
Visualization of molecular machinery using agent-based animation

Daniel Gehrer, Ivan Viola

Institute of Computer Graphics and Algorithms, TU Wien, Vienna, Austria

Abstract

This paper proposes an agent-based model for animating molecular machines. Usually molecular machines are visualized using
key-frame animation. Creating large molecular assemblies with key-frame animation in standard 3D software can be a tedious task,
because hundreds or thousands of molecular particles have to be animated by hand, considering various biological phenomena. To
avoid repetitive animation of molecular particles, a prototypic framework is implemented, that employs an agent-based approach.
Instead of animating the molecular particles directly, the framework utilizes a behavior description for each type of molecular
particle. The animation results from the molecular particles interacting with each other as defined by their behavior. Interaction
between molecular particles is enabled by an abstract model that is implemented by the framework. The methodology for creating
the framework was driven through learning by example. Three molecular machines are visualized using the framework. During this
process, the framework was iteratively improved and extended. The resulted animations demonstrate that agent-based animation is
a viable option for molecular machines.

Keywords:
molecular visualization, molecular machines, agent-based animation, visualization, Unity

1. Introduction

Every second, an overwhelming number of molecular pro-
cesses take place in our cells. A great variety of macromolec-
ular complexes are involved in these processes by performing
specific tasks. These complexes have some analogies to ma-
chines in the macroscopic world, therefore they are often called
molecular machines [1].

Biologists examine molecular machines using X-ray
crystallography, NMR spectroscopy and cryo-electron mi-
croscopy [2]. Based on the spectroscopy data, biologists de-
velop models on how such machines may work. The gained
knowledge then has to be conveyed to fellow scientists and stu-
dents. Textual descriptions are hard to imagine. Simple two-
dimensional (2D) visualizations provide better insights, but fail
to convey the richness of a three-dimensional (3D) environ-
ment [3]. Animated 3D visualizations proved to be powerful
tools for describing complex molecular processes to diverse au-
diences. This kind of visualizations are not only an impactful
way to communicate complicated molecular processes but are
also widely appreciated for their beauty [4].

Existing 3D software allows biologists to create animated
models of molecular machines, but have also drawbacks for this
specific task. This kind of software often requires weeks to
months of training and regular use to create a basic molecular
animation [5]. Sometimes biologists have to hire programmers
and animators to create models and animations [6]. One of the
major challenges is to model large molecular assemblies which
can involve thousands of molecules. Animating such a large
number of objects can be very tedious [5].

The goal of this work is to introduce a fast and effective

way of creating animations of molecular machines. The pro-
duced animations aim to convey the knowledge on how the an-
imated molecular machines work on a high level. It is not in-
tended to be fully biologically correct, but to illustrate the basic
working principles of the animated machine. Since the authors
never produced animations of molecular machines before, three
molecular machines were visualized and animated from scratch
to learn about the visualization and animation process in this
particular field. A framework was created that supports the
visualization and animation process. The lessons learned by
each animated machine were then used to iteratively improve
the framework. Although some tools already exist that simplify
the visualization and animation process [7, 6, 8], this very basic
bottom up approach was used by the authors to learn about the
core problems of the process and how to approach them.

The result is a prototypic framework that animates molecu-
lar environments using an agent-based model. The model repre-
sents an abstract molecular environment. Instead of animating
a scene using key-frames, the framework requires the animator
to describe the behavior of molecular particles. These molec-
ular particles act as agents that interact with the environment
according to their behavior description. To allow the animator
to appropriately define a behavior, a suitable level of abstrac-
tion of biological phenomena had to be found for the model.
The agents can respond to environmental conditions, e.g. the
concentration of specific ligands, and can also actively partic-
ipate by initiating or releasing molecular bonds. A molecular
machine is built of molecules [2]. By describing the behavior
of each molecule, the functionality of the whole machine can
be animated.

Preprint submitted to SCCG 2017 April 19, 2017



The proposed approach provides some advantages com-
pared to existing solutions [7, 6]. The behavior of molecular
particles can be described using a biologically inspired model.
Thus, the animator can model the animation using biological
concepts, instead of using plain key-frames. Furthermore, the
behavior has to be defined only once for each type of molecu-
lar particle. Since usually the number of distinct of molecular
particles is small compared to the total number of particles, this
approach requires less effort than a key-frame animation.

2. Related Work

There is a range of tools that support the visualization and
animation process. Some of them cover only a small part
of the whole visualization process, like providing structural
information of molecules [9], or animating molecular struc-
tures [10, 11]. But there are also tools that support the biologist
through the whole process of importing, animating and render-
ing molecular environments [7, 6].

The visualization of large molecules is based on scientific
data. The Protein Data Bank (PDB) is a publicly available
repository for such data [9]. It contains 3D structures of bio-
logical molecules. The structures range from tiny proteins and
parts of DNA to complex molecular machines [9].

The scientific molecular data is the basis for the visualiza-
tion and animation of molecular machinery. The next step is to
import and visualize this data. A few tools exist that are spe-
cialized for this step [10, 11, 12].

The Embedded Python Molecular Viewer (ePMV) is an
open-source plugin for the 3D software Blender, Cinema4D and
Maya [10]. It allows scientists to import molecular structures
from PDB into the 3D software. As soon as the structures are
imported, the visualization capabilities of the 3D software can
be used to animate and render the scene [10].

A similar tool is Molecular Maya (mMaya) [11]. It is a
free plugin for the 3D software Maya and offers functions to
import, build and animate molecular structures. The biologist
can open PDB files or download them directly from the Protein
Data Bank. Molecular Maya supports various representation
forms [11].

BioBlender is a software package for visualizing bio-
molecules in the open source 3D software Blender [12]. The
package extends Blender’s capabilities to allow biologists to
import molecular structures from PDB and provides notable vi-
sualization options for special surface properties [12].

cellVIEW is a tool that solely focuses on efficiently render-
ing large molecular assemblies [13]. The system is capable of
interactively visualizing large datasets representing viruses and
bacterial organisms consisting of several million atoms in real-
time at 60 Hz display rate. cellVIEW integrates various accel-
eration techniques like a level-of-detail scheme and dynamic
generation of DNA strands directly on the GPU. cellVIEW is
freely available to be used and extended [13].

Another category of tools supports biologists in creating
their own molecular animations [7, 6, 8]. One such tool is the
Molecular Flipbook. The intended audience are molecular biol-
ogists who want to visualize molecular models to communicate

their ideas to their peers, their students or the public [7]. It is
only meant for simple molecular models and not for complex
or cinematic quality animations. Molecular Flipbook utilizes a
simple user interface which allows the user to create plain key-
frame animations [7].

SketchBio is another tool that enables biologists to
rapidly construct molecular animations [6]. It incorporates a
two-handed manipulation technique using two six-degree-of-
freedom magnetic trackers to edit a scene. That enables novel
interaction patterns that accelerate common tasks when animat-
ing molecular models. The tool aims for an easier usage than
standard 3D software [6].

UCSF Chimera is not only a tool for making simple videos,
but a program to interactively visualize and analyze molecular
structures [8]. It also makes use of related data like sequence
alignments, docking results, trajectories, conformational en-
sembles, etc. Beside a long list of analysis features, UCSF
Chimera can also be used to generate high-quality images and
animations [8].

In already existing tools, the animator animates the molec-
ular environment via key-frame animation [7, 6]. There are
also works that utilize agent-based approaches, e.g. the work
of Le Muzic et. al. [14] and Kolesar et. al. [15]. Agents are
autonomous units with a modeled behavior. They are capable
of autonomous action and are capable of interacting with other
agents [15]. Le Muzic et. al. uses passive agents that are con-
trolled by an omniscient intelligence to ensure quantitative cor-
rectness [14]. In contrast, this work uses active agents, since
the quantitative correctness is not necessary to understand the
working principles of a molecular machine. Kolesar et. al. in-
troduces a combination of three systems, including agents, that
is capable of illustrating polymer emergence. However, the sys-
tem used to describe the production rules for polymers by Kole-
sar et. al. is not suitable for more general molecular machines,
e.g. enzymes [15].

3. Biological Background

All living things are made of cells. Cells are small,
membrane-enclosed units filled with water and other chemicals.
In an approximate bacterial cell, water makes up 70 % of the
cell interior. Macromolecules like DNA, proteins and polysac-
charides make up 24 %. The remaining 6 % are phospholipids,
small molecules and ions. The composition of an animal cell is
similar [16].

Macromolecules are polymers that are constructed by link-
ing smaller subunits (called monomers) together. Especially
proteins play a crucial role in cells as they are versatile and can
perform thousands of distinct functions. The reason for this
versatileness is that a protein is made of a chain of amino acids.
Depending on the sequence and the number of amino acids in
the chain, the resulting protein can be of very different size and
shape. Each amino acid has unique physical properties. Some
are negatively or positively charged, some are chemically reac-
tive, some are hydrophobic, etc. Depending on the sequence of
the amino acids in the chain, the protein is suitable for different

2



Figure 1: A Protein consists of a chain of linked together amino acids. In a
watery environment the chain folds into a stable conformation [16].

Figure 2: Binding of two molecules due to complementary shape and charges
on their surface [16].

tasks. The cell has capabilities to produce proteins on demand,
out of amino acid sequence templates encoded in the DNA [16].

In the water environment of a cell, the amino acid chain
folds into a conformation of lowest energy, as illustrated in Fig-
ure 1. Normally each protein folds into a single stable con-
formation. This conformation, however, often changes slightly
when the protein interacts with other molecules in the cell.
These small shifts in shape are crucial for its functionality [16].

Large molecules can bind together through complementary
shape and charges on their surfaces. A simple illustration of
this effect is shown in Figure 2. This kind of binding can be
very specific and allow only certain molecules to bind. When
multiple macromolecules bind together, they can form large
complexes with multiple moving parts that can perform specific
tasks [16]. These complexes are called molecular machines [1].

4. Method

Biologists use 3D animations to communicate the working
principles of molecular machines to fellow scientists and stu-
dents. To create animations, biologists often use standard 3D
software to model molecular environments according to their
ideas [3]. A few specialized tools also exist. Similar to standard
3D software, these tools also focus on animating 3D objects
in a scene using key-frame animation [7, 6]. This paper pro-
poses another way of producing an animation. Instead of ani-
mating 3D objects directly, the biologist describes the behavior
of molecular particles on a high level using a biologically in-
spired model. Each molecular particle interacts with other par-
ticles according to their behavior description, which causes the
animation. If the behavior description is sufficiently detailed,

the molecular particles also react correctly, when environmen-
tal conditions change. This agent-based approach should speed
up the animation process, because not every molecular particle
has to be animated by hand anymore.

Since the goal is to communicate working principles of
molecular machines via animations, the biologist should not
have to focus on low-level physical properties or forces. Hence,
the framework aims to allow the biologist to describe the behav-
ior on a level as high as possible. Simultaneously, the chosen
level of abstraction also must not limit the biologist in achiev-
ing an animation that contains all details necessary to com-
municate the working principles. To achieve this, an abstract
molecular model was created that is used for the behavior de-
scription. This model includes common molecular details and
features that are discussed later.

To test the agent-based animation approach for molecular
machines, a prototypic framework was created which imple-
ments the agent-based model. The methodology for developing
the framework was driven by three examples of molecular ma-
chines. Three molecular machines were chosen and visualized
by the authors to learn about the challenges of the animation
process. The animations were created from scratch. No tool
presented in the related work section was extended. The rea-
son for this design choice is to get an in-depth understanding
of the challenges involved and avoid being biased by possible
solutions. Only cellVIEW is used for efficient rendering [13].

The framework was extended and improved iteratively by
following these steps: Choose a simple molecular machine to
start with. Get familiar with it and its functionality. Create a
framework that can be used to visualize and animate the ma-
chine. Make sure that the framework supports all tasks nec-
essary, from importing molecular data, to generating a model
for the chosen molecular machine, to render the machine. Also
take care the framework does not require the user to do repeti-
tive tasks. Repetitive tasks often expose as molecular features
that can be abstracted and reused. When the working princi-
ple of the chosen molecular machine is sufficiently visualized,
choose another more complex one. Then repeat these steps with
the new machine but instead of creating a new framework, ex-
tend and improve the existing one, if necessary, so it is capable
of animating a broader range of molecular machines. When
repeated for a few iterations, the resulting framework should
support quite a variety of molecular machines.

4.1. Model
As discussed before, the lessons learned from animating the

three molecular machines are used to create an abstract model
that provides a suitable abstraction for molecular machines.
This model can be used to animate a desired molecular machine
in an agent-based way. Agents are suitable, since molecules can
be seen as autonomous units that interact with each other in an
environment [2]. An overview over the model is illustrated in
Figure 3.

The environment in the model represents a small space with
molecules in it. It can be seen as the equivalent to a scene in
standard 3D software. In biology, the environment is inhab-
ited by molecular particles. In the model, molecular particles

3



 

Environment 

Compound 

  Sensors   Binding sites 

  Conformations 

Structure 

Behavior 

is part of 

is part of 

is controlled by 

has 

has 

is visualized by 

can assume 

can observe 

environment 

via 

        can bind and 

     release entities 

 on 

          can change 

            conformation 

               of 

Figure 3: Interaction of model components.

are represented as so-called entities. Entities are defined as the
smallest, indivisible molecular particles in the environment. In
most cases a molecule equals an entity, but that is not always
true. The special cases are discussed later. Entities are the cen-
tral components in this model. They act autonomous as agents.

In biology, molecular particles move and interact with each
other according to physical forces [16]. In existing solu-
tions [7, 6], these effects have to be animated by the user. In-
stead of animating each molecular particle by hand, the pro-
posed model requires the user to provide a behavior description
for each type of entity. The animation is then generated accord-
ing to the behavior description.

The atomic structure of a molecule is very important in biol-
ogy. Depending on its size and shape, it can interact with other
molecules [16]. This atomic structure is reflected in the model
as entity structure. As described in Section 3, the shape of cer-
tain molecules can shift slightly, which is important for various
processes [16]. Such shapes a molecule can assume, are repre-
sented in the model as entity conformations. Each entity type
has a set of conformations that it can assume.

In biology, interaction of molecules plays a vital role in
the functionality of molecular machines. The interactions are
a result of physical attraction and repulsion forces. Since the
molecules in the model are represented as active agents, they
have to be able to observe the environment, to find interaction
partners. Therefore, sensors are introduced to the model. A
sensor allows the entity to detect other nearby entities in the en-
vironment. It can then decide if it wants to interact with one

of them or not. As a result, the molecules can bind together
to perform a task, which is also an important phenomena in bi-
ology. Molecules have sites with a specific shape and charge
profile where other molecules with complementary shape and
charge profile can bind [16], as described in Section 3. In the
model, such sites are represented as binding sites. Entities that
are bound together in the model form a compound.

The following paragraphs describe each concept of the
model in more detail:

Entity: An entity represents either a molecule, a part of a
molecule, an atom or an ion. Each entity acts as an autonomous
agent and interacts with the environment according to its de-
fined behavior. Entities also have defined binding sites and sen-
sors, which are explained in more detail later. Its visual repre-
sentation is defined by its structure.

Typically molecules are modeled as entities. When a
molecule has the ability to split into smaller parts, those parts
are modeled as entity. Thus, entities are the smallest, indivisi-
ble molecular particles in the environment. What the smallest,
indivisible molecular particles are, is dependent on the environ-
ment. For example, an environment that visualizes a biological
process that reduces adenosine triphosphate (ATP) to adeno-
sine diphosphate (ADP) for power [16], could represent these
molecules using two entities: ADP and phosphate. ATP would
be represented as an ADP entity bound to a phosphate entity.

Structure: The structure contains the visual representation of
an entity. It contains information about all the atoms that the
entity is made of. As discussed in Section 3, certain molecules
can change their conformation [16]. Predefined conformations
an entity can assume are also defined in its structure. A confor-
mation encloses the spatial location of all entity atoms, as well
as the locations and directions of binding sites and sensors. An
entity structure can change its color depending on the current
conformation for visual guidance.

Conformation changes can be initiated by the behavior. To
avoid jumpy conformation changes, the transition between two
conformations is animated for a user defined amount of time.
Atom positions, binding site and sensor positions as well as
binding site and sensor directions are interpolated linearly. The
red, green and blue components of the color are also interpo-
lated linearly.

Sensor: Sensors are used by the entity behavior to find other
entities that are nearby. To achieve this, the sensor checks for
each entity in the environment if it is located inside a cone at
the sensor site. The cone is defined by the sensor position and
direction that are relative to the origin of the entity. The apex
of this cone is located at the specified position, the direction
reflects the sensing direction. The size of the cone is depen-
dent on additional aperture and range properties. Aperture is
the angle at the apex and range is the height of the cone.

Binding site: At a binding site, an entity can establish a tempo-
rary or lasting bond to a binding site of another entity. There-
fore, entities with the ability to bind to other entities must have
one or more binding sites.

4



Figure 4: The binding site positions are depicted as yellow circles, the direc-
tions as orange arrows. When bound, the positions match and the directions are
pointing at each other.

In biology, the binding sites are sites on the molecule sur-
face with a specific shape and charge profile [16], as described
in Section 3. In this model, the complex biological represen-
tation is reduced to a single point and a direction. When two
entities bind together, they form a compound and are aligned
to each other depending on the location and direction of their
binding sites. The location and direction of a binding site is
stored in each conformation of the entity. As a consequence,
binding sites can change their location and direction as a result
of a conformation change.

The behavior can bind a binding site of the controlled entity
to a binding site of another entity and release the bond again.
When the binding sites of two entities bind together, it is not
checked if they are compatible in a complementary shape and
charge way, like it is in biology. Therefore, the behavior de-
scription is responsible to only bind to compatible binding sites.

Compound: All entities that are bound together are organized
in compounds. Compounds move together and act like one big
entity, but in contrast to an entity, a compound can split again
into its individual parts. As soon as one or more entities split,
they leave the current compound and form a new one. In the
model, any entity is always part of a compound. When an entity
is not bound to any another entity, it is still part of a compound,
but it is the only entity in it.

The entities in a compound cannot move freely. Their po-
sition and rotation relative to each other is well-defined by the
position and direction of the binding sites on which the entities
are bound together. To enforce these constraints, the position
and rotation of each entity is recalculated in every frame. Each
compound has an arbitrary root entity. Starting from there, an
algorithm traverses along all bindings and recalculates the po-
sitions and rotations for each entity.

A binding site is located at a certain position relative to
the entity origin. In addition to that position, a direction is
provided. When two binding sites are bound, the entities are
aligned in such a way that those directions point at each other,
and the positions match, as illustrated in Figure 4. In 3D space,
there is still one rotational degree of freedom left, which is sim-
ply set arbitrarily, to have a well-defined binding behavior.

Compounds are not only used to hold entities together but
also to locate them spatially in the environment. Since each en-
tity, and also unbound entities, are always part of a compound,

the location is defined for compounds and not for entities.
There are three different types how a compound can be lo-

cated: The first is ”fixed”. The compound is at a static position
and cannot be moved. Fixed is used, for example, when a com-
pound should be placed at a certain position in the membrane.
The second location type is ”floating in compartment”. The
environment can be divided into separated areas called com-
partments. Compounds that are floating, move randomly inside
such a compartment to mimicking Brownian motion. The third
location type is ”trajectory”. During compounds are attracted
or repulsed by an entity, compounds move along a trajectory.
Behaviors can change the location type to move around entities
in the environment.

Behavior: The behavior is the agent logic of the entity. Each
entity is linked to a behavior which controls its interaction with
the environment. The interaction results in movements and con-
formation changes that make up the animation. The animator
describes the entity behavior by using program code. Details
are provided in Section 5. Behavior descriptions can include
observing the environment, manipulating inner state, making
decisions and interaction with the environment.

The behavior can observe the environment using the sensors
attached to the entity. Sensors can determine the concentration
of a specific ligand or to find nearby entities. The information
obtained from the sensors must then be processed and evalu-
ated. Based on this information, the behavior may updates its
inner state and decides to interact with the environment. Often,
entities look for nearby entities of a specific class, with which
they can interact. The behavior can attract or repel those enti-
ties to mimic physical forces, by using trajectories. Bonds with
other entities on the binding sites can be established or released,
and the conformation of the entity structure can be changed.

The behavior description defined by the animator is exe-
cuted by the environment for every frame. This enables the be-
havior to evaluate the environment and take action in a periodic
manner. Often, the molecule behavior depends on its current
conformation. For example, enzymes that are in an activated
conformation behave different than the same enzyme that is not
activated. Therefore, the behavior can often be described as
state machine.

5. Implementation Details

The framework is based on Unity 5.4.3 [17] and is imple-
mented using the programming language C#. In the frame-
work, the behavior is described using C# program code. For
each type of entity a separate behavior description can be pro-
vided. The behavior is described in a class that extends the
EntityBehavior base class. When the animation is started,
for each entity a corresponding behavior object is instantiated,
that controls the entity.

The behavior can be described by using the model compo-
nents introduced in Section 4.1. To access the model compo-
nents in code, the framework includes a dependency injector
for those components. The needed components can be declared

5



as properties with an appropriate attribute that tells the depen-
dency injector what to inject.

The following attributes can be used:

Sensor(id): Injects the sensor with the specified ID into the
property. The sensor object can be used to scan the surrounding,
as described later. An example usage is shown in Listing 1.

1 [Sensor("tubulinSensor")]

2 public Sensor TubulinSensor { get; set; }

Listing 1: Sensor injection into a property.

BindingSite(id): Injects the binding site with the specified ID
into the property. The binding site can be used to check if an-
other entity is bound, or to initiate and release bonds. An ex-
ample definition is shown in Listing 2.

1 [BindingSite("protonSite")]

2 public BindingSite ProtonSite { get; set; }

Listing 2: Binding site injection into a property.

BoundEntity(bindingSiteId): Injects the entity bound to the
binding site with the specified ID. Depending on the type of the
property, either the bound entity itself or its behavior is injected.
This provides easy access to bound entities. The property is au-
tomatically updated, when an entity is bound or released from
the specified binding site. If nothing is bound to the binding
site, the property value is null. An example definition is shown
in Listing 3.

1 // inject entity

2 [BoundEntity("rotorSite")]

3 public Entity RotorEntity { get; set; }

4

5 // inject behavior

6 [BoundEntity("rotorSite")]

7 public RotorBehavior RotorBehavior { get; set;

}

Listing 3: Bound entity and bound entity behavior injection into a property.

The examples above show how to gain access to the model
components in a behavior description. In the following sec-
tions it is explained, how this model components can be used to
observe the environment, how the inner state can be used and
modified, and how the behavior can interact with the environ-
ment.

5.1. Managing Inner State

Entity behaviors are implemented as state machines. Each
state of the state machine has a dedicated code block. In the
behavior C# class, the code blocks are defined using ordinary,
parameterless methods with the State attribute. The method
representing the code block for the current state is called every
frame. The current state of the state machine can be changed

1 [EntityBehaviorId("atpSynthase.f0c")]

2 public class F0cBehavior : EntityBehavior

3 {

4 [BindingSite("protonSite")]

5 public BindingSite ProtonSite { get; set; }

6

7 [State(InitialState = true , Conformation = "

tensed")]

8 public void Tense()

9 {

10 // Change to Relax -State as soon a proton

is bound

11 if (ProtonSite.IsBound)

12 { SetState(Relax); }

13 }

14

15 [State(Conformation = "relaxed")]

16 public void Relax()

17 {

18 // Change to Tense -State as soon the

proton leaves

19 if (! ProtonSite.IsBound)

20 { SetState(Tense); }

21 }

22 }

Listing 4: Simple example of a behavior description.

with the SetState method. A simple example is shown in
Listing 4.

One state must be marked as initial state, by setting the
InitialState variable of the State attribute to true. Op-
tionally, the Conformation variable of the State attribute can
be set to a conformation ID. If set, the conformation changes
to the specified conformation when the state is entered. If the
Conformation variable is not set, the entity structure stays in
the current conformation, without being changed.

As the behavior is described using a C# class, it is simple to
add custom fields to save custom information. This information
can be accessed inside the state methods, and can be considered
in more sophisticated decision making processes.

5.2. Observing the Environment

The surrounding of the entity can be observed by using the
entity’s sensors. To make a sensor accessible in code, the sen-
sor object must be injected into a property using the Sensor

attribute, as shown in Listing 1. The injected sensor object pro-
vides various methods to find nearby entities. The available
methods are shown in Listing 5.

FindEntities simply returns all entities that are cur-
rently located inside the sensor cone. FindEntitiesOfClass
is very similar, but only returns the entities with a spe-
cific entity class ID. Additionally, a filter function can
be provided that can be expressed as lambda expression.
FindEntitiesWithBehavior is a generic method that fil-
ters the entities in the cone by their behavior type. In-
stead of returning the entities, it returns the behavior ob-
jects of the entities. Again, a filter method can be pro-
vided. FindNearestWithBehavior is a generic method
that finds the entity that is the nearest to the sensor and

6



1 IEnumerable <Entity > FindEntities ();

2

3 IEnumerable <Entity > FindEntitiesOfClass

4 (string entityClassId , Func <Entity , bool >

filter);

5

6 IEnumerable <TBehavior >

FindEntitiesWithBehavior <TBehavior >

7 (Func <TBehavior , bool > filter);

8

9 bool FindNearestWithBehavior <TBehavior >

10 (Func <TBehavior , bool > filter , out TBehavior

nearest);

11

12 bool FindNearestEntityOfClass

13 (string entityClassId , Func <Entity , bool >

filter , out Entity nearest);

14

15 bool FindNearestEntityOfClassWithFreeSite

16 (string entityClassId , string

freeBindingSiteId , out Entity nearest);

Listing 5: Methods that are implemented by a sensor.

whose behavior has a specific type. The method returns
true, if an entity is found with the specified behavior, other-
wise it returns false. The behavior of the nearest entity is
return via the output parameter. A very similar method is
FindNearestEntityOfClass. But instead of using the be-
havior type to find the nearest entity, it uses the entity class ID.
The method FindNearestEntityOfClassWithFreeSite is
very specialized, however, it is a quite commonly needed in
molecular environments. It looks for the nearest entity inside
the sensor cone, with a specific entity class ID that has no other
entity bound at a specific binding site.

5.3. Environment Interaction

The behavior can interact with the environment by moving
around compounds or by initiating and releasing bonds to other
entities. Entities to interact with can be found using sensors,
as described in Section 5.2. To move around compounds, the
behavior can define a trajectory. In the behavior description,
a trajectory can be created by using the TrajectoryBuilder

class. TrajectoryBuilder is a helper class that provides a
fluent interface to define a trajectory. An example usage of the
TrajectoryBuilder is shown in Listing 6.

The destination can be specified by a spatial object like an
entity, binding site, sensor, etc. or it can be specified explic-
itly using a vector and a quaternion. Instead of binding to a
binding site at the end of a trajectory, the spatial location of the
compound can also be set to floating or fixed.

The binding sites can be manipulated even without trajec-
tories. There are three methods provided by the binding site
that allow to manipulate the binding state. They are shown in
Listing 7.

1 void InitiateBinding(BindingSite otherSite);

2 void InstantBind(BindingSite otherSite);

3 void ReleaseBond(Trajectory ejectTrajectory)

1 // create trajectory for proton

2 var trajectory = new TrajectoryBuilder ()

3 // move proton to the local ProtonSite , in 1

sec ,

4 // with colliders disabled

5 .Movement(ProtonSite , TimeSpan.FromSeconds

(1.0), false)

6 // after that , bind the binding site of the

proton

7 // to the local ProtonSite

8 .Binding(ProtonSite , proton.BindingSiteById(

"BindingSite"))

9 // Create the trajectory

10 .Create ();

11

12 // initiate binding , so the binding sites are

not in the

13 // status "free" anymore , but in "binding ".

When the binding

14 // is complete , it changes automatically to "

bound".

15 ProtonSite.InitiateBinding(proton.

BindingSiteById("BindingSite"));

16

17 // Apply the trajectory to the compound of the

proton

18 proton.Compound.Trajectory(trajectory);

Listing 6: Moving a proton entity to a local binding site and then bind.

Listing 7: Binding site methods.

The method InitiateBinding solely marks both binding
sites as ”binding”. It is an intermediate state between ”free”
and ”bound”. InitiateBinding should be used when two
entities are currently moving towards each other, but they are
not bound yet. This intermediate state avoids that other enti-
ties, that may desire to interact with this binding site as well,
mistakenly assume that the binding site is still free and initi-
ate a binding too. InstantBind is straight forward, it binds
the two binding sites instantly together. ReleaseBond releases
the bond between two binding sites again. Optionally, an eject
trajectory can provided, to move the released entity away.

6. Results

The result of this work is a framework that implements the
model proposed in Section 4.1. The framework is implemented
using the Unity game engine [17] and utilizes cellVIEW to
render the environment [13]. Furthermore the implemented
framework is used to visualize and animate three molecular ma-
chines.

In order to being able to animate more and more complex
molecular machines, new features were added to the frame-
work during its emergence. Three molecular machines ani-
mated to test the framework and simultaneously serve as a proof
of concept. At first, the relatively simple molecular machine
hemoglobin was animated. Next the more sophisticated ATP-
synthase. Finally, an animation of kinesin was created using

7



the framework. The following sections describe how the frame-
work was used to create the animations of the three molecular
machines.

6.1. Hemoglobin

Hemoglobin is a molecule for oxygen-transport in red blood
cells. It is a small molecular machine that picks up oxygen in
the lung, and delivers it where it is needed. Hemoglobin has
four binding sites where oxygen can bind to. Oxygen does not
bind to all binding sites simultaneously, but one after another.
Once the first oxygen is bound, a small change in the confor-
mation is induced. This structural change makes it easier for
the next oxygen to bind. Thus, binding the first oxygen is the
hardest, but from there it gets easier and easier [16].

In the lung, where oxygen is plentiful, the first oxygen binds
easily and then quickly fills up the remaining binding sites. As
the blood circulates through the body, it passes areas where
oxygen level is low. Here the Hemoglobin releases its bound
oxygen. As soon as the first oxygen drops off, the remaining
binding sites release the other oxygen molecules more easily,
as the shape changes back [16].

Framework Model
The Hemoglobin is modeled as one entity with 5 confor-

mations: deoxygenated, 25 % oxygenated, 50 % oxygenated,
75 % oxygenated and 100 % oxygenated. The structure is im-
ported from the two PDB entries 1HHO (100 % oxygenated)
and 2HHB (deoxygenated) [18, 19]. Intermediate conforma-
tions are linearly interpolated. The Hemoglobin model contains
four binding sites and four sensors. One sensor for each binding
site.

The behavior is programmed to evaluate the oxygen con-
centration on each sensor. If the concentration exceeds a certain
bind-threshold, the nearest oxygen molecule is attracted and
bound to the binding site. The conformation changes depend-
ing on the sum of oxygen molecules bound on all binding sites.
Moreover, the higher the number of bound oxygen molecules,
the lower is the bind-threshold for the next one.

If the measured oxygen concentration on a sensor drops be-
low a release-threshold, the oxygen on this binding site is re-
leased again. Like the bind-threshold, the release-threshold is
also dependent on the number of oxygen molecules currently
bound. A screenshot of the visualization is shown in Figure 5.

6.2. ATP-Synthase

Most cellular processes are powered by adenosine triphos-
phate (ATP). When energy is needed, ATP breaks into adeno-
sine diphosphate (ADP) and phosphate. This liberates energy
that was stored in the bond. The liberated energy is then used
to power the cellular process. ATP-Synthase is a molecular ma-
chine that binds ADP and phosphate back together to form ATP,
so that it can be used again. The energy needed for this process
is obtained from a proton gradient over a membrane [2].

ATP-Synthase provides a channel for protons from outside
the membrane to get inside. Since the proton concentration out-
side is higher than inside, the protons want to move in. The

Figure 5: Hemoglobin and oxygen environment. The redder the Hemoglobin,
the more oxygen is bound.

Figure 6: ATP-Synthase. (1) Protons outside membrane, (2) membrane,
(3) ADP and phosphate inside membrane, (4) stator, (5) rotor consisting of
F0c proteins, (6) F1 part consisting of F1α and F1β proteins.

energy from this proton flow drives a rotor. The rotor, again,
drives a generator that is capable of binding ADP and phos-
phate back together [2]. A frame of the created animation and
a short explanation of the parts is shown in Figure 6.

Framework Model
Since this machine is too complex to model using a single

entity, the model is composed of different parts. One entity
forms the basic frame for the machine. It provides binding sites
for the stator, rotor, three F1α entities and three F1β entities.
The parts are shown in Figure 6. The frame also has a sensor
attached that senses to the outside of the membrane enclosed
area. As ATP is not atomic, it is not modeled as a single entity,
instead ATP is represented as ADP bound to phosphate.

The behavior for the ATP-synthase is described like this:
First, use the sensor to find a proton from outside the mem-
brane. Bind it to the F0c next to the stator. Rotate the rotor by
one step. Release the proton bound to the F0c that is now next
to the stator and release it to the inside of the membrane. These
simple steps cause the rotor to rotate. The F1 parts act depen-
dent on the rotation progress. First, they bind to separated ADP
and Pi entities. In the next step, these two entities are bound

8



Figure 7: Frame of the kinesin animation. The kinesin walks along the micro-
tubule.

together. In the third step, the regenerated ATP is released and
the cycle repeats.

The PDB entries used for the ATP-synthase are 5T4O, 5T4P
and FT4Q [20].

6.3. Kinesin
Kinesin is a molecular machine that moves along a micro-

tubule in a walking-like movement. In biology, cells use ki-
nesin to transport a cargo across the cell. For simplicity reasons,
cargo is omitted in this animation. A frame of the animation is
shown in Figure 7.

Framework Model
The microtubule structure is imported from the PDB struc-

ture 5SYC [21], and the kinesin from the PDB structure
3KIN [22].

The kinesin behavior is controlled by its two heads. Each
head has a sensor attached, that looks for the microtubule. As
soon as a head finds a microtubule binding site, a series of states
are run through: When one head of the kinesin gets near enough
to the microtubule, it binds weakly. After a second, the head
binds strongly, which is pictured as moving nearer to the mi-
crotubule. Then, the bound head the neck-linker, that connects
the two heads, is pulled towards the bound head by rotating the
binding site where the neck-linker is bound, which causes the
other head to be thrown forward. The unbound head now is
near enough to microtubule to detect and bind to it, at a site
that is more forward. Then all steps repeat with the other head.
Both heads alternate performing these steps, which results in
the walking-like movement.

7. Discussion

The framework introduces a novel approach for animat-
ing molecular machines. In already existing tools, the ani-
mator animates the molecular environment via key-frame an-
imation [7, 6]. Other agent-based approaches focus on other
goals than illustrating working principles of molecular ma-
chines [14, 15]. In this framework, the animator provides a
behavior description of molecular entities. These entities act as
agents and behave according to the provided description in the

molecular environment. Usually, the number of distinct entity
types is small compared to the total number of entities. Since
the behavior description only has to be formulated once for each
entity type, the animation scales easily, even for a large number
of molecular particles in an environment. Moreover, the ani-
mated machine reacts automatically to changing environmental
conditions, without having to be explicitly animated. This is be-
cause the animation is inferred from the behavior description,
which defines the desired actions for different conditions.

Because the entities can react to environmental conditions,
they also can be reused in other environments, where the con-
ditions may be different. It is also possible to put multiple
molecular machines in the same environment, without having
to adjust the animation. They simply behave according to their
description.

The framework is only implemented at prototypic level and
requires programming skills to create environments. Therefore
it is not yet ready to be used productively by biologists. Hence,
if and how much time is saved using this approach cannot be
measured yet. However, the animations created with the frame-
work demonstrate that agent-base animation is a viable option
for visualizing molecular machines.

7.1. Level of Abstraction
The model proposed in this paper, provides an abstraction

of biological phenomena to simplify the animation process. In-
dependent from the animation approach, the animator has to
provide some sort of description of what should happen in the
animation. Finding an appropriate way of describing this is
challenging. In current tools, the animator provides key-frames
as description [7, 6]. This approach gives the animator the most
control over the animation. As a consequence the animation
task often is tedious. On the other extreme, the animator could
model the physical properties of a molecule. The animation
would then be computed by a simulator. In that case, the be-
havior and ultimately the animation would result from physi-
cal properties. Such a description is very abstract and highly
reusable. However, it gives very less and indirect control over
the resulting animation. Since the goal of this framework is
to communicate ideas via animations, this is not a suitable ap-
proach. The animator should not have to fine-tune physical
properties to achieve an expected animation. It is more straight-
forward to describe the behavior more directly.

This framework aims for an abstraction level that has the
most advantages for the animator. It should be abstract enough
to avoid repetitive tasks, yet not take away the ability to pre-
cisely influence the resulting animation. It is intended to find
a certain level of abstraction for the model that allows the ani-
mator to describe most molecular machines easy and well, but
does not limit the possibilities either. As a rule of thumb, the
less abstract the description, the more possibilities the animator
has, but also the more effort is needed to take care of every de-
tail. In too abstract approaches the animator cannot intuitively
imagine the effect of the changes in the description to the ani-
mation. The chosen level of abstraction of the proposed model
provides a good starting point but may be adjusted in future
work to better fulfill the requirements.

9



7.2. Limitations
The framework does not include a graphical user interface

(GUI) for designing environments. This makes it difficult to
precisely model spatial components like binding sites and sen-
sors. Assembling multiple PDB datasets together is also a chal-
lenging task without visual guidance. Since only an applica-
tion programming interface (API) is provided, the framework
is only usable by animators that are already experienced in pro-
gramming.

Animations of conformation changes in entities are pro-
duced by linearly interpolating the atom positions. This is not
realistic, since the constraints imposed by the chemical bonds
are not considered. Moreover, it can happen that two or more
atoms are at the same spatial position during the animation. An
interpolation mode that considers certain constraints would be
more suitable, e.g. the normal mode analysis for proteins [23].

7.3. Future work
The framework implements only the most common bio-

logical features of three well-known molecular machines. Al-
though, these features are sufficient for some molecular ma-
chines, future work can focus on finding and abstracting more
biological features, to support an even broader domain of
molecular machines. Such features could be, for example, elas-
ticity in molecular structures or certain degrees of freedom on
binding sites [16].

To make the framework more attractive for biologists, fu-
ture work should provide a GUI for creating and editing molec-
ular environments. An API as only way to interact with the
framework is also a limiting factor for broader usage. Focusing
on a more intuitive way of describing entity behavior, for ex-
ample via a domain specific language could be also beneficial.

Acknowledgments

This project has been funded by the Vienna Science and
Technology Fund (WWTF) through project VRG11-010 and
supported by EC Marie Curie Career Integration Grant through
project PCIG13-GA-2013-618680.

References

[1] Ballardini, R., Balzani, V., Credi, A., Gandolfi, M.T., Venturi, M.. Ar-
tificial Molecular-Level Machines: Which Energy To Make Them Work?
ACCOUNTS OF CHEMICAL RESEARCH 2001;34(6):445–455.

[2] Goodsell, D.S.. Bionanotechnology: Lessons from Nature. John Wiley
& Sons, Inc.; 2004. ISBN 9780471469575.

[3] Iwasa, J.H.. Animating the model figure. Trends in Cell Bi-
ology 2010;20(12):699 – 704. Special issue - CellBio-X; URL
http://www.sciencedirect.com/science/article/pii/

S0962892410001558.
[4] Forest, K.T., Hill, C.P., Forest, K.T., Hill, C.P.. ScienceDirect Editorial

overview : Macromolecular machines and assemblies : Rise and fall at the
molecular level. Current Opinion in Structural Biology 2015;31:vii–viii.

[5] Iwasa, J.H.. ScienceDirect Bringing macromolecular machinery to life
using 3D animation. Current Opinion in Structural Biology 2015;31:84–
88.

[6] Waldon, S.M., Thompson, P.M., Hahn, P.J., Taylor, R.M.. SketchBio:
a scientist’s 3D interface for molecular modeling and animation. BMC
Bioinformatics 2014;15(1):1–17. 1407.3145.

[7] Iwasa, J., McGill, G., Sliz, P., Mourant, R., Pan, M., Riyo, R..
Molecular flipbook. https://www.molecularflipbook.org/; 2017.
Accessed: 2017-01-31.

[8] Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt,
D.M., Meng, E.C., et al. UCSF Chimera A visualization system for
exploratory research and analysis. Journal of Computational Chemistry
2004;25(13):1605–1612.

[9] Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N.,
Weissig, H., et al. The protein data bank. Nucleic acids research
2000;28(1):235–242.

[10] Johnson, G.T., Autin, L., Goodsell, D.S., Sanner, M.F.,
Olson, A.J.. ePMV Embeds Molecular Modeling into Profes-
sional Animation Software Environments. Structure 2011;19(3):293 –
303. URL http://www.sciencedirect.com/science/article/

pii/S0969212611000608.
[11] Toolkit, M.M.. Molecular Maya Toolkit – mMaya. http://www.

molecularmovies.com/toolkit/; 2017. Accessed: 2017-01-31.
[12] Andrei, R.M., Callieri, M., Zini, M.F., Loni, T., Maraziti, G., Pan,

M.C., et al. Intuitive representation of surface properties of biomolecules
using BioBlender. BMC Bioinformatics 2012;13(4):S16.

[13] Muzic, M.L., Autin, L., Parulek, J., Viola, I.. cellview: a tool
for illustrative and multi-scale rendering of large biomolecular datasets.
In: Bühler, K., Linsen, L., John, N.W., editors. Eurographics
Workshop on Visual Computing for Biology and Medicine. EG Digi-
tal Library; The Eurographics Association. ISBN 978-3-905674-82-8;
2015, p. 61–70. URL https://www.cg.tuwien.ac.at/research/

publications/2015/cellVIEW_2015/.
[14] Muzic, M.L., Parulek, J., Stavrum, A.K., Viola, I.. Illustrative vi-

sualization of molecular reactions using omniscient intelligence and pas-
sive agents. Computer Graphics Forum 2014;33(3):141–150. Article first
published online: 12 JUL 2014; URL https://www.cg.tuwien.ac.

at/research/publications/2014/lemuzic-2014-ivm/.
[15] Kolesar, I., Parulek, J., Viola, I., Bruckner, S., Stavrum, A.K.,

Hauser, H.. Interactively illustrating polymerization using three-level
model fusion. BMC Bioinformatics 2014;15(1):345. doi:\bibinfo{doi}
{10.1186/1471-2105-15-345}. URL http://dx.doi.org/10.1186/

1471-2105-15-345.
[16] Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M., Roberts, K.,

et al. Molecular Biology of the Cell; vol. 6. Garland Science; 2014.
[17] Technologies, U.. Unity – game engine. https://unity3d.com; 2017.

Accessed: 2017-02-06.
[18] Shaanan, B.. Structure of human oxyhaemoglobin at 2.1 resolution (PDB

ID: 1HHO). Journal of molecular biology 1983;171(1):31–59.
[19] Fermi, G., Perutz, M., Shaanan, B., Fourme, R.. The crystal struc-

ture of human deoxyhaemoglobin at 1.74 resolution (PDB ID: 2HHB).
Journal of Molecular Biology 1984;175(2):159 – 174. doi:\bibinfo{doi}
{http://dx.doi.org/10.1016/0022-2836(84)90472-8}. URL http://www.

sciencedirect.com/science/article/pii/0022283684904728.
[20] Sobti, M., Smits, C., Wong, A.S., Ishmukhametov, R., Stock, D.,

Sandin, S., et al. Cryo-EM structures of the autoinhibited E. coli ATP
synthase in three rotational states (PDB ID: 5T4O, 5T4P, 5T4Q). eLife
2016;5:e21598. doi:\bibinfo{doi}{10.7554/eLife.21598}. URL https:

//dx.doi.org/10.7554/eLife.21598.
[21] Kellogg, E.H., Hejab, N.M., Howes, S., Northcote, P., Miller,

J.H., Daz, J.F., et al. Insights into the Distinct Mechanisms
of Action of Taxane and Non-Taxane Microtubule Stabilizers from
Cryo-EM Structures (PDB ID: 5SYC). Journal of Molecular Bi-
ology 2017;429(5):633 – 646. doi:\bibinfo{doi}{http://dx.doi.org/10.
1016/j.jmb.2017.01.001}. URL http://www.sciencedirect.com/

science/article/pii/S0022283617300153.
[22] Kozielski, F., Sack, S., Marx, A., Thormhlen, M., Schnbrunn,

E., Biou, V., et al. The Crystal Structure of Dimeric Kinesin
and Implications for Microtubule-Dependent Motility (PDB ID: 3KIN).
Cell 1997;91(7):985 – 994. doi:\bibinfo{doi}{http://dx.doi.org/10.1016/

S0092-8674(00)80489-4}. URL http://www.sciencedirect.com/

science/article/pii/S0092867400804894.
[23] Skjaerven, L., Hollup, S.M., Reuter, N.. Normal mode analysis for pro-

teins. Journal of Molecular Structure: THEOCHEM 2009;898(1-3):42–
48. doi:\bibinfo{doi}{10.1016/j.theochem.2008.09.024}. URL http:

//dx.doi.org/10.1016/j.theochem.2008.09.024.

10


