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Kurzfassung

In dieser Arbeit wurde ein Punktwolken-Renderer in der Spiel-Engine Unity entwickelt.
Der Fokus liegt hierbei speziell auf sehr großen Punktwolken mit mehreren Millionen
oder Millarden Punkten, welche nicht einfach komplett in den Speicher geladen und
dargestellt werden können. Spezielle Datenstrukturen und Algorithmen müssen genutzt
werden, um jederzeit nur die Teile der Punkte, die für die aktuelle Kameraposition
relevant sind, zu laden und zu rendern. Das Ergebnis ist ein effizientes Rendering-System
mit variablen Einstellungen und verschiedenen Rendering-Methoden. Das Projekt ist auf
GitHub verfügbar.
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Abstract

In this thesis, a point-cloud renderer was developed in the game engine Unity. The focus
lies especially on very big point clouds with several millions or billions of points, which
cannot be loaded completely into memory. Special data structures and algorithms are
needed to load and render continuously only the parts of the point-cloud that are relevant
for the current camera position. The result is an efficient rendering system with variable
settings and various rendering methods. The project is available on GitHub.
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CHAPTER 1
Introduction

1.1 Motivation
A point cloud is a set of independent spatial points, which is used to represent a three-
dimensional object. Point clouds are often generated by 3D-scanning techniques like
laser scanning or photogrammetry. They are a very simple data structure that can be
transformed or combined with other point clouds very easily. Rendering can be done
by simply projecting every point to a pixel on the screen. However, if the points are
not dense enough or the camera is too close, holes can be seen in the object. Therefore,
various techniques are often used to transform a point cloud into a polygon mesh. A
disadvantage of point clouds is their enormous memory consumption. To model large
complex objects, many points are needed.

This thesis focuses on the real-time rendering of very large point clouds with several
millions or even billions of points. Examples of such point clouds are large 3D scans
of topographical data, such as the ones provided by OpenTopography [ope]. Some of
their point clouds consist of several hundreds of billions of points. Creating meshes is
not always an option, because it can take very long, it might not work well when the
point cloud has a low point density, and often users just want to see the raw scanned
data without any post processing done. In case of such point clouds, real-time rendering
is more complex, because the data cannot be loaded into memory completely. Efficient
out-of-core algorithms and spatial data structures are needed to render only as many
points as needed for an acceptable graphical representation.

Unity is a popular game engine. Graphical applications, such as games, can be pro-
grammed fairly easily using it. It also provides building options for a lot of different
operating systems. Games can be exported to PC, Mac, Linux, Android, iOS, WebGL,
XBox One, PlayStation 4 and others. Virtual Reality applications can also be easily
created with Unity. This makes it a very attractive option for creating graphical applica-
tions. Unity does not provide a built-in solution for rendering point clouds. Plugins for
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1. Introduction

displaying point clouds are available (for example the Point Cloud Free Viewer [pcv]).
However, they are usually very simple and not suited for rendering gigantic point clouds.

1.2 Goal of the Thesis
The goal of this thesis is to develop a point cloud renderer in Unity for viewing large
point clouds in real-time.

The point clouds are stored in the Potree file format (see Chapter 2 and [Sch16]). It is
possible to navigate the camera through the scene. At any time, only the points of the
nodes that are currently inside the view frustum and whose bounding boxes exceed a
certain minimum screen size, are loaded into the memory. Also, a point budget is given,
which is the maximum number of points being displayed. An LRU cache is used to keep
track and remove the least recently used nodes from memory. The rendering of the points
can either be done by projecting each point to a single pixel or by displaying each point
as a screen faced square or circle with a given size in screen or world units. Additionally,
a point-interpolation-mode is implemented by rendering the nodes as screen-faced cones
or paraboloids.

Figure 1.1 shows an example of a rendered image. The final Unity project is available on
Github [Fra].

1.3 Structure of the Work
Chapter 2 gives an introduction to Unity and an overview of related work about point
cloud rendering, on which this work is building on. Chapter 3 describes the algorithms
and the implementation. Chapter 4 examines the performance of the renderer and
compares different settings. Chapter 5 concludes the thesis and reflects on possible future
work.
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Figure 1.1: A part of the "San Simeon, CA Central Coast" point cloud from OpenTopog-
raphy [san] rendered with the implemented system
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CHAPTER 2
Background and Related Work

2.1 Introduction to Unity

The most important element in Unity is the scene graph, which is a tree structure that
contains so called Game Objects. A Game Object may consist of several components.
Each Game Object has a transform-component, giving it a position in 3D-space. Addi-
tionally, other components can be added, such as lights, cameras, rigid bodies for physics
simulations or meshes. Scripts can also be attached as a component. Scripts can be
written either in C# or in JavaScript. For this thesis, C# was used. When creating a new
script, a new C# class is created, that extends the class MonoBehaviour. A start-method
can be implemented, which is getting called when the script starts (this happens as soon
as the Game Object, to which the script is attached, appears in the scene), as well as an
update-method, which gets called every frame. Game Objects can be disabled so that
they still exist in the scene graph, but they are not updated, nor do they have any effect
on the scene (for example, attached meshes are not displayed).

One important component is the Mesh Filter. With a Mesh Filter, a polygon- or point-
mesh can be defined. A mesh consists of vertices with their corresponding colors, texture
coordinates, and normals. These can be assembled to polygons by providing indices and
a mesh topology (Unity provides the topologies Triangles, Quads, Lines, LineStrip and
Points). A mesh can consist of up to 65,000 vertices.

A Mesh Filter alone does not yet display a mesh. A Mesh Renderer is needed for
that as well. In a Mesh Renderer, the options for rendering can be changed, such as
shadow-settings or the material used for rendering. Materials are derived from shaders,
which are written in a variant of HLSL called Cg.
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2. Background and Related Work

2.2 Rendering Large Point Clouds

Levoy and Whitted [LW85] were the first ones to consider points as rendering primitives
for solid objects. Points have been used for intangible objects like fire or smoke before,
but not for continuous three-dimensional surfaces.

While small point clouds up to a few million points can be rendered in real-time on
current GPUs, spatial data structures and out-of-core algorithms are required in order
to render large point clouds with hundreds of millions of points in real-time. Several
tree-based data structures have been proposed. For real-time rendering of gigantic point
clouds, it is important that the data structure supports levels of detail (LOD) so that
the point cloud can be rendered with a different amount of details, depending on the
distance to the camera.

One of the first data structures for rendering large point clouds was QSplat by Rusinkiewicz
and Levoy [RL00]. It uses a bounding sphere hierarchy, in which the leaf nodes contain
the data points, while the inner nodes contain averages of their children, in order to
represent the children on a lower level of detail. During rendering, the nodes are traversed
until the desired level of detail is reached, for example, until the projected bounding
sphere of a node is smaller than a predefined maximum splat size. If a leaf node is
reached, a splat is drawn. If the node is not a leaf, but the size of its projected bounding
sphere is small enough, a splat that represents the node and its descendants is rendered
and the traversal of this sub-tree stops.

Gobbetti and Marton [GM04] proposed a GPU-friendlier rendering system called Layered
Point Clouds (LPC). The point cloud is stored in a binary tree. Each node contains a
subset of the point cloud. By rendering just the points in the first levels of the hierarchy,
a coarse approximation can be rendered. Unlike QSplat, which computes averages, no
new points have to be created for this data structure.

Wimmer and Scheiblauer [WS06] introduced the so-called nested octree as a data structure
for point clouds. The nested octree is an octree whose nodes contain subsamples of the
points inside the bounding box represented by the octree node, similar to LPC. The
points in every node are stored in an inner octree, where the root node of the inner
octree has the same bounding box as the corresponding node in the outer octree. The
more levels are rendered, the more detailed the point cloud becomes. Each inner octree
is stored in its own file. Rendering such a tree can be done by loading the outer octree
into main memory and traversing it each frame. Each visited node gets stored inside
a priority queue, where the priority is the projected size of the bounding box of the
node. For each node, it is checked whether it fulfills the rendering conditions, i.e. if it is
inside the view frustum, if its projected size exceeds a certain minimum size, and if the
accumulated number of points remains below the point budget. If the node fulfills the
conditions, it is either put into a render queue if the inner octree is already loaded or it
is scheduled to be loaded.

In his Ph.D. thesis, Scheiblauer [Sch14] proposed an adaption of the nested octree which
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2.2. Rendering Large Point Clouds

is more suitable for editing points. The so called modifiable nested octree (MNO) does not
store the points at each node in an inner octree, but instead in a regular grid. Rendering
works similarly as with the classical nested octree.

Schütz [Sch16] developed a WebGL based rendering system for gigantic point clouds
called Potree. It uses a similar octree structure as the MNO. The creation of the tree is
slightly different, as a different subsampling approach is used. For Potree, a converter
was developed, which transforms a point cloud from classical formats, such as laz or las,
to the Potree octree structure. Potree as well as the Potree Converter are available online
[Sch].

(a) Only the root node (b) First two octree levels

(c) First three octree levels (d) Mixed LODs

Figure 2.1: A point cloud in the Potree format rendered with different levels of detail
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CHAPTER 3
Implementation

This chapter describes the implementation and the used algorithms of the Unity point
cloud renderer. It is split into three parts: The first part gives an overview over the
implemented system. The second part describes loading the files, handling the octree
nodes, determining node visibility and the multithreaded loading system. The third part
explains the various rendering techniques for the points in detail.

3.1 Overview
The implemented rendering system is not a stand-alone application but provides a
framework for other applications to build upon. There is no specialized user interface to
select the rendered point cloud or to change the settings. All these options are defined by
Unity components and can, therefore, be changed inside the Unity editor or by use of code.
Figure 3.1 shows an example for a Unity Game Object with several script-components
attached to it, defining the rendering options and the path to the point cloud.

It is possible to define a point cloud set, which controls the loading settings, like point
budget, minimum node size, cache size etc. These settings are described in section 3.2.
Such a point cloud set can be seen in Figure 3.1 as the component Point Cloud Set Real
Time Controller. There are loader components for loading a single point cloud, as well as
for loading several point clouds at once. For example, a Clouds From Directory Loader
can be used to load all point clouds in a specified path (this can also be seen in said
Figure). A point cloud set has to be assigned to the loader so that the loader can pass
the loaded cloud to the point set, which then starts the actual rendering process.

The separation of loader and point set enables including several point clouds in the scene,
while the options are defined for all clouds at once. This makes it possible to define one
shared point budget for all point clouds instead of having own budgets for each point
cloud.
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3. Implementation

Figure 3.1: An example for a Unity Game Object defining the rendering options

Additionally, further rendering options are set by defining a mesh configuration, which
decides upon which rendering technique (see section 3.3) is used. In the example,
geometry shader quad rendering is used with a point radius of five pixels, square splats,
and paraboloid-interpolation.

3.2 Multithreaded Point Loading

3.2.1 Loading the Data

The point clouds are stored in the Potree file format (see section 2) and have been created
with the Potree converter. Therefore, the points are stored in an octree data structure,
where every node in the octree contains a subset of points. The hierarchy is stored in
different files than the points themselves.

Even though the file format supports other point attributes, for simplicity the implemented
loader assumes only the position and the colors are stored per point and each point is
therefore represented by 16 bytes. Other attributes are not supported yet.
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3.2. Multithreaded Point Loading

One important thing to note is that Unity stores the components of vectors as floats.
As points might have very high values as positions, there might be a loss of precision.
Where possible, values are stored as double values as long as possible, but all values have
to be converted to floats before passing them on to the GPU. The implemented system
provides the option to move the point cloud to the origin, which results in a smaller loss
of precision.

At the beginning of the program, the hierarchy is loaded from the hierarchy files. Each
node of the octree is represented as an object of a class Node in our application. The
hierarchy files contain the number of points for each node as well. Due to a bug in the
converter, these numbers are wrong and are therefore ignored. The real point counts
can be deducted from the size of the node files and the number of bytes for each point.
The correct point count for each node is determined the first time the points from the
node are loaded into memory. The loading of the hierarchy is done in a parallel thread,
called in one of the Unity start functions. This is done so that other objects in the scene
can already be rendered while the point cloud hierarchy is being loaded. As soon as the
hierarchy is loaded, the actual point cloud rendering process starts.

3.2.2 Basic Multithreaded Loading Concept

Rendering objects in Unity is done by creating Game Objects for the objects to render.
For each node that should be visible, one or several Game Objects have to be created
with a fitting Mesh Filter and a Mesh Renderer. For each octree node that we want to
display, we use one Game Object. Only in case the node consists of more than 65,000
vertices, several Game Objects are needed.

The loading process uses three threads: The main thread of Unity, a traversal thread,
and a loading thread. In the main thread, the visible Game Objects are updated once per
frame if necessary changes have been detected in the traversal thread. Game Objects are
created for octree nodes that should be visible and do not have Game Objects yet, and
nodes that should not be visible anymore have their Game Objects deleted. Determining
which nodes Game Objects have to be created or deleted is the job of the traversal thread.
The loading thread is used for loading the point data from the files. Each thread is
described further in the upcoming sections.

3.2.3 Main Thread

In the Unity main thread, the update-function of the renderer is called once per frame.
In this function, the renderer informs the traversal thread of the current camera data
(position, view frustum etc.), because this data can only be acquired in the Unity main
thread. Then it checks its toDelete-queue. This queue has been filled by the traversal
thread and contains all nodes whose Game Objects should be deleted. The main thread
deletes those Unity objects but keeps the points in memory in the case that the node
becomes visible again. Then the main thread checks its toRender-queue, which has also
been filled by the traversal thread, and creates Game Objects for every node in there. At
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3. Implementation

the end, the traversal thread is notified that the updating of the objects is done, so it
can continue with a new octree traversal.

3.2.4 Traversal Thread

The traversal thread is responsible for determining which nodes should be visible. It
traverses the octree structure and fills the toDelete-queue and the toRender-queue, which
is then passed to the main thread.

First, new empty queues are created. Then the actual traversal is done. For every root
node (there might be several root nodes if more than one point cloud is in the scene)
it is checked, whether its projected size is higher or equal to the minimum projected
size. If this is the case, the node is inserted into a priority queue, where the priority is a
combination of the projected size and the centrality on the screen (see section 3.2.5). If
this is not the case, the node should not be visible, so if it already has Game Objects,
the node and its visible children are inserted into the toDelete-Queue.

Afterwards, a rendering point count variable, which will be used to count how many
points will be rendered, is initialized with zero and the priority queue is iterated in a
loop. In each loop pass, the node with the highest priority is removed from the queue
and the following possibilities are checked:

1. The node is outside of the view frustum: If the node has Game Objects, the node
and its visible children are inserted into the toDelete-queue.

2. The point count of the node is not known yet: Schedule the node for loading by
the loading thread. It will not be rendered this frame.

3. The point count is known and adding it to the rendering point count does not
exceed the point budget:

a) The node has Game Objects: Increase the rendering point count by the
number of points in this node. The node does not have to be put into the
toRender-queue, because it is already visible.

b) The node does not have Game Objects, but the points of this node are in
the memory: Increase the rendering point count and put the node into the
toRender-queue.

c) The node has neither Game Objects nor stored point data: Schedule it for
loading by the loading thread. The node will not be rendered this frame.

4. The point count is known and adding it to the rendering point count would exceed
the point budget: If they have Game Objects, this node and its children are put
into the toDelete-queue. The queue iteration stops.
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3.2. Multithreaded Point Loading

Figure 3.2: Screenshot from the scene view in Unity. Objects in front of the camera are
rendered in more detail than objects only partially in the view frustum

After this check, a loop iterates over the children of the node. If a child’s projected size
is higher or equal to the minimum projected size, it is inserted into the priority queue
as well. If it is below the minimum projected size and it has Game Objects, it and its
visible children are inserted into the toDelete-queue.

The number of nodes to be scheduled for loading per traversal is limited, as is the number
of scheduled Game Object creations. That way, the loading of nodes that might not
be used in the next frame gets reduced. The number of Game Objects being created is
limited, because the creation of Game Objects can be a costly operation.

The priority queue iteration stops, when the point budget is reached, the maximum
number of scheduled loadings is reached, the maximum number of scheduled Game Object
creations is reached or the queue is empty.

After this iteration, it is checked if there are still nodes that have Game Objects, even
though they should not be visible. These nodes were not checked during the iteration
loop, because the exceedance of the point budget stopped the loop before checking them.
These nodes are put into the toDelete-queue as well. This is realized by having lists of
the visible nodes for the current and the last traversal. If a node is determined to be
visible it is inserted into the new list and removed from the old one. Then, only the
remaining nodes of the old list have to be put into the toDelete-queue.

Originally, the traversal was done in the main thread. However, this sometimes led to a
low number of frames rendered per second when using big point clouds. So it was moved
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3. Implementation

Figure 3.3: Areas in the center of the screen are loaded in more detail.

into an extra thread to improve the user experience. That way, several frames may be
rendered at a lower level of detail until the traversal is finished.

3.2.5 Traversal Priority

The priority used for the priority queue in the traversal thread should reflect the perception
of the user. Nodes with a bigger projected size will mostly have a larger impact on the
rendered picture than nodes with a smaller projected size. Also, as the awareness of the
user is mostly focused on the center of the screen, nodes in the center should have a
higher priority than nodes of the same size at the edge of the screen. The priority value
is determined like shown in the following equations:

slope “ tanpfov

2 q (3.1)

projectedSize “
screenHeight

2 ˚
radius

slope ˚ distance
(3.2)

angle “ arccospcamToScreenCenter ¨ camToNodeCenterq (3.3)

priority “
projectedSize

|angle| ` 1 (3.4)
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3.3. Rendering Points

Equation 3.2 shows how to calculate the projected size of a node. Radius refers to the
radius of the bounding sphere of the node. Distance is the distance from the camera to
the center of the nodes bounding box. Equation 3.3 shows how to calculate the angle.
The two vectors are the forward vector of the camera and the normalized direction from
the camera to the node center. Equation 3.4 shows how the overall priority is calculated.
One is added to the absolute value of the angle, to prevent infinitely large priority values
as well as divisions by zero.

The priority queue is implemented using a max heap.

3.2.6 The Loading Thread

The loading thread possesses a loading queue. Each time the traversal thread finds a
node that has to be loaded, it inserts it into this queue. The loading thread continuously
removes the first node from the queue and loads the points for this node (if they haven’t
already been loaded in the mean time since inserting it into the queue).

3.2.7 LRU Cache

A Least Recently Used Cache was implemented in order to keep the memory usage below
a certain threshold. The cache has a maximum number of points it can store and if
this threshold is breached, the points of the least recently used node are removed from
memory. When a node is loaded in the loading thread it gets inserted into the cache.
When Game Objects are created for a node, i.e. while nodes are actively used and being
rendered, the node is removed from the cache. When the Game Objects are deleted, it
is once again inserted. If the number of points inside the cache exceeds the maximum
number, the cache removes the points of the nodes which have been inserted least recently
from memory and also removes the nodes from the cache.

The cache is implemented using a linked list for the queuing behavior, as well as a
dictionary mapping from the tree nodes to the list nodes, in order to enable efficient
removal from the queue.

3.3 Rendering Points
Different rendering techniques for points have been implemented. No illumination models
were implemented because the test data sets do not contain normals and because the
test data sets were colored by photos that give the model a form of static illumination.

3.3.1 Single-Pixel Point Rendering

The simplest method for rendering points is the points primitive, where every vertex
given to the GPU is rendered as a single pixel on the screen. In the vertex shader, each
vertex is transformed into screen space coordinates. The fragment shader just returns
the color of the vertex.
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3. Implementation

Figure 3.4 demonstrates rendering with this method. While parts in the distance look
dense, objects near the camera, like the hill on the right side of the image, seem almost
transparent due to the low point density.

Figure 3.4: Point cloud rendered with single-pixel point rendering and a budget of
5,000,000 points

Many graphic libraries, like OpenGL, also support setting a point size, so that each
point automatically gets drawn as a square of a given size on the screen. However, this
is not possible in Unity. One reason is that this operation is not supported by newer
DirectX-versions and one would have to limit the platforms on which the program could
be executed. Thus, to render the points as screen faced squares or circles, other ways
had to be explored.

3.3.2 4-Vertex Quad Rendering

A simple method for rendering points as screen faced squares is to use the quads primitive
and pass each point four times to the GPU. Additionally, to each of the four points a
different offset vector is given. This vector states the direction in which to move the vertex
on the screen in order to create a square. The four points have the vectors

`

´1 1
˘T ,

`

1 1
˘T ,

`

1 ´1
˘T and

`

´1 ´1
˘T .

In the vertex shader, the position of the point is transformed to screen coordinates. Then
the offset vector, times the desired point size in pixels, divided by the screen size is added
to the position. The code can be seen in listing 3.1. The offset vector is passed via the
uv-coordinates. It gets multiplied with the 4th vertex component, which will be undone
later during homogenization.

If simple squares are rendered, the fragment shader just returns the color. If circles are
desired, each fragment at which the distance to the center is larger than one is discarded
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3.3. Rendering Points

(See listing 3.2).
1 VertexOutput vert(VertexInput v) {

VertexOutput o;
3 o.position = UnityObjectToClipPos(v.position);

o.position.x += v.uv.x * o.position.w * _PointSize / _ScreenWidth;
5 o.position.y += v.uv.y * o.position.w * _PointSize / _ScreenHeight;

o.color = v.color;
7 o.uv = v.uv;

return o;
9 }

Listing 3.1: Vertex Shader for 4-Vertex Quad Rendering

1 float4 frag(VertexOutput o) : COLOR {
if (_Circles >= 0.5 && (o.uv.x*o.uv.x + o.uv.y*o.uv.y) > 1) {

3 discard;
}

5 return o.color;
}

Listing 3.2: Fragment Shader for 4-Vertex Quad Rendering. _Circles is an integer
variable used as a boolean-replacement.

One problem with this method is that more meshes may be needed. In Unity, a mesh
can contain up to 65,000 vertices. As we store every vertex four times, we can effectively
only store up to 16,250 points in a mesh. That means that one Game Object might not
be enough for one octree node and that we need multiple Game Objects to represent a
single point cloud octree node.

Figure 3.5 shows the results. The hill does not seem as transparent as in the single-pixel
approach. In areas with a lot of points - like the ocean in the bottom left corner - the
circles or squares can hardly be recognized as such. However, in regions with low point
density - for example on the hill in the front or the details in the background - they are
still clearly noticeable.

3.3.3 Geometry Shader Quad Rendering

Another way to render screen faced squares is by using a geometry shader. Each vertex
gets sent to the GPU once. In the vertex shader, the position is transformed to screen
space. In the geometry shader, for each vertex, four new vertices are build to form a
square with the desired size on the screen (see listing 3.3). The fragment shader is the
same as described in the section above.

17



3. Implementation

Figure 3.5: Points rendered as circles with a radius in pixels

[maxvertexcount(4)]
2 void geom(point VertexMiddle input[1], inout TriangleStream<VertexOutput>

outputStream) {
float xsize = _PointSize / _ScreenWidth;

4 float ysize = _PointSize / _ScreenHeight;
VertexOutput out1;

6 out1.position = input[0].position;
out1.color = input[0].color;

8 out1.uv = float2(-1.0f, 1.0f);
out1.position.x -= out1.position.w * xsize;

10 out1.position.y += out1.position.w * ysize;

12 //out2, out3 and out4 are calculated similarly, but with other +-
combinations

14 outputStream.Append(out1);
outputStream.Append(out2);

16 outputStream.Append(out4);
outputStream.Append(out3);

18 }

Listing 3.3: Part of the Geometry Shader for screen faced splats given the desired size in
pixels.

Screen faced squares can also be rendered with a given world unit size instead of a
pixel size. In this case, an up- and a sideways-vector are calculated which describe the
directions of the screen facing square (see listing 3.4). The transformation to screen
coordinates happens in the geometry shader after the creation of the four vertices. The
four vertices are created by adding or subtracting the up- and sideways-vectors (see
listing 3.5).
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3.3. Rendering Points

VertexMiddle vert(VertexInput v) {
2 VertexMiddle o;

o.position = v.position;
4 o.color = v.color;

float3 view = normalize(UNITY_MATRIX_IT_MV[2].xyz);
6 float3 upvec = normalize(UNITY_MATRIX_IT_MV[1].xyz);

float3 R = normalize(cross(view, upvec));
8 o.U = float4(upvec * _PointSize, 0);

o.R = float4(R * _PointSize, 0);
10 return o;

}

Listing 3.4: The vertex shader for screen faced splats for a given world-space point size

1 [maxvertexcount(4)]
void geom(point VertexMiddle input[1], inout TriangleStream<VertexOutput>

outputStream) {
3 VertexOutput out1;

out1.position = input[0].position;
5 out1.color = input[0].color;

out1.uv = float2(-1.0f, 1.0f);
7 out1.position += (-input[0].R + input[0].U);

out1.position = UnityObjectToClipPos(out1.position);
9

//out2, out3 and out4 are calculated similarly, but with other +-
combinations

11
outputStream.Append(out1);

13 outputStream.Append(out2);
outputStream.Append(out4);

15 outputStream.Append(out3);
}

Listing 3.5: Part of the Geometry Shader for screen faced splats for a given world-space
point size

Figures 3.6 and 3.7 demonstrate the rendering with a given point radius in world units.
Points that are closer to the camera have a larger pixel size than more distant points.
By choosing a bigger size, holes in the front can be covered without creating annoyingly
prominent points in the background. However, the used shapes are very recognizable
near the camera.
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3. Implementation

Figure 3.6: Points rendered as squares with a world size radius

Figure 3.7: Points rendered as circles with a world size radius

3.3.4 Interpolation

The previously shown methods have the disadvantage that the points occlude each other,
so that many visual details are lost. Different methods exist to increase the quality of
point rendering. Near points can be blended together in order to create a more realistic
result image, where the squares or circles themselves are not that prominent anymore
and details and structures are preserved better[BHZK05]. Schütz and Wimmer [SW15]
developed a method which creates a nearest-neighbor-like interpolation of the points.
This is done by rendering the points as screen faced 3d shapes, such as cones, spheres
or paraboloids, instead of simple squares. In this work, interpolations with cones and
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3.3. Rendering Points

paraboloids were implemented. These were implemented in two different ways. Both
variants are an extension of the geometry shader approach described above.

Shapes in the Fragment Shader

One way to create cones or paraboloids is to adjust the depth value of the screen aligned
squares inside the fragment shader. To do so, the position of each vertex in view space
is calculated in the geometry shader. In the fragment shader, the z value of the view
position is adapted to create the shape. The resulting position is then multiplied by
the projection matrix to get the correct depth value. Listing 3.6 shows the fragment
shader for rendering paraboloids at a given world size. For a given size in screen pixels,
the world size has to be calculated from the screen size first. This can be calculated by
rearranging equation 3.2.
FragmentOutput frag(VertexOutput o) {

2 FragmentOutput fragout;
float uvlen = o.uv.x*o.uv.x + o.uv.y*o.uv.y;

4 if (_Circles >= 0.5 && uvlen > 1) {
discard;

6 }
if (_Cones < 0.5) {

8 o.viewposition.z += (1 - uvlen) * _PointSize;
}

10 else {
o.viewposition.z += (1 - sqrt(uvlen)) * _PointSize;

12 }
float4 pos = mul(UNITY_MATRIX_P, o.viewposition);

14 pos /= pos.w;
fragout.depth = pos.z;

16 fragout.color = o.color;
return fragout;

18 }

Listing 3.6: Creating paraboloids or cones in the fragment shader. _Cones is an integer
used as a boolean

The interpolation improves the results highly. Figure 3.8 shows the results of rendering a
scene with interpolation. The improvement can especially be seen on fine details, e.g.
on the ships in said Figure. When using high point sizes, cones preserve the texture of
surfaces better than paraboloids. However, edges of objects stand out more prominently
and the image therefore looks more inconsistent, which can be seen in Figure 3.9. A
disadvantage of this method is, that by changing the depth value in the fragment shader,
early depth tests cannot be done by the GPU which leads to a reduced performance.
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3. Implementation

(a) No interpolation

(b) Cones

(c) Paraboloids

Figure 3.8: Results of rendering with different interpolation techniques
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3.3. Rendering Points

(a) Without interpolation

(b) With cones

(c) With paraboloids

Figure 3.9: Details in the point cloud with different interpolation modes and big point
sizes
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3. Implementation

Approximated Shapes in the Geometry Shader

Another way to create paraboloids is to create a paraboloid-polygon-approximation
instead of a square in the geometry shader. Four different paraboloid approximations
have been implemented. The paraboloid is approximated either by 8, 16, 32 or by 48
triangles. The 48-triangle structure can be seen in Figure 3.10. All points along one
"ring" have the same z value. For each vertex, the depth is calculated and the z value is
set accordingly. The resulting three-dimensional paraboloids are depicted in Figure 3.11.
The 8-triangle-approximation is closer to a cone than a paraboloid and can therefore be
used as a cone-approximation.

Figure 3.10: The 48-triangle structure for a paraboloid

Creating this for a given point size in world units is simple. In the vertex shader, an
up-vector and a sideways-vector are calculated. The point position is only transformed
to world space. Then the single points are calculated in the geometry shader from the
uv-coordinates (ranging from -1 to +1 in the corners) of the current vertex by the method
depicted in listing 3.7. For each vertex, the distance offset is calculated and moved
accordingly nearer or farther from the camera. These points are then transformed to
screen space. From the created vertices the triangles are created.
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3.3. Rendering Points

(a) 8 trianlges (b) 16 trianlges

(c) 32 trianlges (d) 48 trianlges

Figure 3.11: The paraboloid approximations

VertexOutput createParaboloidPoint(VertexMiddle input, float u, float v) {
2 VertexOutput nPoint;

nPoint.position = input.position;
4 nPoint.position += u*input.R;

nPoint.position += v*input.U;
6 float4 N = -float4(normalize(float3(nPoint.position - _WorldSpaceCameraPos)

)*_PointSize, 0);
nPoint.position += (1 - (u*u + v*v))*N;

8 nPoint.position = mul(UNITY_MATRIX_VP, nPoint.position);
nPoint.color = input.color;

10 nPoint.uv = float2(u, v);
return nPoint;

12 }

Listing 3.7: Creating paraboloid points for a given size in world units. This function is
called from the geometry shader.

The process for rendering at a given point size in pixels is slightly more complicated.
The point position is first transformed to screen coordinates in the vertex shader. In
the geometry shader, the points are created by the method in listing 3.8. The x and
y coordinates are adjusted by the desired point size (xsize is the point size divided
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3. Implementation

by the screen width and ysize is the point size divided by the screen height). The so
resulting point is then projected back to view space by multiplying with the inverse
projection matrix. Each vertex is moved closer to or away from the camera according to
the calculated paraboloid-value. The variable zsize is the radius of the splat in world
coordinates, once again calculated from rearranging equation 3.2.
VertexOutput createParaboloidPoint(VertexMiddle input, float xsize, float

ysize, float zsize, float u, float v) {
2 VertexOutput nPoint;

nPoint.position = input.position;
4 nPoint.position.x += u*xsize*input.position.w;

nPoint.position.y += v*ysize*input.position.w;
6 nPoint.position /= nPoint.position.w;

float4 viewposition = mul(_InverseProjMatrix, nPoint.position);
8 viewposition /= viewposition.w;

float4 vpn = float4(normalize(float3(viewposition.x, viewposition.y,
viewposition.z)),0);

10 viewposition += (1 - (u*u + v*v))*vpn*zsize;
viewposition = mul(UNITY_MATRIX_P, viewposition);

12 viewposition /= viewposition.w;
nPoint.position = viewposition;

14 nPoint.color = input.color;
nPoint.uv = float2(u, v);

16 return nPoint;
}

Listing 3.8: Creating paraboloid points for a given size in pixels. This function is called
from the geometry shader.

Even though the paraboloids created by the geometry shader are only approximated,
the results are still very satisfying. Figure 3.12 compares some of the shown rendering
techniques. The difference between geometry shader approximations and fragment shader
paraboloids are hardly noticeable.

Even though this method does not skip the early z-testing, it is still not as efficient as
the fragment shader approach, as will be shown in section 4.
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3.3. Rendering Points

(a) No interpolation

(b) Fragment-Shader cones (c) 8-triangle-approximation

(d) Fragment-Shader paraboloids (e) 48-triangle-approximation

Figure 3.12: A detail in the scene rendered with different techniques.
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CHAPTER 4
Evaluation

4.1 Methodology

In order to compare the different rendering techniques, the camera was set to a fixed
position and the application was executed for ten seconds. During these ten seconds,
the point cloud is loaded and rendered. As point cloud, a part of the San Simeon point
cloud by OpenTopography[san] was used. This point cloud has around 230 million
points. A display resolution of 1366x768 was used, because this was the highest resolution
available on both test devices. The application was built as an executable and executed
outside of the Unity editor. During the rendering, the duration of each frame (given by
Time.deltaTime by Unity) was logged. From these values, the average number of frames
per second (FPS) was calculated. The average FPS is equal to the inverse of the average
deltaT-values and can be calculated as seen in equation 4.1.

fps “ n
řn

i“1 ∆ti
(4.1)

The Memory Profiler was used to measure the maximum memory usage. Tests using
the profiler were done separately from the FPS-measurements described above, because
profiling can only be done in the editor, where the FPS are usually lower.

The measurements were done on two PCs. PC A is a gaming PC, while PC B is an
average laptop.

PC A PC B
Processor Intel Core i7-6700, 4x 3.40GHz Intel Core i7-3632QM, 4x 2.20GHz

RAM 16GB 8 GB
Operating System Windows 10 Pro, 64-bit Windows 10 Pro, 64-bit

GPU NVIDIA GeForce GTX 1060 Intel HD Graphics 4000
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4. Evaluation

4.2 Point-Pixel Rendering
In this section, three different approaches are compared for rendering points as single
pixels: Single-pixel point rendering (see section 3.3.1), 4-vertex quad rendering (see
section 3.3.2) with a radius of 1 pixel and geometry shader quad rendering (see section
3.3.3), also with a radius of 1 pixel. All methods render to a single pixel in order
to evaluate the overhead of the 4-vertex and geometry shader approaches against the
single-pixel point rendering method that is included in Unity.

As point budget 1,000,000 was chosen and the minimum node size was 10. Table 4.1
shows the results.

I FPS PC A I FPS PC B
Single-Pixel Point Rendering 1053.49 91.71

4-Vertex Quad Rendering 601.48 45.17
Geometry Shader Quad Rendering 650.33 50.75

Table 4.1: Average FPS for different rendering methods for drawing each point as a single
pixel.

The results show that 4-vertex quad rendering is not a good option, as it has the lowest
FPS of the three techniques. It also increases memory usage by a factor of 4. The
geometry shader approach does not reach the speed of the single-pixel point rendering,
but it still provides good results.

4.3 Point-Quad Rendering
Two techniques have been implemented to render points as screen faced squares or circles
with a given size in pixels. There is the 4-vertex quad rendering and the geometry shader
quad rendering. The last one also provides various interpolation techniques.

For the evaluation, a point budget of 1,000,000 was chosen. The point size was set to 5
pixels and the points were drawn as squares. The minimum node size was once again 10.
The results are shown in table 4.2.

While the simpler geometry-shader interpolations still work fine on PC A, they are
hardly usable on PC B due to the low frame rates. The fragment shader approach for
interpolation is faster and generates mostly better graphical results as well.

4.4 Point-Budget Influence
To find out how the point budget influences the performance, the test scene was evaluated
with different point budgets, once using single-pixel point rendering and once using
screen-space-sized point rendering with fragment-shader-paraboloids. Figure 4.1 shows
the measurements of the frames per seconds. The measurements were done with 500,000,
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4.4. Point-Budget Influence

I FPS PC A I FPS PC B
4-Vertex Quad Rendering 560.42 26.71

Geometry Shader: No interpolation 568.57 31.36
Geometry Shader: 8 triangle-approximation 201.4 17.03

Geometry Shader: 16 triangle-approximation 120.03 16.06
Geometry Shader: 32 triangle-approximation 73.51 16.85
Geometry Shader: 48 triangle-approximation 70.38 13.76

Geometry Shader: Fragment-Shader-cones 339.69 17.98
Geometry Shader: Fragment-Shader-paraboloids 322.21 18.18

Table 4.2: Average FPS for different rendering methods for drawing each point as a
screen faced circle with a point budget of 1,000,000.

1,000,000, 2,500,000, 5,000,000 and 10,000,000 points. Please note, that at the start of
the ten-second measurement, the points are not loaded yet, but instead they are loaded
during the first seconds, which means that the FPS are higher in the beginning - because
fewer points to render are loaded - than at the end of the measurement.

Single-pixel point rendering always works fine on PC A. The FPS are always above 300.
On PC B the performance is generally lower, however, for point budgets below 2,500,000,
it is mostly still usable.

With the paraboloid method, the average FPS value of PC A is above 600 for 500,000
points but starts to drop noticeably from 1,000,000 points onwards. However, it still
remains usable with FPS above 60. The performance of PC B is already very low from
the beginning.
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4. Evaluation

(a) PC A

(b) PC B

Figure 4.1: FPS-measurements for different point budgets
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4.5. Memory Consumption

4.5 Memory Consumption

The size of the test point cloud’s files is 3.49 GB. The amount of memory used by the
application depends mainly on the point budget and the size of the LRU cache. Figure
4.2 shows the maximum memory usage by point budget for two different cache sizes. This
was measured while navigating through the scene on a predefined path for 40 seconds.
Single-pixel point rendering was used as rendering method. The second cache size,
300,000,000 points, exceeds the number of points in the point cloud, so it is an unlimited
cache, that never deletes points from memory. As expected, the memory consumption
increases linearly with the point budget and using the cache makes a significant difference.

Figure 4.2: Maximum memory usage in MB per point budget

4.6 Comparision to Potree

To compare the performance of the Unity renderer with Potree, the same test point cloud
was rendered with Potree from the same camera position as in Unity. Potree was run in
the Chromium browser [chr], because it is one of the few browsers that support disabling
vertical synchronization (VSync). It was tested on PC A with a resolution of 1920x1080.
Potree was executed and the frame durations were recorded for ten seconds. Fixed point
sizing and square-rendering were used. A minimum node size of 10 was chosen. The
other settings varied through the different tests. Each test configuration was tested in
Potree as well as in Unity. In all the Unity tests, Geometry Shader Quad Rendering was
used. The results can be seen in table 4.3.
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Point Budget Interpolation Point Size I FPS Potree I FPS Unity
1,000,000 No 1px 382.85 563.32

10,000,000 No 1px 97.08 114.19
1,000,000 No 5px 350.75 503.97

10,000,000 No 5px 88.65 105.25
1,000,000 Yes 5px 358.55 312.37

10,000,000 Yes 5px 74.45 71.33

Table 4.3: Average FPS in Potree and Unity

The Unity renderer usually has more FPS than Potree. Only when interpolation is used,
Potree has a slightly better performance.
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CHAPTER 5
Conclusion

A point cloud rendering system for Unity was presented. It renders point clouds in the
Potree-data format in real time by continuously checking which parts of the point cloud
are visible and loading only these. The number of loaded and displayed points are limited
by a point budget and a minimum node size. Various different rendering approaches have
been implemented, including fixed point sizes in world units or screen units as well as
the possibility to use paraboloid- or cone-interpolations.

For systems with lower computing power and less powerful graphic devices, the settings
can be adjusted to reduce the quality in order to still get an acceptable number of frames
per seconds.

Possible future work includes the implementation of adaptive point sizes, so that in areas
with lower point density the points are displayed with a bigger size than in areas with
higher point density. Also, Eye-Dome-Lighting[Bou09] could be implemented to create
outlines along silhouettes in order to improve the visual quality.
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