we automatically add trunk points to enrich the dataset
as shown in Fig. 2 (c). We will describe the segmentation and
trunk locating steps in section 4.

Similar to the works of [2] and [3], our next goal is the
generation of a tree skeletons for tree modeling. To perform
this step efficiently, we use a voxel-based thinning method to
extract candidate skeleton points from the tree points in voxel
space, as shown in Fig. 2 (d). Then, we generate a connected
graph from the candidate skeleton points by ensuring that each
feature point has sufficient nearest neighbors based on a k-d
tree (see Fig. 2 (e)). Once we obtain the graph, a spanning tree
can be extracted from the graph to produce the tree skeleton.
We will introduce the thinning and graph generation steps in
subsection 5.1 and subsection 5.2.

However, not all the spanning trees from a graph can be
used to generate natural tree models. To create a natural tree
skeleton, we use direction fields and an angle constraint to re-
strict the growth direction of branches. Inspired by the works of
[16] and [3], we approximate the direction fields of tree point
clouds based on the observation of natural trees (see Fig. 2 (f)).
Moreover, we set a constraint to control the bending angle be-
tween adjacent branches. Next, we use a greedy algorithm to
generate a tree skeleton structure from the graph by taking into
account the direction fields and the constraint (see Fig. 2 (g)).
In each step, the algorithm aims to select the node in the range
of the direction field with the smallest bending angle between
a parent branch and a child branch. Then, a branch pruning
criterion is used to reduce potential interpenetration. We will
describe these steps in subsection 5.3 and subsection 5.4.

To generate tree geometries, we must know the thickness
of each branch, in addition to its skeleton. In our system, the

branch thickness is determined by a pipe model, and the ge-
ometric structure of a branch is represented by a generalized
cylinder (see Fig. 2 (h)). Finally, leaves are added to the tip
of each branch according to botanical rules as shown in Fig. 2
(i). We will introduce the last two steps in subsection 5.5 and
subsection 5.6.

In comparison to traditional tree modeling methods from
point clouds, one important advantage of our system is the fast
reconstruction of trees with fine details from sparse point cloud-
s. We demonstrate the robustness of the system by testing ter-
restrial tree point clouds where major branches are sampled.

Fig. 3: A sample of airborne tree point clouds with ground po-
sitions.

4. Segmentation and trunk locating

Recent advances in full-wave LiDAR technology have made
it possible to detect and reconstruct trees from aerial data be-
cause of increasing sampling resolution and additional infor-
mation on laser reflecting characteristics (e.g., laser signal in-
tensity). The dataset used in this research was acquired from an
integrated full-wave LiDAR system, and Fig. 3 shows a cropped
tree sample from the scanned airborne point clouds with ground
positions.

4.1. Segmentation

Livny et al. [3] projected three-dimensional (3D) point cloud-
s onto a ground plane and identified high-density points as root
nodes. A spanning tree was generated by Dijkstra’s shortest
path algorithm, and subsequently, individual trees were seg-
mented by removing root edges with zero weights. This method
is fast and effective for delineating dense terrestrial point cloud-
s. However, it is not applicable to complex scenarios in which
trees may be very close to each other and have sparsely sampled
crown points in a forest environment. In this paper, we apply a
normalized cut method [30] to segment 3D tree point clouds of
LiDAR points because it considers the global dissimilarity of s-
parse tree points in terms of spatial location, color and intensity
data.

3

The basic idea of our method is to apply graph-based seg-
mentation to a graph G = {V, E} constructed from a voxel struc-
ture of tree point clouds. The voxel resolution for the seg-
mentation is denoted by ds. The similarity between two nodes
(i, j) ∈ V is described by the weights wi j computed from fea-
tures associated with the voxels. These features include the
RGB value, XYZ coordinates and LiDAR point intensity. The
two disjoint segments A and B of the graph are determined by
maximizing the similarity within each segment and minimizing
the similarity between A and B. The corresponding cost func-
tion is

NCut(A, B) =

∑
i∈A, j∈B wi j∑
i∈A, j∈V wi j

+

∑
i∈A, j∈B wi j∑
i∈B, j∈V wi j

(1)

where wi j is used to calculate the similarity of two voxels be-
longing to one tree:

wi j =

{
e−H(i, j) × e−V(i, j) × e−I(i, j) × e−C(i, j) (Dxz

i j < rxz)
0 (otherwise)

(2)
where H(i, j) and V(i, j) represent the horizontal and vertical
Euclidian distance between the voxels, and I(i, j) and C(i, j)
record the LiDAR intensity and color Euclidian distances be-
tween two voxels, respectively. The voxel i is only considered
to be similar to voxel j if their horizontal distance Dxz

i j is within
a cylinder of radius rxz around voxel j.

The optimal segmentation that minimizes the cost function
in Eq. 1 is solved using an eigenvalue system (D−W)x = λDx,
where D is a diagonal matrix with d(i, i) =

∑
j wi j on its di-

agonal, W is a symmetrical matrix with W(i, j) = wi j, x is an
eigenvector and λ is an eigenvalue. The eigenvectors with the
smallest eigenvalues are used to segment individual trees. This
method was tested on a dataset that contained horizontally and
vertically overlapping trees, as illustrated in Fig. 3, and Fig. 4
shows the plausible segmentation result. Unlike the work of
Livny et al. [3], our segmentation method does not need to as-
sign a root point to each individual tree in advance.

Fig. 4: Segmentation result of tree point clouds in Fig. 3.
Neighboring trees are represented by different colors.

4.2. Add trunk points
Although both the terrestrial LiDAR system and airborne

LiDAR system are able to capture large-scale point clouds, the

latter obtains lower-density tree data without clear branch rami-
fications. Fig. 5 shows two typical segmented tree point clouds.
Because a natural tree usually has a trunk to support branch-
es and leaves, trunk points are essential to generating tree ge-
ometry. Unfortunately, we can only obtain very limited trunk
points from airborne LiDAR systems. Therefore, we propose a
method to add new trunk points to complement the original da-
ta by considering the bounding boxes of tree points and ground
points.

Fig. 5: Airborne tree point clouds with (a) a few trunk points
and (b) without trunk points.

Given a point cloud consisting of the set of tree points S =

{v1, v2, ..., vn} and set of ground points S ′ = {g1, g2, ..., gn},
which are calculated by projecting the tree points onto the ground
plane, we compute the bounding box (vmin, vmax) of set S and
bounding box (gmin, gmax) of set S ′. The centroid point of set
S is denoted by vc. The centers of the two bounding boxes are
denoted by vb and gb. The height of the lowest tree points with
respect to the ground plane is represented by h = vmin.y− gmin.y.
We assume that the lowest tree point vlow is a trunk point, as
shown in Fig. 6. To add more trunk points, we first locate the
nearest neighbors {v j| j = 1, 2, ...,m} of vlow in a sphere with
radius r, and then we compute the average normal navg to ap-
proximate the direction of the trunk from the normalized direc-
tions of −−−−→vlowv j. Therefore, the trunk points of the tree can be
estimated by the parametric equation

vt = vlow − navgt (3)

where t = h/navg.y for the root position and h is the height from
vlow to the ground plane. Fig. 6 (a) shows that a reasonable
root position (red sphere) of the trunk is estimated for a sample
with some trunk points. However, the estimated root position
(red sphere) of the other tree sample, as shown in Fig. 6 (b), is
probably wrong using Eq. 3 because the trunk of a real tree is
usually near the center of its crown. In this case, we approxi-
mate the root position as the center of the ground bounding box
gb. Then, the remaining trunk points are interpolated between
the centroid of tree points and the root position by

vt = vc −
vc − gb

||vc − gb||
t (4)

To differentiate between the two types of point clouds, as
shown in Fig. 5, we let λ1 denote the angle between navg and

4

Fig. 6: The possible (a) correct and (b) wrong estimation of
root positions from different point clouds. The blue point is the
lowest trunk point, green points are a set of points close to the
blue point and the red point is the root point from the ground.

the centerline of tree bounding box −−−→gbvb, and λ2 denote the hor-
izontal distance measure between the lowest point vlow and the
centerline, where λ2 = ||vxz

low − gxz
b ||/||v

xz
max − gxz

b ||. The combina-
tion of λ1 and λ2 describes the similarity measure of direction
and distance between the approximated trunk and centerline of
the tree. In our system, we use Eq. 3 to locate the root position
when λ1 6 30◦ and λ2 6 0.5, and use Eq. 4 to interpolate trunk
points between the centroid of tree points and the center of the
ground bounding box when λ1 > 30◦ or λ2 > 0.5. Fig. 7 illus-
trates the inserted trunk (root) points of tree point clouds with
different combinations of λ1 and λ2. Note that the root posi-
tions estimated by our method are more reasonable than those
identified from a density map, as performed by Livny et al. [3].

Fig. 7: Results of adding new trunk (root) points to the point
clouds in Fig. 5. Left: λ1 = 11◦ and λ2 = 0.11. Right: λ1 =

23◦ and λ2 = 0.61. Green spheres represent the root position
identified by the method of [3]. Red spheres represent the trunk
(root) points added by our method. The density map of each
point cloud is shown at the lower right corner. ‘�’ indicates the
point with the highest density in the density map.

5. Tree modeling

Once the root and trunk points are inserted into the tree
point cloud, we use a thinning algorithm [23] to extract can-
didate skeleton points for generating tree skeletons. Tree skele-
tons were already extracted successfully from dense point cloud-
s by Xu et al. [2] and Livny et al. [3]. They both used the
Dijkstra’s shortest-path algorithm to generate a spanning tree
and reduce the complexity of a graph with a large number of

edges. Fig. 8 (b) shows that the remaining edges, which are
calculated from the graph of a terrestrial point cloud in Fig. 8
(a), are still sufficiently dense to preserve the major branches of
the original data. However, the candidate edges generated from
an airborne point cloud in Fig. 8 (c) are very sparse, and some
edge directions look unnatural (note the edges in the red rectan-
gle of Fig. 8 (d)). Therefore, it is difficult to adjust and retrieve
natural tree skeletons directly from the limited edge candidates.
In our work, we generate tree skeletons from a connected graph
instead of the shortest path, which possibly avoids removing
potential natural branches from an initial spanning tree.

Fig. 8: Dijkstra’s shortest paths generated from terrestrial and
airborne tree graphs with root points. (a, c) are the original
terrestrial and airborne point clouds and (b, d) are the corre-
sponding shortest paths.

5.1. Thinning in voxel space

A tree graph directly generated from the original point cloud
requires a large memory footprint to store the neighborhood
distances between points. Moreover, it is time-consuming to
compute the neighborhoods for a large number of points. To
save memory and improve efficiency, we reduce the input da-
ta and extract candidate skeleton points by downsampling and
thinning the point cloud in voxel space. The voxel space is cre-
ated from the bounding box of a tree point cloud with another
voxel pitch dl, which describes the side length of each voxel.
Because the density of airborne point clouds ρs is approximate-
ly 40 points/m2 in our test, we derive that the minimum dl is
approximately 0.15 m by dl = 1/

√
ρs. In our experiments, the

voxel pitch ranges from 0.15 m to 0.25 m. A dl that is too small
does not affect the original point cloud; yet, if it is too large, it is
likely to lose feature points. Voxels are divided into black vox-
els and white voxels according to the number of points falling
inside them. A black voxel contains at least one point and the
value one is assigned to it. For each black voxel, a new point
is generated from the average position of all points in the vox-
el. A white voxel is an empty voxel with the value zero. Af-

5

ter constructing the voxel space, we use a sequential thinning
algorithm [23] to delete the black voxels that do not alter the
topology of the tree structure. In the test of two types of point
clouds, as shown in Fig. 8 (a, c), almost 62% and 89% of the
points were removed from the original point clouds after down-
sampling and skeletonization, as shown in Fig. 9. However, the
remaining candidate skeleton points still preserved the skeleton
structure well, which is particularly obvious for the dense tree
point cloud, as shown in Fig. 9 (d).

Fig. 9: The (a, c) downsampling and (b, d) thinning results of
airborne and terrestrial tree point clouds in Fig. 8. The number
of airborne points is reduced from 18,894 to 14,223 after (a)
downsampling with dl = 0.25 m, and the number of candidate
skeleton points becomes 7,112 after (b) skeletonization. The
number of original terrestrial points is 22,698, and decreases to
7,842 after (a) downsampling with dl = 0.16 m, and becomes
2,474 after (d) skeletonization.

5.2. Graph generation
To generate a tree skeleton, we aim to extract a subgraph

(spanning tree) with a plausible tree shape from a graph. Thus,
the next step is the construction of a graph from the extracted
candidate skeleton point set, which is denoted by P = {pi|i =

1, 2, ..., n}. The weighted edges of the graph E = {ei j} are cal-
culated by the Euclidean distance ||pi − pj|| between two adja-
cent points pi and pj. One important factor is the radius of the
sphere rp for searching the adjacent points of a given point pi.
Xu et al. [2] chose a local neighborhood rp = 0.2 m accord-
ing to the precision of a terrestrial scanner, and created several
subgraphs from the input data. The major difference between
our graph generation method and previous methods is the con-
struction of a connected graph with a sufficient neighborhood
for most airborne point clouds. The connected graph is creat-
ed by combining a fixed-radius nearest neighbor (FRNN) algo-
rithm and k-nearest neighbor (kNN) algorithm using a k-d tree
data structure. Based on the connected graph, we aim to di-
rectly extract a complete tree skeleton rather than consider the

connection of subgraph skeletons. Although a connected graph
can be simply created by assigning a large value to rp, this also
generates many unnecessary edges, which may not be faithful
to the original branch structure. Fig. 10 (a) shows the graph
of an airborne point cloud with a large searching radius 0.8m;
however, the graph is not connected because of the sparse and
non-uniform sampling by the airborne LiDAR system. When
the search radius is increased to 1.2m, the generated graph is
still not connected, as shown in Fig. 10 (b). To make a con-
nected graph with a relatively small searching radius, we use
the kNN algorithm to search for the k nearest points of a point
pi when it does not have sufficient neighboring points with rp.
The searching algorithm is implemented based on a k-d tree as
follows:

Algorithm 1: GraphGenerate(rp, k)
Initialize the number of nearest points ni around pi and
insert all points P into a k-d tree kt;
forall the points pi do

Locate and connect the neighboring points of pi from
kt using the FRNN algorithm;
Determine ni with a searching radius rp;

forall the points pi do
if (ni < k) then

Locate and connect the k nearest points of pi

from kt using the kNN algorithm;

As a result, even if zero neighboring points are determined
for a given point using the FRNN algorithm, the following kNN
algorithm still calculates the k nearest neighbors for that point.
Fig. 10 (c) shows that a connected graph can be generated with
a relatively small rp (0.8 m) and small kNN parameter k (8).

Fig. 10: Results of graph generation with various combinations
of rp and k. The radius of each red wireframe sphere is rp,
and small scale subgraphs are marked by black rectangles. (a)
rp = 0.8 m, k = 0. (b) rp = 1.2 m, k = 0. (c) rp = 0.8 m, k = 8.

5.3. Direction fields

The graph generated from the tree point cloud provides a
good candidate set for the actual branching structure. The goal
is now to determine a suitable subgraph that corresponds to a
natural skeleton. Hence, we first analyze images of real trees
and investigate in which direction branches grow. From this
analysis, we derive a heuristic formula, which creates a direc-
tion field that corresponds well to those extracted from actual

6

images. The skeleton generation algorithm then takes this di-
rection field into account when connecting nodes.

We note that trunks usually grow vertically and secondary
branches grow horizontally in nature [8, page 15], as shown in
Fig. 11 (a). This observation suggests that the growth direction
of a point on a branch is related to its position. If the position
is near the trunk, then it possibly has a vertical direction, and if
it is close to the secondary branches, it tends to point outward
horizontally. To further understand this phenomenon, a binary
image of a tree is created by removing the background manual-
ly, and thresholding using image processing software (GIMP),
as shown in Fig. 11 (b). Next, we downsample black pixels
in the binary image and generate sparse two-dimensional (2D)
points (red points in Fig. 11 (c)). Then, we compute all the
shortest paths to the root point, as shown in Fig. 11 (c). Finally,
the growth direction of a point in the image ui is approximated
by the average directions of its neighborhood, and the direction
angle of ui is denoted by θi, where θi = tan(ui.y/ui.x)−1. Fig. 11
(d) shows the average directions computed from the shortest
paths. Inspired by the work of Neubert et al. [16] and Livny et
al. [3], we use the term direction f ield to denote these branch
growth directions. However, it is almost impossible to deter-
mine all the direction fields manually from the photographs
of corresponding airborne tree points as described in the work
of Neubert et al. [16]. Moreover, unlike the orientation field
of terrestrial tree points [3], the shortest paths of airborne tree
points are too incomplete to represent the directions of branch-
es. Thus, we make the following four assumptions from ob-
serving the branch directions of a real-world tree as illustrated
in Fig. 11 (d):

• The direction fields are almost symmetric about the cen-
terline (trunk) of a tree.

• The trunk directions are nearly perpendicular to the ground.

• The direction angle θi decreases and the branches gradu-
ally point horizontally when moving from the centerline
to the side of the image.

• The direction angles of upper branches change more s-
lowly than those of lower branches.

Fig. 11: The process of determining the orientations of branch-
es from a photograph. (a) Input photograph. (b) Binary image
after removing background and thresholding. (c) Shortest paths
of the downsampled points (red points) from the binary image.
(d) Average directions computed from the shortest paths of the
neighborhood.

These phenomena could be explained by the combined ef-
fects of phototropism, apical dominance and negative geotropis-
m introduced in the work of Mattheck [31, page 43-51], which
provide the possibility of using a formulation to approximate θi

according to the location of the point in a tree crown, thereby
avoiding manually segmenting the foreground and background
from tree images. Consider an image with a bounding box
(pmin, pmax), we compute the direction angle of point pi by

θi =

{
90◦ − (90◦ − θl − µ1(θu − θl))µ2 (Lc < pi.x)
90◦ + (90◦ − θl − µ1(θu − θl))µ2 (Lc ≥ pi.x) (5)

where µ1 = (pi.y/(pmax.y − pmin.y))k1 ,, µ2 = (|pi.x − Lc|/Lc)k2 ,
Lc is the distance from pmin to the centerline, k1 and k2 are ex-
ponents that control the rate of change of direction angle, and
θu and θl are the user defined angles at the upper right and low-
er right corner of the bounding box, respectively, as shown in
Fig. 12 (a). After setting the parameters {θl, θu, k1, k2}, a 2D
direction field is generated from Eq. 5. Fig. 12 (b) shows the
simulated direction field that is plausible with respect to the di-
rection field, as illustrated in Fig. 11 (d).

Fig. 12: (a) Bounding box. (b) Simulated direction field with
user defined parameters: θl = −40◦, θu = 80◦, k1 = 1.8, k2 =

0.8.

To generate a 3D direction field, we rotate the 2D direction
field around the centerline and represent ui by the normalized
vector of (pi.x− pc.x, ||pi − pc||tan(θi), pi.z− pc.z), where pc is a
point on the centerline of the 3D bounding box with pc.y = pi.y.
Fig. 13 shows that different 3D direction fields can be created
by adjusting the parameters of Eq. 5. Note that the combination
of a large k1 and small k2 makes the branch directions more
horizontal than that of a small k1 and large k2.

5.4. Skeleton production

Once the direction field has been created, we combine the
direction field {ui} and weighted edges {ei j} to produce tree
skeletons from the candidate skeleton point cloud {pi}. To gen-
erate a natural branch structure, we propose a fast bottom-up
greedy algorithm with two constraints to guide the process. The
first constraint is the bending angle α j between a parent seg-
ment vparent and child segment vchild of a given point pi, as
shown in Fig. 14 (a). This angle should be smaller than a
threshold αmax (e.g., 90◦) to form smooth branches [3]. For
each candidate point pj of pi, we impose a second constraint β j

7

Fig. 13: 3D direction fields of the same point cloud with differ-
ent parameters. (a) θl = −10◦, θu = 60◦, k1 = 1.2, k2 = 0.3. (b)
θl = −10◦, θu = 60◦, k1 = 0.6, k2 = 1.0.

to describe the difference between its direction angle u j and the
child segment vchild. Similarly, a threshold angle βmax (e.g., 60◦)
is introduced to make the segments follow the given direction
field of a point cloud. The candidate point pj is selected as a
skeleton point when α j < αmax and β j < βmax are satisfied.

Fig. 14: Illustration of our algorithm for constructing the tree
skeleton. (a) Two angle constraints α j and β j. Red arrows are
direction vectors, the red disk is a starting point, green disks
are candidate points and the blue segment is a starting vector.
(b) Deletion of orange segments with small pruning angle φ j.
(c) The blue segment with a red endpoint is chosen as a new
starting vector.

In some cases, the selected skeleton points might be very
close to each other, as can be seen in Fig. 14 (b). Then, a
pruning angle φ j and small pruning threshold φmax (e.g., 30◦)
are used to remove the potentially overlapping segments when
φ j < φmax. To continue searching for the remaining skeleton
points, we need to determine a new starting vector vparent from
the current valid skeleton points {pj}. In our work, we use a
priority queue Q to store the valid bending angles {α j}, and
give child segments with a small bending angle higher prior-
ity. This technique avoids the generation of zig-zag branches
with a sharp change of bending angle. Next, the new starting
vector is retrieved from the top of the priority queue, as shown
in Fig. 14 (c). We repeat the process until all valid points are
visited.

During the search process, the collection of all segments
forms a tree structure denoted by an array T . Each node of T
consists of the values (plow, pup, nchild, ptrchild), where plow and
pup are the lower and upper positions of a branch segment, re-
spectively; nchild is the number of child segments; and ptrchild is
the address to store the indices of the child segments. Given a

starting index start and ending index end of the point set P, we
use algorithm 2 to implement skeleton production.

Algorithm 2: SkeletonProduce(start, end)
Create a priority queue Q and push node (start, end,
key = 1.0) in Q; create a Boolean array visited[1...n] and
initialize all values to f alse except visited[start] and
visited[end], which are initialized to true; create a vector
container T and add the node (pstart, pend, 0,NULL) at
the end of T ; create an empty vector container C to store
the skeleton points;
while (!Q.empty()) do

nd = Q.pop() ; // Access the top node

k = nd.start, i = nd.end ; // Retrieve indices

vparent = pi − pk;
C.clear() ;
forall the adjacent points pj of the point pi do

if visited[j] then continue; // if visited

vchild = pj − pi ;
α j = vchild.Angle(vparent);
β j = u j.Angle(vchild) ;
if (α j < αmax and β j < βmax) then

ns = (vchild, α j, j) // Create a new node

C.push back(ns) // Insert the node

visited[j] = true;

C.sort(); // Sort α j in ascending order

forall the nodes nl in C do
forall the nodes nm in C do

φlm = nl.vchild.Angle(nm.vchild) ;
if (nl , nm and φlm < φmax) then

Remove the node nm from C ;

T.set child index(C) ; // Set nchild & ptrchild

forall the nodes ns in C do
np.start = i, np.end = ns. j ;
np.key = ns.α j/αmax ; // Use α j as a key

Q.push(np) ;
low = i, up = ns. j ;
T.push back(plow, pup, 0,NULL) ;

Fig. 15: Reconstructed skeletons from airborne point clouds in
Fig. 5 using the skeleton production algorithm.

Algorithm 2 is greedy and fast because it considers the bend-
ing angles of candidate point pj in increasing sequential order

8

based on a priority queue, and immediately adds the selected
segments to the tree set T without backtracks. We automati-
cally choose the root position as the initial starting point, and
derive the ending point in the direction of the trunk by Eq. 3
and Eq. 4. Fig. 15 shows the skeletons generated from the air-
borne point clouds in Fig. 5. The segment color is determined
by the level of the segment, which is computed by a depth-first
search algorithm.

5.5. Branch geometry
To create reasonable branch geometry, we first determine

the thickness of each segment using a pipe model [9, 32]. Sup-
pose the branch of a tree is a truncated cone. Let Rup be the
radius of the upper base, and Rlow be the radius of the lower
base. For a parent segment i with N child segments, the lower
radius Rlow,i and upper radius Rup,i are calculated by

R2
up,i =

∑N
j=1 R2

low, j
Rlow,i = Rup,i

Rup,tip = Rconst

(6)

where Rconst is a user-defined radius of a branch tip without
child segments. Next, we adjust the upper radius Rup,i by as-
signing the maximum radius from all the lower radii of its child
segments. Fig. 16 (a,b) show the branch geometry that is repre-
sented by truncated cones. Because real-world trees often have
long branches, we use the depth-first search algorithm again
to form branches with a small change of thickness and bend-
ing angle. Finally, all branches are smoothed by cubic Hermite
splines, and the geometry of a branch is represented by gener-
alized cylinders [33], as shown in Fig. 16 (c,d).

Fig. 16: Illustration of branch geometry represented by (a, b)
truncated cones and (c, d) generalized cylinders. Branches of
the same color are at the same level.

5.6. Leaf arrangement
Because of the low resolution of the tree point cloud sam-

pled by the airborne LiDAR system, it is difficult to identify

leaf locations and shapes from the original data. Thus, we ar-
range leaves on branches according to botanical rules. Various
individual leaves are scanned and modeled. Three patterns of
leaf arrangement, distichy, dispersion and decussation [8, page
13], are implemented. For each branch represented by a se-
ries of nodes si (i = 1, 2, ..., n), we place leaves at the tips of
branches that are defined by (s j, s j+1), (s j+1, s j+2), ..., (sn−1, sn),
where n − 3 ≤ j ≤ n − 1. Because the different shapes and
arrangements of leaves are responsible for the detailed spatial
differences between trees, we create four types of leaves, ap-
ple, cherry, maple and poplar leaves, and provide users with the
flexibility to choose leaf species and phyllotaxis.

Fig. 17: Airborne LiDAR scanning system. (a) UAV. (b) Scan-
ning device.

6. Results and limitations

The airborne point clouds were acquired by an airborne Li-
DAR scanning system that consisted of a Swiss Drones’ Drag-
on35 unmanned aerial vehicle (UAV) and scanning device (Riegl
Vux-Sys), as shown in Fig. 17. The testing data used in this pa-
per was collected at a flight altitude of approximately 200 m
with 28 km/h flight speed, and the laser pulse repetition rate
(PRR) was set to 400 kHz. The maximum scanning angle was
approximately 120◦, and the density of point cloud was approx-
imately 40 points/m2. Then, we performed the segmentation
and reconstruction of tree models from the point clouds on a
laptop with a 2.4GHz CPU and 4GB RAM. We also compared
our results to those generated in the works of [2] and [9].

6.1. Segmentation results

To compare the robustness and efficiency of the spanning
tree method [3] with our segmentation method, we combined t-
wo individual airborne tree point clouds with different distances,
as illustrated in Fig. 18 (a, e). The two point clouds contained
5,935 points, and the spanning tree method was implemented
using Prim’s algorithm with the data structure of an adjacen-
cy list. When the two point clouds were not sufficiently close,
it worked well to segment the two clusters (see Fig. 18 (a–c)),
whereas it had a leakage problem and failed to separate the t-
wo trees when the two clusters were very close to each other,
as shown in Fig. 18 (e–g). The average segmentation time of
the spanning tree method was 4.552 s, whereas it took 4.885 s
using our method. Although our method was a little bit slower
than the approach of Livny et al. [3], it was still able to segmen-
t the two trees when they were very close, as shown in Fig. 18

9

Fig. 18: Segmentation results of two tree point clouds using
spanning tree and normalized cut methods. (a, e) are two air-
borne point clouds with two distances (3.0 and 2.7), (b, c, f, g)
are the segmentation results of the spanning tree method and
(d, h) are the segmentation results of our method. Note that
the blue points in (a, e) are trunk points added by the method
proposed in subsection 4.2.

(h). The main reason that our method had an advantage over
the spanning tree method is the consideration of the global im-
pressions of point clouds, including the differences of spatial
locations, colors and intensities.

Fig. 19: (a)Before and (b)after segmentation of a small area of
forest point clouds.

When the number of points increased, it was impossible to
create a large weight matrix to store the edge information of all
points. Thus, we downsampled the points in a voxel structure
and saved the edges in a sparse matrix before segmentation.
The number of points in Fig. 3 was reduced from 36,048 to
7,745 when the voxel pitch of segmentation was ds = 0.7 m and
segmentation time of points in Fig. 3 was 9.495 s. Moreover,
we tested our method on a small area of forest point clouds
with 3,732,760 points, as shown in Fig. 19 (a). After segmen-
tation with ds = 0.9 m, 911 individual trees were segmented in
233.873 s, and the segmented result is illustrated in Fig. 19 (b).

6.2. Modeling results

To reconstruct tree geometries from the segmented individ-
ual trees, various tree point clouds were tested with several ad-

Table 1: Range of parameters used for tree modeling.

Symbol Description Range
dl The size of voxel [0.15 m, 0.25 m]
rp The radius of sphere [0.8 m, 1.4 m]
k Number of the top k nearest points [10, 30]
θu The min angle of upper branches [45◦, 90◦]
θl The min angle of lower branches [60◦, 30◦]

k1, k2 The change rate of direction angle [0.2, 2.0]
αmax The 1st constrain [40◦, 90◦]
βmax The 2nd constrain [30◦, 90◦]
φmax The threshold of pruning angle [10◦, 40◦]

Fig. 20: Reconstructed tree branches correspond to the two di-
rection fields in Fig. 13.

justable parameters, as described in Table 1. The voxel pitch
of reconstruction dl and radius rp for searching local neighbor-
hoods were determined by the density of the point cloud. In our
experiments, we set dl to 0.2 m and rp to 1.2 m in most cases.
The k value for searching kNN was set to between 10 and 30
according to rp. (θu, θl, k1, k2) are a group of parameters used to
determine the direction field of a given point cloud, (αmax, βmax)
are two angle constraints and φmax is the pruning angle.

Fig. 21: Illustration of the impact of two constraints αmax and
βmax. (a) αmax = 50◦, βmax = 50◦. (b) Percentage of visited
points is 64%. (c) αmax = 70◦, βmax = 70◦. (d) Percentage of
visited points is 94%.

To observe the visual difference of tree models created with
different parameters, we changed one group of parameters while
keeping the remaining parameters constant. Fig. 20 shows the
corresponding tree models generated from the two direction
fields defined in Fig. 13. As a result, the combination of a s-

10

mall k1 and large k2 generated a more negative geotropism ef-
fect than that of a large k1 and small k2. A similar phenomenon
occurred when we assigned large values to θl and θu.

Fig. 22: Illustration of the impact of pruning angle φmax. (a)
Reconstructed tree has 1,308 branches when φmax = 25◦. (b)
Number of generated branches is 1,145 when φmax = 30◦.

Another factor that had a substantial impact on the shape of
the branches was the combination of the two constraints αmax

and βmax. Fig. 21 (a) shows that a small αmax and small βmax

created smooth branches that followed the direction field well.
However, the tightly constrained parameters led to a large num-
ber of skeleton points that were unvisited, as shown in Fig. 21
(b). By contrast, a large αmax and large βmax generated fewer
smooth branches, whereas the majority of skeleton points were
visited, as shown in Fig. 21 (c,d).

Fig. 23: (a, d, g) are original point clouds, (b, e) are recon-
structed tree branches and (c, f, h) are shaded trees with poplar
and cherry leaves.

Fig. 22 (a) and (b) show the reconstructed branches with
a relatively small pruning angle φmax = 25◦ and large angle
φmax = 30◦, respectively. As expected, a small pruning angle

generated denser branches than a larger pruning angle, and it
also increased the chance of penetration between branches.

Based on the above analysis, we set the default values of
all the parameters as dl = 0.2 m, rp = 1.2 m, θu = 80◦, θl =

−40◦, k1 = 1.4, k2 = 1.0, αmax = 70◦, βmax = 70◦ and φmax =

30◦, which allowed users to automatically reconstruct plausi-
ble trees in most cases. In our experience, the detailed branch
structures could be improved by fine-tuning the four parame-
ters θl, k2, αmax and βmax. Fig. 23 (a–f) illustrate the final re-
constructed and shaded images of the airborne point clouds,
which are the test subjects throughout this paper. During the
reconstruction, more than 90% skeleton points were visited;
thus, the reconstructed branches matched the original data well.
Fig. 23 (h) shows the reconstructed trees from the segmented
point clouds in Fig. 4.

Table 2: Statistics of various tree point clouds. G+S repre-
sents the total time of graph generation and skeleton produc-
tion; T+G+S represents the total time of all modeling stages.

Fig. 24 No. No. valid Thin- Graph Skeleton Total Total
pts. pts. ning Gen. Gen. (G+S) (T+G+S)

k 1,483 769 < 1ms < 1ms 0.016s 0.016s 0.016s
b 2,746 1,217 < 1ms 0.015s 0.016s 0.031s 0.031s
c 3,703 547 < 1ms < 1ms < 1ms < 1ms < 1ms
l 4,462 2,813 0.016s 0.047s 0.047s 0.094s 0.110s

m 5,046 2,596 0.016s 0.047s 0.031s 0.078s 0.094s
i 5,420 1,853 0.015s 0.031s 0.015s 0.046s 0.061s
n 6,788 4,351 0.016s 0.109s 0.093s 0.202s 0.218s
d 10,350 3,520 0.031s 0.094s 0.047s 0.141s 0.172s
f 13,403 7,535 0.046s 0.265s 0.219s 0.484s 0.530s
g 15,715 4,187 0.031s 0.109s 0.078s 0.187s 0.218s
a 17,501 8,539 0.062s 0.312s 0.250s 0.562s 0.624s
h 18,909 10,234 0.063s 0.407s 0.375s 0.782s 0.845s
e 26,787 4,043 0.062s 0.093s 0.078s 0.171s 0.233s
j 30,243 8,407 0.093s 0.313s 0.219s 0.532s 0.625s

To confirm the efficiency of our algorithm, we chose 14 air-
borne tree point clouds with various densities and numbers of
points from 1,483 to 30,243(see Fig. 1), and assigned a unique
letter to each tree, as shown in Fig. 24. Because the modeling
process mainly consisted of the thinning, graph generation and
skeleton production stages, we recorded the computational time
for each stage, as shown in Table 2. As expected, our algorithm
ran very efficiently, with the shortest time less than 1 ms and the
longest time less than 0.9 seconds.

Fig. 25 shows that the modeling time fluctuated sharply
with the increase of the number of original points, except for the
thinning process, and the dominant time-consuming parts were
the graph generation and skeleton production stages. This oc-
curred because some point clouds were much denser than other-
s, and the number of dense point clouds decreased rapidly after
thinning with the same voxel size. Therefore, we ignored the in-
fluence of the thinning process and only considered the number
of valid points (called candidate skeleton points previously), as
shown in Fig. 26.

Thus, the fluctuation disappeared and the modeling time in-
creased with the increase of valid points. The curves in Fig. 26
show that the time complexity of the algorithm was approxi-
mately linear from 4,000 points to 10,000 points, thus ensuring
the efficiency of our approach.

11

Fig. 24: Top view of 14 trees (a–n) reconstructed from point
clouds with various densities and sizes. Top: tree point clouds.
Bottom: reconstructed trees.

In some cases, airborne point clouds have few visible branch-
es, as shown in Fig. 27 (a). In comparison with the branch
geometries created by the SC algorithm [9], our approach was
still able to preserve the detailed twig information, as illustrat-
ed in the green rectangle of Fig. 27 (c) because the branches
reconstructed by our approach passed through the input point
cloud rather than inserting new branch points as described in
the work of Runions et al. [9]. To further verify the robustness
of our method, we input the terrestrial tree point cloud from
Fig. 27 (e), and the reconstructed branches matched the original
branches better than the SC algorithm [9], as shown in Fig. 27
(f–h), although the aim of our approach is not to model dense
tree point clouds. Our approach can also reconstruct a plausible
tree only from the silhouette points of the Stanford dragon, as
shown in Fig. 28.

We compared our method to the skeleton production method
based on clustered bins [2]. For reconstructing clean and bare
branches, Xu et al. [2] generated better results than ours, as
shown in Fig. 29. However, when the tested objects were noisy
and incomplete (see Fig. 30), our method produced more natu-
ral skeletons than the method of clustered bins.

Fig. 31 (b–e) illustrate the downsampled point clouds gen-
erated by gradually removing points from a dense terrestrial
point cloud (see Fig. 31 (a)). The reconstruction results show
that our method still preserved the plausible high-level branch
structures, even if a large number of points were removed from
the original data, which demonstrates our method’s capability
to manage sparse tree point clouds (see Fig. 31 (f–j)).

Moreover, we tested our modeling method on segmented

0 5,000 10,000 15,000 20,000 25,000 30,000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Points

Seconds

Thinning

Graph Gen.

Skeleton Gen.

Total(T+G+S)

Fig. 25: Relations between modeling time and number of
points before thinning.

0 2,000 4,000 6,000 8,000 10,000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Points

Seconds

Graph Gen.

Skeleton Gen.

Total(G+S)

Fig. 26: Relations between modeling time and number of
points after thinning.

forest point clouds, as shown in Fig. 19. In practice, forest point
clouds are not clean and contain noise; thus, it is difficult to re-
construct all the segmented point clouds precisely. By choos-
ing 15 combinations of parameters with (αmax, βmax, rp) from
(50◦, 50◦, 1.0 m) to (70◦, 70◦, 1.2 m), each individual tree model
was exported when the percentage of visited points was greater
than 85%. From 911 segmented tree point clouds, 871 tree
models were reconstructed in 66.8 seconds using our method.
The reconstruction rate was 95.6% and the average reconstruc-
tion time was 0.077 seconds per tree. In the remaining 40 tree
point clouds, 11 were classified as noise because they only con-
tained 1 − 3 points, and 29 were problematic because it was
difficult to generate corresponding connected graphs.

Fig. 32 shows the failed reconstruction of a segmented tree
point cloud from the remaining 29 point clouds. In this case,
the SC algorithm was more robust than our method. Thus,
we reconstructed the remaining 29 tree points using the SC
algorithm [9], and the reconstruction time was 41.3 seconds.
Fig. 33 shows the final 900 tree models generated by the hybrid
method.

In comparison with previous modeling methods of point
clouds [2–4], we consider more incomplete and sparser air-
borne LiDAR data than terrestrial LiDAR point clouds. Run-

12

Fig. 27: Illustration of the feature-preserving reconstruction of
point clouds that have major branches. (b, f) are tree skeletons
produced by the SC algorithm [9] and (c, d, g, h) are recon-
structed results using our method.

Fig. 28: Tree reconstructed from the point cloud of the Stanford
dragon.

ning on a similar configuration of CPU, the average modeling
time in the work of Xu et al. [2] and Livny et al. [3] was
0.537s/k points and 0.473s/k points, respectively (s/k points
means seconds per 1,000 points). By contrast, the average mod-
eling time of trees from Fig. 24 was 0.023s/k, which indicates
that our approach was 23 times faster than the method of X-
u et al. [2] and 21 times faster than the method of Livny et
al. [3]. The average modeling time of the lobe-based method
[4] was approximately 10ms for each individual tree, whereas
the modeling time of our method was 269ms per tree, which
was much slower than the lobe-based method [4]. However, the
lobe-based method [4] requires a species library, which is diffi-
cult to derive from airborne data. Moreover, the representation
of trees in lobes has the advantage of rendering and transmis-
sion, but may not be suitable for animation.

Fig. 29: Skeletons reconstructed from clean and bare branch
points. (a) Point cloud of bare branches. (b) Clustered bin-
s. (c) Skeletons generated by connecting the centroids of the
clustered bins.(d) Skeletons generated by our method.

Fig. 30: Skeletons reconstructed from noisy point clouds. (a)
Terrestrial LiDAR point cloud. (b) Clustered bins. (c) Skeleton-
s generated from clustered bins. (d) Skeletons generated by our
method. (e) Airborne LiDAR point cloud. (f) Clustered bin-
s. (g) Skeletons generated from clustered bins. (h) Skeletons
generated by our method.

Fig. 31: Reconstruction results from the same tree with various
numbers of point clouds. (a) Original point cloud with 22,698
points. (b–e) Reduced point clouds with 2,941, 878, 232 and
57 points. (f–j) Reconstructed tree models.

6.3. Limitations

A limitation of our method is the evaluation of the segmen-
tation of trees from forest environments illustrated in Fig. 19.
For the segmentation of large-scale airborne point clouds, it
is a challenging task to make a quantitative evaluation of the
normalized-cut method because of a lack of ground truth.

Second, we have not considered the tree species for tree
modeling, and how to set parameters for a wide variety of tree
species is still a problem. Real-world trees have various species
and possibly correspond to different branch structures and bend-
ing angles. Livny et al. [4] developed a supervised classifica-
tion method to classify various tree species by taking into ac-
count the trunk width, height and distribution of tree points.
However, unlike terrestrial LiDAR point clouds, airborne Li-
DAR point clouds in our test were very incomplete, which led
to the difficulty of obtaining specific information about, for ex-
ample, trunk width and height. Therefore, our method can only
reconstruct plausible tree models rather than accurate tree mod-
els that take into account the species.

To reconstruct plausible tree models from sparse tree points,
we assumed that the direction fields were almost symmetric

13

Fig. 32: Our reconstruction method failed when the segmented
tree points could not form a connected graph. (a) Tree point
cloud. (b) Generated graph. (c) Our reconstruction result. (d)
Result using the SC algorithm [9].

Fig. 33: Reconstruction of a small area forest from the seg-
mented point clouds in Fig. 19 (b).

about the center line of a tree, which is not appropriate to de-
scribe some trees that have very curved trunks in the real world.

7. Conclusions

We have presented a new approach to segment and recon-
struct plausible trees from point clouds scanned by airborne L-
iDAR systems. We also developed a system that allows con-
tent creators to generate a tree model in less than one second.
In addition to efficiency, we demonstrated that our approach
can also preserve the features of tree point clouds with visible
branches. To the best of our knowledge, this is the first study to
model trees interactively with fine details directly from airborne
LiDAR data. Although we have not implemented a classifica-
tion of tree species, we have raised a new problem with regard
to modeling trees from airborne LiDAR point clouds, which
has a wide application in the 3D visualization of forests on the
earth. In the future, we would like to consider tree classification
because the densities of airborne data are expected to increase
with the advance of the LiDAR system.

8. Acknowledgments

We would like to kindly thank Prof. Takeo Igarashi and
the anonymous reviewers. This work was supported by the
National 863 Plan [2013AA10230402], NSFC[61303124], NS-
BR Plan of Shaanxi [2015JQ6250], and Eurasia-Pacific Uninet
Post-Doc Scholarship from OEAD. The terrestrial tree point
cloud in Fig. 8 (a) and Fig. 27 (e) was downloaded from the
project page of L1-medial skeleton of point cloud [34], and the
dragon point cloud in Fig. 28 was sourced from the The Stan-
ford 3D scanning repository.

References

[1] Cheng ZL, Zhang XP, Chen BQ. Simple reconstruction of tree branches
from a single range image. Journal of Computer Science and Technology
2007;22(6):846–58.

[2] Xu H, Gossett N, Chen B. Knowledge and heuristic-based modeling
of laser-scanned trees. ACM Transactions on Graphics 2007;26(4):19.
doi:10.1145/1289603.1289610.

[3] Livny Y, Yan F, Olson M, Chen B, Zhang H, El-Sana J. Automatic recon-
struction of tree skeletal structures from point clouds. ACM Transactions
on Graphics 2010;29(6):151. doi:10.1145/1882261.1866177.

[4] Livny Y, Pirk S, Cheng Z, Yan F, Deussen O, Cohen-Or D, et al. Texture-
lobes for tree modelling. ACM Transactions on Graphics 2011;30(4):53.
doi:10.1145/2010324.1964948.

[5] Ulam S. Patterns of growth of figures: Mathematical aspects. In Module,
Proportion, Symmetry, Rhythm. New York: George Braziller; 1966.

[6] Honda H. Description of the form of trees by the parameters of the
tree-like body: Effects of the branching angle and the branch length
on the shape of the tree-like body. Journal of Theoretical Biology
1971;31(2):331–8. doi:10.1016/0022-5193(71)90191-3.

[7] Prusinkiewicz P, Lindenmayer A. The algorithmic beauty of plants. New
York: Springer-Verlag Press; 1990.

[8] Deussen O, Lintermann B. Digital design of nature: Computer generat-
ed plants and organics. New York: Springer-Verlag Press; 2005. ISBN
3540405917.

[9] Runions A, Lane B, Prusinkiewicz P. Modeling trees with a space col-
onization algorithm. In: Proceedings of the Third Eurographics confer-
ence on Natural Phenomena. ISBN 9783905673494; 2007, p. 63–70.
doi:10.2312/NPH/NPH07/063-070.

[10] Stava O, Pirk S, Kratt J, Chen B, Mech R, Deussen O, et al. Inverse proce-
dural modelling of trees. Computer Graphics Forum 2014;33(6):118–31.
doi:10.1111/cgf.12282.

[11] Okabe M, Owada S, Igarashi T. Interactive Design of Botanical Trees us-
ing Freehand Sketches and Example-based Editing. Computer Graphics
Forum 2005;24(3):487–96.

[12] Chen X, Neubert B, Xu YQ, Deussen O, Kang SB. Sketch-based tree
modeling using Markov random field. ACM Transactions on Graphics
2008;27(5):109. doi:10.1145/1409060.1409062.

[13] Wither J, Boudon F, Cani MP, Godin C. Structure from silhouettes: A
new paradigm for fast sketch-based design of trees. Computer Graphics
Forum 2009;28(2):541–50. doi:10.1111/j.1467-8659.2009.01394.
x.

[14] Reche A, Martin I, Drettakis G. Volumetric reconstruction and interactive
rendering of trees from photographs. ACM Transactions on Graphics
2004;23(3):720–7. doi:10.1145/1015706.1015785.

[15] Tan P, Zeng G, Wang J, Kang SB, Quan L. Image-based tree modeling.
ACM Transactions on Graphics 2007;26(3):87. doi:10.1145/1276377.
1276486.

[16] Neubert B, Franken T, Deussen O. Approximate image-based tree-
modeling using particle flows. ACM Transactions on Graphics
2007;26(3):88. doi:10.1145/1276377.1276487.

[17] Tan P. Single image tree modeling. ACM Transactions on Graphics
2008;27(5):108. doi:10.1145/1409060.1409061.

[18] Zhou QY, Neumann U. Complete residential urban area recon-
struction from dense aerial LiDAR point clouds. Graphical Models
2013;75(3):118–25. doi:10.1016/j.gmod.2012.09.001.

[19] Palubicki W, Horel K, Longay S, Runions A, Lane B, Měch R, et al.
Self-organizing tree models for image synthesis. ACM Trans Graph
2009;28(3):58:1–58:10. doi:10.1145/1531326.1531364.

[20] Longay S, Runions A, Boudon F, Prusinkiewicz P. Treesketch: Interac-
tive procedural modeling of trees on a tablet. In: Eurographics Workshop
on Sketch-Based Interfaces and Modeling. The Eurographics Association.
ISBN 978-3-905674-42-2; 2012,doi:10.2312/SBM/SBM12/107-120.

[21] Pfeifer N, Gorte B, Winterhalder D. Automatic reconstruction of single
trees from terrestrial laser scanner data. In: XXth ISPRS Congress: Pro-
ceedings of Commission V; vol. 35. Istanbul, Turkey. ISBN 1682-1750;
2004, p. 114–9. doi:10.1.1.1.7844.

[22] Gorte B, Pfeifer N. Structuring laser-scanned trees using 3D mathemat-
ical morphology. In: XXth ISPRS Congress: Proceedings of Commis-
sion V; vol. 35. Istanbul, Turkey. ISBN 1682-1750; 2004, p. 929–33.
doi:10.1.1.1.7844.

14

http://dx.doi.org/10.1145/1289603.1289610
http://dx.doi.org/10.1145/1882261.1866177
http://dx.doi.org/10.1145/2010324.1964948
http://dx.doi.org/10.1016/0022-5193(71)90191-3
http://dx.doi.org/10.2312/NPH/NPH07/063-070
http://dx.doi.org/10.1111/cgf.12282
http://dx.doi.org/10.1145/1409060.1409062
http://dx.doi.org/10.1111/j.1467-8659.2009.01394.x
http://dx.doi.org/10.1111/j.1467-8659.2009.01394.x
http://dx.doi.org/10.1145/1015706.1015785
http://dx.doi.org/10.1145/1276377.1276486
http://dx.doi.org/10.1145/1276377.1276486
http://dx.doi.org/10.1145/1276377.1276487
http://dx.doi.org/10.1145/1409060.1409061
http://dx.doi.org/10.1016/j.gmod.2012.09.001
http://dx.doi.org/10.1145/1531326.1531364
http://dx.doi.org/10.2312/SBM/SBM12/107-120
http://dx.doi.org/10.1.1.1.7844
http://dx.doi.org/10.1.1.1.7844

[23] Palagyi K, Sorantin E, Balogh E, Kuba A, Halmai C, Erdohelyi B, et al.
A sequential 3D thinning algorithm and its medical applications. In: Pro-
ceedings of the 17th International Conference on Information Processing
in Medical Imaging; vol. 26. London, UK; 2001, p. 409–15.

[24] Bucksch A, Lindenbergh R. CAMPINO - A skeletonization method
for point cloud processing. ISPRS Journal of Photogrammetry and Re-
mote Sensing 2008;63(1):115–27. doi:10.1016/j.isprsjprs.2007.
10.004.

[25] Côté JF, Widlowski JL, Fournier RA, Verstraete MM. The structural
and radiative consistency of three-dimensional tree reconstructions from
terrestrial lidar. Remote Sensing of Environment 2009;113(5):1067–81.
doi:10.1016/j.rse.2009.01.017.

[26] Raumonen P, Kaasalainen M, Åkerblom M, Kaasalainen S, Kaartinen H,
Vastaranta M, et al. Fast automatic precision tree models from terrestrial
laser scanner data. Remote Sensing 2013;5(2):491–520. doi:10.3390/
rs5020491.

[27] Hackenberg J, Morhart C, Sheppard J, Spiecker H, Disney M. Highly
accurate tree models derived from terrestrial laser scan data: A method
description. Forests 2014;5(5):1069–105.

[28] Edson C, Wing MG. Airborne light detection and ranging (LiDAR) for
individual tree stem location, height, and biomass measurements. Remote
Sensing 2011;3(11):2494–528. doi:10.3390/rs3112494.

[29] Bucksch A, Lindenbergh R, Zulkarnain M, Rahman A, Menenti M.
Breast height diameter estimation from high-density airborne LiDAR da-
ta. IEEE Geoscience and Remote Sensing Letters 2014;11(6):1056–60.
doi:10.1109/LGRS.2013.2285471.

[30] Shi J, Malik J. Normalized cuts and image segmentation. IEEE Transac-
tions on PAMI 2000;22(8):888–905. doi:10.1109/34.868688.

[31] Mattheck C. Design in Nature - Learning from trees. Berlin Heidelberg:
Springer-Verlag Press; 1998. ISBN 3540629378.

[32] Shirozaki K, Yoda K, Hozumi K, Kira T. A quantitative analysis of plan-
t form - the pipe model theory. I. Basic analyses. Japanese Journal of
Ecology 1964;14(3):97–104.

[33] Bloomenthal J. Modeling the mighty maple. ACM SIGGRAPH’85
1985;19(3):305–11. doi:10.1145/325165.325249.

[34] Huang H, Wu S, Cohen-Or D, Gong M, Zhang H, Li G, et al. L1-medial
skeleton of point cloud. ACM Transactions on Graphics 2013;32(4):65.
doi:10.1145/2461912.2461913.

15

http://dx.doi.org/10.1016/j.isprsjprs.2007.10.004
http://dx.doi.org/10.1016/j.isprsjprs.2007.10.004
http://dx.doi.org/10.1016/j.rse.2009.01.017
http://dx.doi.org/10.3390/rs5020491
http://dx.doi.org/10.3390/rs5020491
http://dx.doi.org/10.3390/rs3112494
http://dx.doi.org/10.1109/LGRS.2013.2285471
http://dx.doi.org/10.1109/34.868688
http://dx.doi.org/10.1145/325165.325249
http://dx.doi.org/10.1145/2461912.2461913

	Introduction
	Related work
	Overview
	Segmentation and trunk locating
	Segmentation
	Add trunk points

	Tree modeling
	Thinning in voxel space
	Graph generation
	Direction fields
	Skeleton production
	Branch geometry
	Leaf arrangement

	Results and limitations
	Segmentation results
	Modeling results
	Limitations

	Conclusions
	Acknowledgments

