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Kurzfassung

Diese Arbeit stellt ein agentenbasiertes Modell vor, das zur Animation von molekularen
Maschinen verwendet werden kann. In der Regel werden molekulare Maschinen mittels
Schlüsselbild-Animationen visualisiert. Das Animieren von großen molekularen Strukturen
mittels Schlüsselbild-Animation in Standard 3D-Programmen kann sehr mühsam sein,
da Hunderte oder Tausende molekulare Teilchen, unter Berücksichtigung verschiedener
biologischer Phänomene, von Hand animiert werden müssen. Im Zuge der Arbeit wurde ein
prototypisches Framework erstellt, das mit Hilfe von unabhängigen Agenten das repetitive
Animieren von molekularen Teilchen vermeidet. Anstatt die molekularen Teilchen direkt
zu animieren, verwendet das Framework Verhaltensbeschreibungen für jede Art von
Molekularteilchen. Die Animation entsteht durch die Interaktion der molekularen Teilchen
untereinander, die durch ihr Verhalten definiert wird. Das Framework implementiert ein
abstraktes Modell, welches die Interaktion zwischen molekularen Teilchen ermöglicht. Die
Methodik für die Erstellung des Frameworks war getrieben von Beispielen. Drei molekulare
Maschinen wurden mit dem Framework visualisiert. Während dieses Prozesses wurde das
Framework iterativ verbessert, um die Anforderungen für jede neue molekulare Maschine
zu erfüllen. Die daraus resultierenden Animationen zeigen, dass die agentenbasierte
Animation eine praktikable Vorgehensweise für molekulare Maschinen ist.
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Abstract

This work proposes an agent-based model for animating molecular machines. Usually
molecular machines are visualized using key-frame animation. Creating large molecular
assemblies with key-frame animation in standard 3D software can be a tedious task,
because hundreds or thousands of molecular particles have to be animated by hand,
considering various biological phenomena. To avoid repetitive animation of molecular
particles, a prototypic framework is implemented, that employs an agent-based approach.
Instead of animating the molecular particles directly, the framework utilizes behavior
descriptions for each type of molecular particle. The animation results from the molecular
particles interacting with each other as defined by their behavior. Interaction between
molecular particles is enabled by an abstract model that is implemented by the framework.
The methodology for creating the framework was driven through learning by example.
Three molecular machines are visualized using the framework. During this process, the
framework was iteratively improved, to meet the requirements for each new molecular
machine. The resulted animations demonstrate that agent-based animation is a viable
option for molecular machines.
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CHAPTER 1
Introduction

Every second, an overwhelming number of molecular processes take place in our cells. A
great variety of macromolecular complexes are involved in these processes by performing
specific tasks. These complexes have some analogies to machines in the macroscopic
world, therefore they are often called molecular machines [BBC+01].

Since molecular machines are much smaller than the wavelengths of visible light, opti-
cal microscopes cannot be used to analyze their structures and functionalities [Goo04].
Instead, biologists examine the structure of molecular machines by using X-ray crystal-
lography, NMR spectroscopy and cryo-electron microscopy [Goo04, Cal15]. Since the
functionality cannot be observed directly, the biologists develop models on how such
machines may work, based on the spectroscopy data. The model then have to be conveyed
to fellow scientists and students. Textual descriptions are hard to imagine. Simple two-
dimensional (2D) visualizations provide better insights, but fail to convey the richness of
a three-dimensional (3D) environment [Iwa10]. Animated 3D visualizations proved to be
powerful tools for describing complex molecular processes to diverse audiences. This kind
of visualizations are not only an impactful way to communicate complicated molecular
processes, but are also widely appreciated for their beauty [FHFH15]. Furthermore,
creating an animation can also help the biologist to reflect on the model, detect flaws
and find missing parts [Rot16]. This, again, can help to refine hypotheses and design
new experiments [FHFH15].

1.1 Problem Statement
For creating 3D animations, usually standard 3D software, like Cinema4D [MAX17]
or Maya [Aut17], is used. The drawback of using standard 3D software for animating
molecular machines, is that this kind of software often requires weeks to months of
training and regular use to create only a basic molecular animation [Iwa15]. Sometimes
biologists have to hire programmers and animators to create models and animations.
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1. Introduction

This is not only expensive, but also provides a lot of opportunities of miscommunication
between the biologist and the animators [WTHT14]. Another challenge for animators is
to model large molecular assemblies which can include thousands of molecules. Animating
such a large number of objects can be very time consuming and tedious, especially when
every object has to be animated manually [Iwa15].

Great support for molecular visualization is provided by the Protein Data Bank (PDB) [BWF+00].
PDB is a public database which contains hundreds of thousands molecular struc-
tures [BWF+00]. There are plug-ins for most well-known 3D software that simplify the
import of molecular structures from the PDB into the 3D software [JAG+11, Too17]. But
still, the 3D software must be mastered by the biologist or a hired animator [WTHT14].
Still, the animation of each object has to be done by hand [Iwa15].

Due to the problems involved by using standard 3D software, a few tools emerged that are
dedicated to simplify the process of creating molecular animations [IMS+17, WTHT14].
However, these tools are either meant for very simple animations only [IMS+17] or use a
similar key-framing approach that is also used by standard 3D software [WTHT14]. So,
the needed effort for animating a large number of objects remains the same.

1.2 Aim of the Work

The aim of this work is to simplify and accelerate the animation process of molecular
machines in their environment by avoiding repetitive and automatable tasks. This is
achieved by creating a framework that supports the biologist in the animation process.

The result is a prototypic framework that animates molecular environments using an
agent-based model. The model represents an abstract molecular environment. It can be
extended and customized to adopt the desired behavior. A lot of animation tasks are
abstracted away by the framework. Instead of animating a scene using key-frames, the
framework requires the animator to define the behavior of molecular particles, using a
formal behavior description. These molecular particles act as independent agents that
interact with the environment according to their behavior description. They can respond
to changing environmental conditions, like the concentration of specific ligands, and
can also actively participate by initiating or releasing molecular bonds. A molecular
machine is built of molecules [Goo04]. By describing the behavior of each molecule, the
functionality of the whole machine can be animated.

This type of animation scales very well, because not every molecular particle has to be
animated separately. Instead, only the behavior of each type of molecular particle has
to be described. Thus, the animation effort is independent from the total number of
molecular particles, but only dependent on the number of distinct types.
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1.3. Methodological Approach

1.3 Methodological Approach
To learn about the visualization and animation process, three molecular machines were
visualized and animated from scratch. For this, a framework was created that supports
the animator. The three molecular machines differ in complexity and the simplest one
was chosen to start with. The framework was extended with features in order to being
able to animate the molecular machines. Simultaneously, the features were added in an
abstract manner, so that they can be reused for other animations. The framework was
iteratively improved with each machine.

The result is an abstract model of a molecular environment. Since the model is abstract,
it is not only usable for the three animated molecular machines, but is also applicable to
a variety of other molecular machines. The model is motivated by biological concepts. It
is used in behavior descriptions for molecular particles to interact with the molecular
environment.

1.4 Structure of the Work
The following Chapter 2 introduces the reader to the biological basics of molecular
machines. At the end of the chapter, three molecular machines are discussed, that are
used as examples throughout this work.

Chapter 3 discusses related tools that pursue the same or a similar goal. Moreover,
different animation methods, valuable data sources and specialized rendering approaches
that are related to molecular machines, are discussed and compared.

The abstract machinery model proposed by this work is explained in Chapter 4. It
provides a detailed description of each model component, including their relation to
biology. The emergence and the incremental improvements of the model are discussed at
the end of the chapter.

In Chapter 5 the implementation of the animation framework is discussed. It explains
how existing tools are used and how the model is integrated in framework.

The molecular machines animated with the framework are presented in Chapter 6. The
single components of the molecular machines are explained and it is shown how the
framework was used to animate them.

The final Chapter 7 discusses the advantages and flaws of the model and the framework,
and compares the framework to existing solutions. The chapter also provides some
insights and thoughts about this work.

Starting at page 91, there is a glossary that explains the biological terms used in this
work. The used acronyms are also listed there.
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CHAPTER 2
Biological Background

This chapter is dedicated to readers who are unfamiliar with the biological basics of
molecular machines. In the following sections, a few important biological terms are
defined and explained. The first section presents some vital components of the cell. In the
second section, the focus is moved to the building blocks of molecular machines and the
cell: the macromolecules. Then special properties of molecular machines are discussed.
The final section discusses three examples of molecular machines. Later chapters will
refer to those examples to provide a better insight.

2.1 Cells

Cells are small, membrane-enclosed units filled with water and other chemicals. They
form the fundamental units of life. The simplest forms are solitary cells, as most bacteria
and algae. But also higher organisms, including plants, animals and humans, are basically
just communities of individual cells. Despite the great variety of existing cells, all of them
share a very important feature: they store their genetic instructions in deoxyribonucleic
acid (DNA). Every cell has the capability to synthesize protein molecules out of the
blueprints that are encoded in the DNA. Proteins are vital components of the cell.
They are involved in chemical reactions, give the cell its shape and also control its
behavior [AJL+14]. As proteins are also an integral part of molecular machines, they are
discusses later in this chapter in more detail.

2.1.1 Cell Membrane

All cells are enclosed by a membrane that separates the inside of the cell from the outside
environment. The membrane consists of lipid molecules that have a head that likes to
interact with water (hydrophilic) and a tails that avoid contact with water (hydrophobic).
A simple illustration of a lipid molecule is shown in Figure 2.1a. When placed in water,
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2. Biological Background

(a) Illustration of a lipid molecule with
its hydrophilic head and its hydrophobic
tails [AJL+14].

(b) Lipids hiding their hydrophobic tails
from the water while exposing the hy-
drophilic heads, which results in a lipid bi-
layer [AJL+14].

Figure 2.1: Lipids forming a lipid bilayer.

such molecules arrange spontaneously to hide their hydrophobic tails from the water,
while exposing their hydrophilic heads. This arrangement is assumed because it is
energetically favorable. The arrangement results in small vesicles that are enclosed by
two layers of lipid molecules, a so-called lipid bilayer [AJL+14]. Multiple lipid molecules
forming a vesicle are displayed in Figure 2.1b. Such lipid bilayers form the membrane of
cells.

Lipid bilayers are not rigid but fluid. Since the lipid molecules are not bound together
chemically, they are free to move as long as the hydrophobic tails are isolated from
the water [AJL+14]. Therefore, lipid bilayers form dynamic structures where the lipids
can move within the plane of the bilayer. Due to this freedom of movement, lipids are
constantly flowing relative to one another. Sometimes the lipids even flip from one face of
the bilayer to the other. Because lipid bilayers are fluid, they are capable of spontaneously
healing damage [Goo04].

A cell is not a closed system, but actively interacts with its environment by exchanging
molecules and ions. This exchange is necessary for the cell to obtain nutrients and
also to get rid of waste produced inside the cell. Therefore, the cell membrane must
be permeable for certain substances. Specialized proteins that are embedded in the
membrane allow this permeability. These proteins are present in every cell and transport
specific substances across the membrane. They determine which substances enter the cell
and which substances leave and in this way influence the chemistry of the cell [AJL+14].

6



2.2. Macromolecules

Figure 2.2: The approximate composition of a bacterial cell [AJL+14].

2.1.2 Cytoplasm

The cytoplasm is the content of the cell. It includes everything that is enclosed by the
membrane. Inside the cytoplasm there are other membrane enclosed subunits called
organelles. Organelles are separated subunits with specialized chemical functions. The
cytoplasm consists mainly of water with a mixture of large and small molecules that
carry out many of the cell’s chemical processes. In an approximate bacterial cell, water
makes up 70 % of the cytoplasm. Macromolecules like DNA, proteins and polysaccharides
make up 24 %. The remaining 6 % are lipids, small molecules and ions. The ratio
of the cytoplasm content is shown in Figure 2.2. The composition of a human cell is
similar [AJL+14].

The small organic molecules are usually floating free in the cytoplasm and play important
roles in a lot of different processes. Some are processed and used as subunits to build
larger molecules like proteins or nucleic acids. Others serve as energy sources when broken
down and transformed into smaller molecules. Many small molecules serve multiple
purposes. In a typical cell, there are about thousand different kinds of these small
molecules [AJL+14].

2.2 Macromolecules

A molecule is group of two or more atoms that are held together by covalent bonding,
which is the strongest chemical bonding type. Covalent bonding is 10-100 times stronger
than other attractive forces between atoms. Thus, it is possible to define clear boundaries
of a molecule. Macromolecules are molecules which are typically composed of several
thousands of atoms. Most macromolecules are constructed by linking smaller subunits
together. These macromolecules are called polymers and their subunits are called

7



2. Biological Background

monomers [AJL+14].

In a cell, various types of macromolecules are synthesized and processed. Often polymers
are synthesized by adding one monomer at a time to a long chain. Step by step, a
large and complex macromolecule is built. Most macromolecules are composed of a
set of monomers that are slightly different from one another. The monomers are not
added to the chain randomly, but are added in a particular order [AJL+14]. The two
most important macromolecules in respect to molecular machines are nucleic acids and
proteins [Goo04]. Thus, both of them are further discussed in the following sections.

2.2.1 Nucleic Acids

Nucleic acids are long molecular chains that are present in every cell. The most famous
nucleic acid is DNA, which is used to store genetic information. The other nucleic acid is
ribonucleic acid (RNA). RNA molecules have a variety of functions, but mostly they are
used to transfer information of single genes across the cell [AJL+14].

Nucleic acids are polymers of subunits that are called nucleotides. They form long linear
strands and can contain millions of nucleotides. Each nucleotide has one of four bases
attached. The sequence of those bases encodes the information contained in the nucleic
acid. DNA uses the bases cytosine, guanine, adenine and thymine for encoding the
information. The encoding in RNA is very similar, but it uses uracil instead of thymine.
The bases are often abbreviated by their initial letters: C, G, A, T and U. The encoded
information is often written as a sequence of those letters [AJL+14].

DNA is usually paired with a partner strand. The two stands wrap around each other,
thus form the familiar double helix structure. The bases of the nucleotides of the two
strands form base-pairs, where the nucleotide of the partner strand has the complementary
base attached. The complementary base of C is G, and the complementary of A is T
(or U in RNA). RNA is most often single-stranded and folded onto itself [AJL+14]. The
schematic structure of DNA and RNA is illustrated in Figure 2.3.

The DNA contains the entire genetic information of the organism. The sequence is
divided in segments called genes. On demand, the cell copies certain genes from the
long DNA sequence to shorter RNA strands. These RNA strands, which contain the
information of a single gene, are then transported to other regions of the cell, where they
serve as blueprints for protein production [AJL+14].

2.2.2 Proteins

Proteins play a crucial role in cells as they are versatile and can perform thousands of
distinct functions. They are involved in countless cellular processes. The reason for this
versatileness is that a protein is made of a chain of amino acids. Amino acids are a class
of chemical substances with each having unique physical and chemical properties. Some
amino acids are negatively or positively charged, some are chemically reactive, some are
hydrophobic, etc. Depending on the sequence of the amino acids in the chain, the protein

8



2.2. Macromolecules

Figure 2.3: Comparison of a single-stranded RNA and a double-stranded DNA [Spo10].

is suitable for different tasks. The number of possible amino acid chains is a tremendous.
Depending on the sequence and the number of amino acids in the chain, the resulting
protein can be of very different size and shape. Proteins control the behavior of the cell.
They serve as support structures, chemical catalysts, membrane channels, etc. [AJL+14]

The cell has capabilities to produce proteins on demand. Proteins are built from a set
of 20 amino acids. The sequence of amino acids that make up a protein are encoded in
genes. When a certain protein is needed in the cell, the corresponding gene is copied
from the DNA to a RNA strand. The RNA strand is then transported to molecular
machines called ribosomes. Ribosomes can build new proteins using the information
encoded in the RNA strand as blueprint. The bases of the nucleotides of the RNA strand
encode the amino acids that have to be linked together to form a certain protein. The
ribosomes read the RNA strand sequentially, and link the amino acids together, one after
another [AJL+14].

Most of bonds between the amino acids in the chain are flexible. Thus, theoretically
allowing them to adopt a large number of shapes. However, some amino acids attract or
repel each other, which causes the chain to fold. Usually, the chain preferably adopts one
particular conformation that is determined by the amino acid sequence. Most proteins
and many of the RNA strands fold tightly into one highly preferred conformation in this
way, which represents a state of lowest energy [AJL+14]. This process is illustrated in
Figure 2.4.

9



2. Biological Background

Figure 2.4: A Protein consists of a chain of linked together amino acids. In a watery
environment the chain usually folds into a stable conformation [AJL+14].

2.3 Interaction of Molecules
Atoms in molecules are held together by covalent bonding. Not only atoms can bind
together, but also whole molecules to form larger molecular complexes. Bonds between
multiple molecules are not held together by covalent bonding but by electrical attraction.
The electrical bonding is common at hydrogen atoms of a molecule, therefore this bonding
type is called hydrogen bonding. The attraction is much weaker than covalent bonding.
Thus, a lot of the weak hydrogen bonds are necessary to strongly bind two molecules
together. To allow a great number of hydrogen bonds to establish between two molecules,
these molecules must fit together very closely and have an exact complementary shape
and charge profile on their surface. A simple illustration of this effect is shown in
Figure 2.5 [AJL+14]. If the shape or charge on the surface does not match exactly, the
two molecules cannot bind because only a few hydrogen bonds are not strong enough to
hold the molecules together. Therefore, this kind of binding provides great specificity.
Often it is only possible for exactly one molecule from the many thousands to bind to a
certain site. Because the strength of the binding depends on the number of hydrogen
bonds that are established, bonds of almost any strength are possible. The area where
other molecules can bind to is often called binding site [Goo04].

Small molecules serve as subunits for macromolecules. Multiple macromolecules, again,
can bind together on binding sites of complementary shape and charges to form large
complexes with multiple moving parts. These macromolecular complexes often perform
necessary cellular processes. Thus, they are called molecular machines [BBC+01]. The
hierarchy of subunits to macromolecules, to macromolecular complexes is shown in
Figure 2.6.

When a protein interacts with other molecules in the cell, its conformation often slightly
changes. This change in shape is called allostery and is crucial to the function of the
protein. Many proteins are allosteric. They can adopt two or more slightly different
conformations. The change of the conformation regulates the activity of the protein.

10
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Figure 2.5: Binding of two molecules due to complementary shape and charges on their
surface [AJL+14].

Figure 2.6: Small molecules join together to form macromolecules, which can assemble
into large macromolecular complexes [AJL+14].

The reason for this is that conformation changes also affect the surface of the protein.
Thus, other molecules the protein usually interacts with, may not bind tightly, because
the shapes are not exactly complementary anymore. The weak bonds are not strong
enough to hold the two molecules together. Often proteins have a separate binding site
for regulatory molecules that can activate or deactivate the function of the protein. This
is especially common for enzymes. Most enzymes are special proteins that accelerate
chemical reactions with specific molecules (substrates). A simple example of allosteric
inhibition and activation in an enzyme is shown in Figure 2.7.
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2. Biological Background

Figure 2.7: Allosteric inhibitors modify the active site of the enzyme so that substrate
binding is reduced or prevented. In contrast, allosteric activators modify the active site
of the enzyme so that the affinity for the substrate increases [Col13]

2.4 Molecular Machines

Molecular machines are molecules or complexes of molecules that carry out physical and
chemical processes. Most molecular machines found in cells are assemblies of multiple
proteins and specifically folded RNA molecules. There are a lot of differences to machines
in our familiar world. Instead of being designed by humans, molecular machines in cells
have been developed by the process of evolution. The environment in which molecular
machines operate is also quite different to the macroscopic environment we know [Goo04].

2.4.1 Environment

Molecular machines are very small, typically they are only a few nano meters in size. At
this scale, objects behave quite differently to machines in the macroscopic world. Mass
increases with the cube of the size of an object. That means objects at the nanoscale
have hardly any mass. Due to this reason, gravity and also inertia are negligible at the
nanoscale. On the other hand, thermal motion is a significant force. Also the attraction
forces between molecules are way stronger than gravity. The environment is very crowded
and the molecules are in constant motion. This causes the molecule to collide with other
molecules all the time and therefore undergo random Brownian motion. The random
motion is quite fast. A molecule released in typical bacterial cell is equally likely found
anywhere in the cell within 1/100 s. Any two molecules within a micrometer sized cell
meet each other every second.
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Molecular machines are built of a discrete number of atoms. Therefore, the typical
continuous representations used for macroscopic machines is not appropriate. Moreover,
there are no smooth transition from one state to another. Instead, the molecular machines
jump from state to state when the appropriate chemical energy is applied. Also bulk
properties such as viscosity and friction do not exist at nanoscale, instead individual
atomic properties must be considered [Goo04].

For molecular machines to operate correctly, they require a water environment as it is
available in cells. A lot of processes, e.g. protein folding, require to be surrounded by
water.

2.4.2 Self-Assembly

Molecular machines are not built like macroscopic machines. As mentioned before, the
macromolecules that make up molecular machines, are flexible chains, which spontaneously
fold into specific structures. Due to the Brownian motion, all molecules interact with each
other. When two or more molecules with complementary binding sites meet, they are
held together by the attraction forces at the binding sites. In that way, macromolecules
then assemble themselves to complexes, which ultimately build molecular machines. This
process is termed self-assembly. Self-assembly is very common in biology and not only
used by molecular machines, but also by other structures, e.g. the cell membrane [Goo04].

A lot of structures in cells are symmetric, allowing the cell to build them using identical
subunits. In that way, large assemblies can be described with a little amount of infor-
mation. This modularity also provides for error control. Molecules that are constructed
incorrectly are not capable of binding to other building blocks, because their binding
sites do not match when they are corrupted [Goo04].

In most structures, the binding of one module to another increases the affinity for addi-
tional modules, due to allosteric activation. This leads to an all-or-nothing construction.
Once started, the self-assemble process is very fast [Goo04].

2.4.3 Energy

Molecular machines need energy for driving difficult chemical reactions and to power
directed motion. At nanoscale there are a lot of energetic processes that can be harnessed
to power molecular machines [Goo04].

Cells pump ions across the membrane to create an electrochemical gradient. Molecular
machines located in the membrane can harness this gradient by letting ions flow back
through the membrane. The energy of the flow can be used to perform chemical or
mechanical work [Goo04].

Energy is also stored in chemical bonds. The most common biological fuel molecule
is adenosine triphosphate (ATP). Each molecule of ATP has three phosphates bound
together. As each phosphate is negatively charged, which is very unfavorable, since they
repel each other. By cleaving off one phosphate from the ATP, the chemical energy that
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was trapped in the bond can be used to power various processes. The result is adenosine
diphosphate (ADP), a phosphate molecule and the released energy [Goo04].

There are a lot of other energy sources that can be harnessed by molecular machines, for
example, light energy or electrical energy. However, they are not further discussed, as
they are not relevant for this work.

2.5 Examples of Molecular Machines

The following sections describe three examples molecular machines. Illustrations are
shown and the biological processes that drive the machines are explained.

2.5.1 Hemoglobin

Hemoglobin is a molecule for oxygen-transport in red blood cells. It is a small molecular
machine that picks up oxygen in the lung, and delivers it where it is needed. Hemoglobin
has four binding sites where oxygen can bind to. Oxygen does not bind to all binding
sites simultaneously, but one after another. Once the first oxygen is bound, a small
change in the hemoglobin structure is induced. This structural change makes it easier for
the next oxygen to bind. Thus, binding the first oxygen is the hardest, but from then it
gets easier and easier [AJL+14].

In the lungs, where oxygen is plentiful, the first oxygen binds easily and then quickly fills
up the remaining binding sites. As the blood circulates through the body, it passes areas
where the oxygen concentration is low. Here the hemoglobin releases its bound oxygen.
As soon as the first oxygen drops off, the remaining binding sites release the other oxygen
molecules more easily, as the shape changes back [AJL+14]. When no oxygen is bound,
the hemoglobin is called deoxygenated, when all binding sites are bound to oxygen, it is
called oxygenated. An illustration of these two states is shown in Figure 2.8.

Carbon-monoxide is a dangerous gas for living organisms, because its affinity to hemoglobin
is much higher than the affinity of oxygen. When carbon-monoxide binds to hemoglobin
instead of oxygen, the oxygen-carrying capacity of the blood decreases drastically. With-
out sufficient oxygen, organs can fail and the organism dies. Due to the high affinity to
hemoglobin, carbon-monoxide is much harder to unbind from hemoglobin compared to
oxygen [GDHS03].

2.5.2 ATP-Synthase

Most cellular processes are powered by ATP. When energy is needed, ATP is cleaved into
ADP and phosphate. This liberates energy that was previously stored in the bond. The
liberated energy is then used to power a cellular process. ATP-synthase is a molecular
machine that binds ADP and phosphate back together to form ATP, so that it can be
used again. The energy needed for this process is obtained from a proton (H+) gradient
over a membrane [Goo04].
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(a) Deoxygenated hemoglobin molecule with
four oxygen molecules that are attracted by
the four binding sites.

(b) Oxygenated hemoglobin molecule. The oxy-
gen molecules are bound at binding sites inside
the hemoglobin and made visible inside the
yellow circles.

Figure 2.8: Deoxygenated and oxygenated hemoglobin

ATP-synthase is located in the membrane and provides a channel for protons from outside
the membrane to get inside. Since the proton concentration outside is higher than inside,
the protons want to move in. The energy from this proton flow drives a rotor. The
rotor, again, drives a generator that is capable of binding ADP and phosphate back
together [Goo04].

The structure of ATP-synthase is shown in Figure 2.9. The so-called F0 complex is
located in the membrane and consists of a few equal subunits called F0c. The number
of F0c can vary between organisms, but is typically around 10 to 12. The F0 complex
as a whole acts as the rotor of the machine. Protons from outside the membrane can
enter the machine via the stator. From there they bind to the F0c subunit that is next
to stator. As soon a proton is bound, the subunit can move away from the stator which
causes the rotor to rotate by one subunit. Then, the next F0c subunit is bound to a
proton and moved away, and so on. This causes the F0 complex to rotate. After a proton
made a whole revolution, it is unbound from the F0c subunit by the stator and released
to the interior of the membrane enclosed area. As a result, protons flow from outside
the membrane to the inside causing the F0 complex to rotate, whereas the stator keeps
still [Goo04].

The F1 complex consists of six subunits, three F1α and three F1β proteins. The F1α
and F1β in the F1 complex arranged in circular shape alternately. Together they form
three sites where an ADP and a phosphate can bind respectively. ADP and phosphate
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Figure 2.9: Structure of ATP-synthase [GDZ+05].

are attracted by those sites and bind to them [Goo04].

The F1 complex is connected to the stator and does not rotate. The F0 complex is
connected to an axle that rotates with the F0 complex. The axle extends into the F1
complex. The rotation of the axle causes conformation changes in the F1 complex, which
again, causes the ADP and phosphate molecules at the binding sites of the F1 complex
to bind together and form ATP. The ATP is then released from this site and another
ADP and phosphate can bind. In one revolution of the rotor, produces three ATP
molecules [Goo04].

2.5.3 Kinesin

Kinesin is a molecular machine that moves along long tubular structures in the cell. The
tubular structures are found throughout the cytoplasm and are called microtubules. They
are composed of subunits called tubulin. Tubulin is a protein that consists of two parts:
tubulin-α and tubulin-β. The kinesin can bind to the tubulin-β parts of the microtubule
and then move along the microtubule with a movement similar to walking. Via a long
neck, typically cargo is connected which is transported through the cell using the kinesin.
The energy needed for the movement is obtained by cleaving ATP [Goo04].
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Figure 2.10: Steps of kinesin. Results in a forwards movement similar to walking [VM00].

The kinesin consists of two heads. The heads are the parts that bind to the microtubule.
They are also the parts where the ATP is cleaved. At the heads, so-called neck-linkers
are attached, which connect the heads with the long neck where the cargo is connected.
The point where the neck-linkers of both heads meet is referred to as hip. Kinesin moves
step by step, by pushing the heads forward alternately. The walking process is shown in
Figure 2.10 [VMJ00].

At the beginning, when kinesin is not yet bound to a microtubule, both heads contain
ADP. Due to Brownian motion it moves through the environment randomly. As soon as
one kinesin head makes initial contact with a tubulin of a microtubule, it binds weakly to it.
Then the conformation changes and the head binds tightly. Due to structural restrictions,
only one kinesin head can bind tightly at a time. The tight binding releases the ADP.
ATP then rapidly enters the empty binding site (Figure 2.10 Frame 1), which causes
the neck-linker to be pulled towards the head. This causes the detached trailing head to
be thrown forward and allows it to reach the next tubulin-β binding site (Figure 2.10
Frame 2). The now trailing head cleaves the ATP and reverts to a weak tubulin binding.
The weak binding allows the phosphate to leave the trailing head, and also relaxes the
neck-linker (Figure 2.10 Frame 3). Then the whole process repeats with the other head
(Figure 2.10 Frame 4) [VMJ00].
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CHAPTER 3
Related Work

There is a range of tools that support the visualization and animation process of molecular
assemblies. Some of them cover only a small part of the whole visualization process,
like providing structural information of molecules [BWF+00], or animating molecular
structures [JAG+11, Too17]. But there are also tools that support the biologist through
the whole process of importing, animating and rendering molecular environments [IMS+17,
WTHT14]. This chapter discusses existing tools and animation methods that can be
used for animating molecular environments.

3.1 Animation Methods
An animation is composed of multiple images that are intended to create the perception
of motion. Those images, so-called frames, are generated from a 3D model with a set of
variables, like the object’s positions and orientations. For each frame, the values for those
variables are slightly changed. Whereas often an object’s position and orientation are
changed during an animation, basically any variable can be animated. There are different
methods on how to calculate appropriate values for each frame in an animation [Par12b].
A few methods that are relevant for this work are presented in this section.

Interpolation-based Animation

Interpolation-based methods allow the precise specification of the animation. There is
little uncertainty about the positions, orientations, and shapes to be produced. The
animator has to provide precise conditions, such as beginning and ending values, and
having the values filled in for intermediate frames by some interpolation procedure.
Interpolation-based methods allow a very low level of control [Par12c].

A wide spread method is key-framing. The term key-frame describes a frame in which
the value of a variable is set to a specific value by the user. For frames between two
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key-frames, the value of the variable is interpolated using a prescribed procedure. The
simplest way to calculate intermediate values is by using linear interpolation, but often
more sophisticated procedures are used. It is not only possible to interpolate numeric
values, but also images and shapes. Tools that incorporate key-framing, often provide an
interactive graphical user interface (GUI) with which the user can set key values and can
control the interpolation curve [Par12c].

Another interpolation-based method are animation languages. An animation language
defines a set of commands that control certain animations. By combining various
commands, a wide variety of motions can be expressed. Most animation languages are
composed of text instructions, but graphical languages are also common. The advantage
of using an animation language is that all instructions that make up an animation are
collected in a script. That script can regenerate the animation at any time and can be
easily copied and transmitted. Also changes are easy and reproducible. The disadvantage
is that the animator must be proficient with programming [Par12c].

Behavioral Animation

Instead of animating a variable like in interpolation-based approaches, in behavioral
animations the cognitive process of an agent is modeled. An agent is a figure or a
synthetic character in the scene with built-in rules of behavior. The term cognitive
process refers to any decision-making process that results in the behavior of an agent, as
reacting to the environment and voluntary or involuntary mental activity [Par12a].

Modeling behavior is used for various reasons: To release the animator from dealing
with details in unimportant background animations, to generate animations on the fly
or to populate virtual environments. This can be useful for animating large crowds
in films, creating reactive characters in computer games, or to run simulations with
individual decision-making agents involved. Depending on the requirements, the cognitive
processes can be very simple, like moving towards a light, or very complex like balancing
self-preservation, mood swings, etc. [Par12a].

Usual agents sense the environment and then process the sensory information together with
their internal state and traits, which results in actions to interact with the environment
and possibly changes in the internal state. Behavioral animation is often used when
dealing with a large number of agents that interact with each other. The advantage is
that the animator does not have to deal with each agent separately, instead they are
animating themselves using the specified behavior [Par12a].

3.2 Data Sources
Before any animation method can be applied, the 3D structures have to be imported. In
order to create visualizations that are close to reality, the structures must be based on
scientific data. There are a few databases that can serve as source of scientific data in
the context of molecular machines.
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The largest source of molecular structures is the Protein Data Bank (PDB). The
PDB is a publicly available repository for 3D atomic structures of biological molecules.
The structures range from tiny proteins and parts of DNA to complex molecular ma-
chines [BWF+00]. The data is typically obtained by X-ray crystallography, NMR
spectroscopy, or cryo-electron microscopy. Since a great number of scientists contribute
with their investigated molecular structures, the PDB is a key resource for structural
biology [BWF+00]. There are more than 118000 proteins, 3000 nucleic acids, 6000 protein
and nucleic acid complexes contained in the database at the time of writing [PDB17].

The data provided in the PDB is a valuable source of static 3D structures of molecules.
Some protein structures are even available in different conformations. However, the PDB
does not contain information on how to animate these structures.

Molecular machines largely depend on binding capabilities of various distinct molecules.
Thus, another resource that is usable for molecular visualizations is KBDOCK. KBDOCK
is a database system containing binding site information for protein docking. Molecules
need some very specific structural and physical properties for docking, as explained
in Chapter 2. KBDOCK uses protein family classifications with coordinate data from
PDB to analyze the spatial arrangements of protein interactions. The goal is to improve
the understanding of biomolecular processes by comparing, classifying and modeling
structural protein interactions. KBDOCK can also be used to search interactions involving
different, but structurally similar proteins even when there is no similarity in the DNA
sequence [GDSTR13].

For animations, the information from KBDOCK can be used to precisely model, where
two molecules dock or bind. Together, KBDOCK and PDB provide a good scientific
basis for structural data.

3.3 Structure Import
The scientific molecular data is the basis for the visualization and animation of molecular
machinery. The next step is to import and visualize this data. A few tools exist that are
specialized for this step. All tools introduced in this section are implemented as plug-ins
for a 3D application and allow to import molecular structures [JAG+11, Too17, ACZ+12].

The Embedded Python Molecular Viewer (ePMV) is an open-source plug-in for the 3D
software Blender [Ble17], Cinema4D [MAX17] and Maya [Aut17, JAG+11]. It allows
scientists to import molecular structures from PDB into the 3D software. As soon as the
structures are imported, the visualization capabilities of the 3D software can be used to
animate and render the scene [JAG+11].

ePMV was created to simplify the process of preparing visual data for publications,
education and for the public. The plugin extends the 3D software by molecular modeling
features and also provides a common Python platform that allows users to create
sophisticated algorithms and calculations. By uniting 3D software and molecular modeling
software, ePMV allows to put data from various disciplines into the same context. This
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allows users from various backgrounds to create professional quality interdisciplinary
visualizations. Using the common Python platform, algorithms can be easily shared,
which also encourages interdisciplinary research [JAG+11].

The tool is very flexible and optimized for illustrative visualizations. For animations, the
key-frame animation capabilities of the 3D application can be used. Alternatively the 3D
objects can be animated using Python scripts [JAG+11].

A similar tool is Molecular Maya (mMaya). It is a free plug-in for the 3D software
Maya [Aut17] and offers functions to import, build and animate molecular structures.
The biologist can open PDB files or download them automatically from the Protein Data
Bank. Molecular Maya supports various representation forms, and is also capable of
generating surface meshes out of PDB structures [Too17]. Like ePMV, mMaya relies on
Maya’s animation capabilities. Animating molecular environments still has to be done
using key-framing [Too17].

BioBlender is plug-in for visualizing molecules in the open-source 3D software Blender [Ble17,
ACZ+12]. It extends Blender’s capabilities to allow biologists to import molecular struc-
tures from PDB and can calculate special surface properties. BioBlender also implements
some notable visualization options for molecular surface properties. Furthermore, it is
also capable of calculating protein movements on the basis of known conformations. The
goal of BioBlender is to make the nanoscale world more understandable by visualizing
invisible phenomena [ACZ+12].

BioBlender is primarily designed to visualize single molecules and special physical prop-
erties. There is no focus on creating animations of large molecular complexes [ACZ+12].

3.4 Rendering

Rendering is an essential part of visualizing molecular machines. There are already
existing tools that primarily focus on rendering molecular structures. These tools are
discussed in this section.

A tool that solely focuses on efficiently rendering large molecular assemblies is cel-
lVIEW [MAPV15]. The system renders the molecules on the atomic level and is capable
of interactively visualizing large datasets representing viruses and bacterial organisms
consisting of several million atoms in real-time at 60 Hz display rate. It uses a level-
of-detail scheme that allows to accelerate the rendering and also reduces visual clutter.
Another acceleration technique is the dynamic generation of DNA strands directly on
the graphics processing unit (GPU) out of sets of control points. cellVIEW is directly
implemented inside a game engine to make it more accessible to the end-users. The
system can freely be used and extended [MAPV15]. An image rendered by cellVIEW of
HIV in blood plasma is shown in Figure 3.1.

Another rendering tool is JSmol [HPR+13]. It is a JavaScript tool that allows to visualize
3D chemical structures in web-browsers. It provides features for chemicals, crystals and
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Figure 3.1: HIV in blood plasma. Rendered using cellVIEW [MAPV15]

biomolecules. JSmol displays the molecular structure stored in a file. An extensive list
of file formats are supported. The user can view the structure and interactively rotate,
zoom and pan. Eight different display styles are supported, including "Cartoon", "Ball
and Stick", etc. JSmol renders the structures using HTML5 canvas. WebGL is avoided
to gain a greater platform-independence. The tool also includes features for measuring
distances and angles. Furthermore, the view can be exported to various image file formats.
JSmol is one of the viewers that is integrated in the PDB website to allow users to display
molecular structures directly in the browser. Figure 3.2 shows a screenshot of JSmol
embedded in the PDB website. There is also a lite version of JSmol that only provides
minimal functionality for small-bandwidth applications [HPR+13].

A framework that is usable for a broad domain of applications is MegaMol [GKM+15].
It is capable of processing data from thermodynamics, solid material physics and also
macromolecules in biochemistry. Instead of utilizing the classical mesh-based graphics
approach, MegaMol focuses on particle-based data and rendering. It is designed to handle
very large datasets in an efficient manner by utilizing the GPU. MegaMol is designed as
a development framework that can be adapted to custom needs [GKM+15].
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Figure 3.2: Screenshot of an ATP-Synthase complex [ZRS+15] visualized with JS-
mol [HPR+13] on the PDB website [BWF+00].

3.5 Molecular Animation
This category of tools supports biologists in creating their own molecular animations
[IMS+17, WTHT14, PGH+04]. Everything from importing molecular structures, to
animating and rendering is supported.

One such tool is the Molecular Flipbook [IMS+17]. The intended users are molecular
biologists who want to visualize molecular models to communicate their ideas to their
peers, their students or the public. It is only meant for simple molecular models and not
for complex or cinematic quality animations [IMS+17].

The tool is not only useful for creating animations but also provides important insights
to researchers [Rot16]. During the modeling and animation process, the user has to
figure out how certain molecules fit together, how subunits assemble or disassemble, and
missing parts become obvious. This helps to reflect on the knowledge and to fill in a lot
of blanks [Rot16].

Molecular Flipbook utilizes a simple GUI which allows the user to create slides, where
position and representation of the molecules can differ in each slide. The animation
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Figure 3.3: Screenshot of Molecular Flipbook. The user can create and select slides at
the bottom and manipulate the scene at the center [IMS+17]

is created by interpolating between those slides, thus utilizing a simple key-frame ap-
proach [IMS+17]. A screenshot of the GUI is shown in Figure 3.3.

SketchBio is another tool that enables biologists to rapidly construct molecular ani-
mations [WTHT14]. It incorporates a two-handed manipulation technique using two
six-degree-of-freedom magnetic trackers to edit a scene. That enables novel interaction
patterns that accelerate common tasks when animating molecular models. The tool aims
for an easier usage than standard 3D software [WTHT14].

The main motivation for the tool is to provide an easy to use interface, so that biologists
can create their own animations. It is difficult to master standard 3D modeling and
rendering software. Therefore, biologists often have to hire programmers or animators to
create models and animations. However, this slows down work and provides opportuni-
ties for miscommunication. Hence, SketchBio aims enable the biologists to create the
animations themselves [WTHT14].

Due to the use of two six-degree-of-freedom magnetic trackers, novel manipulation
techniques are possible. For example, SketchBio implements a feature called "pose-
mode physics" that enables rapid docking of proteins, aided by collision detection.
Another feature is the "crystal-by-example" mode that allows to rapidly create polymer
chains [WTHT14]. Figure 3.4 shows the six-degree-of-freedom magnetic trackers being
used to control SketchBio. SketchBio makes extensive use of existing tools and libraries
like UCSF Chimera [PGH+04] for PDB support and Blender [Ble17] for its render
capabilities [WTHT14].
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Figure 3.4: Editing of a scene in SketchBio using two six-degree-of-freedom magnetic
trackers [The13].

To animate a scene, the user can move along a timeline and create key-frames for
designated molecules. The value between key-frames are interpolated using splines to
produce smooth motion [WTHT14].

UCSF Chimera is a tool for interactive visualization and analysis of molecular structures
and related data [PGH+04]. It also allows the user to generate high-quality images and
animations. The tool is free of charge for academic, government, nonprofit, and personal
use [PGH+04].

UCSF Chimera is designed to meet the needs of structural biologists. Thus, the tool sup-
ports a long list of analysis and visualization features and is highly extensible [PGH+04].
Animations can be generated by a script consisting of animation commands [UCS12].
The script can then be executed and the resulted animation can be saved as video in
various file formats [PGH+04]. A screenshot of UCSF Chimera is shown in Figure 3.5.
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Figure 3.5: A HIV dataset displayed using UCSF Chimera [Joh13].
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CHAPTER 4
Machinery Model

Animations are used by biologists to communicate ideas to fellow scientists and students.
Biologists often use standard 3D software to model molecular environments accord-
ing to their ideas [Iwa10]. A few specialized tools also exist. Similar to standard 3D
software, these tools also focus on animating 3D objects in a scene using key-frame
animation [IMS+17, WTHT14] or animation languages [PGH+04]. This paper proposes
another way of producing animations. Instead of animating 3D objects directly, the
animator describes the behavior of molecular particles on a high level. The molecular
particles with the behavior description attached, are then placed in an environment.
Each molecular particle interacts with other particles according to their behavior de-
scription, which causes the animation. In that way a behavioral animation method
is utilized [Par12a]. If the behavior description is sufficiently detailed, the molecular
particles also react correctly, when environmental conditions change. This agent-based
approach should speed up the animation process, because not every molecular particle
has to be animated by hand anymore. The animation also scales very well, since the
behavior has to be defined only once for each type of molecular particle, independent
from the total number of molecular particles in the scene. In contrast, interpolation-based
animation requires the biologist to animate each particle independently which can be a
very tedious task [Iwa10].

On a very high-level, the behavior could be defined by modeling physical and chemical
properties of the molecular particles. An animation could then be accomplished by
running a biological simulation. The animation would be defined very abstractly, by
a set of physical and chemical properties. Such an abstract behavior definition is very
simple and reusable, since it can be used for any number of agents and in all possible
environments. On the other side it gives the animator only very little control over
the resulting animation, because all the animator can do to influence the animation is
to fine-tune physical and chemical properties until the desired animation is achieved.
Since the goal of this work is to allow the animator to communicate ideas, the animator
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Figure 4.1: Different approaches arranged on a level of abstraction axis.

should have more direct control over the resulting animation. A key-frame animation,
for example, gives the animator full control over the resulting animation. However, it
requires the animator to precisely specify each detail of an animation [Owe05], which
is often a repetitive and tedious task, especially for molecular animations [Iwa15]. To
combine the advantages of both extremes, an abstract model is proposed, that allows
to describe the behavior on a high-level. The proposed model is abstract enough to
relieve the animator from a lot of repetitive tasks, but not abstract enough to deprive
the animator of needed control over the resulting animation. As shown in Figure 4.1, the
proposed model is placed somewhere between those both extremes.

The proposed model is based on common molecular details and features that are discussed
in this chapter. The following section introduces the model by showing its relation to
biological concepts. The further sections discuss all model components in more detail.
The final section is dedicated to the methodology and the model development process.

4.1 Relation to Biology
The components of the model are inspired by biology. The following text introduces the
model components and explains how they are related to biological concepts. An overview
of the model and the relations of the components is illustrated in Figure 4.2.

Entities: In biology, the environment is inhabited by a large number of molecular
particles. In the model, molecular particles are represented as so-called entities. Entities
are defined as the smallest, indivisible molecular particles in the environment. In
most cases a molecule equals an entity, but that is not always true. The special cases
are discussed later. Entities are the central components in this model. They act as
autonomous agents, and are the targets of the behavioral animation.

Behavior: In biology, molecular particles move and interact with each other according
to physical forces and chemical reactions depending on their physical and chemical
properties [AJL+14]. In existing solutions, these effects have to be animated manually
by the user using key-framing [IMS+17, WTHT14]. Instead of animating each molecular
particle by hand, the proposed model requires the user to provide a behavior description
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for each type of entity. This behavior description could, for example, involve scanning
the neighborhood for possible reaction partners and, if found, attracting them. The
animation is then generated according to this high level behavior description.

Structure and Conformation: The atomic structure of a molecule is very impor-
tant in biology. Depending on its size and shape, it can interact with certain other
molecules [AJL+14]. This atomic structure is reflected in the entity structure in the
model. As described in Chapter 2, the shape of certain molecules can shift slightly when
it interacts with other molecules, which is important for its function [AJL+14]. Such
shapes a molecule can assume, are represented in the model as structure conformations.
An entity can define a set of predefined conformations that its structure can assume.
In biology, the structure changes to different conformations, because of the interaction
with other molecules. In the model, the structure can be changed by the entity behavior.
The behavior may decide to change the structure to another conformation when specific
conditions are met.

Sensor: Other than in biology, in the model the entities are controlled by behavior
descriptions. The behavior has to be aware of other entities nearby, in order to be able to
interact with them. Therefore, sensors are introduced to the model. A sensor allows the
entity behavior to detect other nearby entities in a specific range. It can then decide if it
wants to interact with one of them or not. In biology, the interaction of molecules is vital,
but molecules do not have sensors. Interactions are a result of physical attraction and
repulsion forces. This model does not incorporate this automatic recognition phenomena,
because it would require some form of biological simulation which takes away control
from the animator. Instead the concept of a sensor is utilized, which allows the animator
to mimic this physical behavior explicitly.

Binding Site: Another very important phenomena in biology is, that molecules dock
or bind together to perform a task. Molecules have areas with a specific shape and charge
profile where other molecules with complementary shape and charge profile can bind
to [AJL+14], as described in Chapter 2. In the model, such areas are represented as
binding sites. Each entity can include multiple binding sites. The behavior can control
which entities should bind together on which binding sites. It can also decide to release a
bond again.

Compound: Entities that are bound together on their binding sites form a compound.
A compound can be a complex network consisting of multiple entities that are directly
or indirectly interconnected. Just like molecular complexes in biology, compounds act as
cohesive units.

Environment: To have a defined space, where all animations happen, the model
defines an environment. The environment includes everything that should be visualized.
It includes all entities, all behavior descriptions, all 3D models and everything else needed
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for the visualization. The environment can be seen as the equivalent to a scene in
standard 3D software.

4.2 Entity Overview
Entities are the central objects in an environment. Each entity acts as an agent and can
operate individually, according to a defined behavior. Furthermore, entities can have
binding sites and sensors defined, that allow the entity to interact with the environment.
Its visual representation is defined by its structure.

An entity is the smallest, indivisible molecular particle in the environment. That
can be either a molecule, an atom or an ion. Molecules that can split into smaller
parts, are not atomic and therefore not represented as single entity. Instead they are
represented as compound of smaller entities, in order to being able to split apart. What
the smallest, indivisible molecular particles are, is dependent on the environment. For
example, an environment that visualizes a biological process that reduces ATP to ADP for
power [AJL+14], could represent these molecules using two entities: ADP and phosphate.
ATP would be represented as an ADP entity bound to a phosphate entity.

4.3 Entity Structure
The structure manages the visual representation of an entity. Entities represent molecular
particles like molecules, therefore the entity structure is made out of atoms. The structure
contains the element and the position of each atom of the entity.

As discussed in Chapter 2, certain molecules can change their conformation, which is a
small shift in the molecular structure. Conformation changes occur, when the molecule
is interacting with another molecule [AJL+14]. For example, the molecule hexokinase
changes its molecular structure slightly when it is bound to a glucose molecule [FZC+15].
The ligand-free and the glucose-bound conformation are shown in Figure 4.3.

The structure of different entities may assume different conformations. To make confor-
mation changes easy, the entity structure contains a list with all conformations the entity
structure can assume. For each conformation, the exact position of every atom is stored.
Additionally, a color and the locations and directions of binding sites and sensors are
stored in each conformation. As a result, conformation changes do not only adjust the
atoms, but also adjusts binding sites and sensors and can change the color of the entity
for visual guidance.

When a conformation change is initiated, the structure is adjusted with the information
stored in the target conformation. However, to avoid jumpy changes, the transition
between two conformations is animated for a user defined amount of time. Atom
positions, binding site and sensor positions as well as binding site and sensor directions
are interpolated linearly. The red, green and blue components of the entity color are also
interpolated linearly.
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(a) Hexokinase structure in ligand-free confor-
mation

(b) Hexokinase structure in glucose-bound con-
formation

Figure 4.3: Two slightly different conformations of hexokinase. One can see the gap in
the middle closes as hexokinase binds to glucose [FZC+15]

The behavior of an entity is responsible for the conformation changes of its structure.
The behavior may induce conformation changes when certain conditions are met, for
example, when another entity is bound to a specific binding site.

4.4 Bonds between Entities

Entities have the capability to bind together and form a larger complex. The entities can
establish temporary or lasting bonds at their binding sites. A binding site can only be
bound to a binding site of another entity. Therefore, entities with the ability to bind to
other entities must have one or more binding sites.

In biology the binding sites are areas with a specific shape and charge profile [AJL+14],
as described in Chapter 2. In proposed model, the complex biological representation is
reduced to a single position and a direction. This information is stored in the entity
structure and is specified relative to the entity origin, so the entity can move and rotate
along with its binding sites. The position and direction is defined for each binding site
and allows two entities to bind together in a well-defined manner. When two entities
bind together, they are aligned in such a way that those directions of the binding sites
point at each other and the positions of the binding sites match. They do not rip apart
as long as they are bound. The alignment is illustrated in 2D space in Figure 4.4. In 3D
space, there is still one rotational degree of freedom left, which is simply set arbitrarily,
to have a well-defined binding behavior. The exact mathematical procedure is described
in the next section.
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4.4. Bonds between Entities

Figure 4.4: The binding site positions are depicted as yellow circles, the directions as
orange arrows. When bound (right side), the positions match and the directions are
pointing at each other.

4.4.1 Entity Alignment

Entities bound together on their binding sites form a well-defined complex. To achieve
this, the bound entities are aligned relative to each other starting from an arbitrary root
entity. The basic procedure for two entities that are bound together is explained in this
section. The next section focuses on larger complexes.

The spatial location of an entity is represented by a 3D position vector and a quaternion
indicating its rotation. The binding sites are defined by a 3D position vector and a
quaternion as well, but the position and rotation is relative to the entity origin and stored
in the entity structure. As these values are relative to the entity origin, they are referred
to as local position and local rotation.

First of all, some basic functions must be defined that allow quaternions to be used as
rotation representation in 3D space. To rotate a 3D position represented as vector using
a quaternion, the vector itself has to be transformed to a quaternion first [DKL98]:

(x, y, z)→ xi + yj + zk (4.1)

The rotation quaternion can be applied to a 3D vector in quaternion form by the following
formula, where p is the position, q is the rotation quaternion and p′ is the resulting
rotated position [DKL98]:

p′ = rotate(p, q) = qpq−1 (4.2)

It is also worth to mention that the quaternion q−1 represents the inverted rotation to q,
which means that qq−1 equals the identity quaternion. Rotations of two or more rotation
quaternions can be simply combined by multiplicating them [DKL98]. Therefore, the
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global position B.p and global rotation B.r of a binding site B, where B.lp is the local
binding site position and B.lr is the local binding site rotation and E.p is the global
entity position and E.r the global entity rotation, is defined as:

B.p = E.p+ rotate(B.lp, E.r) (4.3)

B.r = E.r ·B.lr (4.4)

Assuming there are two entities E1 and E2, which each has one binding site, which are
referred to as E1.B1 and E2.B2 and they are bound together on those binding sites,
the position and rotation of one entity can be derived from the other. At first, it is
necessary to choose one entity to start with and derive the global position and rotation
of the other entity. Here it is assumed that the position E1.p and rotation E1.r of entity
E1 are known, and the position E2.p and rotation E2.r of entity E2 should be derived.
Furthermore, the local position B.lp and local rotation B.lr of all binding sites are also
known, as they are defined by the entity structure. As defined before, when two binding
sites are bound, their global position matches:

E2.B2.p = E1.B1.p (4.5)

Also, when two binding sites are bound together, their direction vectors are pointing
at each other, as illustrated in Figure 4.4. The direction vector of a binding site with
identity rotation is arbitrarily defined as the Y-axis vector (0, 1, 0), or in quaternion
representation: j. The actual direction vector for any rotation can be determined by
simply rotating the Y-axis vector using the rotation quaternion. In order that the two
binding site direction vectors pointing at each other, the rotation E2.B2.r must be the
reversed version of E1.B1.r. The reversed version can be determined by rotating the
direction vector around any orthogonal vector by 180◦. All vectors on the orthogonal
plane could be chosen as rotation axis, which results in one degree of freedom. The
remaining degree of freedom has to be avoided to gain well-defined positions and rotations
for bound entities. This is achieved by arbitrarily defining the Z-axis as rotation axis,
which is orthogonal to the identity binding site direction vector (0, 1, 0). Therefore, the
rotation of E2.B2.r is the combined rotation of E1.B1.r and a rotation of 180◦ around
the Z-axis, which is represented by the quaternion k:

E2.B2.r = E1.B1.r · k (4.6)

As the local position E2.B2.lp and the local rotation E2.B2.lr of binding site E2.B2 are
known, the global position E2.p and global rotation E2.r of entity E2 can be derived, by
solving Equation 4.4 for E.r and Equation 4.3 for E.p:

E2.r = E2.B2.r · E2.B2.lr
−1 (4.7)
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E2.p = E2.B2.p− rotate(E2.B2.lp, E2.r) (4.8)

The result provides the global position and global rotation of the entity E2.

4.4.2 Compounds

All entities that are bound together are organized in compounds. Compounds act like
one big entity, though with the ability to separate. Every entity is part of a compound,
even when it is not bound to any other entity. In that case, it forms its own compound
and is the only entity in it.

The entities in a compound cannot move freely. Their position and rotation relative to
each other is well-defined by the position and direction of the binding sites on which the
entities are bound together, as explained in Section 4.4.1. To enforce these constraints,
the position and rotation of each entity is recalculated in every frame by an algorithm.
The algorithm considers the whole environment as graph, where the entities are nodes
and bindings between entities are edges, as shown in Figure 4.5. In this graph, each
connected component represents a compound. When two entities bind together, the two
compounds merge, as well as the connected components in the graph. When an entity
unbinds, it leaves the compound and forms a new one, like the connected component in
the graph divides [Wik16].

Each compound has an arbitrary root entity. When the entities are realigned, the
algorithm starts from the root and traverses along all bindings to recalculate the position
and rotation for each entity, with the formulas explained in Section 4.4.1. A connected
component in the graph may contain loops, like shown in Figure 4.5c. To ensure the
algorithm terminates, each entity is only handled once. The first position and rotation
calculated are used for the entity, even if another path through the graph would result in
slightly other values. The procedure is explained in Algorithm 4.1.

All compounds of an environment are stored in a list. This list is not static, but can
change when bindings or unbindings occur. Therefore, the compounds are reevaluated
when a binding site binds or releases. Only one bind or release event is handled at a
time. In the event of binding, two distinct connected components in the graph merge to a
single connected component. For example, the transition from Figure 4.5a to Figure 4.5b,
where the yellow entity binds to the green entity. In the model, when two compounds
are merged, all the entities from one compound are moved to the other. Then, the
empty compound is deleted. If both entities that are binding together are already part
of the same compound, no merging is required. This can happen, when entities bind
together circularly, like shown in Figure 4.5c. The merging algorithm is summarized in
Algorithm 4.2.

In the event of unbinding, one connected component in the graph may split. For example
the transition from Figure 4.5b to Figure 4.5a, where the yellow entity releases the bond
to the green entity. In the model, after a bond is released, all the entities of the former
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Algorithm 4.1: Align all entities
1 Algorithm AlignEntities()
2 foreach compound in environment do
3 alreadyAligned = {}
4 AlignEntity(compound.rootEntity, compound.globalPosition,

compound.globalRotation)
5 end
6 return
7 Procedure AlignEntity(entity, globalPosition, globalRotation)
8 entity.globalPosition = globalPosition
9 entity.globalRotation = globalRotation

10 foreach bindingSite in entity.BindingSites do
11 if bindingSite.isBound then
12 boundEntity = bindingSite.boundEntity
13 boundSite = bindingSite.boundBindingSite
14 if not alreadyAligned.contains(boundEntity) then
15 newPosition, newRotation =

CalculateBoundEntityPositionAndRotation(
bindingSite.globalPosition, bindingSite.globalRotation,
boundSite.localPosition boundSite.localRotation)

16 alreadyAligned.add(boundEntity)
17 AlignEntity (boundEntity, newPosition, newRotation)
18 end
19 end
20 end
21 Procedure CalculateBoundEntityPositionAndRotation(

rootBindingSiteGlobalPosition, rootBindingSiteGlobalRotation,
boundBindingSiteLocalPosition, boundBindingSiteLocalRotation)

22 newRotation = rootBindingSiteGlobalRotation·k
23 newPosition = rootBindingSiteGlobalPosition -

rotate(boundBindingSiteLocalPosition, boundBindingSiteLocalRotation)
// see Equation 4.4 and Equation 4.3

24 return newPosition, newRotation
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(a) Red and blue are bound to-
gether. Three individual com-
pounds.

(b) Red and blue are bound to-
gether, and yellow and green
are bound together. Two indi-
vidual compounds.

(c) All entities are bound
together to one compound.

Figure 4.5: Four entities that are bound together in various ways. Illustrated in 2D and
as graph representation (node color corresponds the entity color). In the graph, each
connected component represents a compound and is shaded in gray. The root entity of a
compound is marked with "R".

Algorithm 4.2: Merging of two compounds
1 Algorithm Bind(bindingSite1, bindingSite2)
2 if bindingSite1.ownerEntity.compound != bindingSite2.ownerEntity.compound

then
3 compound = bindingSite1.ownerEntity.compound
4 oldCompound = bindingSite2.ownerEntity.compound
5 foreach entity in oldCompound do
6 compound.addEntity(entity)
7 entity.compound = compound
8 end
9 oldCompound.dispose()

10 end
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(a) Sensor in kinesin head sensing for tubulin
where it can dock to [KSM+97].

(b) Hemoglobin looking for oxygen with four
sensors [FPSF84].

Figure 4.6: Examples of molecular machines models that utilize sensors
.

compound are reevaluated. Starting from the root entity of the compound, all bindings
are traversed to determine which entities are still part of the compound. All entities,
that are not accessible from the root entity, are then removed from the former compound.
Then, a random remaining entity is chosen as root entity for a new compound. Again,
from the new root all bindings are traversed to determine which entities are part of the
new compound. All accessible entities are added to the new compound. This step is
repeated until there are no unconnected entities left. The algorithm is summarized in
Algorithm 4.3.

4.5 Sensor

Sensors are used by the entity behavior to find other entities that are nearby. The entity
then may choose a nearby entity and interacts with it. Like binding sites, sensors are
defined by a position and a direction. Furthermore, a sensor has an aperture and a range.
The position, direction, aperture and range define a cone. The sensor can detect all
entities that are inside that cone. Examples of sensor usage are shown in Figure 4.6.

The position and direction of a sensor are stored relative to the entity origin in the entity
structure, just like binding sites. Thus, the sensor position and direction can change as a
result of a conformational change.

As mentioned before, a sensor defines a cone to detect other entities. The defined cone is
shown in Figure 4.7. In the entity structure, the local position S.lp and the local rotation
in quaternion form S.lr is stored. This position defines the apex of the cone (point A in
Figure 4.7). Therefore, the global position of point A, when E.p is the entity position
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Algorithm 4.3: Splitting of a compound
1 Algorithm ReleaseBond(bindingSite)
2 compound = bindingSite.ownerEntity.compound
3 otherSite = bindingSite.boundBindingSite
4 otherSite.boundBindingSite = null
5 bindingSite.boundBindingSite =null
6 unassignedEntities = copy(compound.entities)
7 entitiesConnectedToRoot = FindConnectedEntities

(compound.rootEntity)
8 compound.removeEntities(unassignedEntities)

// Find connected entities in the unassignedEntities list
and create a new Compound for each connected
component:

9 while unassignedEntities.count > 0 do
10 newRoot = unassignedEntities.first()
11 entitiesConnected = FindConnectedEntities (newRoot)
12 newCompound = new Compound(newRoot)
13 foreach connectedEntity in entitiesConnected do
14 newCompound.addEntity(connectedEntity)
15 connectedEntity.compound = newCompound
16 end
17 end
18 Procedure FindConnectedEntities(entity)
19 unassignedEntities.remove(entity)
20 connectedEntities = { entity }
21 foreach bindingSite in entity.bindingSites do
22 if bindingSite.isBound then
23 boundEntity = bindingSite.boundEntity

// this "if" avoids infinite loop in circular
graphs:

24 if unassignedEntities.contains(boundEntity) then
25 connectedEntities.addAll(FindConnectedEntities(boundEntity))
26 end
27 end
28 end
29 return connectedEntities
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Figure 4.7: Entity with a sensor attached. The cone represents the sensing area. A is the
apex, α the aperture, r the range and B the center of the base circle.

and E.r the entity rotation, is defined by:

A = E.p+ rotate(S.lp, E.r) (4.9)

Point B is located in the middle of the base circle of the cone. B is dependent on the
sensor direction and the range. The sensing direction for identity rotation is arbitrarily
defined as the direction of the y-axis. The unit vector in direction of the y-axis is (0, 1, 0),
this equals in quaternion representation: j. Therefore, when the sensor range is r, the
global position for B is determined by:

B = A+ rotate(j · r, E.r · S.lr) (4.10)

Every entity that is located inside the defined cone, is detectable by the sensor. To find
relevant entities, it is tested for each entity if its origin is inside the cone. Thus, the
testing algorithm consumes an arbitrary point P and returns true if the P is inside the
cone and false otherwise. When P is inside the cone, the angle between the vector from
the apex to the base circle center (−−→AB) and the vector from the apex to P (−→AP ) can be
α

2 at maximum. If this condition is not fulfilled, then P cannot be inside the cone. If the
condition is fulfilled, P is either inside the cone or is somewhere too far away, where the
cone already has ended. To find out, −→AP is projected on −−→AB. If the projected length is
r at maximum, then P is definitely inside the cone, if it exceeds r, P is definitely not
inside the defined cone [Wei15]. The exact algorithm is shown in Algorithm 4.4. Note
that "·" indicates the dot product and |−−→AB| = r.

A sensor only detects entities on demand. The entity behavior controls the sensors and
can use them when required.
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Algorithm 4.4: Test if a point is inside a cone
1 Algorithm IsPointInsideCone(P)
2

−−→
AB = B −A

3
−→
AP = P −A

4 β = arccos
( −→
AP ·

−−→
AB

|
−→
AP ||

−−→
AB|

)
5 if β > α

2 then
6 return false
7 end

8 projectedLength =
−→
AP ·

−−→
AB

|
−−→
AB|

9 if projectedLength > r then
10 return false
11 else
12 return true
13 end

4.6 Environment

As mentioned at the beginning of this chapter, the environment is the space where all
animations happen. It is the model component that manages every entity, every structure
and every compound. It also ensures that compounds are held together, and initiates
all animation steps. The spatial boundaries of the animated molecular world are also
defined by the environment.

When an environment is created, all different classes of entities must be registered to the
environment. The environment is then able to instantiate individual entities. When an
entity is created, its structure and behavior is created simultaneously by the environment.
The environment holds a list of all structures, all entities and all compounds for fast
access. The entity structures are updated in every frame, if they are currently changing
conformation. Also the behaviors of all entities are invoked every frame, so they can react
to changes since the previous frame, and take corresponding action. After that, the entity
positions in all compounds are adjusted using the algorithm discussed in Section 4.4.2.

4.6.1 Compartments

Some animations require the environment to be subdivided into multiple areas, where
entities cannot randomly escape. This areas are called compartments and are needed,
for example, to model an environment that is divided to outside membrane enclosed
area and inside membrane enclosed area. A screenshot of an environment consisting of
two compartments is shown in Figure 4.8. Entities cannot randomly move outside their
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Figure 4.8: Screenshot of an environment divided into two compartments. Each com-
partment contains a few hundred entities. The two compartments are connected via a
molecular machine that moves entities across compartments [SSW+16].

compartments by Brownian motion, but need to be explicitly moved across compartments
by an entity behavior. The model only supports cuboid-shaped compartments.

4.6.2 Concentration Controllers

Concentration controllers allow the user to interactively change the concentration of
a specific entity in the environment. The concentration controllers are represented as
sliders on the GUI. By moving the sliders, the number of entities of a specific class is
adjusted during the animation. An example is shown in Figure 4.9. It is possible to
define multiple concentration controllers, with each dedicated to one specific entity class.

Each concentration controller has a customizable name and is bounded between a
minimum and maximum value. When the slider on the GUI is adjusted by the user, the
difference between desired and existing number of entities is determined. If the difference
is positive, new entities have to be created. The animator can define how a new entity is
created and where it is placed by a custom factory algorithm. This factory algorithm is
executed as many times as number of entities are missing. Conversely, if the difference
is negative, there are too many entities of the specified class in the environment. In
such case, random entities of the specified class are deleted, until the desired and actual
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Figure 4.9: Screenshot of an environment showing three concentration controllers on
the top left. By moving the slider the number of entities of a specific class interactively
changes [Sha83].

number of entities equal. If the entity, that is about to get deleted, is bound to any other
entity, the bond is automatically released.

4.7 Spatial Location

All entities are part of a compound, even if they are not bound to any other entity. When
multiple entities are bound together, they do not move independently, but together as a
compound. Therefore, the spatial location in the environment is handled per compound
and not per entity. As previous sections indicate, entities of course have a position
assigned, however, the individual entity positions are not independently mutable, because
they are derived from the compound location. Changing the entity position property
does not actually move the entity, because the value is recalculated and overwritten every
frame. Instead, entities have to move with their compound. The entity position is only
cached after calculation, so it does not have to be recalculated for further uses like, for
example, rendering.

The position and rotation of a compound is determined by its spatial link. Different
compounds can have a different types of spatial links to the environment, depending on
their task. The concept of different spatial link types was chosen to give the animator
more control over the compound movement. The model defines three types of spatial
links:
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Floating: A compound that is floating, moves randomly to mimicking Brownian motion.
Floating compounds must always be located inside a compartment. They cannot leave
the compartment automatically, because they bounce off the compartment walls. When
floating, the collision detection is active, which means that the compounds bounce off
other compounds. They are also pushed away by moving compounds that are following a
trajectory.

Trajectory: The compound is moved along an arbitrary trajectory. A trajectory can
be composed of multiple sections. There are two types of sections: linear movement and
attraction force.

A linear movement section moves the compound to a defined destination position and
rotation in a specified amount of time. After the time elapsed and the compound has
reached its destination, the trajectory continues with the next section.

An attraction force section applies a physical force at an arbitrary position on the
compound that pulls into the direction of a specified destination. The section is finished
when either the distance to the destination is below a specified threshold, or a custom
amount of time has elapsed.

Those two section types can be combined multiple times and in any order to define a
trajectory. At the end of a trajectory, the spatial link is changed to either fixed or floating.
Alternatively, the trajectory ends by binding to a binding site.

The primary use case for trajectories is to attract other compounds to eventually bind to
them. Another use case is to move a formerly floating compound across compartment
boundaries, because trajectories are not restricted by those. This is, for example, useful for
membrane proteins. The animator can decide if the collision detection of the compound
should be active or inactive during the movement. When the compound is moving
through a compartment, it is usually desired to have an active collision detection, so
floating compounds in the compartment collide and get out the way. Otherwise, with
deactivated collision detection, the moving compound would just float through them. In
contrast, when attracting a compound to bind it to an inner binding site, the collision
detection has to be deactivated so the attracted compound can penetrate.

Fixed: A compound with a fixed spatial link, is locked at a certain position with a
certain rotation and cannot be moved. This type of spatial link may be used to locate big
or heavy compounds that do not move. It can also be used to place a compound between
two compartments, so it can interact with entities from both sides. This is suitable, for
example, for entities representing membrane proteins. Membrane proteins in biology can
float along the 2D membrane surface, however, such a representation is currently not
supported by the model [AJL+14].
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4.8 Behavior Description

The behavior is the agent logic of an entity. Each entity is linked to a behavior which
controls its interaction with the environment. By interacting with the environment the
animation is created, because the interactions result in movements and conformation
changes. The animator describes an entity behavior by program code. Behavior descrip-
tions can include observing the environment, manipulating inner state, making decisions
and interaction with the environment.

The behavior can observe the environment using the sensors attached to the entity.
Sensors can be used determine the concentration of a specific ligand or to find nearby
entities. The information obtained from the sensors must then be processed and evaluated.
The behavior may contain an inner state that is updated, depending on this information.
The inner state and the sensor information are then used to interact with the environment.
Often, entities look for nearby entities of a specific class, with which they can interact.
The behavior can attract or repel those entities to mimic physical forces, by using
trajectories. Bindings on the entity’s binding sites can be established or released. And
the conformation of the entity structure can be changed.

The behavior description defined by the animator is executed by the environment for
every frame. This enables the behavior to evaluate the environment and take action in
a periodic manner. Since each entity has a behavior description that is executed every
frame of the animation, the program code describing the behavior should be efficient and
as short as possible. The longer it takes to execute all behavior descriptions, the lower is
the frame rate of the resulting animation.

Often, the molecule behavior depends on its current conformation. For example, enzymes
that are allosterically activated behave different than the same enzyme that is not
activated. Therefore, the behavior can often be described as state machine. Depending
on the current state, the behavior interacts differently with the environment.

The behavior has full control over other entities and a toolset of interaction possibilities
like trajectories and conformations. As a result, it is possible to create animations that are
not necessarily compliant with laws of nature. For example, the principle of conservation
of energy is easily violated. Another example is when two binding sites bind, it is not
checked if they are compatible in a complementary shape and charge way, like it is in
biology. Therefore, the behavior description is responsible to keep animations as realistic
as required.

4.9 Methodology

To learn about the challenges of the animation process, three molecular machines were
visualized. For this learning process, none of the import or animation tools described in
the related work section were used. The reason for this design choice is to get an in-depth
understanding of the challenges involved and avoid being biased by possible solutions.
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The goal was to create a framework that can be used to animate a variety of molecular
machines. To achieve this, the framework was created and evolved iteratively by following
these steps:

• Choose a simple molecular machine to start with. Get familiar with it and its
functionality.

• Create a framework that can be used to visualize and animate the machine. Make
sure that the framework supports all tasks necessary, from importing molecular data,
to generating a model for the chosen molecular machine, to render the machine.
Also take care the framework does not require the user to do repetitive tasks.
Repetitive tasks often expose as molecular features that can be abstracted and
reused.

• When the chosen molecular machine is sufficiently represented, choose another
more complex one. Then repeat these steps with the new machine, but instead of
creating a new framework, advance the existing one, if necessary.

This approach is also called "Harvested Framework" [Fow03]. When repeated for a few
iterations, the resulting framework should support quite a variety of molecular machines.
Ideally, the framework should not require new features after a few iterations, because all
features needed are already implemented and can be reused for the new machine. When
this happens, the framework has reached a certain matureness and should be usable for
a wide range of molecular machines.

To find a suitable first molecular machine to start with, various sources were considered,
including the books "Molecular Biology of the Cell" by Bruce Alberts et al. [AJL+14] and
"Bionanotechnology: Lessons from Nature" by David Goodsell [Goo04]. Another great
source was an extensive list of molecular machines, published by Casey Luskin [Lus10].
After some research, Hemoglobin was chosen as very first molecular machine. It is
relatively simple, well known and easy to understand.

Initially, a mechanical animation approach was considered. As it turns out, this approach
is not suitable for many molecular machines. Thus, finally the agent-based approach that
was discussed in the previous sections was implemented. The following sections describe
the two approaches in more detail.

4.9.1 Mechanical Approach

Molecular machines have some analogies to machines in the macroscopic world [BBC+01].
Thus, the first idea was that some molecules may act like macroscopic machine elements.
Assuming there is a strong relation between certain molecules and macroscopic machine
elements, a mapping between those worlds could be established as illustrated in Figure 4.10.
For macroscopic machine elements, it is possible to infer the interactions of the machine
elements by their structure, as shown by Mitra at al. [MYY+10] If a similar approach
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Figure 4.10: Mapping between molecular representation and machine representation by
mapping molecules to corresponding machine elements [MYY+10, ZNL14, GVL14].

could be used to for molecules, then even an automatic mapping would be imaginable.
Using the mapping knowledge, a mechanical model could be generated out of a molecular
machine. A mechanical model would be very illustrative to demonstrate how a molecular
machine works. Furthermore, the mechanical model can be animated, as demonstrated
by Mitra at al. [MYY+10]. The movements of the mechanical animation could then be
mapped back to the molecular machine. Thus, the mechanical model would not only
provide a different representation form, but would also help to animate the original
molecular machine. Another advantage would be that the mapping could be used the
other way around: By creating a mechanical model, a new molecular machine could be
generated by using the mapping. Out of a library of known macromolecular machine
elements and the corresponding molecules, new molecular machines could be designed.

Some molecular machines actually work in a very mechanistic way. For example, ATP-
synthase or the Bacterial Flagellar Motor both contain rotatory parts [SSW+16, ZNL14].
However, the majority of molecules do not map to known mechanical parts very well.
Furthermore, a lot of aspects of molecular machines work fundamentally different to
macroscopic machines. The reason for this is the small scale and the very different
environmental conditions [Goo04]. Gravity and inertia are very important for macroscopic
machines, but are negligible for molecular machines. Thermal motion in not relevant for
macroscopic machines, but vital for the functionality of molecular machines. The very
crowded water environment in which molecular machines work are also quite different
to the environment of most mechanical machines. More peculiarities of molecular
environments are discussed in Section 2.4.1. Moreover, molecular machines do not work
purely mechanical, but also utilize other approaches, like molecule interactions, structural
changes, electric forces and chemical energy generation, just to name a few [Goo04].

Another fundamental difference is that macroscopic machines use very general elements
that can be used for a lot of machines. For example gears, shafts, bearings, pins,
etc. [MoME05]. In contrast, each part of every molecular machine is highly specialized
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for its specific task. Thus, a specific molecule cannot be seen as a general machine
element that can be reused for other molecular machines, but as a unique part that
is only usable for one machine. However, there are molecules that are used in various
molecular machines, like ATP, but the molecular machine elements usually only exist in
one machine [Goo04].

As it turns out, a mechanical description is not very appropriate for most molecular
machines. Already the first chosen molecular machine (hemoglobin) could not be repre-
sented by a mechanical model. Therefore, another more low-level approach was chosen,
which is discussed in the next section.

4.9.2 Agent-based Approach

As molecular machines could not be mapped to macroscopic machine parts in a satisfying
manner, molecular machines were examined on a lower level. Instead of trying to
transform molecular machines to another concept, it was tried to isolate their traits and
features. One obvious trait is that molecular machines are built out of molecules. These
molecules interact with each other to fulfill their tasks. Since molecules in nature are not
controlled by an omniscient intelligence, but behave dependent on their surroundings, the
idea of autonomous molecules arose. Those autonomous molecules were used as agents
and were equipped with agent logic that controls their behavior.

The molecular environment is represented using a model. Every action that takes place
in the environment is initiated by an action on the model. Also the behavior descriptions
use the model to interact with the environment. Like explained earlier, the framework
was improved iteratively, by visualizing more and more complex molecular machines.
A total of three molecular machines were visualized using the model presented in this
chapter. During the visualizations the model needed to improve. At the very beginning,
the relatively simple molecular machine hemoglobin was visualized. As second machine,
a visualization of the more sophisticated ATP-synthase was created. The last molecular
machine was kinesin. The biological functionality of these machines was already explained
in Chapter 2. How the model evolved from machine to machine is presented in the next
section.

Model for Hemoglobin

For the first molecular machine, the model had to be created from scratch. The model
should be able represent hemoglobin, oxygen and carbon-monoxide molecules. Moreover,
the hemoglobin should automatically bind to oxygen or carbon-monoxide depending on
the concentration of these molecules.

At first, an underlying model component was introduced that can represent the molecules.
Since hemoglobin is a single molecule, the general molecule component can be used to
represent it as well. Each molecule is represented by a set of atoms.
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The essence of hemoglobin is that it can bind and release oxygen molecules. Since
hemoglobin has four sites where the oxygen molecules can bind to, and all of these
sites do exactly the same, a general abstraction for binding sites was introduced. At
the beginning, those binding sites were much simpler than the more matured concept
explained in Section 4.4. The early binding sites were only suitable to attract and hold
smaller molecules. They were only defined by a position, without direction. It was
not possible to build molecular complexes and compounds using them. But for the
hemoglobin, this was not a requirement.

Hemoglobin binds to oxygen or carbon-monoxide depending on the concentration of these
molecules in the surrounding. Likewise, these molecules are likely to be released again,
when the concentration in the surrounding drops below a certain threshold. To enable
the hemoglobin to decide when to bind and when to release a molecule on a binding site,
it has to know the concentration. Sensors were introduced to the model to address this
requirement. The sensors were designed to only analyze small, cone-shaped areas, so each
binding site can have its own sensor. Each binding site having its own sensor has a few
advantages compared to just search entities that are inside a defined radius: First, the
binding sites can be handled individually, so the exact same logic can be used for all of
them. And second, by using individual cone shaped sensors, the molecules in the sensor
area are in the "field of view" of the binding site. When a molecule from the sensor area
is attracted to the binding site, it seems more natural, than choosing a random molecule
nearby the hemoglobin, that is possibly out of "sight" for the binding site.

Hemoglobin has a dynamic affinity for oxygen. The more oxygen molecules are already
bound, the easier it is for the next oxygen molecule to bind. This increasing affinity is
caused by allosteric activation, which is noticeable by small shifts in the atomic structure.
Therefore, it was necessary to consider changes in the atomic structure in the model
as well. To accomplish this, the concept of different conformations was introduced, as
explained in Section 4.3.

For the hemoglobin visualization, also a simple environment component was introduced
to the model. The environment was responsible for keeping a list of all molecules and
to limit the space where the molecules can float. Concentration controllers also were
available from the first molecular machine, to control the oxygen and carbon-monoxide
concentration in the environment. The method of describing behavior was very similar to
the method described in Section 4.8. The only changes in the behavior description was
the model that improved, and therefore provided more possibilities to interact with the
environment, and the more comfortable access to certain components due to dependency
injection, which is described in Section 5.5. The model components that were introduced
for the hemoglobin visualization are shown in Figure 4.11.

Model for ATP-Synthase

Like in hemoglobin, some parts rely on conformation changes to perform their tasks, for
example, the F1 complex that joins ADP and phosphate back together. Also, binding
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Figure 4.11: First model that was used to visualize hemoglobin. All components were
created from scratch.

sites for protons, ADP and phosphate were necessary for ATP-synthase. To find free
ligands, the concept of a sensor was reused, similar to the usage in hemoglobin. Behaviors
to control the machine parts, and concentration controllers to influence the proton
concentration were used for the ATP-synthase as well. Thus, those components of the
previous model could be reused. But yet a few adjustments and extensions had to be
made, to being able to visualize the ATP-synthase.

ATP-synthase is a molecular machine that consists of multiple molecules. Some of those
molecules change their conformation independent from each other and some molecules
even rotate as part of the machine activity. Still, the whole molecular complex holds
together. The model created for the hemoglobin is not quite capable of representing
such a molecular complex, since it does not allow large molecules to bind together in a
well-defined manner.

ATP-synthase is driven by protons trying to get from outside a membrane to inside a
membrane enclosed space. To avoid that the protons get to the inside themselves, those
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spaces must be strictly separated, which is not supported by the old model. The division
of the environment, again, presents new challenges, because then a method is needed to
move molecules across those divided areas.

To allow the construction of molecular complexes, the binding sites were extended by
a direction, so bound together molecules can align in a well-defined way, as explained
in Section 4.4.1. The bound together molecules are spatially not independent anymore.
Therefore, whereas those molecular complexes consist of multiple molecules, a complex
has to be treated like one big unit. To achieve this, the concept of a compound was
introduced to the model, as discussed in Section 4.4.2.

For the visualization of ATP-synthase it was necessary, to combine ADP and phosphate
to ATP. For this task, the same approach was used as combining molecules to molecular
complexes. In biology, ATP is a single molecule, in this ATP-synthase visualization,
the ATP is represented as a compound of two smaller molecules. Furthermore, it was
necessary to visualize protons, which are, strictly speaking, no molecules. Due to this
reasons, the molecule component was renamed to entity, to clarify that it is a more
general component than a molecule.

As mentioned before, the environment needed to be divided into two parts. To achieve
this, compartments were introduced to the model, as explained in Section 4.6.1. To be
able to move compounds across compartments, the concept of compartment independent
trajectories was used. Furthermore, it was necessary to fix the ATP-synthase between two
compartments and let the other molecules float freely. Thus, also the concepts of fixed
and floating compounds were added. The location controlling parts of the compounds
were then abstracted to a spatial location component in the model, as explained in
Section 4.7.

Another change in the model was that the visual representation of an entity was summa-
rized to an entity structure. The extensions and changes made to the previous model
that originated from the hemoglobin, are summarized in Figure 4.12.

Model for Kinesin

In the visualization of kinesin, not only the kinesin itself is visualized, but also a
microtubule. The microtubule consists of multiple subunits that are bound together. To
enable such a large complex of molecular subunits, the compound feature was reused,
that was introduced for the ATP-synthase. Also the kinesin itself is composed of multiple
parts that are bound together by binding sites and therefore forming a compound.

The microtubule is fixed in the environment. The kinesin is floating as long as it is not
bound to the microtubule. Thus, the spatial location feature that was introduced with
the ATP-synthase, could also be reused for kinesin.

The ability to change the conformation that was introduced for the hemoglobin, could
also be utilized for the kinesin visualization. The kinesin heads are changing their
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Figure 4.12: Model used for ATP-synthase. The components that differ from the previous
hemoglobin model are colored. The green colored components were added, the yellow
shaded component was renamed.
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conformation when binding to the microtubule, when ATP is consumed and when ATP
is cleaved.

The model of kinesin also makes use of a sensor to find a microtubule unit to which it
can bind to. Of course also the entity behavior was needed, to describe the molecular
machine’s behavior.

The kinesin did utilize most of the features that were added to the model for the previous
machines. However, one exception are the compartments. This feature is not needed by
kinesin, because everything takes place in the same, undivided space. Also, kinesin did
not require to extend or modify the model. That shows that the model already gained a
certain maturity, and that the introduced concepts for one molecular machine are likely
to be reused for other machines.
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CHAPTER 5
Implementation Details

A prototypic framework was implemented according to the model proposed in Chapter 4.
The framework provides visualization and animation capabilities for virtual molecular
environments. This chapter summarizes the implementation details of this prototype.

5.1 Platform and Architecture

The framework is implemented using the programming language C#. It is based on
the platforms: Unity 5.4.3 [Tec17] and .NET Framework 3.5 [Mic17]. The framework is
divided into two parts:

The first part is the library. It is a .NET library [Mic17] which contains the model dis-
cussed in Chapter 4 and implements its basic logic. The library provides an application
programming interface (API) that allows the user to create a custom molecular environ-
ment. The created environments can be saved and loaded in a JSON file format [Bra14]
that is further discussed in Section 5.3. The library is based on .NET Framework 3.5,
even though newer .NET Framework versions are available. The reason for this is that
it must be possible for the library to be used in Unity and Unity only supports .NET
Framework libraries up to version 3.5 [Tec17].

The second part is the player. The player is implemented as Unity project [Tec17]
which extends the library to add Unity’s physics engine and rendering capabilities of the
framework. Unity renders and animates the created molecular environments in real-time.
Using mouse and keyboard, the user can move around in 3D space and see the molecular
machines working. The user can interact with the molecular environment by changing
the ligand concentration using concentration controllers and can experience the effects of
changes in real-time.
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Although the whole framework could have been implemented in Unity without a separate
library, the project is divided in its two parts to provide an API independent from Unity
that can be used by console application for import scripts, as described in Section 5.2.

5.2 Data Import
Before a molecular environment can be animated, it has to be modeled using the
framework. To create a molecular environment, data from different sources has to be
combined. The data has to be imported and transformed to fit the model. The framework
exposes an API for that purpose.

The suggested way to create a molecular animation using the framework is by creating an
import script. An import script is composed of import and transformation instructions
to create a molecular environment. At the end of the script, the environment can be
saved to JSON files that can be read by the player. By using import scripts, the user
can iteratively adjust details in the script and obtain reproducible results by rerunning
the script. Import scripts can be easily made by creating a .NET console application
and reference the library of this framework. The library provides all the functionality
needed to import and transform data from the Protein Data Bank [BWF+00], create
compartments, entities, bindings, etc.

The framework includes a parser for PDBx/mmCIF files, which is the standard archive
format for the PDB [wwP16]. Using the parser, structures from the PDB can be imported
and used in the environment. The framework also provides inherent support for spatial
manipulation via 3D vectors and quaternions.

The framework provides some helper classes like ImportBase and EntityBuilder.
They make it easy to import data and create a molecular environment. Listing 5.1 shows
a simple example how to create an entity class and import the molecular structure from
a PDBx/mmCIF file. Then 100 instances of this entity are placed in a compartment.

5.3 Data Format
A molecular environment created with the framework can be saved and loaded using
JSON files [Bra14]. The format can be used by import scripts to save the created
environment. To animate the environment, the player can load the JSON files and play
the animation. By using this data format, the data import and the animation player are
strictly separated. This allows the user to save different molecular environments without
having to reimport from the original source files before each usage. That makes it easy
to quickly switch between different molecular environments and improves the startup
time of the player.

When an environment is saved, each class of entity that is present in the environment is
serialized into a separate file. A specialized environment file saves the individual entities,
compartments and concentration controllers. The data format relies heavily on IDs to
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1 public class ImportExample : ImportBase
2 {
3 public override void Import()
4 {
5 var compartment = new Compartment(
6 "main",
7 new Vector(-250, -250, -250),
8 new Vector(250, 250, 250)
9 );

10 Environment.AddCompartment(compartment);
11
12 var hemoglobinClass = new EntityClassBuilder("hemoglobin");
13 hemoglobinClass.AddAtoms(LoadCif("2hhb.cif"));
14 hemoglobinClass.ReCenter();
15
16 for (int i = 0; i < 100; i++)
17 {
18 CreateEntityFloating(hemoglobinClass, compartment);
19 }
20 }
21 }

Listing 5.1: Import script example

wire different components together. When the player is started, it simply loads all JSON
files in a specified directory and animates the loaded environment.

Entity Class File

An entity class file includes the definition of a specific class of entity. It basically provides
a template for creating entities. In the environment, multiple instances of the entity class
can be created. Entity class files are not bound to a specific environment. Thus, it is
quite possible to reuse an entity class in other environments without any modification of
the entity class file.

The entity class contains an ID, so it can be uniquely referenced by other files. A behavior-
ID wires together the entity class with a specific behavior. The behavior description
itself is not part of the entity class file. How behaviors are created and how they are
associated with a behavior-ID is explained in Section 5.5. Next, the entity class contains
the specification for its markers. "Marker" is an umbrella term for binding site and sensor.
The largest part of the file, however, is used for the structure definition.

The structure definition contains a list with all atoms that make up the entity. Then the
predefined conformations of the entity class are encoded. Each conformation has an ID,
so it can be referenced from the behavior description. The conformation contains the
3D position for each atom. Furthermore, the position and rotation for each marker are
defined by the conformation. Moreover, the conformation has a color assigned, and a set
of collider geometries that are used to define the approximate entity boundaries, so the

59



5. Implementation Details

physics engine can perform a collision detection. The collision detection is explained in
Section 5.4 in more detail. An example entity class file is shown in Listing 5.2.

1 {
2 "id": "kinesinHead",
3 "behavior": "kinesin.head",
4 "markers": [
5 { "id": "tubulin", "type": "bindingSite" },
6 { "id": "tubulinSensor", "type": "sensor", "range": "70",
7 "aperture": "1.8" },
8 ...
9 ],

10 "structure": {
11 "id": "kinesinHead1",
12 "atoms": [ {"symbol": "N"}, {"symbol": "C"}, ... ],
13 "conformations": [
14 {
15 "id": "bound tight",
16 "color": "0.2737045;0.2919063;0.4673147;1",
17 "atomPositions": [
18 "-1.010026;22.67282;18.10739",
19 "-1.04894;23.41682;16.81354",
20 ...
21 ],
22 "markerLocRots": [
23 {
24 "loc": "-15.93514;6.988817;-3.163164",
25 "rot": "0;-1;0;0"
26 },
27 ...
28 ],
29 "collider": {
30 "geometries": [
31 {
32 "type": "sphere",
33 "center": "0;0;0",
34 "radius": "36.22589"
35 }
36 ]
37 }
38 },
39 ...
40 ]
41 }
42 }

Listing 5.2: Entity class file example
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Environment File

The environment file defines a molecular environment and makes use of entity class files.
It includes all compartments and their bounding boxes. Each compartment has an own
unique ID. Next, all entities that are present in the environment are defined. Again, each
entity gets an ID. Entities which are the root entity of their compound, additionally have
a spatial location defined.

When the environment is loaded from the file, the entities are sequentially created. In
order that compounds are preserved in the environment file, the bonds between entities
are also saved. By sequentially binding them together as defined in the file, the original
compounds are reconstructed. The bonds in the environment file are saved by referencing
both entities and their binding sites.

The concentration controllers that are visible to the user, are also defined in the environ-
ment file. They are defined by a display name, a minimum and maximum value and the
ID of the entity factory used by the concentration controller. More information about
entity factories and concentration controllers can be found in Section 5.6.

An example environment file is shown in Listing 5.3.

5.4 Unity Integration

The player is implemented in Unity [Tec17] in order to harness its physics engine and
render capabilities. The Unity project references the library to gain the functionality
of the framework. The framework provides various hooks where it can be customized.
Most framework classes can be extended to add new functionality. It is also possible to
be notified on specific model events like bindings.

Unity’s physics engine is used for collision detection. The physics engine is based on
the GameObject model of Unity, therefore the framework model must be represented as
GameObject model as well. To achieve this, the entity and compound components of the
framework are extended to create corresponding GameObjects. The model components
and GameObjects are tightly bound. The compound-entity hierarchy is preserved in
the GameObject model. The parent of each entity GameObject is the corresponding
compound GameObject, just like it is in the model. Additionally, the model uses the
location information of the GameObjects. Thus, when the model component is moved,
the GameObject moves as well and vice versa. In that way the physics engine can
interfere with the model by using the GameObjects.

For collision detection, the physics engine should not consider all entities independently,
but must handle the compounds as a whole units. This is vital, because forces applied
by collisions should affect all entities in a compound and not only to the entity at the
impact site. Besides, it is not desired that physical forces can rip an entity out of a
compound. Even though this is a natural phenomenon in biology, it is not desired in
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1 {
2 "name": "Kinesin Environment",
3 "compartments": [
4 {
5 "id": "main",
6 "corner1": "-1000;-1000;-1000",
7 "corner2": "1000;1000;1000"
8 }
9 ],

10 "entities": [
11 {
12 "id": "274",
13 "class": "kinesin",
14 "spatialLocation": {
15 "type": "floating",
16 "locRot": {
17 "loc": "0;50;0",
18 "rot": "0;0;0;1"
19 }
20 }
21 },
22 { "id": "271", "class": "kinesinNeckLinker" },
23 ...
24 ],
25 "bonds": [
26 {
27 "active": { "entity": "274", "bindingSite": "neckLinker1" },
28 "passive": { "entity": "271", "bindingSite": "hip" }
29 },
30 ...
31 ],
32 "concentrationControllers": [
33 {
34 "name": "ATP",
35 "entityFactoryId": "kinesin.atpEntityFactory",
36 "min": "0",
37 "max": "500"
38 },
39 ]
40 }

Listing 5.3: Environment file example
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this framework. The aim of this framework is not to act as a simulator, but requires the
biologist to explicitly define such behavior if wanted.

The physics engine only considers GameObjects with a Rigidbody component [Tec16].
Thus, only GameObjects representing compounds have a Rigidbody component assigned,
but the GameObjects representing entities do not. To detect collisions, the physics engine
combines all Colliders that are assigned to all sub elements of the Rigidbody GameOb-
ject [Tec16]. Thus, the GameObjects that represent entities get the Colliders assigned.
Because the entity GameObjects are sub elements of the compound GameObjects, the
physics engine combines all Colliders of the entities in a compound, and therefore treats
a compound as a single physical object, which is exactly what is desired.

5.5 Behavior Description
The entities in a molecular environment interact with each other according to a specific
behavior. The behavior is defined using a behavior description. In the framework,
the behavior is described using C# program code. For each class of entity a separate
behavior description can be provided. The behavior is described in a class that extends
EntityBehavior. To make the behavior classes available to the player, all behavior
classes must be compiled to a .NET library, which is added to the Unity assets of the
player. When the player is started, all referenced libraries are searched for classes that
extend EntityBehavior and uses them for the animation. As described in Section 5.3,
the entity classes are linked to a behavior via a behavior-ID. The behavior-ID is added
to a behavior class by the EntityBehaviorId attribute. An example is shown in
Listing 5.4. At the beginning of an animation, for each entity a corresponding behavior
object is instantiated, that controls the entity.

1 [EntityBehaviorId("atpSynthase.f0c")]
2 public class F0cBehavior : EntityBehavior
3 {
4 ...
5 }

Listing 5.4: Entity behavior definition with EntityBehaviorId attribute.

The behavior can be described by using the model components described in Chapter 4.
To access the model components in code, the framework includes a dependency injection
for those components. The needed components can be declared as properties with an
appropriate attribute that tells the dependency injector what to inject.

The following attributes can be used:

Sensor(id): Injects the sensor with the specified ID into the property. The sensor
object can be used to scan the surrounding, as described later. An example usage is
shown in Listing 5.5.
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1 [Sensor("tubulinSensor")]
2 public Sensor TubulinSensor { get; set; }

Listing 5.5: Sensor injection into a property.

BindingSite(id): Injects the binding site with the specified ID into the property. The
binding site can be used to check if an entity is bound, or to initiate and release bonds.
An example definition is shown in Listing 5.6.

1 [BindingSite("protonSite")]
2 public BindingSite ProtonSite { get; set; }

Listing 5.6: Binding site injection into a property.

BoundEntity(bindingSiteId): Injects the entity bound to the binding site with the
specified ID. Depending on the type of the property, either the bound entity itself or its
behavior is injected. This provides fast and easy access to bound entities. The property
is automatically updated, when an entity is bound or released from the specified binding
site. If nothing is bound to the binding site, the property value is null. An example
definition is shown in Listing 5.7.

1 // inject entity
2 [BoundEntity("rotorSite")]
3 public Entity RotorEntity { get; set; }
4
5 // inject behavior
6 [BoundEntity("rotorSite")]
7 public RotorBehavior RotorBehavior { get; set; }

Listing 5.7: Bound entity and bound entity behavior injection into a property.

The examples above show how to gain access to the model components in a behavior
description. In the following sections it is explained, how this model components can be
used to observe the environment, how the inner state can be used and modified, and how
the behavior can interact with the environment.

5.5.1 Managing Inner State

Entity behaviors are implemented as state machines. Each state of the state machine
has a dedicated code block. The code in the code block has the option to observe the
environment, change the state, or interact with the environment. In the behavior C#
class, the code blocks are defined using ordinary, parameterless methods with the State
attribute. The method representing the code block for the current state is called for
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1 [EntityBehaviorId("atpSynthase.f0c")]
2 public class F0cBehavior : EntityBehavior
3 {
4 [BindingSite("protonSite")]
5 public BindingSite ProtonSite { get; set; }
6
7 [State(InitialState = true, Conformation = "tensed")]
8 public void Tense()
9 {

10 // Change to Relax-State as soon a proton is bound
11 if (ProtonSite.IsBound)
12 { SetState(Relax); }
13 }
14
15 [State(Conformation = "relaxed")]
16 public void Relax()
17 {
18 // Change to Tense-State as soon the proton leaves
19 if (!ProtonSite.IsBound)
20 { SetState(Tense); }
21 }
22 }

Listing 5.8: Simple example of a behavior description.

every frame. The current state of the state machine can be changed with the SetState
method. A simple example is shown in Listing 5.8.

One state must be marked as initial state, by setting the InitialState variable of
the State attribute to true. Optionally, the Conformation variable of the State
attribute can be set to a conformation ID that is defined in the entity class file. If set,
the conformation changes to the specified conformation when the state is entered. If the
Conformation variable is not set, the entity structure stays in the current conformation,
without being changed. Alternatively, the conformation can be changed by code using
the SetConformation method.

As the behavior is described using a C# class, it is simple to add custom fields to save
custom information. This information can be accessed inside the state methods, and can
be considered in more sophisticated decision making processes.

5.5.2 Observing the Environment

The surrounding of the entity can be observed by using the entity’s sensors. In order
to be used, the sensors must be defined in the entity class file, as shown in Section 5.3.
To make a sensor accessible in code, the sensor object must be injected into a property
using the Sensor attribute, as shown in Listing 5.5. The sensor-ID in the attribute must
reference the corresponding sensor-ID in the entity class file. The injected sensor object
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provides various methods to find nearby entities. The available methods are shown in
Listing 5.9.

1 IEnumerable<Entity> FindEntities();
2
3 IEnumerable<Entity> FindEntitiesOfClass
4 (string entityClassId, Func<Entity, bool> filter);
5
6 IEnumerable<TBehavior> FindEntitiesWithBehavior<TBehavior>
7 (Func<TBehavior, bool> filter);
8
9 bool FindNearestWithBehavior<TBehavior>

10 (Func<TBehavior, bool> filter, out TBehavior nearest);
11
12 bool FindNearestEntityOfClass
13 (string entityClassId, Func<Entity, bool> filter, out Entity nearest);
14
15 bool FindNearestEntityOfClassWithFreeSite
16 (string entityClassId, string freeBindingSiteId, out Entity nearest);

Listing 5.9: Methods that are implemented by a sensor.

FindEntities simply returns all entities that are currently located inside the sen-
sor cone. FindEntitiesOfClass is very similar, but only returns the entities with
a specific entity class ID. Additionally, a filter function can be provided that can be
expressed as lambda expression. FindEntitiesWithBehavior is a generic function
that filters the entities in the cone by their behavior type. Instead of returning the
entities, it returns the behavior objects of the entities. Again, a filter method can
be provided. FindNearestWithBehavior is a generic function that finds the en-
tity that is the nearest to the sensor and whose behavior has a specific type. The
method returns true, if an entity is found with the specified behavior, otherwise it
returns false. The behavior of the nearest entity is returned via the output parame-
ter. A very similar method is FindNearestEntityOfClass. But instead of using
the behavior type to find the nearest entity, it uses the entity class ID. The method
FindNearestEntityOfClassWithFreeSite is very specialized, however, it is a
quite commonly needed in molecular environments. It looks for the nearest entity inside
the sensor cone, with a specific entity class ID that has no other entity bound at a specific
binding site.

5.5.3 Environment Interaction

The behavior can interact with the environment by moving around compounds or by
initiating and releasing bonds to other entities. Entities to interact with can be found
using sensors, as described in Section 5.5.2. To move around compounds, the behavior
can define a trajectory consisting of various sections, as discussed in Section 4.7. In the
behavior description, a trajectory can be created by using the TrajectoryBuilder
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class. TrajectoryBuilder is a helper class that provides a fluent interface to define a
trajectory. An example usage of the TrajectoryBuilder is shown in Listing 5.10.

1 // create trajectory for proton
2 var trajectory = new TrajectoryBuilder()
3 // move proton to the local ProtonSite, in 1 sec,
4 // with colliders disabled
5 .Movement(ProtonSite, TimeSpan.FromSeconds(1.0), false)
6 // after that, bind the binding site of the proton
7 // to the local ProtonSite
8 .Binding(ProtonSite, proton.BindingSiteById("BindingSite"))
9 // Create the trajectory

10 .Create();
11
12 // initiate binding, so the binding sites are not in the
13 // status "free" anymore, but in "binding". When the binding
14 // is complete, it changes automatically to "bound".
15 ProtonSite.InitiateBinding(proton.BindingSiteById("BindingSite"));
16
17 // Apply the trajectory to the compound of the proton
18 proton.Compound.Trajectory(trajectory);

Listing 5.10: Moving a proton entity to a local binding site and then bind.

To create more complex trajectories, multiple Movement or Attraction sections can
be combined. The destination can be specified by a spatial object like an entity, binding
site, sensor, etc. or it can be specified explicitly using a vector and a quaternion. Instead
of binding to a binding site at the end of a trajectory, the spatial location of the compound
can also be set to floating or fixed.

The binding sites can be manipulated even without trajectories. There are three methods
provided by the binding site that allow to manipulate the binding state. They are shown
in Listing 5.11.

1 void InitiateBinding(BindingSite otherSite);
2 void InstantBind(BindingSite otherSite);
3 void ReleaseBond(Trajectory ejectTrajectory)

Listing 5.11: Binding site methods.

The method InitiateBinding solely marks both binding sites as "binding". It is
an intermediate state between "free" and "bound". InitiateBinding should be used
when two binding sites are currently moving towards each other, but they are not bound
yet. This intermediate state avoids that other entities, that may desire to interact with
this binding site as well, mistakenly assume that the binding site is still free and initiate
a binding too. InstantBind is straight forward, it binds the two binding sites instantly
together. ReleaseBond releases the bond between two binding sites again. Optionally,
an eject trajectory can be provided, to move the released entity away.
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5.6 Concentration Controllers
Using concentration controllers, the concentration of a specific entity in the environment
can be changed interactively. However, depending on the environment and the entity
class, creating and deleting entities on demand may be no trivial task. For example, it
may be undesirable to delete entities that are currently bound to other entities. Therefore,
the framework uses customizable entity factories that are responsible for creating, finding
and deleting certain entities in the environment.

Similar to behaviors, entity factories are defined in specialized classes. Those classes
must be compiled to a .NET library, which is added to the Unity assets of the player,
just like behavior classes. Behavior classes and entity factories can also be compiled into
the same .NET library. Just like behaviors, entity factories have an ID. The ID is set by
using the EntityFactoryId attribute. The concentration controllers defined in the
environment file, are wired together with the entity factory by using this ID.

Entity factories defined in code, must extend the EntityFactory class. The class
declares three abstract methods that must be implemented: Create, Filter and
Delete. The implementation of the Create method, must create one new desired
entity. This method is called every time, when the concentration should increase. The
number of calls depends on how many entities should be created. The Filter method,
gets an entity as parameter. The implementation has to determine if this is an entity
that is handled by this entity factory. It can also implement some conditions under which
the entity is handled. The method is used to count the number of entities and to find
suitable entities to delete when there are too many of them in the environment. The
Delete method is used to safely remove an entity.

An example implementation of an entity factory is shown in Listing 5.12. In this example,
the entity factory creates entities of the entity class "o2", and locates them at a random
position in the compartment, from where it starts to float freely. The entity factory only
handles entities of the class "o2" and only if the first (and only) binding site is not bound.
An entity is deleted by simply disposing it.

5.7 Rendering
The player uses cellVIEW for rendering the environment [MAPV15]. cellVIEW is
specifically designed for rendering large molecular environments [MAPV15]. In cellVIEW
a set of molecular structures are defined and then individual instances of those structures
are placed in the environment. This can save a lot of memory when the same structures
are used over and over again [MAPV15]. Unfortunately, this framework cannot use
this feature extensively. Entity structures of the same entity class can change their
conformation independently. That means that entities can have distinct structures at the
same time, even if they are of the same class. This is the reason why they cannot share
the same structure in cellVIEW. However, entity types whose structures have only one
possible conformation and therefore cannot change, such a structure sharing is utilized.
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1 [EntityFactoryId("hemoglobin.ef.freeO2")]
2 public class O2EntityFactory : EntityFactory
3 {
4 public override void Create()
5 {
6 var entity = environment.AddEntity("o2", false);
7 entity.Compound.Float(
8 new LocRotStatic(
9 GeometryUtils.RandomVectorInsideCompartment(environment.

Compartments.First()),
10 GeometryUtils.RandomQuaternion()
11 )
12 );
13 }
14
15 public override bool Filter(Entity entity)
16 {
17 return (entity.Class.Id == "o2" && entity.BindingSites[0].IsFree);
18 }
19
20 public override void Delete(Entity entity)
21 {
22 entity.Dispose();
23 }
24 }

Listing 5.12: Example implementation of an entity factory

cellVIEW uses several compute buffers to transfer the scene information from the central
processing unit (CPU) to the GPU. The buffer used for the positioning of molecules is
updated every frame. The buffer containing structure information is only updated on
demand, e.g. during conformation changes.
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CHAPTER 6
Results

The model proposed in Chapter 4 was implemented as framework using Unity [Tec17],
cellVIEW [MAPV15] and the Microsoft .NET Framework [Mic17]. In order to being able
to animate more and more complex molecular machines, new features were added to the
framework during its emergence. In that way, the framework was iteratively improved.
Thus, the created animations of the three molecular machines were used to test the
framework and simultaneously function as a proof of concept.

At first, the relatively simple molecular machine hemoglobin was animated. Next the
more sophisticated ATP-synthase. Finally, an animation of kinesin was created using the
framework. The following sections describe how the framework was used to create the
animations of the three molecular machines.

6.1 Hemoglobin
Hemoglobin is a quite simple molecular machine that carries oxygen to from the lungs,
where oxygen is plentiful, and delivers it to all areas of the body where the oxygen
concentration is low [AJL+14]. The biological background of hemoglobin is explained in
Section 2.5.1.

The animation includes multiple oxygen, carbon-monoxide and hemoglobin molecules. Via
concentration controllers, the viewer can change the concentration of the three molecules
separately. If the concentration of oxygen or carbon-monoxide exceeds a certain threshold,
it is bound to a binding site of the hemoglobin. When the concentration drops below
a certain threshold, the bound molecule is released again. Carbon-monoxide binds to
hemoglobin much easier than oxygen. Therefore, a small carbon-monoxide concentration
is sufficient to occupy the binding sites of a hemoglobin molecule. By varying the
concentrations of oxygen and carbon-monoxide, the viewer can see how the molecules are
absorbed by hemoglobin and released again. A snapshot of the resulting animation is
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Figure 6.1: Snapshot of the hemoglobin animation showing oxygen and hemoglobin
molecules. The redder the hemoglobin, the more oxygen is bound. The blue hemoglobin
molecules are deoxygenated.

shown in Figure 6.1. In reality, a hemoglobin molecule is approximately seven nano-meters
in size [FPSF84].

The environment contains three distinct entity classes: hemoglobin, oxygen and carbon-
monoxide. Oxygen and carbon-monoxide are rather simple. Both have no explicit
behavior, because they are attracted and repelled by the hemoglobin behavior. They
both have only one conformation and consist of two atoms. The oxygen structure consists
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6.1. Hemoglobin

Figure 6.2: Different conformations of hemoglobin. Not only the color, but also the atom
structure changes slightly.

of two oxygen atoms, and the carbon-monoxide structure consists of one oxygen atom
and one carbon atom.

The hemoglobin is the central entity in this environment. It has a total of five con-
formations: deoxygenated, 25 % oxygenated, 50 % oxygenated, 75 % oxygenated and
100 % oxygenated. Depending on how many molecules are bound to the hemoglobin,
the corresponding conformation is assumed. The entity structure is imported from
the PDB. For the deoxygenated conformation, the PDB structure 2HHB [FPSF84] is
used. The 100 % oxygenated conformation uses the PDB structure 1HHO [Sha83]. The
intermediate conformations are interpolated linearly. To highlight the oxygen saturation
of the hemoglobin, its color changes with each conformation. The blue hemoglobin have
no molecules bound. The redder the color of the hemoglobin, the more molecules are
bound. The different conformations are shown in Figure 6.2.

The hemoglobin has four binding sites. The positions of the binding sites are extracted
from the oxygenated PDB structure 1HHO [Sha83]. This structure contains oxygen
molecules that are bound to the hemoglobin. The position of these molecules is used as
binding site position in the framework model. For each binding site, additionally a sensor
is attached at the same position. The sensors monitor the molecule concentrations near
the binding sites. A hemoglobin entity with visible sensor cones is shown in Figure 4.6b.

The hemoglobin changes its conformation depending on the number of bound molecules
at the binding sites. The binding and unbinding is works equally for each binding site.
Thus, they are all controlled by the same behavior code. An excerpt from the method
that handles the binding sites is shown in Listing 6.1. First, the corresponding sensor
is used to find all nearby free oxygen (O2) and carbon-monoxide (CO) entities. Then
the number of found entities is averaged over time. This is necessary for a smoother
animation. Because the entities are floating randomly, they often enter and leave the
sensor cone, which results in quickly changing concentration values. If not averaged,
the hemoglobin binds and unbinds molecules too fast to see. When the binding site
is free, it is checked if the carbon-monoxide or oxygen concentration exceeds the bind
threshold. The bind threshold is different for oxygen and carbon-monoxide, because
carbon-monoxide is much more affine to bind to hemoglobin [GDHS03]. Furthermore, the
bind thresholds are dependent on the number of molecules already bound (boundCount),
because the more molecules are already bound, the easier it is for the remaining binding
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sites to bind [AJL+14]. If the binding site is already bound, it is checked if the averaged
concentration dropped below an unbind threshold. Again, this threshold is dependent on
the entity class and the total molecules bound to the hemoglobin. If the concentration
dropped below the unbind threshold, the bound entity is released.

6.2 ATP-Synthase

ATP-synthase is a molecular machine that uses a proton gradient across a membrane
to rotate a rotor that drives a generator that binds ADP and phosphate together. The
biological background of ATP-synthase is explained in Section 2.5.2.

The animation shows two compartments, one filled with protons and one filled with
ADP and phosphate. The compartment with the protons represents the outside of the
membrane enclosed area and the other the inside. The two compartments are connected
via an ATP-synthase. A snapshot of the animation in shown in Figure 6.3. The membrane
between the two compartments is not included in the animation for simplicity reasons
and to provide a better view on the ATP-synthase. The ATP-synthase attracts protons
from the outside compartment, and routes it through the stator to the F0c subunit of the
F0 complex that is next to the stator. Then the F0 complex is rotated by one subunit.
After a whole revolution, the proton is unbound from the F0c subunit and released to
a random position in the inside compartment. As the axle rotates, the conformation
changes of the F1 complex are animated and ADP and phosphate molecules are attracted,
bound together and released as ATP again.

Each rotation step takes about two seconds in the animation, in order that the process is
easily comprehensible. The shown ATP-synthase has ten F0c subunits, thus 20 seconds are
needed for one full revolution, assuming enough protons, ADP and phosphate molecules
are present. In biology, ATP-synthase can rotate with a speed of about 130 revolutions
per second [NSAS08]. In every revolution, three ATP molecules are generated. Thus,
the about 20 nano-meter molecular machine produces approximately 390 ATP molecules
per second [SSW+16, NSAS08].

The environment is composed of two compartments that are located next to each other.
The structure of the ATP-synthase is imported from the PDB structures 5T4O, 5T4P,
FT4Q [SSW+16]. These three structures include the whole ATP-synthase in three
different conformations. The different proteins of the machine are annotated inside the
PDB file and can be easily separated. This ATP-synthase contains ten F0c subunits in
the F0 complex.

A proton is basically a hydrogen atom without an electron. Therefore, it is represented
as an entity with a structure containing only one hydrogen atom. Protons are shown
in yellow on the left side in Figure 6.3. ADP and phosphate are two separate entity
classes. They are extracted from the ATP-synthase PDB structure [SSW+16]. ADP has
a binding site which can bind to phosphate. When bound together, they form ATP. ATP
has no dedicated entity, and is only represented by the compound of ADP and phosphate.

74



6.2. ATP-Synthase

1 public void HandleBidningSite(BindingSite bindingSite, Sensor sensor,
AverageOverTime o2Avg, AverageOverTime coAvg, int boundCount)

2 {
3 // Find free O2 and CO with sensor
4 var o2 = sensor.FindEntitiesOfClass("o2", p => p.BindingSites[0].IsFree)

.ToArray();
5 var co = sensor.FindEntitiesOfClass("co", p => p.BindingSites[0].IsFree)

.ToArray();
6
7 // Calculate average concentration
8 o2Avg.Push(o2.Length);
9 coAvg.Push(co.Length);

10
11 if (bindingSite.IsFree)
12 {
13 if (coAvg.GetAvg() >= bindThresholdCoByBoundCount[boundCount])
14 {
15 InitiateBinding(co, bindingSite);
16 }
17 else if (o2Avg.GetAvg() >= bindThresholdO2ByBoundCount[boundCount])
18 {
19 InitiateBinding(o2, bindingSite);
20 }
21 }
22 else
23 {
24 var boundClassId = bindingSite.OtherEntity.Class.Id;
25 if (boundClassId == "co")
26 {
27 // avg+1 because one is bound that is not in the scope of the sensor
28 if (coAvg.GetAvg() + 1 <= unbindThresholdCoByBoundCount[boundCount])
29 {
30 bindingSite.ReleaseBond();
31 }
32 }
33 else if (boundClassId == "o2")
34 {
35 if (o2Avg.GetAvg() + 1 <= bindThresholdO2ByBoundCount[boundCount])
36 {
37 bindingSite.ReleaseBond();
38 }
39 }
40 }
41 }

Listing 6.1: Excerpt from the hemoglobin behavior description for one binding site.
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Figure 6.3: Snapshot of the ATP-synthase animation. The yellow entities on the left are
protons, the small pink molecules on the right are ADP, the dark green molecules are
phosphates, and the ATP molecules are green and pink. The compartments are divided
by a membrane.

ADP has another binding site, which is able to bind to the ADP binding site in the F1
complex. Phosphate has one binding site that either binds to ADP or to the phosphate
binding site in the F1 complex.

In biology, ATP-synthase is controlled by complex interactions of different proteins. To
simplify the interaction in the animation model, a control hierarchy is introduced. This
is realized by an ATP-synthase entity class that represents an abstract control entity
without any atoms. Instead, it provides a special binding site for each machine part.
The parts of the ATP-synthase are represented as separate entities, and are bound to
the appropriate binding sites of the ATP-synthase entity. The hierarchy and the binding
sites on which the different entities are bound together is shown in Figure 6.4. The
ATP-synthase entity also has a sensor that is directed to the outside compartment to
find protons.

The stator entity contains all atoms that are related to a stator component. As the
rotor rotates, the stator slightly shifts its shape. Because there are ten F0c subunits,
one revolution of the rotor requires ten steps. Therefore, ten conformations are created
for the stator, one for each step. The atom positions for three steps can be extracted
from the three PDB files [SSW+16]. The conformations for the intermediate steps are

76



6.2. ATP-Synthase

 

rotorSite 

atpSynthaseSite 

atpSynthase 

stator 

statorSite 

rotor 

rotorSite 

atpSynthaseSite 

f0c_1 … f0c_10 

f0c 

proton 

protonSite 

bindingSite 

f1a_x f1b_x 

atpSynthaseSite 

f1a_1 … f1a_3 

atpSynthaseSite 

f1b_1 … f1b_3 

adpSite       phosphateSite 

ATP Synthase 

Indepedent entitis 

bindingSite 

adp 

phosphateSite 

bindingSite 

phosphate 

Figure 6.4: Hierarchy of the ATP-synthase entities. The rectangles represent entity
classes with their entity ID. The lines are their binding sites.

interpolated linearly from the three known ones.

The atoms for the rotor entity are imported from the axle part in the PDB file
5T4O [SSW+16]. The F0c proteins are represented as separate entities. They are
attached to the rotor using ten binding sites that are located around the rotor entity.
Each F0c entity can assume two different conformations: tensed and relaxed. When
a proton is bound, the F0c subunit is relaxed, when the proton binding site is free, it
is tensed. In the PDB file 5T4O, the F0c subunit at the stator is tensed, all others
are relaxed [SSW+16]. By extracting the atom positions of two subunits in different
conformations, they can be combined to create an F0c entity with two conformations.

The F1 complex consists of three F1α and three F1β proteins. It is easier to import
each of the six F1 proteins separately than it is to import one F1α and one F1β protein
and rebuild the F1 complex using the subunits. Therefore, each of the six F1 proteins
is imported as separate entity class and bound directly to the ATP-synthase entity. As
a consequence, there are three distinct F1α entity classes and three distinct F1β entity
classes. In biology, the binding sites for ADP and phosphate are located between the F1α
and F1β proteins. Since the binding sites have to be assigned to an entity, the binding
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sites are arbitrarily assigned to the F1α entities. Thus, the F1α entities also have a sensor
attached that is used to find nearby ADP and phosphate entities. F1α and F1β have
three different conformations, that are dependent on the rotor position. In the first, they
attract ADP and phosphate. In the second, they bind ADP and phosphate together to
form ATP. In the third, the newly formed ATP is ejected from the binding site.

Behavior Description

As the behaviors are described using C# classes, they can be used to aggregate specific
animation actions in methods. For example, the behavior class for the F1α provides
methods for attracting and binding ADP and phosphate, bind them together to form
ATP and release ATP. The implementation of these methods is shown in Listing 6.2.
Similarly, the behavior description of the rotor exposes methods to rotate the rotor by
one step, and to access the F0c entity that is currently next to the stator.

The behaviors of the F1α entities and the rotor entity are injected into the ATP-synthase
behavior by using the BoundEntity attribute. As a result, the ATP-synthase behavior
has access to the exposed methods and can control the subunits using them.

The ATP-synthase behavior is implemented as state machine, that steps through all
its four steps sequentially. The implementation of these steps is shown in Listing 6.3.
The first step releases the proton bound at the F0c next to the stator into the inside
compartment (see Figure 6.5a). Next, it uses the sensor that is directed to the outside
compartment to find a proton. If a proton is found, it is attracted to the sensor, which
is at the stator, and then moved to the proton binding site of the F0c entity next to
the stator (see Figure 6.5b). During the movement of the proton, the ATP-synthase
behavior is in the BindingInProgress state. As soon as the proton is bound, the
state is changed to WaitUntilF1IsReady. The ATP-synthase behavior stays in this
state as long as the method F1Ready returns false. The method F1Ready makes use
of the methods exposed by the F1α behavior to make sure ADP and phosphate is bound.
It also makes and releases ATP depending on the current rotation progress. As soon as
all F1α entities are ready for the next rotation step, the method returns true, and the
ATP-synthase rotates the rotor by one step (see Figure 6.5c). During the rotation is
in progress, the state machine stays in the state Rotating. When the rotation step is
done, the state machine starts again in the Start state.

The method F1Ready calls the exposed methods of the F1α behavior depending on the
current rotation progress. When the rotation progress is 0%, the first F1α entity finds an
ADP and a phosphate entity and attracts them to its binding sites using the method
BindAdpAndPhosphate shown in Listing 6.2. The second F1α entity binds the already
bound ADP and phosphate entities together to form ATP using the MakeAtp method.
The third F1α entity already contains an ATP that is now released using the method
ReleaseAtp (see Figure 6.5d). When the rotation progress exceeds 33.3%, the first F1α
entity binds the previously bound ADP and phosphate entities together to create a new
ATP. The second F1α entity releases the ATP that was created in the last step. The
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1 [BindingSite("adpSite")] public BindingSite AdpSite {get;set;}
2 [BindingSite("phosphateSite")] public BindingSite PhosphateSite {get;set;}
3 [BoundEntity("adpSite")] public AdpBehavior BoundAdp {get;set;}
4 [BoundEntity("phosphateSite")] public PhosphateBehavior BoundPhosphate{...
5
6 public void BindAdpAndPhosphate()
7 {
8 if (BoundAdp == null)
9 {

10 AdpBehavior adp;
11 if (Sensor.FindNearestWithBehavior<AdpBehavior>(a => a.BindingSite.

IsFree && a.PhosphateSite.IsFree, out adp))
12 {
13 var trajectory = new TrajectoryBuilder()
14 .Movement(this.AdpSite, TimeSpan.FromSeconds(1.0), false)
15 .Binding(this.AdpSite, adp.BindingSite)
16 .Create();
17 AdpSite.InitiateBinding(adp.BindingSite);
18 adp.Owner.Compound.Trajectory(trajectory);
19 }
20 }
21 if (BoundPhosphate == null)
22 {
23 PhosphateBehavior phosphate;
24 if (Sensor.FindNearestWithBehavior<PhosphateBehavior>(p => p.

BindingSite.IsFree, out phosphate))
25 {
26 var trajectory = new TrajectoryBuilder()
27 .Movement(this.PhosphateSite, TimeSpan.FromSeconds(1.0), false)
28 .Binding(this.PhosphateSite, phosphate.BindingSite)
29 .Create();
30 PhosphateSite.InitiateBinding(phosphate.BindingSite);
31 phosphate.Owner.Compound.Trajectory(trajectory);
32 }
33 } }
34
35 public void MakeAtp()
36 { BoundAdp.PhosphateSite.InstantBind(BoundPhosphate.BindingSite); }
37
38 public void ReleaseAtp()
39 {
40 var trajectory = new TrajectoryBuilder()
41 .Movement(GeometryUtils.RandomVectorInsideCompartment("inside"),

TimeSpan.FromSeconds(1.0), false)
42 .Float() // float after trajectory
43 .Create();
44 AdpSite.ReleaseBond(trajectory);
45 }

Listing 6.2: Methods exposed by the F1α behavior description.
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(a) Release the proton bound
to the F0c next to the stator
into the inside compartment.

(b) Find proton in the out-
side compartment and move
it to the F0c entity next to
the stator.

(c) Rotate F0 complex.

(d) The right binding sites
attract and bind ADP and
phosphate, the left binding
sites create ATP, and the
top binding sites release the
ATP.

(e) The right binding sites cre-
ate ATP from the previously
bound ADP and phosphate,
the binding sites at the left
release the created ATP, and
the binding sites at the top
attract new ADP and phos-
phate.

(f) The right binding sites
release the created ATP, the
right binding sites attract
new ADP and phosphate,
and the binding sites at the
top create ATP.

Figure 6.5: Different steps in the ATP-synthase animation. Figures a-c show steps of the
F0 complex seen from the side, Figures d-f show steps of the F1 complex, seen from the
F0 complex towards the F1 complex. The stator is semi-transparent.

third F1α entity attracts and binds new ADP and phosphate entities to its binding sites
(see Figure 6.5e). When the rotation progress exceeds 66.7%, the first F1α releases the
newly formed ATP. The second F1α entity looks for new ADP and phosphate entities,
and the third F1α entity forms a new ATP (see Figure 6.5f). Then the cycle repeats.

The stator behavior simply reads the rotation progress from the rotor entity and changes
the stator entity conformation accordingly. The F1β behavior works identically.
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1 [State(InitialState = true)]
2 public void Start()
3 {
4 if (Rotor.F0cAtStator.ProtonSite.IsBound)
5 {
6 var ejectTrajectory = new TrajectoryBuilder()
7 .Movement(GeometryUtils.RandomVectorInsideCompartment("inside"),

TimeSpan.FromSeconds(1.0), false)
8 .Float() // start floating at the end
9 .Create();

10 Rotor.F0cAtStator.ProtonSite.ReleaseBond(ejectTrajectory);
11 }
12 Entity proton;
13 if (ProtonSensor.FindNearestEntityOfClass("proton", p => p.BindingSites

[0].IsFree, out proton))
14 {
15 var trajectory = new TrajectoryBuilder()
16 .Movement(ProtonSensor, TimeSpan.FromSeconds(0.7), true)
17 .Movement(Rotor.F0cAtStator.ProtonSite, TimeSpan.FromSeconds(0.3),

false)
18 .Binding(Rotor.F0cAtStator.ProtonSite, proton.BindingSites[0])
19 .Create();
20 Rotor.F0cAtStator.ProtonSite.InitiateBinding(proton.BindingSites[0]);
21 proton.Compound.Trajectory(trajectory);
22 SetState(BindingInProgress);
23 }
24 }
25 [State]
26 public void BindingInProgress()
27 {
28 if (Rotor.F0cAtStator.ProtonSite.IsBound)
29 { SetState(WaitUntilF1IsReady()); }
30 }
31 [State]
32 public void WaitUntilF1IsReady()
33 {
34 // this method returns true when all F1 entities are ready for rotation
35 if (F1Ready())
36 {
37 Rotor.RotateOneStep();
38 SetState(Rotating);
39 }
40 }
41 [State]
42 public void Rotating()
43 {
44 if (!Rotor.IsRotating)
45 { SetState(Start); } // repeat
46 }

Listing 6.3: Excerpt from the ATP-synthase behavior description, showing the different
states.
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6.3 Kinesin

Kinesin is a molecular machine that walks along a microtubule. The biological background
of kinesin is explained in Section 2.5.3.

The kinesin animation shows a microtubule and a kinesin floating near the microtubule.
In biology, the environment would be full of smaller molecules, including ATP. Those
smaller molecules are omitted from the animation, due to simplicity reasons and to allow
a better view on the kinesin. The long neck and the cargo are also not shown in the
animation. A snapshot of the animation is shown in Figure 6.6. In the beginning, the
kinesin and its heads are floating randomly to mimic Brownian motion (see Figure 6.7a).
As soon as one head of the kinesin gets near enough to the microtubule, it binds weakly.
After a second, the head binds strongly, which is pictured as moving nearer to the
microtubule (see Figure 6.7b). Then, the bound head turns yellow, which symbolizes that
an ATP molecule is bound. Simultaneously, the neck-linker is pulled towards the head,
which causes the other head to be thrown forward (see Figure 6.7c and Figure 6.7d).
After a short time, the bound head turns back to its previous color, which symbolizes
that the ATP was cleaved. The unbound head now is near enough to the next tubulin-β
to detect and bind to it. Then all steps repeat with the other head.

In the animation, one step of the kinesin takes four seconds. In reality, the kinesin can
walk with up to 250 steps per second. With each step, the kinesin moves approximately
by eight nano-meters, thus it can walk up to 2000 nano-meters in one second [How01].

The tubulin structure is imported from the PDB structure 5SYC [KHH+17]. For both
subunits tubulin-α and tubulin-β a separate entity class is created. The microtubule
is realized by a large, atom-less entity that provides binding sites for tubulin-α and
tubulin-β entities at the right positions. At startup, the required number of tubulin-α and
tubulin-β entities are created and instantly bound to the binding sites of the microtubule
entity. The tubulin-β additionally provides a binding site where a kinesin head can
attach.

The kinesin structure is imported from the PDB structure 3KIN [KSM+97]. The
PDB file contains the whole kinesin as one unit. For the animation, the kinesin was
divided into four entities: two heads and two neck-linkers, which are connected via
binding sites. Each head is bound to a neck-linker and the two neck-linkers are bound
together. The heads have a sensor attached that is used to find nearby tubulin-β
entities. Furthermore, the heads have five conformations that are related to the animation
steps: free, bound weak, bound tight, neck-linker tight and neck-linker
tight bound weak. The conformations bound weak and bound tight are almost
the same, only the binding site position for tubulin-β differs, so the head is nearer at
the microtubule in bound tight conformation. In the conformation neck-linker
tight, the binding site where the neck-linker is bound is rotated in such a way, that
the neck-linker is pulled towards the head, which causes the neck-linker to point forward.
Furthermore, the color is set to yellow, which symbolizes that an ATP molecule is bound.
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Figure 6.6: Snapshot of the kinesin animation. Two kinesins are walking along the
microtubule.

The difference of the conformations free, bound tight and neck-linker tight
are shown in Figure 6.7.

The kinesin behavior is controlled by the two heads. As soon as a head finds a tubulin-β
entity, a series of states are run through, as shown in Listing 6.4. Each state induces a
conformation change. After one second, the state machine moves forward to the next
state. In the HydrolizeAtp state, the bond to the tubulin-β is released. After that, the
head stays in pause for 2 seconds, so the other head has time to find the next tubulin-β
entity on the microtubule and move this head away. Otherwise, if the head would directly
go back to the FindMicrotubule state, the head would instantly bind to the same
tubulin-β entity again.
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(a) Kinesin is floating, head conformation is
free.

(b) Head on the microtubule is in
bound tight conformation.

(c) Conformation is changing from
bound tight to neck-linker tight.

(d) Head on the microtubule is in
neck-linker tight conformation.

Figure 6.7: Kinesin with different head conformations of the bound head.
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6.3. Kinesin

1 [State(InitialState = true, Conformation = "free")]
2 public void FindMicrotubule()
3 {
4 NeckLinkerBrownianMotion(); // moves neck linker binding site randomly
5 TubulinBetaBehavior tubulinBeta;
6 if (TubulinSensor.FindNearestWithBehavior<TubulinBetaBehavior>(tb => tb.

DockSite.IsFree, out tubulinBeta))
7 {
8 d.Trajectory(trajectory);
9 tubulinBeta.DockSite.InstantBind(this.TubulinSite);

10 SetState(WeakBindToMicrotubule);
11 }
12 }
13 [State(Conformation = "bound weak")]
14 public void WeakBindToMicrotubule()
15 {
16 NeckLinkerBrownianMotion();
17 if (SecondsInState >= 1) // waits for 1sec
18 { SetState(TightBindToMicrotubule); }
19 }
20 [State(Conformation = "bound tight")]
21 public void TightBindToMicrotubule()
22 {
23 NeckLinkerBrownianMotion();
24 if (SecondsInState >= 1) // waits for 1sec
25 { SetState(ReleaseAdp); }
26 }
27 [State(Conformation = "neck-linker tight")]
28 public void TightNeckLinker()
29 {
30 if(SecondsInState >= 1) // waits for 1sec
31 { SetState(HydrolizeAtp); }
32 }
33 [State(Conformation = "neck-linker tight bound weak")]
34 public void HydrolizeAtp()
35 {
36 if (SecondsInState >= 1) // waits for 1sec
37 {
38 TubulinSite.ReleaseBond();
39 SetState(Pause);
40 }
41 }
42 [State]
43 public void Pause() // avoids that head instantly binds again to the same

tubulinBeta
44 {
45 NeckLinkerBrownianMotion();
46 if (SecondsInState >= 2) // waits for 2sec
47 { SetState(FindMicrotubule); }
48 }

Listing 6.4: Excerpt from the kinesin head behavior description.
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CHAPTER 7
Discussion and Conclusion

This chapter summarizes the outcome of this work. The result is critically reflected and
limitations are discussed. At the end, some insights and final thoughts are provided.

7.1 Critical Reflection

The framework introduces a novel approach for animating molecular machines. In already
existing tools, the animator authors the molecular environment via key-frame anima-
tion [IMS+17, WTHT14]. In the proposed framework, the animator provides a behavior
description of molecular entities. These entities act as agents and behave according to the
provided description in the molecular environment. Usually, the number of distinct entity
classes is small compared to the total number of entities. Since the behavior description
only has to be formulated once for each entity class, such an animation scales very easy,
even for a large number of molecular particles in an environment. Moreover, the animated
machine reacts automatically to changing environmental conditions, without having to
be explicitly animated. This is because the animation is inferred from the behavior
description, which defines the desired actions for different conditions.

Because the entities can react to environmental conditions, they also can be reused in
other environments, where the conditions may be different. It is also possible to put
multiple molecular machines in the same environment, without having to adjust the
animation. They simply behave according to their description.

The framework is only implemented at prototypical level and requires programming
skills to create environments. Therefore, it is not yet ready to be used productively by
biologists. Hence, if and how much time is saved using this approach cannot be measured
yet. However, the animations created with the framework demonstrate that agent-based
animation is a viable option for visualizing molecular machines.
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7. Discussion and Conclusion

A simple animation that only includes a few molecules is may be easier accomplished
by using a conventional key-frame approach, instead of the proposed framework. This
is because, the framework requires some overhead work, like defining binding sites and
sensors. But for a large number of objects, the key-frame approach is more tedious,
because each object has to be animated separately. The overhead work required for
this framework may be reduced by future tools that support the animator in creating
appropriate entity classes and environments.

Because the framework acts primarily as proof of concept, it is not optimized for efficiency.
For example, sensors iterate through all entities in the environment to find the ones that
are in the sensor cone. This approach is not very efficient for environments with a large
number of entities, especially when a lot of entities make use of sensors. This could be
optimized using some type of spatial decomposition approach, e.g. grids, binary space
partitioning, a hierarchical quadtree, etc. [Par12a].

7.2 Limitations

The framework does not include a GUI for designing environments. This makes it difficult
to precisely model spatial components like binding sites and sensors. Assembling multiple
PDB datasets together is also a challenging task without visual guidance. Since only an
API is provided, the framework is only usable by animators that are already experienced
in programming.

Animations of conformation changes in entities are produced by linearly interpolating
the atom positions. This is not realistic, since the constraints imposed by the chemical
bonds are not considered. Moreover, it can happen that two or more atoms are at the
same spatial position during the animation. An interpolation mode that considers certain
constraints would be more suitable, e.g. the normal mode analysis for proteins [SHR09].

7.3 Levels of Abstraction

One goal of this framework is to find problems in the animation process, then to generalize
them and find a solution that suits a broader domain. The challenge is to find a suitable
level of abstraction to maximize the benefits for the animator.

Independent from the animation approach, the animator has to provide some sort of
description of what should happen in the animation. Finding an appropriate way of
describing this is challenging. In current tools, the animator provides key-frames as
description [IMS+17, WTHT14]. This approach gives the animator the most control
over the animation. As a consequence the animation task often is tedious. On the other
extreme, the animator could model the physical properties of a molecule. The animation
would then be computed by a simulator. In that case, the behavior and ultimately the
animation would results from physical properties. Such a description is very abstract
and highly reusable. However, it gives only a very indirect control over the resulting
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7.4. Future work

animation. Since the goal of this framework is to communicate ideas via animations, this
is not a suitable approach. The animator should not have to fine-tune physical properties
to achieve the expected animation. It is more straightforward to describe the behavior
more directly.

This framework aims for an abstraction level that has the most advantages for the
animator. It should be abstract enough to avoid repetitive tasks, yet not take away the
ability to precisely influence the resulting animation. It is intended to find a certain level
of abstraction for the framework that allows to describe most molecular machines easy
and well, but does not limit the possibilities either. As a rule of thumb, the less abstract
the description is, the more possibilities the animator has, but also the more effort is
needed to take care of every detail. In too abstract approaches the animator cannot
intuitively imagine the effect of the changes in the description to the animation. The
chosen level of abstraction of the proposed model provides a good starting point, but
may be adjusted in future work to better fulfill the requirements.

7.3.1 Remarks on the Mechanical Approach

In Section 4.9.1 the initial mechanical approach is discussed. As it turns out, the
initial idea to map molecular machines to mechanical machines is not suitable for most
molecular machines. One reason for this could be that both types of machinery utilize
different underlying abstractions. Mechanical machines can be reduced to their machine
elements, which are gears, shafts, bearings, pins, etc. These machine elements are
basically arbitrary abstractions of objects that can be used for momentum and torque
transmission. Not only mechanical machines share such a common ground, but also
molecular machines. The model presented in Chapter 4 represents essentially the machine
elements of molecular machines. Binding sites and conformations are nothing else than
abstractions of reoccurring phenomena. The difference between the mechanical and the
molecular machine elements is that the mechanical abstraction is arbitrary, and the
molecular abstraction is made by nature. Unfortunately, these two abstractions are not
compatible. Also, it is challenging to find the abstraction made by nature for molecular
machines, since the abstraction and therefore the machine elements are not well-defined.

7.4 Future work

The framework implements only the most common biological features of three well-known
molecular machines. Although, these features are sufficient for some molecular machines,
future work can focus on finding and abstracting more biological features, to support
an even broader domain of molecular machines. Such features could be, for example,
elasticity in molecular structures or certain degrees of freedom on binding sites [AJL+14].

To make the framework more attractive for biologists, future work should provide a GUI
for creating and editing molecular environments. An API as only way to interact with
the framework is also a limiting factor for broader usage. Focusing on a more intuitive
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7. Discussion and Conclusion

way of describing entity behavior, for example via a domain specific language could be
also beneficial.

Also other ways of generating behavior descriptions can be examined. For example,
deriving a behavior description automatically from example key-frame models. By
learning what the animator is doing, an algorithm could try to match the actions with
the proposed model.

Future work could also focus on integrating a very large number of molecular machines
into one huge environment, e.g. a whole cell. When the environment contains billions of
molecular machines, an agent-based approach where each agent is computed individually
is not feasible anymore. Thus, a computationally efficient representation of the machinery
has to be found, that is applicable on various scaling levels. For example, machines
that are hidden or too far away to see do not need to be fully animated. For those, a
purely quantitative representation, similar to the approach proposed by Le Muzic et.
al. [MPSV14], may be sufficient. Ideally, the representations for all scaling levels can be
automatically and seamlessly transformed into each other.
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Glossary

adenine A base, that when attached to a nucleotide, is used to encode information in
DNA and RNA [AJL+14] . 8

adenosine diphosphate Molecule that is formed when one phosphate is split from
ATP [AJL+14]. 14, 95

adenosine triphosphate Molecule composed of adenine, ribose, and three phosphates.
The bonds of the phosphates contain chemical energy that can be harnessed by
molecular machines. When one phosphate is cleaved, energy is released and ADP
is formed [AJL+14]. 13, 95

allosteric activation When the function of a protein is activated by a conformation
change [AJL+14]. 13, 47, 51

allosteric inhibition When the function of a protein is inhibited by a conformation
change [AJL+14]. 11

amino acid Amino acids are a class of chemical compounds. Some amino acids are
used as building blocks for proteins [AJL+14]. 8–10

Brownian motion Molecular particles are in constant motion and the environment is
very crowded. Thus, they collide often with each other which results in a random
motion, which is referred to as Brownian motion [Goo04]. 12, 13, 17, 44, 46, 82

carbon-monoxide A toxic gas, because it binds much easier to hemoglobin than
oxygen [GDHS03]. 14, 50, 51, 71–73

connected component In graph theory, it is a subgraph in with any two vertices are
connected to each other by paths, and which is connected to no additional vertices
in the supergraph [Wik16]. 37, 39, 41

cryo-electron microscopy Spectroscopy method used to determine molecular struc-
tures. The molecules are frozen and fired at with an electron beam. The scattered
electrons pass a lens an create a magnified image on a detector [Cal15] . 21

cytoplasm Content of the cell that is enclosed by the cell membrane [AJL+14]. 7, 16
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cytosine A base, that when attached to a nucleotide, is used to encode information in
DNA and RNA [AJL+14]. 8

deoxyribonucleic acid Double-stranded chain of linked together nucleotides. In the
cell it is used to store genetic information [AJL+14]. 5, 95

enzyme A protein that enables or speeds up a specific chemical reaction [AJL+14]. 11,
12, 47

guanine A base, that when attached to a nucleotide, is used to encode information in
DNA and RNA [AJL+14]. 8

hydrogen bond A weak noncovalent chemical bond [AJL+14]. 10

ion An atom carrying either a positive or negative charge [AJL+14]. 6, 7, 13, 33

lipid bilayer Structure that consists of two layers of lipid molecules. Cell membranes
are made of lipid bilayers [AJL+14]. 6

macromolecule A large molecule consisting of a few thousand atoms, like most proteins
and nucleic acids [AJL+14]. 5, 7, 8, 10, 11, 13, 23

macroscopic Scale for objects with a size from centimeters to meters [Goo04]. 1, 12,
13, 48–50

membrane A very thin barrier made of lipids that forms the boundary of a cell or and
many parts inside the cell [AJL+14]. 5–7, 9, 13, 15, 43, 46, 52, 75, 92

microtubule Long, cylindrical structures with various functions in cells, like shape regu-
lation and transport highway. Microtubules are built with tubulin molecules [AJL+14].
16, 17, 53, 55, 82–84, 93

molecular particle A term for a nanoscale object. Can be either a molecule, an atom
or an ion. 2, 3, 29, 30, 33, 87

nanoscale Scale for objects with a size of only a few nanometers (billionth of a me-
ter) [Goo04]. 12, 13, 22, 92

NMR spectroscopy Spectroscopy method used to determine molecular structures.
Certain atomic nuclei have an intrinsic magnetic moment that aligns in a strong
magnetic field. By radio frequency pulses the alignment is disturbed. The realign-
ment of the disturbed nuclei causes them to emit characteristic radio frequency
radiation that reflects the local environment of the atom. The data obtained can
be used to derive an ensemble of possible structures [Goo04] . 1, 21
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nucleic acid Chains of linked together nucleotides. DNA and RNA are nucleic acids [AJL+14].
7, 8, 21, 92, 93

nucleotide Chemical compound that is used as building block for nucleic acids. Each
nucleotide has a base attached that is used to encode information [AJL+14]. 8, 9,
91–93

phosphate A phosphate is a negatively charged chemical. When bound together, by a
covalent bond, the bond holds energy because due the negative charge they repel
each other. Such bonds are found in ATP [AJL+14]. 13–17, 33, 51–53, 75–78, 80

protein A molecule composed of a chain of linked together amino acids in a specific
sequence. The amino acid chain folds into sequence specific 3D shape that determine
its function [AJL+14]. 5–13, 15, 16, 21, 22, 25, 46, 58, 76, 77, 91–93

ribonucleic acid Single-stranded chain of linked together nucleotides. In the cell it is
used to copy parts of the genetic information from DNA [AJL+14]. 8, 95

ribose A sugar molecule that is frequently found in cells [AJL+14]. 91

ribosome A fundamental molecular machine in every cell. It is able to synthesize
proteins as defined by blueprints encoded in RNA [AJL+14]. 9

self-assembly Spontaneous assembly of molecules into structured and stable aggre-
gates [Goo04]. 13

substrate Term for the molecule on which an enzyme acts [AJL+14]. 12

thymine A base, that when attached to a nucleotide, is used to encode information in
DNA [AJL+14]. 8

tubulin Protein that serves as subunit to build microtubules [AJL+14]. 16, 17, 40, 82,
92

uracil A base, that when attached to a nucleotide, is used to encode information in
RNA [AJL+14]. 8

X-ray crystallography Technique method used to determine the atomic structure of
molecules. The molecules must be provided an crystal form. X-rays diffract into
many specific directions. The intensity and angles of the diffracted beams can be
used to produce a electron density map, from which the atom positions can be
derived [Goo04] . 1, 21
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Acronyms

2D two-dimensional. 1, 34, 39, 46

3D three-dimensional. 1, 2, 19–22, 25, 29, 32–35, 57–59

ADP adenosine diphosphate. 14–17, 33, 51–53, 75–78, 80, 95, Glossary: adenosine
diphosphate

API application programming interface. 57, 58, 88, 89

ATP adenosine triphosphate. 13, 14, 16, 17, 33, 50, 53, 55, 75–78, 80, 82, 95, Glossary:
adenosine triphosphate

CPU central processing unit. 69

DNA deoxyribonucleic acid. 5, 7–9, 21, 22, 91–93, 95, Glossary: deoxyribonucleic acid

ePMV Embedded Python Molecular Viewer. 21, 22

GPU graphics processing unit. 22, 23, 69

GUI graphical user interface. 20, 24, 25, 44, 88, 89

JSON JavaScript Object Notation. 57–59

mMaya Molecular Maya. 22

PDB Protein Data Bank. 2, 21–25, 58, 73, 76, 77, 82, 88

RNA ribonucleic acid. 8, 9, 12, 91–93, 95, Glossary: ribonucleic acid
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