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Kurzfassung

Das Ziel dieser Arbeit ist es, bessere Methoden zur Fehlermessung bei erwartungstreuen
und physikalisch basierten Lichttransportalgorithmen einzufiihren. Der Stand der Technik
ist die Messung via mittlerer quadratischer Abweichung (MSE, Mean Square Error)
oder optischem Vergleich von Renderings mit gleich langer Rechenzeit. Diese Methoden
sind unzuverlédssig, weil MSE anféllig fiir Ausreifier ist und optische Vergleiche inhérent
subjektiv sind.

Wir fithren einen simplen Stellvertreteralgorithmus ein: Reine Algorithmen produzieren ein
einziges Bild mithilfe von N Rechenressourcen. Der Stellvertreter hingegen berechnet N
unabhéingige Bilder mithilfe von jeweils 1 Rechenressource. Das erméglicht die Anwendung
des Zentralen Grenzwertsatzes, dessen Konsequenz eine Konvergenz von ©(1/N) ist.
Aus dem Stellvertreter ergibt sich aulerdem die Moglichkeit, routineméflig Bilder mit
Standardabweichung pro Pixel zu berechnen.

Mit dem Stellvertreteralgorithmus ist es einfach, den Erwartungswert des MSEs zu
schéitzen. Dieser Schétzer ist zuverldssiger als ein einzelner MSE-Wert und kann fiir
verschiedene Rechenzeiten mittels Division durch N skaliert werden. Ein weiterer Vorteil
ist die Moglichkeit, Konfidenzintervalle und Standardabweichung fiir den MSE-Wert zu
berechnen.

Wir schlagen das Fehler Spektrum Ensemble (ESE, Error Spectrum Ensemble) als neues
Werkzeug zur Evaluierung von Lichttransportalgorithmen vor. Es visualisiert den zu
erwarteten Fehler und Ausreifler in Abhéngigkeit von rdumlichen Frequenzen. ESE
wird mit den Daten aus den Stellvertreteralgorithmen generiert. Mittels einer Referenz
werden N Fehlerbilder generiert, daraus werden Fourierquadratspektren berechnet, welche
mittels radialem Mittelwert komprimiert werden. Der Deskriptor ist schlieflich eine
Zusammenfassung dieser Mittelwerte.

In den Ergebnissen zeigen wir, dass Standardabweichungsbilder, Bilder mit kleinem N,
ESE und MSE Erwartungswert niitzliche Werkzeuge zur Bewertung von Renderingalgo-
rithmen sind.
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Abstract

This work aims at improving methods for measuring the error of unbiased, physically
based light-transport algorithms. State-of-the-art papers show algorithmic improvements
via error measures like Mean Square Error (MSE) or visual comparison of equal-time
renderings. These methods are unreliable since outliers can cause MSE variance and
visual comparison is inherently subjective.

We introduce a simple prozy algorithm: pure algorithms produce one image corresponding
to the computation budget N. The proxy, on the other hand, averages N independent
images with a computation budget of 1. The proxy algorithm fulfils the preconditions
for the Central Limit Theorem (CLT), and hence, we know that its convergence rate is
O(1/N). Since this same convergence rate applies for all methods executed using the
proxy algorithm, comparisons using variance- or standard-deviation-per-pixel images are
possible. These per-pixel error images can be routinely computed and allow comparing
the render quality of different lighting effects. Additionally, the average of pixel variances
is more robust against outliers compared to the traditional MSE or comparable metrics
computed for the pure algorithm.

We further propose the Error Spectrum Ensemble (ESE) as a new tool for evaluating light-
transport algorithms. It summarizes expected error and outliers over spatial frequencies.
ESE is generated using the data from the proxy algorithm: N error images are computed
using a reference, transformed into Fourier power spectra and compressed using radial
averages. The descriptor is a summary of those radial averages.

In the results, we show that standard-deviation images, short equal-time renderings, ESE
and expected MSE are valuable tools for assessing light-transport algorithms.

X1
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CHAPTER

Introduction

Light-transport algorithms are used to compute realistic images from scene data, such as
geometry, materials, light sources and a sensor. They do this by simulating the physics
of light, therefore the process is also called physically based rendering.

Applications are film production, industrial visualisation and art. Since this kind of
rendering is computationally expensive, large film productions use render farms with
several thousand CPUs. For the same reason, those algorithms are not used extensively
for games and other real-time applications. Quicker approximations are used for those,
trading efficiency for systematic errors.

Consider how a physical environment is modelled: Each light source emits particles,
called photons. They interact with the world taking different paths, are scattered or
absorbed by objects, until finally a small portion arrives at the sensor. The interactions
depend on the shape of objects and their material properties. Photons collected at the
sensor, for instance a camera or an eye, constitute the image. Measured or perceived
colour depends on the amount and wavelength of the arriving photons.

In light transport algorithms, the colour of a pixel is computed by measuring the amount
of light following random paths between light sources and sensors.

Here are a few examples of such paths, sorted roughly in increasing difficulty of simulation:

e direct connection between light source and sensor.
e from light source onto a surface and then to the sensor, also called direct light.

e bouncing many times between scene surfaces. This is still relatively easy to simulate
if only few non-specular materials are involved. An example is light scattered by
walls, illuminating shadows that would be completely black otherwise.
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e it includes many specular bounces, for instance glass objects with a lot of refractions
or caustics (bundled light).

e the path includes participating media (volumetrics), for instance translucent skin,
fog, smoke, cloudy fluids like milk, wax etc.

Monte Carlo (MC) and Markov Chain Monte Carlo (MCMC) methods are two classes of
algorithms used for simulating light transport. Both of them generate random samples —
light paths directed through the image pixels. The colour of each pixel is computed as
the-per pixel average of the light intensities of those paths. The estimate becomes more
precise when taking more and more samples. In other words, the algorithms converge to
the solution.

MC and MCMC methods differ in the way samples are generated, which has implications
on the speed and type of convergence.

e MC methods generate independent samples. The accuracy of the solution can be
improved by concentrating samples on important paths (those transporting the
majority of light).

e MCMC methods, on the other hand, mutate existing samples, generating correlated
chains. Small mutations allow the chain to stay in the vicinity of important paths,
while large mutations are used for exploration. Accuracy depends on the quality of
the mutation set.

Both methods are unbiased, meaning that there is no systematic error, only noise due
to variance. There are also several biased approximation methods, like for instance
photon mapping. In this thesis, we will focus on unbiased algorithms, and we neglect
participating media like fog, smoke, milk, wax etc.

1.1 Problem statement

In order to improve rendering algorithms, it is advisable to gain an understanding of their
shortcomings and to have a reliable metric to quantify differences. Researchers have an
understanding of the shortcomings of competing light-transport algorithms, but some of
the knowledge is anecdotal, especially in the case of MCMC. Currently used techniques
for assessing errors are simplistic and often inadequate for understanding their sources,
making it difficult to evaluate algorithmic changes.

The asymptotic convergence rate of MC and MCMC algorithms is ©(1/N) (N being
the number of samples) [Dut96][APSS01], but this is a general and coarse statement
inadequate for measurements. Furthermore, MC algorithms are generally known to
converge steadily, meaning there are no jumps of the error over time (~ sample count).
MCMC algorithms, on the other hand, can converge in an unpredictable manner. For
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instance, certain lighting effects can be completely missing until they “pop up” when a
certain batch of samples is added to the solution. This is the type of anecdotal knowledge
we mentioned. We found no study on those effects.

Often the convergence rate is compared simply by visual evaluation or using basic
error metrics, such as the Mean Square Error (MSE) after a fixed rendering time
[VGIT][CTEO5][MKA15]. Visual methods are imprecise and subjective. Simple metrics
tell nothing about error properties like spatial frequency content. Having a fixed rendering
time prevents measurement of temporal uniformity.

We believe that there is a need for a better way of assessing rendering error and its
properties. Building on that, an in-depth study of convergence properties of light transport
algorithms would benefit the field by formalising anecdotal knowledge.

1.2 Contribution

Our main contribution is an error descriptor which tackles the problem of measuring
and visualising differences of MC and MCMC rendering algorithms. In particular, it
summarises the overall convergence rate over different frequencies, or in other words, the
constant factor of the ©(1/N) rate in different frequencies. Additionally, it visualises the
intensity of outliers, which are responsible for said jumps and “pop-ups”.

The descriptor can be computed for any algorithm for which it is possible to separate
the solution into batches of independent samples. Adapting any unbiased algorithm into
such a form is trivial but might change the performance. We study the performance
change in case of a MCMC algorithm (Metropolis Light Transport (MLT)) and offer a
possible workaround for algorithms not fitting the scheme.

As a second contribution, we discuss statistical error properties of rendering algorithms,
both in the spatial and the frequency domain. We investigate error distributions based
on the Central Limit Theorem (CLT), show how they are transformed when computing
the power spectrum and study the influence of outliers. These results document and
formalise some knowledge that was only anecdotal previously and help to understand
and apply the descriptor.

Finally, we run a number of test cases with the following goals:

verify the descriptor

explain how the "pop-up' effects mentioned in Section 1.1 are reflected in the
descriptor

highlight different properties of MC and MCMC algorithms

investigate the influence of various parameters on MCMC
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In particular, we run the measure for several well-known scenes with different challenges,
one scene with parametrized light size and surface roughness, one test to visualise
the behaviour of photon mapping, varying mutation sizes of Primary Sample Space
MLT (PSSMLT), various MLT seeding methods and a comparison between Energy
Redistribution Path Tracing (ERPT) and MLT with parameters set to mimic certain
ERPT properties.

1.3 Structure of the work

We will explain important basics of light transport algorithms, MC and MCMC integration
as well as the Fourier frequency transform in Chapter 2.

In Chapter 3 we will summarise the state of the art and other related research.

Chapter 4 surveys statistical properties of the 2D error signal in the spatial and the
frequency domain and gives insights into the temporal behaviour when taking more and
more samples. It is also useful for understanding the proposed descriptor, which we
introduce in Chapter 5.

Chapter 6 contains insights and findings that we got using the descriptor. We will
conclude in Chapter 7.

Descriptions and full results for the scenes are in Appendix A, some of the pitfalls
we encountered during the work in Appendix D, a brief reference of tested rendering
algorithms in Appendix E, and a table of symbols in Appendix F.



CHAPTER

Background

In this chapter we want to provide some background knowledge that is needed to
understand other chapters in this work. Rather than delve into mathematical details, we
will try to give intuitive understanding and references to literature.

2.1 Light transport

As mentioned in Chapter 1, light transport algorithms are used to compute an image of
a virtual scene using a physically based model. We explain the path integral formulation
of light transport, because it is easier to use with some of the rendering methods [VG94].
It is an equivalent alternative to the recursive formulation [Kaj86].

2.1.1 The path

We cover the physical model more in depth, but we start with one of the centrepieces:
the path (Figure 2.1).

Figure 2.1: Example path from light source to camera. Edges between vertices (xq . ..x4)
are straight lines. We use the convention that path indices start at the light source.
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A path denotes a list of vertices xg...zp_1, which connect light source (z() and sensor
(xp—1) using straight edges. The vertices are positions in 3D space, augmented with
information like the material and surface normal. The shortest possible path is D = 2,
when the light source is visible in the camera. Direct lighting involves a third vertex on
a surface, and each bounce adds more. In theory the number of vertices can be infinite,
but in practice the number is limited by computational constrains.

When there is no participating media, photons go straight until stopped by an object —
all vertices lie on surfaces. Therefore paths can be created by ray-tracing: A ray has a
starting point and a direction. Casting it means finding its destination, the closest-hit
point. The scene itself is modelled using triangle meshes. Hence, the closest hit point
can be found by analytical ray-triangle intersections. The ray tracing process starts at
an existing vertex, for instance the camera. The algorithm determines a new direction
and casts a ray. The hit point becomes a new vertex and we repeat the process until a
connection between sensor and light source is found.

2.1.2 The light transport function

Now that we know what a path is, and we have a basic understanding on how it is
created, let us discuss how to use it for measuring light. The number and wavelength
of photons travelling through path = to a certain sensor element is called the flux. It
is given by the light transport function f(x). All physical effects are packed into that
function, defined as a product:

D—2
f(x) = L(zg — x1)G(x0 <> x1) H BSDF (xp—1 — xp = 2p41)G(zp > Tpy1), (2.1)
p=1

where L is the light intensity emitted from the light source, BSDF the factors representing
material properties and G geometry factors (Figure 2.2).

L(Xo->X1)
k S ? bsdf(x,-X,~Xs3) &

5" G
G\re /«\' Glxyuny )
q
XO bsdf(xo=X1+X;) 6\*1
bSdf(Xz"X3"X4)

Figure 2.2: An example path of length P = 5 with light transport factors: Light intensity
(L), geometry (G ) and reflectance properties of the material (bsdf ) are multiplied, resulting
in the flux.
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(a) Diffuse (b) Glossy (¢) Mirror (Dirac impulse)

Figure 2.3: Examples of BSDFs: arrows symbolise photons and the envelopes the value
returned for a specific outgoing direction.

The Bidirectional Scattering Distribution Function (BSDF) models the material of a
surface, i.e., what happens, when a photon of a certain wavelength hits the surface.

There are several options:

o reflection
e absorption (energy is turned into heat, the photon disappears)

e refraction (the photon penetrates the object)

The function (Equation 2.2) takes the incoming (dJ;,) and outgoing (WJeyt) directions and
returns the ratio of light transported per wavelength (colour channel). Often, the position
Z on the object is needed for spatially varying parameters like textures. This interface
allows to model complex materials independently from the light transport algorithm.
However, for this explanation it is more convenient to pass the position of previous,
current and next vertices:

BSDF(Z, @i, Gout) = BSDF (2 from — & — 1) (2.2)

The notations are equivalent as incoming and outgoing directions can be computed — and
positions can be ray traced. In a typical rendering program, BSDFs are often accompanied
by functions that generate (sample) outgoing path directions. The sampling probability
is proportional to the BSDF value, which helps to find paths that transport a lot of light.

As an example, the BSDF of a diffuse white wall paint is constant (Figure 2.3a), for
plastic the value is larger in reflection direction (Figure 2.3b) and for a perfect mirror
it is zero in all but the reflecting direction (Figure 2.3c). In accordance to the energy
conservation law the integral over all directions is less or equal one. More details about
the physical background and mathematical models can be found for instance in an article
by Hoffman [Hof13].

We continue with light sources and sensors. The problem of following photons until they
hit a sensor is reciprocal to seeking incoming radiation starting from the camera. The
dual to photons is called importons [Vea97]. They are virtual particles emitted from the
sensor, which contribute to the measurement when hitting a light source.
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Physically, both, light sources and sensors, have a non-zero area and they emit or receive
particles from a range of directions. The amount and wavelengths of light, that flows
from position Z on the light source into direction Wy, is modelled by

L(Z, o) = L(z — y). (2.3)

Again, the notation using vertices is equivalent. A similar function exists for the sensor,
measuring the amount of importance flowing xp_1 — xp_o. We omit it, since it is 1 for
all admissible paths (those that go through a pixel).

In computer graphics, light sources and sensors can be modelled as the limit of being
infinitely small (a point) or having an infinitely small range of directions (singular
direction). These simplifications make the computation easier at the expense of realism
and in some cases a biased solution.

The last factor is G, the geometry factor. It consists of the visibility V', Lambert’s law
(see Figure 2.4a) and inverse-square law (see Figure 2.4b):

c08(8z—y) cos(0y—z)
—»|2 ?

Glx—y)=V(x+vy) (2.4)

|7~

where path vertex z has the position Z and 60,_,, is the angle between the normal of
and a vector pointing from Z to §. Sometimes a visibility term (V') is needed (0 if there
is a triangle between x and y and 1 otherwise). G is symmetric and it applies equally to
photons and importons.

1 unit r=1 unit r=2 units

\N \N v
N\
\\’ r=0.5 units

0=0° _ek \ |/

N -
<) ] o
1 unit 2 units ‘
(a) cos(0), cos of angle between incoming and normal vector (b) Distance

Figure 2.4: Geometry factors in light transport: (a) Lambert’s law, light or importance
intensity on a surface is proportional to cos(#). (b) The density of photons and importons
in a spherical wave front is proportional to the inverse-square distance.
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2.1.3 Sampling

At this point we want to revisit the process of creating a path — sampling. It is desirable
to find important paths that transport a lot of light.

Sampling usually starts at the camera or a light source (Figures 2.5a and b). At every
step, the existing path is extended by sampling an outgoing direction at the last vertex.
Important paths are found with a higher probability, if the BSDF and Lambert’s law
(Figure 2.4a) are taken into consideration while selecting the direction. Ray casts
inherently create samples with an intensity proportional to the inverse-square law and
Labert’s law at the destination vertex.

Some algorithms have the ability to connect existing sub paths (Figure 2.5¢). It is also
possible to employ global information. For instance the light source is often sampled
directly. In those case the visibility term of G comes into play.

We want to conclude with some examples of hard or impossible cases for the sampling
process. The smaller the light source (or sensor), the harder it is to sample locally
(without information about its position and size), see Figure 2.6. The range of important
directions shrinks, which manifests as larger error in the resulting estimate. In the
limiting case of a point light source, local sampling is not even possible. Something
similar happens, when the distance to the light source is increased.

Here, direct sampling would be a solution. But that is not always possible, for instance,
if the light source is obscured by a transparent object (Figure 2.7). The law of refraction

s sx S

(a) Light direction (b) Eye direction (c¢) Connection

Figure 2.5: It is possible to extend (sample) a path in light (a) or eye direction (b). Some
algorithms have the ability to connect sub paths (c).

YV T |

Figure 2.6: A light source of decreasing size (left to right) demonstrates how sampling
an important direction randomly becomes more difficult for smaller ranges. In the limit,
when only a singular direction is important (point light source), it is impossible to sample
it randomly.
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Ry

?

[l

Figure 2.7: An object inside a perfectly specular glass bowl: This scene is impossible to
render with a traditional MC or MCMC renderer if using a pinhole camera and a point
light source.

must be respected, often changing the direction of the path.

In practice, error is often high when the light source is small or far away and only visible
through specular bounces.

2.1.4 The path integral formulation of light transport

Veach and Guibas [V(G94] formulated rendering as the solution to the following integral:

1[j] = /Q F(@)hy () du(), (2.5)

where

e [[j] is the brightness and colour of pixel j.
e () is the space of all transport paths, i.e., the union of all paths of length 2, 3 ... co.

e Accordingly z is a transport path of variable length and f(x) its flux, computed by
the light transport function.

e Since f has no notion of pixels, we need an additional pixel filter h;. It is zero
for most pixels, and only allows a contribution if the path x goes through the
area assigned to pixel j. This separation is useful, for instance because a path can
contribute to more than one pixel (anti-aliasing when the path is close to the pixel
edge).

e 11 is a measure on {2, needed for integration.

The integration domain €2 is infinitely dimensional although it is embedded in the 3D
scene. Every vertex in z adds a degree of freedom (a new dimension), and the vertex
count is not limited.

In theory, any numerical method can be used to solve the integral. However, in practice
simple, quadrature rules are prohibitive with higher dimensional integrals. Hence, MC
(Section 2.3) or MCMC methods (Section 2.4) are employed.
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2.2 Statistics

Next we will define a few statistical terms that we use later and remind about some
important statistical properties.

A random variable is one that takes up a value by chance. Calculations including random
variables result in transformed random variables. Observations of random variables have
a non zero value in the random variable’s Probability Density Function (PDF). The
integral of the PDF over the whole domain is 1. In our context, we often have random
variable and observation vectors, for instance a 2D image or spectrum.

Random variables can have an expectation denoted by E[X]. The expectation operator
is linear:
EaX] =aE[X]

and
EX+Y]=E[X]+E[Y],

which is even true if X and Y are correlated.

We notate the mean of NV observations of X as
) 1 X
Xy =+ ; X;.

There are many ways to measure dispersion, that is how much a distribution is spread
out. Examples are standard deviation, variance, ratios of quantiles, etc.

Variance is defined as

Var (X) =E [(X - E[X])?] =E[x?| - E[X]’

and Kurtosis as

Bl(X — p)*]
Kurt[X] = with p = E[X]
(B[(X — p)?])?
The following rules apply to variance:
Var (aX 4 b) = a® Var (X), (2.6)

N N N

Var (Z Xi) = Z Cov (X4, X;) = ZVar (Xi) + Z Cov (X3, X;) , (2.7)
i=1 ij=1 i i£j

where Cov is the covariance.

We use the Central Limit Theorem (CLT) several times. It states that when taking the
mean of N — oo independent and identically distributed (i.i.d.) random variables (X)

11
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with well defined expectation p and finite variance o2, the resulting random variable
(Xn) will tend towards a normal distribution:

N—oo

1 Y 5 o?
lim —>» X; =Xy~ — .
1 N ; i N~N (M’ N)
The overall convergence rate of ©(1/N) for MC methods is a direct consequence of it.

2.2.1 Probability distributions

There are several probability distributions based on the normal distribution (N'). We use
the half normal distribution (Figure 2.8), which arises when taking the absolute value of
a variable that is normal distributed:

Y = |X], X ~N(0,0).

Its expectation and variance can be computed analytically, if the original variance is
known:

E[Y] = 0y/2/n

Var (Y) = 0%(1 — 2/n).

0»5‘[ 05,

(a) Normal (b) Half normal

Figure 2.8: Probability density functions with ;. = 0 and o = 2. See text for definitions.
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2.3 Integration using Monte Carlo methods (MC)

MC is a numerical integration technique applicable for any function f, though for low
dimensional functions there are methods with a better asymptotic convergence rate. In
its simplest form N samples (z;) are drawn uniformly in the integration domain €2 and
then combined to the solution using [NB99][Liu01]:

1 o
I— /Q fla)de =V ; Flai) = Iy (2.8)
with V = [ 1du. (2.9)

This algorithm is unbiased, meaning that I = E [f N}, the expectation is equal to the

correct result. However, samples can fall into regions with f(x;) ~ 0, the contribution
to Iy is minimal (Figure 2.9a). Even worse, fewer samples fall into the important part,
increasing variance of the estimate. It would be better to take more samples in areas
where f is large and weight accordingly. This so-called importance sampling (Figure
2.9b) takes samples using a probability distribution that follows f as closely as possible.
Equation

(2.10)

;o1 N
=N Z
is used to calculate the importance sampled estimate (we omit V' from now on) [NB99].

Note that if probability p is exactly proportional to f then there is no variance at all,
and the result is just a scaling factor.

Af(z) A f(z) A f(z)

A1 T+ M w >
Y »(z) Y »(z) Y 0i(z) po(z)
(a) Uniform (b) Importance (¢) Multiple importance

Figure 2.9: Difference between naive uniform sampling and importance sampling methods
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One drawback of importance sampling is that it is often hard to come up with a single
sample-generating function that follows f everywhere. Variance can increase tremendously
when there are areas with a small p and a large f. Multiple Importance Sampling (MIS)
can help, as several different sample-generation strategies with a combined probability
are used. Figure 2.9¢ gives an idea how the samples can be distributed using two normal
distributions. There are several ways on how the samples can be weighted, see Veach
and Guibas [VG95]. Equation

1O 2f(;)

= () + pali) (2.11)

is just an example. Two sampling functions with sample probability p; and po are used,
we take 50% of the samples from strategy 1 and 50% from 2. The probability functions
are added up below the fraction line, which reduces the aforementioned problems with a
small p and large f.

Iy is a random variable with expected value equal to the solution of the integral. The
variance of this random variable is a measure of the expected error and depends on the
shape of f, the quality of the sampling function, and it decreases to zero asymptotically
with the number of samples as ©(1/N) [NB99.

2.3.1 Application in rendering

We use two MC algorithms in this thesis: Path Tracing (PT) and BiDirectional Path
Tracing (BDPT). Both are visualised in Figure 2.10.

In PT all paths start at the camera, which means that the rays trace importons. At every
surface hit point, the BSDF is importance sampled and the path terminates when a light
source is hit. Alternatively, shadow rays are cast from every vertex (thin visibility test
lines in Figure 2.10a). This increases the number of samples while being relatively cheap,

(a) Path tracing (b) Bidirectional path tracing

Figure 2.10: Thin lines represent visibility tests, dotted ones failed visibility tests and
thick ones ray casts. Every positive visibility test is a connection between camera and
light, i.e., a path sample that contributes to the result. BDPT (b) results in more path
samples per pixel sample (thick lines starting at the camera), hence one pixel sample is
more expensive than in PT (a).
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as every connection to a light source is a separate sample. It is possible to perform MIS
between the shadow rays and the BSDF rays cast. PT is biased if the scene contains
perfect glass and a point light source, because the caustic cannot be sampled (compare
with Figure 2.7). Accordingly, it has high variance with a small area light [PH10].

BDPT is more complex. First, camera and light paths are created, importance sampling
the BSDFs. Then, each vertex of the camera path is connected to every visible light
vertex (Figure 2.10b). This creates a number of camera-light connecting paths, the
samples. Each path was created using a different sampling strategy (e.g. 1 camera vertex,
D light vertices, 2 camera vertices, D — 1 light vertices, and so on). When looking at one

particular path, in theory it could have been also created by any of the other strategies.

Hence, we can perform MIS between them [Vea97].

2.4 Integration using Markov Chain Monte Carlo
methods (MCMC)

In MC, all samples are independent from each other. This means that if a sample with
large f is found, the next sample cannot benefit from it. In MCMC on the other hand,
every sample is derived from the previous one — we say that a sample is mutated. All
samples together form a Markov chain of samples. The mutations are designed in such
a way, that the distribution of samples is proportional to f(x) in the limit, also called
equilibrium distribution. This means that we can generate samples proportional to f,
something very desirable when looking back to importance sampling.

We start with the mutations and find out later how everything fits together.

2.4.1 Mutations

The mutations are implemented by modifying an existing sample, generating a candidate
mutation. This candidate is then either accepted or rejected as the new state, guaranteeing
that the sample states are proportional to f(z). Because of the guarantee we can use
any type of modification — as long as we can compute the acceptance probability.

There are many variants for calculating the acceptance probability of a mutation z —
[BGJMI11]. One of the important variants, also used in Metropolis Light Transport
(MLT), is that of Metropolis-Hasting [Gey11]. Its acceptance probability is calculated
from old and new f as well as the probabilities T of generating 2’ from x and vice versa:

a(z — z') = min (1, ];((i))g((j :;f;) (2.12)
iy = {x;, if uniform rand[0, 1] < a(x; — ) ' (2.13)
xz;, else
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WA T s

Figure 2.11: Example of a Markov Chain. Candidates are generated by ©' = x +
uniform_ rand[—1, 1]. Accepted candidates are thick, rejected thin.

Let us take a look at the example in Figure 2.11. Candidates are generated by modifying
the old state by ' = x + uniform_ rand[—1, 1] — resulting in transition probabilities of
T(2' — z) = T(x — 2') = 0.5. Hence we have an acceptance probability of a(z — z') =
min(1, f(z')/f(z): Samples with a lower contribution are rejected probabilistically and
with a higher one always accepted. That is all that is needed for our samples to be
distributed proportional to f in the limit.

In the example, the chain does not reach the left part, because it is stuck in the high-
contribution part in the middle. The sample count is too small to overcome the ditch.
This is one of the drawbacks of MCMC, it is impossible to say whether the equilibrium
distribution was reached or not [BGJMI1].

The mutations used for generating new samples should fulfil certain desirable properties
[VGI7):

e high acceptance probability, otherwise the chain will remain in the same state for a
long time, producing outliers.

e large enough changes, otherwise the chain moves too slowly around the integration
domain, possibly not reaching equilibrium within the sampling budget and producing
correlated noise.

e ergodicity, the chain must be able to reach all of the integration domain.
e stratification, so that all of the integration domain is explored equally.
e low cost
Often one single mutation strategy cannot fulfil all of those requirements, therefore

algorithms choose probabilistically between several strategies. Even then, designing a
strategy is very challenging [KSKAC02][Jak13][HKD15].
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2.4.2 Integration
The probability of sample z is by design

p(a) = 112, (214)

with an unknown b that scales f in such a way that p integrates to 1. Let us try to plug
that into Equation 2.10 from MC importance sampling:

) 1 Lbflay)
Iv=y ;p "N )

That does not work. b is the value that we are trying to estimate, we have gained nothing.

It is not possible to use Metropolis sampling to integrate the function that is being
sampled. Instead, we sample one function (f) and integrate another (f x h). In fact, we
integrate many at once, all pixels at once.

Figure 2.12 shows how that works for the toy example. As shown in Section 2.1.4, the
integral of one pixel is
= | 1@hy(x) du(a)

We can generate samples for f(z), which are then used for all integrals (pixels) I[j],
j=1...M. The integration rule is

N N
I[j] = [ hj(z)f(x) HZ h](x)f )1 =E [;Zhj(xi)l . (2.15)

1=

H
,“2
§

f(x)hs(x)

N
N

(a) f and h; pixel filter (b) Multiplied (¢) MCMC sampling

Figure 2.12: We estimate several integrals at once: The Markov chain produces samples
proportional to f (a and c) in the whole domain (pixel plane). Each integral (pixel) has a
corresponding filter h; (a) and the actual integrands are fh; (b). The number of Markov
states in every integral is proportional to f (c). Counting them gives a relative estimate.
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Samples z; are generated using the Markov chain. It is then counted how often the chain
visits pixel j (assuming a rectangular filter h). Finally the value is scaled by b/N.

We still do not know the value of b. However, we know that it is the integral of f — since
it scales f to a PDF. Remember that we defined f to be zero if the path does not end
at the sensor. We see that b is the total energy falling on the sensor and that it can be
estimated using an alternative Monte Carlo strategy with probability p,:

_ [t & fa)
b_/Qf(x)dx_E[L;po(xi)

The final integration rule is

]:EW@J (216)

2> N
Inli] = 03yt (217)
=1

We conclude, that the Markov chain merely computes the relative contributions of the
pixels while the overall brightness is computed in a separate step.

2.4.3 Seeding and start-up bias

We still do not know how to start the chain. The acceptance rule in Equation 2.12
only guarantees that the sample probability will be proportional to f in the limit, not
at the start. Clearly, in Figure 2.11 the limit was not reached yet. One solution for
this problem of start-up bias is to run the chain for a long enough time while throwing
away the samples, a so called burn-in period. Geyer says this method is “fishy” [Geyl11],
because it is impossible to tell how many samples should be thrown away, and, that a
good alternative is a seed that you do not mind having as a sample.

Generating such an acceptable sample via one of the MC methods would be easy, but the
special setting of rendering allows us to remove start-up bias completely'. The following
method was introduced by Metropolis Light Transport (MLT).

We generate a pool of L starting paths (also called luminance samples) using the
alternative strategy po (Figure 2.13). The weight W is the average of path intensities
in the pool, i.e., W, = 1/LYE | f(2;)/po(x;). The starting path is re-sampled from the
pool, using a discrete probability distribution proportional to f(x;)/po(z;).

With a large pool size, the weight W is relatively precise and the re-sampling leads to a
starting path, that is approximately distributed proportional to f. With a small pool
size there is more start-up bias, but that is compensated by W, overall resulting in an
unbiased estimator. All proofs can be found in Veach’s PhD thesis [Vea97], which is also
the base for this summary.

! The presented method is not the only one to remove start-up bias. For instance coupling from the
past [BGJM11] is an alternative used in other areas.
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seed pool
paths (z; z;): 1 2 3 45 6I 7I 8 9 10

I
11 30 37813 135 4 20

I
9

i(z;)=£(z;) /()
probability i(z)/%i(z): 2 & 12,5 M2751 56.3 = 83%

Figure 2.13: The starting path of an MLT chain is generated as follows: A large number
L of paths z; is generated using an alternative strategy pg and stored in a seed pool.
Starting paths are then sampled from the pool using a discrete probability distribution
proportional to f(z;)/po(x;). The same weight W = %Zle f(x;)/po(x;) is used for all
paths sampled from the pool. It is possible that two or more chains are started from the
same starting path.

It is possible to start several chains from the same pool by repeatedly sampling the
discrete distribution. This can result in several chains starting from the same seed path,
creating correlation between chains. Using more uniformly distributed quasi random
numbers or stratified sampling can help here. It is even possible to use non-random
equally spaced grid positions.

2.4.4 Application in rendering

We will cover two MLT algorithms: path space MLT (abbreviated just MLT) and Primary
Sample Space MLT (PSSMLT). Both of them are using the basic algorithm and seeding
described above, but the mutations are different. Additionally we briefly explain Energy
Redistribution Path Tracing (ERPT), which is not an MLT algorithm, but uses the same
mutations as path space MLT.

Path space path space MLT (MLT), also called Veach-MLT [VGI7], operates directly on
path space, e.g. the mutations have access to the materials, vertex positions and global
data like information about lights etc. This makes it possible to create very powerful
mutations. For instance Jakob and Marschner [JS12] created a mutation that exploits
surface derivatives in order to improve convergence of specular reflections (Manifold
Exploration path space MLT (MEMLT)). A drawback is the high complexity of probability
computation for mutations.

This was part of the motivation for PSSMLT, also called Kelemen-style MLT [KSKACO02],
which runs the default sampling code of PT or BDPT. There are two types of mutations,
large and small ones, with a parameter setting the percentage of large ones. Small
mutations are generated by a specially adapted random number generator. Instead of
mutating in path space, random numbers are mutated and the PT or BDPT sampling
code is used to create the path. If no path can be created using the new random
numbers, the mutation is automatically rejected. Size of small mutations is determined
probabilistically, based on a parameter. Large mutations on the other hand create a
new and independent path. This makes the mutation set ergodic, i.e., they are used
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for exploring path space. Mutation probabilities can be completely ignored as they are
symmetric.

ERPT is an MCMC method based on a large number of short and independent Markov
chains. Cline et al. [CTEO05] were able to relax certain conditions which led to the
acceptance probability in Equation 2.12. They replaced the re-sampling process by
probabilistically sampling starting paths using MC methods, and they adapted and
removed certain mutation types. This led to an algorithm, which redistributes the energy
of independent MC samples into a small number of correlated Markov chain samples.
The advantage is the usage of MC methods to explore the integration domain, while
retaining the property of reusing samples with a large f.

2.5 Photon mapping

We also want to briefly explain Photon mapping. It is not core to this work, but we do
cover it in the result section.

In contrast to MC and MCMC methods, photon mapping is biased. However, it is
consistent, meaning that it would converge to the true solution given infinite time and
memory. It was first published by Jensen [Jen96] and several improvements followed
[HJO8][HJ09].

Photon mapping consists of two phases: mapping and gathering. In the mapping phase
a large number of photons are traced from all light sources and each surface-hit-point
(Figure 2.14a) is stored in a tree structure — the camera is not used. In the gathering
phase, rays are traced from the camera, similar to PT. On each hit-point the photon
map is queried for close-by photons, which are then used for approximating the amount
of light falling on that surface (Figure 2.14b).

Obviously the approximation is more precise with a larger number of photons, and
becomes exact in the limit.

An improved versions of the method is Stochastic Progressive Photon Mapping (SPPM).
It casts gathering points from the camera into the scene. In the second processing phase,

L

(a) Mapping (b) Gathering

Figure 2.14: Two phases of photon mapping
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photons are shot from the light sources (the phases are reversed). When they reach the
vicinity of a gathering point, the contribution is added to the corresponding pixel. Those
two phases are iterated while gradually reducing the radius of vicinity. This iteration
improves the quality of the rendering over time without storing an infinite number of
photons [HJ09].

2.6 Frequency analysis

In this work we analyse two dimensional discrete data, focusing on the frequency content.
Possibilities of transforming spatial data into the frequency domain are Fourier and
related transforms [Boa66], wavelet transforms [DS02], steerable pyramids [FA91], and
others. However, we limit ourselves to the well known Fourier transform.

This is only a very short summary, focusing on the discrete 2D case and some properties
we need later. The basics are covered for instance in Osgood’s introduction [Osg07].

Equation 2.18 shows the basic one dimensional complex version of the Discrete Fourier
Transform (DFT). Every element of F=F f is a weighted sum of the input signal.
Resulting factors can be transformed into a more illustrative sine and cosine form using
Euler’s Formula 2.19, but the packed complex number form is shorter in notation. Note
that up to a constant scaling the sin factors are equal to imaginary — and cos to real —
part of the complex numbers.

M-1
Flz] = Y flmle 2™ em/M 4 =0,1,...,M — 1 (2.18)

m=0

e = cos(y) +isin(y) (2.19)

It is further possible to modify the sin-cos-form into an amplitude-phase-form, e.g.
asin(t) + bcos(t) = Acos(t — ®). When applied to the coefficient vector, we have

A= ] *\ = /Re(F)2 + Im(F)? (2.20)
® = atan2(Im(F), Re(F)), (2.21)

using point-wise operations and the quadrant aware arctangent function atan2. In this
representation A (amplitude) tells how strong a certain frequency wave is and ® (phase)
the position.

When squaring the amplitude, we get the power spectrum

—

F,s = A% = Re(F)? + Im(F)2. (2.22)
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ﬁps quantifies the amount of power in a certain frequency and satisfies Parseval’s theorem:
The sum of Energy in frequency space is equal to M times the sum of Energy in spatial

space
M-—1 . M-1 . M—1 .
MY FimP=Y FlaP =Y Fal. (2.23)
m=0 =0 =0

The above also applies to the two dimensional form — which we will use for the image
analysis — defined as

L

|
—

M—

,_.

F[x y _ Z Tl,m —27r7,(xl/L+ym/M)
=0 m=0
r=0,1,..,.L—-1, y=0,1,.... M — 1.

Since we can arrange the sum freely, we can see the transform as
e applying a 1D DFT first in one direction and then in the other on the partially
transformed signal
e every F [, y] being a weighted sum of all elements f[l, m]

e in sin-cos-form, every F [,y] being a dot products of the 2D signal f with a sin
respectively cos plane wave (Figure 2.15). Its frequency and orientation depend on
z and y from Flz,y].

An important property is linearity

F(aB) = aFB, and

F(A+ B)=FA+ FB.
Throughout this work we will use centred DFTs everywhere, meaning that the constant
factor (DC term) and low frequencies will be in the middle. In our context elements

of the signal vector in the spatial domain are pixels. Their analogy are the elements of
Fourier coefficient vectors, which we call Fourier frequencies.

Il,m] cos(xl/L+ym/M)

’“ijl

Re(F[x,y])

ml TQ)

Figure 2.15: A 2D Fourier transform can be visualised as applying the dot product
between the signal and a sine / cosine plane wave. Constants omitted, sinus / imaginary
part analogous.
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2.6.1 Radial average

When investigating a 2D spectrum, sometimes properties like phase and orientation of
Fourier frequencies are of lesser importance. The spectrum can be compressed into a
vector by performing a radial aggregate of the power spectrum (Figure 2.16). In this
process all Fourier frequencies on a circle around the DC term are aggregated into one
bucket, with the radius being the new ensemble frequency.

In many cases the aggregating function is averaging (hence radial average), but quantiles,
sums and others are equally possible.

109

intensity
-
o
e

0 50 100 150 200 250
ensemble frequency

vertical frequency

-200 -100 0 100 200
horizontal frequency

(a) error power spectrum (b) radial average

Figure 2.16: In order to reduce dimensionality, we aggregate (e.g. average) all Fourier
frequencies (a) of a particular wavelength but different orientations into one bucket (i.e.,
a circle in Fourier space). (a) shows examples for frequencies 0 (DC' term), 110 and 255,
which are averaged into one ensemble frequency each (b).
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2.7 Simple error measures

For reference we will show the definitions of some ¢gommon error measures. R is the
vector we are trying to estimate (the reference) and I an observation of which the error

is computed:

Measure
Mean Square Error (MSE)

Root Mean Square Error (RMSE)

relative MSE

Formula

11 Zm=1([[m] — Rlm])*

relative RMSE \/]\1/[ M_ ((ITm] — R[m])/(e + R[m)]))2.

Note that MSE and RMSE are conceptually similar to variance respectively standard
deviation, but operate on M different random variables instead of a single one.



CHAPTER

Related Work

As mentioned in the problem statement in Section 1.1, convergence rates are often
compared visually and by evaluating simple error metrics in the spatial domain. We
show several examples of this method in Section 3.1.

Although we are not aware of any established error — or convergence metric, research
was conducted on the error made by rendering algorithms, sampling, and the complexity
of path space. We summarise several papers in Sections 3.2 and 3.3.

Finally, there is some work related to one of our tools, the Fourier error spectrum. In
signal processing, and in particular in medical imaging, noise power spectra are used. We
cover some papers in Section 3.4.

3.1 Simple comparisons

Several papers directly compare equal-time renderings between old and new algorithms
[VG95] [CTE05] [LKLT13] [KMAT15] [MKAT15]. Often, interesting details like caustics
or reflections are shown in close-ups (Figure 3.1b). Some of the papers complement
this with error images (Figure 3.1¢) or provide full images in supplemental material or
websites.

In addition or as an alternative, simple error measures are computed. There is no single
established metric, examples are Peak Signal to Noise Ratio (PSNR) [LKL*13], MSE
[KMAT15], RMSE (L2 error norm), [HKD14], relative MSE [MKA15] and relative
RMSE [VGI7] (Figure 3.1d). Sometimes also L1 and Loo norms are reported, or the
error is expressed in percentage of a reference algorithm [VG97].
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i3 | PT
| .
C . |
—
0 1.5

(a) Reference (b) Details (c) Absolute Error

R— f‘ (clamped)

‘ MSE RMSE relative MSE relative RMSE PSNR*
PT | 0.002136 0.004622 0.1077 0.3282 74.83dB
MLT | 0.002786 0.005278 0.1446 0.3802 73.68dB

(d) Error Metrics (* higher is better)

Figure 3.1: Examples of commonly used equal time comparisons.

3.2 Convergence and error

It is well known that MC methods have a variance of ©(1/N), where N is the number
of samples [Dut96][PH10]. The same rule applies to MCMC methods, though not

for consecutive samples and only when equilibrium is reached by the Markov chain
[Vea97][APSS01].

Arvo et al. identified three sources of error, input data -, discretisation - and computational
error, and provide bounds [ATS94], but the paper is somewhat theoretical. We completely
ignore the input and discretisation error, do not attempt to provide bounds, and simply
measure the computational error instead.

Szirmay-Kalos et al. [SKDP99] analysed start-up bias and convergence of MLT algorithms,
partly using the Fourier transform, but they did not consider Veach’s technique to avoid
the start-up bias altogether. In addition, a lot of their analysis is based on toy problems
and not on real rendering algorithms.

Subr and Kautz investigated the Fourier spectrum of MC sampling patterns and how
it affects the bias and variance of the pixel estimate [SK13], but they do not look at
the error image as a whole and they do not look at MCMC methods. Pilleboue et al.
analysed MC variance and the convergence rate of various sampling patterns for low-
dimensional integrands [PSCT15]. Note that it is possible to achieve convergence rates
better than ©(1/N) using specialised sampling patterns for low dimensions. However,
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this is not generalisable to higher-dimensional integrands found in scenes with complex
light transport.

3.3 Path-space analysis

Durand et al. analyse the frequency content of the light-transport function for different
phenomena [DHS™05]. They look at the actual radiance function and not at algorithms
computing a pixel estimate. Belcour et al. extended that analysis to participating media
[BBS14] and proposed improvements to existing algorithms.

Zirr et al. developed methods visualising the structure of light transport [ZAD15], but
similarly to Durand their work is aimed at getting insight into the physics and not into
the algorithms.

Kettunen et al. conducted a theoretical analysis of the sampling process in Gradient-
Domain Path Tracing based on the Fourier transform [KMA ™ 15]. Their analysis explains
why their method performs well, but it is not meant to be used for comparisons.

3.4 Noise power spectrum

Noise Power Spectra (NPSs) are retrieved by transforming the noise of a signal into
frequency space and then squaring the magnitude. Noise usually means measurement
error, but it is conceptually similar to our computation error.

Siewerdsen et al. proposed a framework for the analysis of n-dimensional NPSs [SCJ02],
which is focused on the physics of medical imaging and does not treat light-transport
algorithms at all. We believe that the challenges are quite different.

Hanson introduced a method for fast computation of approximate NPSs [Han98], similar
in concept to the wavelet transform, but we do not have performance issues with what
they call the gold standard of the Fourier transform.

3.5 Radial averages of the Fourier power spectrum

Several papers used radial averages of the Fourier power spectrum as an aid to assess
error or the distribution of samples.

Similar to our proposition in Chapter 5, Lehtinen et al. [LKL"13] used radial averages
(they call it the Ensemble Power Spectrum) to compare error over frequencies. Contrary
to our proposal, they used equal-time renderings.

Lagae and Dutré analysed Poisson disk sampling algorithms using radial averages [LD08].
Subr et al. used radial averages of the amplitude, power and variance spectrum for
investigation of sampling patterns [SK13][PSCT15].
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CHAPTER

Statistical Properties of
Rendering Error

In this chapter we formalise the anecdotal knowledge we mentioned in the introduction
(Chapter 1). Some of the findings help to understand the descriptor (Chapter 5) and
test results (Chapter 6). We start with an explanation why the Central Limit Theorem
(CLT) is beneficial for the analysis of error and how we adapt existing algorithms to use
those benefits. Furthermore, statistical properties of error are discussed, and finally we
talk about the constant in the ©(1/N) notation.

4.1 The Proxy algorithm

Algorithms that obey the CLT, have a straight-forward error distribution in the limit:
The error at high sample counts (N — o0) tends towards a normal distribution with
expectation 0 and variance Var(€)/N (Section 2.2). The sample variance (s?) can be
used to estimate the expected squared error at a certain sample count (N):

_ Var(€) s

E & = PN (4.1)

This is the same as saying that the error is ©(1/N).

Sample variance is important, but incomplete in describing the error. The sample PDF
and correlation between pixels also have a large impact on the performance (Section 4.2).

In MC algorithms it is obvious that CLT applies, and estimating the per-pixel variance
and PDF would be straightforward. However, MCMC algorithms are different in nature.
They have more than one parameter influencing the rendering time (at least seed pool
size and chain length, Section 2.4), hence even formulating a convergence rule like ©(1/N)
is problematic. Moreover, the concept of a sample, and therefore sample variance and
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PDF, is very different. In order to make the benefits of easy analysis available to MCMC,
we propose to use a proxy algorithm: We configure any unbiased algorithm to produce N/

short renderings (I;) and compute the final solution (Iy) as an average

1>

~

1 M.
N:N;L’- (4.2)

N is the ‘number of samples’ in the proxy algorithm.

The proxy algorithm has the following properties:

e The short renderings (I:) are i.i.d. random variable vectors with finite variance,

hence CLT applies for their mean (f w). Pixel values have the same limiting
probability distribution in all algorithms, namely a normal distribution — only
variance differs. The convergence speed to the normal distribution depends on the
short rendering’s probability distribution.

e Asymptotic convergence of error is guaranteed to be ©(1/N).

e The per-pixel standard deviation or variance can be computed easily.

4.1.1 Changes in rendering algorithms

The solution of MC algorithms is an average of i.i.d. random variables, it is equivalent to
the proxy solution.

However, in the majority of other algorithms, proxy and pure algorithms are not equiva-
lent:

1. Many rendering systems use stratified sampling or low-discrepancy sequences in MC
methods to improve the convergence rate for low dimensions of the light transport
integral (Section 3.2). When using those sampling patterns, the random variables

=

(I;) depend on ¢ and the resulting algorithm can perform better than ©(1/N).

We propose to test this kind of situations by running the proxy algorithm several
times with increasing parameter settings. For example, in case of sampling patterns,
one could run the short-time rendering 1, 16 and 256 samples per pixel. This
would increase the rendering time accordingly, but time scaling (Section 4.5) allows
to compare the results. We performed a similar experiment for SPPM and show
results in Section 6.5.

2. Metropolis Light Transport (MLT)

e The original MLT algorithm used a single chain for all samples. In other words,
the samples of MLT depend on each other and the CLT does not necessarily
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apply. However, if mixing of the chain is strong enough, i.e., the dependence is
not too big, a weaker version of the CLT would apply. The mixing coefficient
depends on MLT parameters and the scene, and we are unaware of any work
measuring the mixing or adjusting the parameters. In our experiments we
assumed that two chain samples are virtually independent if there are enough
samples in between to cover the whole image, and that in such a case the CLT
also applies to the pure MLT algorithm.

e In pure MLT there are two parameters controlling the rendering time: lu-
minance sample count and number of chain samples (chain length). The
asymptotic convergence rate of relative intensity is ©(1/chainlength) [APSS01],
where the chain length is sometimes interpreted as N. However, it is not
possible to reduce error by indiscriminately increasing the chain length while
the luminance sample count stays the same. The proxy, on the other hand,
increases both parameters with the same rate by design.

e In the rendering system we use, the default is to start many chains from a
single seed pool for parallelism. This means that several chains can start from
the same path, which can influence the performance. For the proxy however,
the seed pool can not be shared between the different short renderings.

We investigate effects of chain length, chain count and luminance sample count
in Section 6.4. In short: The number of luminance samples has a large influence
(Section 6.4.1). Reducing the chain length below a certain threshold has considerable
impact on some of the scenes (Section 6.4.3). Changing the seeding method has
little effect (Section 6.4.2), which is good because it means that our measurement
also applies to the default configuration of the rendering system we used.

3. ERPT has several parameters with complex interrelationships controlling rendering
time and quality. There is no straight forward way to split up a rendering into
a sum of shorter ones, nor there is a sample count that could be increased like
N in other algorithms. Hence it is not even clear how CLT could apply, and the
differences between pure and proxy algorithm are relatively large. We compare
ERPT to MLT in Section 6.4.4.

4.2 Error in the spatial domain

We are going to use the proxy algorithm for the following analysis, which ensures that
the per-pixel distribution of values converges to a normal distribution while increasing
N (Section 4.1). The speed of convergence depends on the per-pixel PDF of the short
renderings. We show several examples of such PDFs in this section.

Traditionally, many papers show equal-time renderings or rendering error for the surveyed
algorithms. In our framework, this is comparable to running the proxy algorithm with a
certain \V for the respective algorithms and comparing the rendering result. However,
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the data from the proxy algorithm allows to make a more detailed analysis compared to
pure algorithms.

We demonstrate differences between the analysis using the rendering result (traditional),
and more in-depth data from the proxy algorithm. Finally, some papers use relative and
others absolute error (Section 3.1), and we compare those two as well.

4.2.1 Basics

No matter whether pure or proxy algorithm, or a single short render from the proxy,

the outcome of a rendering algorithm (f ) is a random variable vector. Its expectation
is the unknown exact solution of the light-path integral (Section 2.1). We approximate

=

the exact solution by a high-quality reference image (R). A small error is made and
neglected, as it is several orders of magnitudes below that of I. Hence, the (signed)

absolute error & is computed by

A
=

§-T-R (4.3)

Since € is signed, it has a lower bound of —ﬁ, and since we only investigate unbiased
algorithms, the expected value is

g} ~ 0 (4.4)

4.2.2 Per-pixel and per-sample error PDF ( N =1)

We start our analysis by looking at the error of short-time renderings, i.e., the ‘samples’
of the proxy algorithm. Since we cannot compute the PDF analytically, we look at

02,

Figure 4.1: Pixel positions for the histograms in Figure 4.2. Situation 1 is direct and
indirect light, 2 is a caustic plus indirect light and 3 is a refraction plus a reflection of an
area light.
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Figure 4.2: Pixel error histograms for three situations (Figure 4.1) of 1000 renderings
with one sample per pixel. PT: Direct is the easiest, the histogram resembles a Gaussian.
In caustic/reflection, most observations are of indirect light/the refraction (large peaks),
only a few sample the caustic/reflection (marked peaks). MLT: The caustic can be
sampled efficiently, resulting in a Gaussian shape. In direct and reflection the chain often
did not reach the pixels, resulting in a black colour (£ = —R). In order to compensate,
some of the observations have a large value — the PDF has a long tail (clipped due to
invisibility of the bars). In reflection the chain sometimes reached the pixel, but the
refraction was sampled and the pixel was too dim (bins below 0, but not the peak).

absolute error histograms of a large number of one-sample-per-pixel renderings instead.
We choose a pixel for three representative lighting situations (Figure 4.1). The first is a
point on the wall with mostly direct lighting, the second from a caustic and the last from
the specular reflection of a light source on a glass sphere. The histograms were computed
for MLT and PT algorithms (Figure 4.2). Since the histogram was made for the error
and not value, zero marks the expected value and —R the lower bound.

When error is distributed closely to a normal distribution (PT direct and MLT caustic,
Figures 4.2a and d), the mean quickly converges to a perfect normal distribution.

In some lighting situations, the distribution can be multi-modal. PT shows two peaks for
caustic and reflection (Figures 4.2¢ and e). In caustic one peak is normal indirect lighting
and the other the hard-to-sample caustic. In reflection, one of them is the light-source
reflection and the other the refraction into the material. The higher peaks are more
probable when sampling locally, therefore most samples are lost there. Convergence

33



4.

STATISTICAL PROPERTIES OF RENDERING ERROR

34

depends on the distance between and relative height of the peaks.

MLT direct light and reflection contain a peak at the lower bound, which means that
many I; stayed black (Figures 4.2b and f). The reason is that the sample count was too
low to cover the dim areas with enough samples. This is inherent to the MLT algorithm,
as the number of samples is directly proportional to pixel brightness. However, this is
not problematic if the variance remains low (Figure 4.2b).

Reflection is a situation where the Markov chain has difficulties to find a lighting effect
(Figure 4.2f). Once the reflection was found, the chain stays there for very long, visible
by the range of up to 845. This is an example of a long PDF tail and quite problematic
for convergence to normal distribution [JMD15].

4.2.3 Increasing the rendering time (increasing N\)

In Section 4.2.2 we were looking at the error PDF of particular pixels with A" = 1. The
logical next step is to look at what happens to the error PDFs when increasing A/. That
is, we run the proxy many times with AV = 1, N' = 64 and N = 4096 each, take a
representative pixel of the results, and look at the differences in the three histograms.

Many papers analyse algorithms by looking at renderings with a long rendering time
or the corresponding error. In our framework, long-time renderings of pure algorithms
are comparable with the final result of the proxy algorithm with a large N (argument
and caveats in Section 4.1), e.g., of N' = 4096. We use that similarity to make an
argument that long-time renderings are a compromise between showing the amount of
error (standard deviation or variance) and error behaviour (sample PDF and correlation),
both of which can be shown more precisely separately.

When looking at the absolute error (5 ') of proxy renderings with small N, it is largely
influenced by the per-pixel error PDF specific to the algorithm (Section 4.2.2). For
instance, the lower peak of a bi-polar distribution can show up as pizel outliers. When
N is increased, the error distribution becomes more and more normal due to CLT, where
the expectation is zero and the per-pixel variance depends on the per-pixel error PDF.
The rendering looks more and more like a draw from a collection of normal distributions
with algorithm-specific standard deviations. This is demonstrated in Figure 4.3 (a and
b), showing the caustic in the parametric Box scene (location 2 in Figure 4.1).

Likewise, the distribution of absolute error magnitudes (|€x|), used by some papers for
error visualisation (Chapter 3) approaches a half-normal distribution (Section 2.2.1).
The only parameter of the half normal distribution is the per-pixel standard deviation of
N =1, and its expectation is the standard deviation times a constant:

D [A}@O@ ’N x 5}‘ } — \/2/7 x Stddev(€). (4.5)

Convergence — from a distribution specific to the algorithm towards a half-normal
distribution — is visible in Figure 4.3 (¢ and d). However, even with A/ = 4096 the PDF
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is not completely Gaussian, therefore (c) appears brighter than (d). In other words,
absolute error magnitudes approach the scaled standard deviation with added noise.

We summarise: The behavioural difference of algorithms is visible in short renderings
while the amount of error can be visualised by standard deviation images. Instead of
mixing behaviour and error expectation in a single long-time rendering, we propose to
look at them separately by looking at particular short time renderings and standard

deviation per pixel. Neither per-pixel standard deviation (1/E[£2]), variance (E[€2]) nor
short-time renderings are routinely shown in research papers (Chapter 3).

This separation is demonstrated in the Torus scene (Figure 4.4). With small A/, most of
the PT samples miss the caustic and underestimate the value. Occasionally there are

N=1 64 4096
(short renders) (simulated traditional)
50
(a’) é\r’ XA/ % 0
-50

100
(b) PDF

40
of (a) o‘ I o 0‘ - I!l.

-150 0 150 300 -1

150 300 -150 0 150 300 error

I] |
0

(d) Standard
deviation 244k spp

(¢)

> N
E-VXVTF’

Figure 4.3: Error behaviour while increasing sample counts for a caustic (PT, location
2 in Figure 4.1). (a) and (c) show rendering error (€ = I — R.), respectively rendering
error magnitudes (|€]). The error is scaled to matching ranges and a close-up is shown
on the right side. The histograms (b) are from the centre of the caustic and were made
from the results of 1000 proxy renderings with N' short renderings each.. The bi-modal
distribution at N' = 1 becomes more and more Gaussian as N is increased. Small N
show the error distribution of the algorithm while larger N approach standard deviation
times Gaussian noise (a). Scaled absolute error (c) becomes more and more similar to
the standard deviation (d). However, noise remains even when further increasing N
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Figure 4.4: Behaviour vs. error expectation for a caustic on the floor (c) of the Torus
scene (f): PT underestimates with most samples and compensates with outliers (a),
resulting in a much higher standard deviation (d). (b) on the other hand shows that the
caustics appear as a whole or not at all, which is typical for MLT. However, this fact
alone is not problematic as standard deviation is low (e). This demonstrates that (a)
and (b) show behavioural differences in the algorithms and (d) and (e) the amount of
error to be expected.

outliers for compensation (Figure 4.4a). In MLT, correlation between pixels is visible as
the caustic patches pop up as a whole or not at all (Figure 4.4b). Although not fully
converged, the standard deviation pictures (Figures 4.4d and e) show a larger value for
PT’s pixel outliers compared to MLT’s correlated “pop-ups”. This means, that PT is
inferior to MLT in this instance.

4.2.4 Absolute vs. relative error
Some papers use a relative error metric based on
£ =E/(R+oe),
where € is a small constant (see Section 2.7 for the metrics and 3.1 for the papers).

This might seem intuitive to avoid over-valuation of error in bright areas. Look for
instance at Figure 4.5a and 4.5b, where most of the light comes through diffuse windows.
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(a) absolute (b) relative (c) absolute (d) relative

Figure 4.5: The pictures show standard deviation of absolute (€) and relative error
(€/(R +¢€)). Absolute and relative error can both lead to excessive error values. In (a)
that is the case in the window, while relative error (b) shows no such artefact. The
contrary is the case in (c) and (d), where relative error is excessive in the shadow.

The presented algorithm has large absolute error in those areas. However, this is of little
practical importance as the amplitude is large and the error will be compressed by tone
mapping or clamped altogether.

Relative error, on the other hand, has the drawback of exaggerating error in dim areas of
the image. Figure 4.5d shows excessive relative error on dark tiles and in shadows. In
most areas of the shadow in Figure 4.5d, the € does not take effect, even when relatively
large at € = 0.01 (0.001 was used elsewhere [KMA™15]).

4.3 Error in the Fourier domain

In addition to the spatial analysis in the previous section, we also perform a frequency
analysis of the error. This is interesting because it is known that algorithms differ in the
spectral distribution of error.

We use the Fourier transform for analysis, but other methods exist (Section 2.6). Several
questions come to mind, which we try to answer in this section:

What is the probability distribution of error in Fourier frequencies?

Does CLT also apply to the Fourier domain and if, in what way?

e How do outliers (single- and multi-pixel ones) transform?

There can be correlation between pixels in the spatial domain, what is the effect in
the frequency domain?

We will use ]-“5 to denote the complex Fourier spectrum of an error image E The

magnitude spectrum is |F 3 | and the error power spectrum | F. 3 |2,
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4.3.1 Distribution of a particular frequency and CLT

Real and imaginary parts of every Fourier frequency are a weighted sum of pixel errors
and therefore random variables themselves:

X =S wiéli],

M=

I
—

1

where X stands for the real or imaginary part of any frequency and w; are the corre-
sponding weights. Its expectation is 0 because the expectation operator is linear and
expected pixel error is O:

Figure 4.6 shows histograms of the real part of Fourier frequencies. They look quite
Gaussian for PT and higher frequencies in MLT. The reason is that the Fourier frequencies
are linear combinations of many random variables (the pixels). The effect of this
linear combination is similar to CLT, i.e., the resulting distributions are more Gaussian,
especially if the terms are uncorrelated.

Since the Fourier transform is linear, CLT holds in our proxy algorithm for real and
imaginary part of the Fourier spectrum as A goes to infinity:

Fly = ]-'(NZI> NZ}'I

The Fourier spectrum of I ' is the mean of the Fourier spectra of I;. Since all I; are
equally distributed, its Fourier transforms are as well. The expectation is well defined (0 )
and the variance is finite if the same is true for I’ (because elements in F I are just linear
combinations of [ ) Hence CLT applies.

We summarise: Real and imaginary part of the Fourier spectrum tend towards a zero-
centred normal distribution as the sample count N goes to infinity. The variance of real
and imaginary part is ©(1/N'). The properties of the Fourier spectrum of the proxy
algorithm are similar to the spatial domain. Hence, we deem it suitable for analysing
performance.
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Figure 4.6: The figures show data of 1000 short renderings per algorithm. The absolute
error was transformed into the Fourier domain and 3 random Fourier frequencies were
selected on a circle around the DC term with distance f. The histograms were made
with the real part of the complex number. More data in Appendix C.2.
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4.3.2 Outliers and Correlation

In order to understand the effect of outliers on our descriptor (Chapter 5), we need to
know how they are transformed into Fourier space. It is possible to look at outliers
separately, because the Fourier transform is linear. We use a one-dimensional discrete
function for demonstration, but the mechanisms are equal for 2D. Outliers in the spatial
domain are areas with a very large value. One extreme case of an outlier is shrinking the
area to an isolated pixel, the other is to make it larger until covering the whole image.
Their correspondents in 1D are a single spike (Figure 4.7a), a segment (Figure 4.7b) or
the whole domain (Figure 4.7c).

The discussion is based on seeing the Fourier transform as many dot products (Figure
4.8). Every element in the Fourier spectrum is the sum of the original signal multiplied
with a sine/cosine wave, whose frequency is the position of the element in the Fourier
spectrum.

In Figure 4.7, we can observe that the size of the outlier area is roughly inversely
proportional to the largest affected frequency. In other words, frequencies below that
largest frequency are correlated. A single pixel outlier affects the whole spectrum, a
small area the lower frequencies and the whole area only the Oth frequency (the DC
term). This can be explained by cancellation (Figure 4.9). The waves have positive and
negative sides. If the outlier covers both, then some of the error is cancelled out and does
not appear at that frequency in the spectrum. If the error covers one wavelength, it is
completely cancelled. Otherwise, the outlier energy is split between the real (cosine) and
imaginary (sine) part of the spectrum. The ratio depends on the position of the outlier
and the values of cosine and sine at that position (see also appendix Section C.1).

A similar reasoning of cancellation can be made for correlation of pixels in the spatial
domain (instead of outliers). Uncorrelated algorithms (MC) have flat spectra while
correlated ones (MCMC) have a peak in low frequencies. The width of the peak is
inversely proportional to the correlation radius.
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Figure 4.7: For the discussion, we use one dimensional analogies of 2D error images. The
graphs show one half of the symmetric Fourier spectrum amplitudes. The largest affected
frequencies are roughly inversely proportional to the outlier’s size in the spatial domain.
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Figure 4.8: The value of a Fourier frequency (c) is the sum of values in (b). (b) is the
result of multiplying the original signal with a sine or cosine in the spatial domain (a),
whose frequency is specified by the position in Fourier spectrum (c).

error error error

‘W\ i [y |

(a) Outlier area is small, (b) half a wavelength, (c) and a whole wavelength.

Figure 4.9: The largest affected frequency is roughly proportional to the spatial outlier
extent because of cancellation. If the outlier area is small relative to the wavelength
(a), then the contribution to either sine or cosine part is substantial (little cancellation).
With larger areas, a part of the outlier is multiplied with small or negative factors and
the contribution is reduced (b). At one wavelength, the negative factors of the waves
cancel the positive ones and there is no contribution (c, full cancellation).
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1. intensity: ~30
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(a) Image (I;) (b) Power spectrum ()

Figure 4.10: Example of an area outlier (100 samples per pixel on average, MLT) and its
power spectrum (logl0). The outliers (1. and 2.) in the spatial domain (a) are visible
in the power spectrum (b, only the top half of the rotational-symmetric spectrum is
annotated). The marked bright spots in (b) match the direction of edges in (a). As
predicted, a large area affects smaller frequencies (1.), while a small area affects all (2.,
vertical direction).

Let us look at a 2D error outlier spectrum of an actual rendering algorithm (Figure
4.10). There are two outlier areas in the image (annotated in a), which are also visible in
the spectrum (annotated in b). As predicted, a large area affects smaller frequencies (1.
annotation), while a small area affects all (2. annotation, vertical direction). Single pixel
outliers would appear as an added constant to all Fourier frequencies of the amplitude or
power spectrum. Whole image outliers, e.g. wrong brightness scaling due to a bad MLT
weight W, show up in the DC term.

(a) PT (b) MLT

Figure 4.11: Typical mean power spectra for MC and MCMC methods (log10, 100
samples per pixel). MC methods have power spectra that resemble white noise (a), while
MCMC methods typically include a peak in low frequencies (b). It is often possible to
see the edge direction of hard to sample lighting effects.
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Figure 4.11 shows power-spectrum expectations (E [|J—" £ |2]) for MC and MCMC algo-
rithms. For MC, it is a constant. MCMC, on the other hand, has a large peak in low
frequencies (centre) and smaller peaks around it. These peaks come from structured error
in the spatial domain, caused by the correlation between samples in MCMC methods. It
is quite common to see the direction of edges from certain hard-to-find lighting effects in
MCMC power spectra.

As a summary: Outliers with a small area (single-pixel outlier) influence all frequencies
equally. When outliers get larger, the influence concentrates more and more on smaller
frequencies.

The discrete Fourier transform is injective and linear, hence we can also go the other way
round: Larger amplitudes in all frequencies of a single short-time rendering, compared to
the proxy average, indicate a small area outlier. Larger amplitudes in low frequencies, on
the other hand, signal the existence of a larger area outlier.

4.4 Variance and Kurtosis in the Fourier domain

In the spatial domain, per-pixel variance and standard deviation can be used to measure
error. They are O(1/N) and O(1/vN), respectively. We show that the power spectrum
and its square root are their Fourier-domain equivalents.

The variance and standard deviation of real and imaginary part are ©(1/N), respectively
O(1/vN) (Section 4.3.1). However, each of them contains roughly only half of the error.

Since []—" é_’} = 0 the variance is simply calculated as

—

Vie = Var (Re(fc‘?)) =E [Re(fe?)?} ,

and analogous for the imaginary part. Taking the expected value is linear even for
correlated random variables (Section 2.2), therefore the expectation of the error power
spectrum

E UIE

2] —E {Re(]—"é%)2 + Re(}"é%)ﬂ —E [Re(]—"é%)ﬂ +E {Re(fé?)?} = Ve + Vi

converges with ©(1/N) to zero. The same is true for radial averages of the power
spectrum as they are a linear combination. The respective square roots are O(1/vVN),
like the standard deviation.

It could be useful to measure the tail of the error distribution, or, in other words, the
tendency towards outliers. Kurtosis (Section 2.2) is a tool for that [Wesl4]. Using a
similar analogy and derivation as for variance, we get
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Unfortunately, it is so sensitive to the outliers — that it “can merely tell whether they
are present or not” [Liv07]. Experience and literature [KW04] have shown — that the
variation between several random experiments can be so big — that the calculated number
gives little additional knowledge.

4.5 Constant of convergence

When quantitatively comparing light-transport algorithms, error measures like MSE or
RMSE of equal-time renderings are often used (Section 3.1). The result of those error
measures is a random variable, and in scenes with complex light transport its variance
can be significant. We therefore propose to estimate expectations of the respective error
measures and compare those instead of observations. The standard deviation or variance
of the measure can be further used to characterise the algorithm.

We use a toy example for illustrating the problem of comparing equal-time error and our
improvement (Figure 4.12). Two MC algorithms (Section 2.3) estimating

1
B
f(@) /0 0.0001 +2

are compared. The first takes N samples according to a uniform PDF, while the other
performs importance sampling (PDF shape of \ with pdf(0) = 2 and pdf(1) = 0). The
plots show various methods of measuring the squared error (g(N)) over processing time
(N) in logarithmic scale.

Comparing equal-time MSE error corresponds to running the two algorithms once for a
fixed N, compute the squared error and compare. Figure 4.12 (a) shows squared error
for multiple IV, demonstrating that a comparison would be unreliable due to fluctuation
no matter the N. The graph was made using

. 1 Y 2
ga(N) = €% = ( Zsz) .
N =1

Random fluctuation can be reduced by averaging several runs (10) as seen in Figure 4.12
(b), but this is expensive in terms of computation time:

1 1 1 10 1 N
N)y=—S 82 = — —Y e, ).
g5(N) 10.Z N = « (NZEJ’>



4.5. Constant of convergence

We can do better by comparing expected square error (E[f,%]]), which can be computed
from sample variance (Var (£)):

Since CLT applies and E[€] = 0:

Var (£)

e (4.6)

E [5}2\,} = Var (éN) =
where Var (€) is the constant of convergence. This is a more precise version of the

statement that the squared error of an MC algorithms is ©(1/N) (Section 3.2).

Estimating the constant of convergence (variance) directly gives a much more reliable
comparison. Equation 4.6 was used to produce Figures 4.12 (c) and (d):
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(a) one process (b) average of 10  (c) estimated expectation  (d) closed form
(10° samples) expectation

Figure 4.12: Toy experiment for measuring the error of two MC algorithms (see text):
The plots show squared error over processing time in logarithmic scale. Hence, the
expected slope is the asymptotic convergence exponent (—1), while the vertical position
depends on the convergence constant. Many papers report equal-time rendering error,
which corresponds to picking a certain N in (a) and reading the values of the algorithms
— the information would be unreliable. Repeating the experiment and averaging the error
(i.e., estimating expectation) improves reliability (b), but this is expensive in terms of
computation. Since the asymptotic convergence rate is always the same (©(1/N)), it is
enough to estimate the convergence constant directly by computing the sample variance.
(c) shows the resulting estimate of the expectation of squared error. It is close to the
analytically computed expectation (d) while using a smaller sample budget than (a).
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where Var (£) was analytically computed. The total number of samples in Figure 4.12 (c)
is one order of magnitude smaller than in the first version, yet the estimation of expected
error is close to the analytically computed truth in Figure 4.12 (d).

4.5.1 Application in rendering

In rendering, every pixel is a separate random variable. Instead of squared error, MSE is
often used for measurement:

1 Y . . 1M .
MSE = i Z (ITm] — R[m])* = i Z(g[i])27

m=1 i=1
where M is the pixel count, R the reference and I the rendering.

This averaging process reduces the variance of MSE compared to the toy example. We
can see that by looking at its formula (Equations 2.6, 2.7 and the definition of MSE were
used):

Var (MSE) = Var (1 fj(?m)?) 1 Var (f(ﬁ[w) (4.7)
M i=1 M? i=1 .
1 M S M 5 5
-1 (; Var ((5[@)2) + % Cov <(5[7,])2, (5[3})2)) L (48)

A
=

where M is the number of pixels and € the error vector. Per-pixel variance (Var(£[i]))

can be easily estimated, but inter-pixel covariance (Cov(£][i], £[j])) cannot. However,
for algorithms with independent pixels (MC), the covariances are zero. Hence, MSE’s
variance is 1/M th of the average squared-pixel-error variance. In case of correlated pixels
(MCMC), MSE’s variance increases with rising inter-pixel dependence.

We conclude that MSE measurements of MC algorithms are closer to its expectation
with a high probability because its variance is lower (all other parameters being equal).
In other words, MSE measurements for MC algorithms are more reliable compared to
MCMC algorithms. This was tested in an experiment (Figure 4.13). It shows that the
correlated algorithm (MEMLT') has more MSE variance in all three examples, but also
MC algorithms can show a significant amount (BDPT in Figure 4.13a). More examples
are presented in Appendix A.

Like in the toy example, we can estimate the constant of convergence instead of using
one observation for error estimation. This is easy when using the proxy algorithm:

Equation 4.6 applies to every particular pixel. MSE is a linear combination of squared
pixel errors, hence the average of pixel variances is the constant of convergence with
regard to .

It is possible to accommodate for algorithms with different sample costs. We can scale
the MSE expectation to a different rendering time:
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Figure 4.13: Examples of MSE over time of a single MLT and BDPT process plus the
estimated expectation (average of all per pixel variances divided by t). Although the
error measure is smoother due to a large pixel count, comparisons of equal time MSE
are still unreliable in some cases. In particular inter-pixel correlation in MLT causes

large MSE variance, but also MC algorithms can have significant variance (BDPT in a).

Comparing estimated expectations of MSE is more reliable.

E[MSEy] x t' = E[MSE] x t, (4.9)
E[MSE,] x t
E [MSE,] = [t/t] (4.10)

where E [MSE;] is the MSE expectation of our short renderings (after ¢ seconds, which
we have estimated) and E[MSEy] is the MSE expectation for an arbitrary ¢ (we use
t' =1 second).

E [MSEy —] is the constant of convergence with regard to time. Algorithms can be directly
compared using E[MSEy_;]. Since, as a result of the proxy algorithm, all algorithms
have the same asymptotic convergence, we can go a bit further: Instead of stating that
an algorithm is ©(1/t) (replacing the sample count N, or N with the time t), we can be
more precise and say:

E[MSE,] = E[MiEtﬂ] (4.11)

Figure 4.13 also shows estimated MSE expectations using Equation 4.11.
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CHAPTER

Error Spectrum Ensemble:
A New Tool for Measuring
Convergence

In this chapter we present the Error Spectrum Ensemble (ESE), a descriptor for the
convergence behaviour of unbiased light-transport algorithms. It visualises error and the
tendency towards outliers in different frequencies.

5.1 Overview

As motivated in Section 4.5, we generate a large number (N) of short renderings (few
samples per pixel). Using a high-quality reference image, we get A signed error images

short renders reference errors

error

frequency
(a) calculate error images (b) stack of error (c) Nradial averages
power spectra (+N MSE values)

Figure 5.1: We start by generating a large number (N') of short renderings and computing
the error using the corresponding reference (a). Then Fourier power spectra of the error
images are computed (b). For each rendering, the MSE and the power spectrum radial
averages are stored (c).
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ensemble mean

Figure 5.2: The power spectrum radial averages (grey curves in (a)) are used to compute
the ESE descriptor (c): The data is used twice, computing the ensemble mean and the
‘regions’ (head, body and tail). The ensemble mean is the per frequency average of all
radial averages. In order to compute the regions, the radial averages are sorted into 6
buckets using MSE (a). For each bucket, the per frequency mean is computed in a similar
process as for the ensemble mean (b). The bucket means form the borders of the regions.
They are used in pairs, for instance top and bottom 10% bucket means delimit the tail
(c). The descriptor (c) also includes additional information: overall RMSE, RMSE-
standard-deviation (s) and average-time-per-sample (t = number-of-samples-per-pixel x
rendering-time-of-one-sample). Normalisation makes direct comparison possible for all
descriptor parameters.

(Figure 5.1a). The error images are scaled to match the same rendering time ¢t = 1s for
all algorithms (Section 5.3.3). The error images are then transformed into the discrete
Fourier domain, the absolute value is taken and squared, resulting in A/ Fourier power
spectra (Figure 5.1b). Power spectra are ©(1/AN) and an analogy to per pixel variance
(Section 4.4) and hence well suited for analysis.

For every rendering we compute the radial average of the error power spectrum (a vector,
Section 2.6.1) and the MSE (Figure 5.1¢c). These N datasets are used twice:

e The ensemble mean is formed by the per frequency mean of all N radial averages
(Figures 5.2b and c).

e Tuail, body and head regions are calculated as follows: Using the per-rendering MSE,
we sort the N radial averages into 6 buckets of bottom and top 10%, 10-20% and
20-50%, respectively (Figure 5.2a). Then, the per frequency mean curves inside



5.2. Examples and details

those buckets are computed, in other words a ‘per-bucket ensemble mean’. The
means are used to delimit the regions. The tails span between bottom and top
10% mean pairs, the bodies between the 10-20% pairs and the heads between the
20-50% ones.

This fairly complicated sorting and averaging step is performed in order to maintain
the correlation information between frequencies of a single spectrum. It would be lost
for instance when selecting per-frequency quantiles. Averaging the error of several
images together increases confidence and smooths the ensemble curves. This is especially
important for low ensemble frequencies because the discrete Fourier spectrum contains
fewer samples for those. We refrain from computing the variance of radial averages,
because correlation between Fourier frequencies in MCMC algorithms and the number of
averaged Fourier frequencies would have to be considered (compare with Section 4.5.1).

Overall RMSE, RMSE-standard-deviation (s) and the original rendering time (¢ = number
of samples per pizel X average rendering time of an image with one sample per pizel,
just an additional information as data is time-normalised) are written to the legend. N
in the figure denotes A, i.e. the number of short renderings used. Together with ¢ it is
possible to calculate the processor time used to compute the data for that algorithm
(400 x 10 x 1.9 seconds =~ 2.1 hours for the example in Figure 5.2).

The ensemble mean is an estimator for the expected radial power spectrum average at
t = 1. Values for an arbitrary time ¢ can be computed simply by dividing through ¢
(same for head, body and tail). The ensemble mean and the actual observed rendering
error can be heavily influenced by outliers, which are visualised by the tail. We look at
the ensemble mean to see how large error is on average, while body and head show how
it is most of the time.

5.2 Examples and details

Let us take a look at the example in Figure 5.3.

(a) and (b), respectively (c¢) and (d), are two different visualisations of the same data.
RMSE-over-rendering-time was generated by averaging the first n (x-Axis) short render-
ings. Outlier renderings are the reason for RMSE jumps. They also go into the the bucket
with 10% largest error, and hence they only influence the tails (tails — analogous to PDFs).
That explains the link between jumps, large tail area (long tails) and RMSE standard
deviation demonstrated by MEMLT in (a/b) and BDPT in (c/d). However, tails do not
give any information about the number of outliers, i.e., a long tails can be caused by
one large outlier (jump) or several smaller ones. Similarly, a wide body indicates a large
variation in the bulk of short renderings (it is more sensitive than RMSE-over-time). The
head is something like the mode in a probability density function, i.e., a typical error
spectrum.
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Figure 5.3: First and second row are different visualisations of the same data. A long tail
in ESE are linked to RMSE jumps because the tails are generated from RMSE outliers,
demonstrated by MEMLT in (a/b) and BDPT in (c¢/d). Typically, MC algorithms
have a flat error spectrum while MCMC ones contain more error in low frequencies.
Outliers influence the shape of the ensemble mean (a, MEMLT), spectral flatness indicates
spatially small outliers.

MC spectra are typically flat, while MCMC spectra show more error in low frequencies
(see also Sections 4.3.2 and 4.3.2). The DC term (frequency 0) in MLT methods shows a
very large error because it is estimated in a separate process step (Section 2.4.3), usually
taking orders of magnitude fewer samples than during the relative estimation of the
chain phase. Since PSSMLT uses a portion of its samples for independent candidates
(effectively MC samples, Section 2.4.4), its ensemble mean can be often found between
path-space MLT and MC methods. Error in high frequencies flattens out more quickly
(compare heads in Figure 5.3b), while in low frequencies (# DC term) it stays below
path-space MLT (Figure 5.3d).

In Figure 5.3a, the upper border of the MEMLT tail has the same shape as its ensemble
mean. [t is common that outliers dominate the mean. Single-pixel outliers produce a
constant spectrum, while error is concentrated more and more in low frequencies as the
outlier area grows (Section 4.3.2). Therefore, we can say that the BDPT outliers in
Figure 5.3d are single-pixel ones and those in MEMLT in Figure 5.3b have a small area
(the upper tail is not completely flat).
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5.2.1 Error sum per frequency

Until now we were talking about average error per frequency, not error sum or total error
per frequency. The Fourier spectrum contains more directions in high frequency, the
number is approximately! 27 f (where f is the ensemble frequency). Hence, the error
sum (Figure 5.4) can be approximated by multiplying average error with 2z f. It becomes
clear that the amount of error in high frequencies is influenced not only by the sampling
algorithm, but also by the dimensionality of the output (2D in case of rendering). In
contrast to the ensemble mean, RMSE and MSE take dimensionality into account. In
fact, averaging the ensemble sum curves would result in the spatial domain MSE?.

However, we stick to average error because it is easier to read: Comparing summed error
in low and high frequencies visually is difficult due to logarithmic scale and detecting
single pixel outliers or measuring the width of the MCMC bump at low frequencies
becomes hardly possible.

0 50 100 150 200 2500 50 100 150 200 250

N=4000 frequency (f) N=4000 frequency (f)
I MEMLT (RMSE:28.8, s:28.5, t:50x1.95) (RMSE:11.4, s:2.76, t:37x3.69s)
I PSSMLT (RMSE:5.89, 5:1.73, t:6x13.4s) (RMSE:24.2, 5:13.1, t:5x18.9s)
I BDPT (RMSE:9.09, s:1.35, :8x10.25) (RMSE:41.9, 5:30.2, t:6x13.65)
(a) Door (b) Bathroom

Figure 5.4: Error sum per frequency. Same data source as for Figure 5.3, where average
error was shown. There are more Fourier directions in high frequencies, the curves are

the result of scaling Figure 5.3 by 2rf (f being ensemble frequency).

! Tt is not exact because of discretisation in the 2D grid.
2 Parseval’s theorem, Section 2.6, a small error is introduced by ignoring frequencies larger than
0.5 x min(width, height).
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5.2.2 Influence of A/, the number of short renderings

The ESE descriptor increases its accuracy (confidence) with more samples or longer
rendering time, and converges to its expectation. Unlike traditional MSE, it does not
become smaller. This is demonstrated in Figure 5.5, where heads and bodies are already
relatively precise with small N (b). Tails and ensemble mean need more samples in some
cases (compare b and c), because outliers are hard to catch.

5.2.3 Absolute versus relative error

There are two widespread methods to compute error: (signed) absolute error I — R and
relative error (I — R)/R, where I is the image and R the reference (Section 4.2). We use
absolute error but also tested relative. The two error types behave similarly in the sense
that everything said above applies. As described in Section 4.2 and shown in Figure 5.6,
problems exist in both cases. We decided on absolute error because it does not explode
when the reference is dark or even zero.

error

S—

0 50 100 150 200 2500 50 100 150 200 2500 50 100 150 200 250

N=40 frequency (f) N=400 frequency (f) N=4000 frequency (f)
I VIEMLT (RMSE:8.51, 5:7.48, t:50x1.95) (RMSE:6.86, 5:5.7, t:50x1.95) (RMSE:28.8, 5:28.5, t:50x1.95)
B PSSMLT (RMSE:5.84, 5:1.39, t:6x13.45)  (RMSE:5.65, 5:0.896, t:6x13.4s) (RMSE:5.89, 5:1.73, t:6x13.45)
I PT (RMSE:10.8, 5:0.268, t:43x2.165) (RMSE:10.7, 5:0.398, t:43x2.165) (RMSE:10.8, 5:0.654, t:43x2.165)
I BDPT (RMSE:8.9, 5:0.236, t:8x10.25) (RMSE:8.94, 5:0.355, t:8x10.25) (RMSE:9.09, 5:1.35, £:8x10.25)
(a) Very small N (b) Small N (c) Large N

Figure 5.5: ESE for door scene with increasing N'. (a) is more wiggly (when zoomed),
showing little confidence due to the small N'. The head of MEMLT is wider than with
higher N'. (b) is smoother, the heads and bodies change only little when increasing N
further. (c) caught more outliers, tail and mean of MEMLT are larger, showing that in
fact MEMLT is the worst algorithm in this scene.
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Figure 5.6: Comparison between absolute and relative ESEs: Two bumps in absolute
ESE of the Box scene (a) do not show in relative (b). In another scene there is a larger
bump in relative error (d vs. c¢). Tails and body are sometimes wider in relative error (b
and d). In absolute ESE of the Bottle scene, pixel or small area outliers can be seen (e),
but not in relative error (f).
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5.3 Implementation details

Images are stored in a 16 bit lossless high-dynamic-range format. Square images with a
power-of-two size are beneficial for the discrete Fourier transform and the radial average
(fewer cut-away frequencies).

5.3.1 References

In order to avoid measurable error in the references, we compute them on a cluster using
a very large sample count, in some cases millions per pixel. Noise is not visible in the
references, while it is heavy in short renderings (Figure 5.7). We verify that all algorithms
converge to the same solution by looking at RMSE over time (Appendix D.2).

5.3.2 Short renderings

We adjusted the (average) number of samples per pixel — so that competing algorithms
had similar rendering times, i.e., computer work load. This also has the effect that the
raw error has a similar order of magnitude, since none of the algorithms is more than an
order of magnitude better or worse than another. By manual inspection we verified that
we have enough MLT samples, so that the chain covers the whole image and the majority
of pixels have a reasonable value. This is not guaranteed by the MLT algorithm, e.g.,
one could configure MLT to have a single chain with a length that is smaller than the
number of pixels. Pixels not reached by the chain would stay black, which results in an
error value equal to the negative of the pixel value in the reference image. This could
cause strange effects and hence we wanted to avoid it.

(a) Reference (b) Path tracing (c) MLT

Figure 5.7: Comparison between reference and short renderings: No visible noise in the
reference, but heavy in short renderings.
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5.3.3 Compute the error

The three colour channels are reduced to luminance before any non-linear operation, i.e.,
before raising to the power of two. The weights are

A
=

£ =0.212671E + 0.715160E; + 0.072169E 5,
which are the same as in the used renderer, Mitsuba [Jak10].

In order to accommodate for different sampling costs, the error is scaled to match one
second of (single-threaded) computation time on the rendering machine. All renderings
of one algorithm use the same configuration, but there can be variations due to load,
therefore we use the mean rendering time ¢:

gscaled =& X \/7?

Scaling with V% in the spatial domain is equivalent to scaling per pixel variance, power
spectrum, MSE or ESE with t.

Next, using standard library functions, we compute the discrete Fourier power spectra
of the error images. Dividing the mean of the power spectrum by the number of pixels
yields MSE (Parseval’s theorem, Equation 2.23).

5.3.4 Radial averages

There is no standard function for performing a radial average and in our context it is
somewhat performance relevant. It is also important to be careful with aliasing errors
(Section 5.4.1).

The steps of our method are

1. Generate a ® x F grid of polar coordinates with equidistantly spaced values
© € [0,2n] and r = f € [0,0.5 x min(width, height)[. The sizes are ® = 4 x
min(width, height) and F' = 0.5 x min(width, height).

2. Transform the polar coordinates into Cartesian space (resulting in strong oversam-
pling of low frequencies, which we do not mind because performance is not an
issue).

3. The Cartesian coordinates are then used for bi-linearly interpolated sampling of
values in the 2D power spectrum. The result is a matrix of size ® x F', containing
the power spectrum with axes being ¢ and f.

4. Radial means can be calculated as averages over the ¢ dimension. It is possible
to experiment with quantiles from this transformed version, but they are just an
approximation.
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5.3.5 Generate descriptor

Ensemble mean, tails, body and head can now be computed as described in Section 5.1.

We estimate RMSE as \/ 1/N Zfil Emsk,i (where Eygp; is the MSE of short rendering
i). Note that this is different to the mean of per-rendering RMSEs, because the order of
operations matters. Our way of computation has a larger confidence than computing
RMSE of a single image with a rendering time of N' x ¢ (the traditional method, Section
3.1). RMSE is used because contrary to MSE it has a linear scale (like standard deviation).

RMSE standard deviation is v/Var (Erpsg), i-e., it shows the standard deviation of the
random variable RMSEFE of a 1-second rendering. Both, RMSE and its standard deviation,
become more precise (more confident) with increasing N.

Results are plotted in a figure with logarithmic error axis.

5.4 Caveats

5.4.1 Radial average
The following refers to the radial average method described in Section 5.3.4.

Due to bi-linear interpolation, neighbouring Fourier frequencies with different wave-
lengths (and directions) are mixed together, resulting in smoothing of the ensemble
graphs. This is visible in very low frequencies (Figures 5.8 a and b). In particular, MLT’s
DC term influences the first ensemble frequency.

The discrete Fourier transform has fewer directions in low frequencies. Therefore, the
averages have more variance in low frequencies, just because there is less data (Figure

108 1
. | mean + std dev of curves|
1.2 v 10 l
o
© & 5 |
o 1 ) = ki
i : °
0.8 © 10° 107
8 2 4 6 8 8 2 4 6 8 0 100 200
frequency frequency frequency
(a) DC=0.01 (b) DC' =100 (c) Standard deviation of radial
averages.

Figure 5.8: (a) and (b): The DC term influences the first ensemble frequency due to
bi-linear interpolation. This can be demonstrated by a radial average of a 16 x 16 power
spectrum with non-DC frequencies set to 1. (c): The standard deviation of radial averages
can be higher for low ensemble frequencies although standard deviation is equal for all
Fourier frequencies. The reason is that the radial average has fewer power spectrum
values in low ensemble frequencies. A correction would need to take the correlation
between Fourier frequencies into account (compare with Equation 4.7).
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5.8¢c). However, this does not mean that there is more variation in the Fourier frequencies
themselves. This uncertainty could only be solved by a different (custom) frequency-
transform method with more directions in low frequencies, but the usefulness is unclear.
Moreover, uncertainty is alleviated by larger numbers of renderings (Figure 5.5).

5.4.2 Outliers

Outliers can be so rare that they are really hard to “catch”, while still having a significant
impact on the mean due to their large value (in particular correlated area outliers). This
is why we use a relatively large rendering count (N'). However, in practice, if the tail is
significantly larger than twice the body, do not trust the ensemble mean.
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CHAPTER

Results

Sections 6.1 and 6.2 show, based on several algorithms and scenes, how insights can be
gained using ESE and standard deviation. However, compared to analysing different
algorithms, it might be more interesting to analyse the effects of parameter changes on a
single algorithm: Section 6.3 shows the influence of mutation size on MLT algorithms,
and Section 6.4 studies the influence of various seeding strategies. One important result
is the fact, that the proxy algorithm performance is similar to the unmodified (pure)
MLT algorithm. Finally, it is possible to analyse biased but consistent algorithms like
SPPM, and algorithms that have a better convergence rate than ©(1/N) (for instance
sampling patterns in MC), with ESE. However, the process is different and we show an
example in Section 6.5.

We generated all data using the Mitsuba renderer [Jak10], which implements all algorithms
that we examine. All the processing was done in Matlab, using the EXR format for HDR
and a resolution of 512 x 512. Some of the renderings (experiments and references) were
performed using cluster computer resources within the Aalto University School of Science
“Science-IT” project. All short renderings were made on a workstation with 40 virtual
cores (20 physical) using 40 separate, single threaded processes.

The colour map for standard-deviation pictures in this chapter is shown in Figure 6.1,
values above 20 are clamped. All ESEs have the same scale.

We set the maximum number of light bounces to infinity. If used, the respective MCMC
algorithms are employed for all light bounces, including direct light (unlike proposed in
the original work [Vea97]). PSSMLT uses the BDPT sampler in all of our tests.

B ]
o 2 4 6 8 10 12 14 16 18 20

Figure 6.1: Colour map for standard deviation pictures
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6.1 Simple parametric scene

The box test scene (Figure 6.2) contains a parametrised light source at the ceiling, a
large sphere with parametrised roughness in the middle, a small light on the right wall
and cylinder walls left from the centre (intersecting the sphere). Sphere and top light
produce a caustic on the floor, whose size and sharpness depends on the parameters.
Light-source size and intensity are correlated so that the total power remains constant.
The default light size is 50 and roughness 1/256.

This test serves mainly to verify the descriptor, as we can predict how it should react
(e.g., larger error with smaller light and smoother surfaces). Figure 6.3 shows a standard-
deviation image for a hard configuration. Due to squaring, convergence of standard
deviation takes longer than the actual image. However, areas with large error are visible
nonetheless. More configurations and example renderings are in Appendix B.1.

When looking at Figures 6.4 and 6.5, we can see several things:

e As expected, error levels and number of outliers rise in general when increasing the
difficulty of the scene (with the following exception).

e It seems like — contrary to expectations — the scenes from Figures 6.4c and 6.5b are
harder to render than those with smaller light source or smoother surface. It might
just be a demonstration of the effect of outliers, but on the other hand tails are
consistent for 3 algorithms in 6.5b and 2 in 6.4c (both sampling via BDPT). That
might mean that there is a group of light paths that are just on the verge of being
impossible and therefore sampling probability is low. When further changing the
parameters, they become impossible and chances they produce outliers are nil.

e Qutliers can offset the ensemble mean very far, it often has the shape of the upper
tail edge (for instance Figures 6.5b and 6.4e).

e The tail width roughly corresponds to RMSE jumps, though it does not tell
whether there is one big jump (Figure 6.5b MEMLT) or many small ones (Figure
6.5¢ MEMLT).

e As expected, MC algorithms have a flat spectrum and MCMC algorithms show
more error in low frequencies. In almost all figures (including complex scenes in
the Appendix A) it is visible that PSSMLT is a mixture between MC and MCMC.
PSSMLT’s head position and tail width is between MEMLT’s and BDPT’s in many
cases. There is more error in low frequencies, but not as pronounced as in MEMLT,
and PSSMLT flattens out in high frequencies more quickly than MEMLT.

e In Figures 6.4e and 6.5¢ (highly specular and small light) MEMLT is a relatively
good algorithm. However the bodies and tails are wide and high in low frequencies,
which indicates that there is a large variation between short renderings on large
areas. This in turn means that the chain had problems jumping between light
effects.



6.1. Simple parametric scene

e Changing roughness below 1/16 (Figure 6.4b) does not influence PT very much.
The reason are shorter rendering times, which are visible in the legend. Time
drops from 2.69 seconds for one sample per pixel (1/16) to 2.42 (1/1024). Probably
glossy surfaces result in close to parallel rays, causing cache hits and therefore more
efficient samples.

e We were a bit surprised by BDPT’s tendency towards outliers, but the behaviour
is consistent across several scenes, also complex ones. The reason might simply be
that samples are more expensive and fewer can be taken. This is bad in cases a
light effect is not well covered by any bidirectional sampling strategy.

(a) Roughness 1/4  (b) Roughness 1/1024 (d) light size 400 (e) light size 25
light size 50 Roughness 1/256

Figure 6.2: Reference images for box scene with selected parameter combinations.

(a) MEMLT (b) PSSMLT k (c) PT ‘ (d) BDPT

Figure 6.3: Standard deviation per pixel for box scene with light size 25. Roughness is
1/256. More parameter configurations in Appendix B.1.
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N=4000 frequency (f) N=4000 frequency (f)
I VIEMLT (RMSE:4.28, 5:2.09, t:10x2.63s)  (RMSE:5.57, 5:3.66, t:10x2.575)
I PSSMLT (RMSE:4.81, 5:2.08, t:23.45) (RMSE:4.33, 5:1.18, t:23.15)
I PT (RMSE:9.34, 5:0.855, t:9x2.485) (RMSE:9.15, 5:0.183, t:9x2.425)
I BDPT (RMSE:8.3, 5:2.93, 1:19.85) (RMSE:8.6, 5:3.3, 1:19.55)
(d) Roughness 1/256 (e) Roughness 1/1024

Figure 6.4: Error descriptors for box scene with varying roughness. Light size is 50. See
text for details.
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Figure 6.5: Error descriptors for box scene with varying light size. Roughness is 1/256.
See text for details.
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6.2 Complex scenes

The results discussed here are limited to only three scenes (Figure 6.6), but we show all
of them in Appendix A, including figures with relative error.

One of the things we want to stress here is the usefulness of standard-deviation images.
They uncover which light effect is hard to sample for a certain algorithm. An example are
corners and edges, problematic for MEMLT (see Bathroom in Figure 6.7¢ and Kitchen,
Sponza and Door in the appendix).

In the Bathroom scene (Figure 6.7), BDPT shows worse performance than PT (both
heads and ensemble means). MEMLT has highest performance. Bathroom and the
diffuse-only Sponza scene are the only ones from the test set without MEMLT outliers.

The challenge in the Bottle scene (Figure 6.8) is the infinite depth of refractions. ESE
shows that all algorithms produce pixel outliers, visible by a flat upper tail edge. The
largest outliers are in MEMLT, which might be a bit surprising at first: MEMLT includes
a very powerful manifold mutation designed to perform well on specular refractions, but
there is no efficient large mutation to jump between manifolds.

In the standard-deviation pictures of the Torus scene (Figure 6.9), MEMLT shows almost
no error on the torus, but large error in deep refractions. Just as with the bottle, we
suspect poor performance of global mutations. From ESE we see that MEMLT is worst
due to outliers, the head is lowest. Both head and body are relatively wide, showing a
large variation between runs, i.e., there would be a lot of flickering when observing the
rendering process. PT is the best algorithm, even tough there is a lot of error in the
caustic (see the standard-deviation picture).

-
b SvE

(a) Bathroom (b) Bottle (c) Torus

Figure 6.6: Reference images for the complex scenes used in our tests.
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Figure 6.7: Bathroom scene, standard deviation per pixel on the right.
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(b) Ensemble power spectrum (e) PT (f) BDPT

Figure 6.8: Bottle scene, standard deviation per pixel on the right.
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Figure 6.9: Torus scene, standard deviation per pixel on the right.
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6.3 PSSMLT parameter variation

PSSMLT has parameters to directly change mutation size (small mutations) and the
length of correlated chains (percentage of large mutations). We are interested in how
changing those parameters affects the error. In addition to the original algorithm, the
same parameter changes were tested with a fake PSSMLT algorithm. The fake algorithm
operates similarly to PSSMLT, small and large mutations, acceptance probability and
seeding are the same. Contrary to the original, rays are not traced — instead, the reference
image is used as the target function of the MLT mutation. It does not get stuck so easily
due to the reduced dimensionality. When applied to a reference image with constant
intensity, the result of the fake algorithm resembles Brownian motion. We used the box
scene described in Section 6.1 with roughness 1/256 and light size 50.

The effect of changing the mutation size is well visible when looking at example renders
(Figure 6.10, full size and standard deviation in appendix Section B.3). With very small
mutations, samples stay pretty much in place, they do not move over the image plane
(Figure 6.10d, the image looks dark because large values are clamped). When increasing
mutation size, the small area outliers morph into larger and less intense patches (Figures
6.10b and 6.10c). We could say that changing the mutation size changes the correlation
radius of pixels. Finally, mutations are so large that the pixels look independent (Figure
6.10a), almost like BDPT (compare with Figure B.3d).

The correlation radius is also visible in ESE for both — real and fake — PSSMLT algorithms
(Figure 6.11). Increasing the mutation size reduces the width of the error peak in low
frequencies and vice versa. Naturally, in real PSSMLT there are limits, as the integration
domain is more complex.

Increasing the percentage of large mutations moves between a strongly correlated MLT
algorithm and an independent MC sampling method (Figure 6.12). ESEs (Figure 6.13)
show a reduction of height of the error peak in low frequencies, but the width stays the
same. Error in high frequencies becomes larger only when 100% large mutations are
reached and the spectrum becomes flat.
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(a) 200% (b) 50% (c) 10% (d) 1% mutation size

Figure 6.10: Example render for changing small mutation size (30% percentage large
mutations): (a) looks almost like BDPT as mutations are so large. Correlation increases
in (b) and (c), but the samples still visibly move around the image. In (d) the chain
hardly moves away from high-intensity samples, producing small-area outliers.
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N=4000 frequency (f) N=1000 frequency (f)
I PSSMLT M200 (RMSE:1.84, s:1.5) I FAKE M200 (RMSE:0.488, 5:0.004)
I PSSMLT M050 (RMSE:0.834, 5:0.168) I FAKE M0O50 (RMSE:0.581, s:0.00601)
I PSSMLT M010 (RMSE:1.28, 5:0.237) I FAKE M010 (RMSE:1.11, 5:0.0134)
I PSSMLT MOO1 (RMSE:2.87, 5:0.917) I FAKE M001 (RMSE:1.68, 5:0.0383)
(a) PSSMLT (b) Fake MLT

Figure 6.11: ESEs for 200, 50, 10 and 1% of default small mutation size, 30% percentage
large mutations. In fake MLT, the size of small mutations is directly related to the width
of the error peak in low frequencies. In PSSMLT the effect also exists, but it is not as
clear as there are other overlaying effects, e.g. outliers.
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(a) 100% (b) 50% (c) 5% (d) 0% large mutations

g

Figure 6.12: Example renders for changing percentage of large mutations (small mutation
size 25% of default). Correlation between pixels is related to the percentage of large
mutations. Pixels in (a) are independent, while in (d) they show strong correlation.
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I PSSMLT PLO0OO (RMSE:2.35, 5:1.19) I FAKE PLOOO (RMSE:2.32, 5:0.583)
(a) PSSMLT (b) Fake MLT

Figure 6.13: ESEs for changing percentage of large mutations, small mutations 25% of
default value. When increasing the percentage of large mutations, error in low frequencies
is reduced, making the ESE more similar to MC spectra. When increasing up to 100%
large mutations, ESE is completely flat at the cost of larger error in high frequencies.
The same effect takes place for the default small mutation size, but not as pronounced

(see appendix, Section B.2).
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6.4 MLT seeding and chain length configurations

We test how seeding parameters and chain lengths influence MLT performance. Only
path-space MLT is studied, but some of the results also apply to PSSMLT. One large
difference in PSSMLT are the large mutations, which produce independent samples
and therefore break the chain into chunks. This should make PSSMLT less sensitive to
variation in chain length and more independent of the starting path.

The data in the following three sections is generated with 50 samples per pixel. We
removed the time measurement and error scaling to avoid inaccuracies due to inefficient
workloads. Only the most interesting results are shown here, the rest in Appendix B.5.

6.4.1 Seed-pool size (number of luminance samples)

This parameter has two implications. The first one is the accuracy of the scaling factor
W in Equation 2.17. It is possible to factor out the influence in short renders by rescaling
with the luminance of the reference (labelled W correction). The resulting algorithm
becomes biased. When comparing the two variants in Figure 6.15, it is visible that with
few luminance samples, the variance of W significantly increases the error.

The second implication is the distribution of starting paths sampled from the pool. With
a small pool the probability of starting several chains from the same seed path is relatively
high, especially when the pool contains MC outliers. Additionally, with a larger seed
pool the starting points are distributed closer to the equilibrium distribution. The effect
is visible in Figures 6.15(b and d): error in low frequencies is strictly decreasing with
rising pool sizes. In the standard deviation image (Figure 6.15¢) it is visible that with
more seeds there is less error in the two hard-to-sample light effects. Figure 6.14 shows
that light effects that are problematic for the seeding method (a) also show more error in
the MLT image if the seed pool is too small (compare b and c).

(a) BDPT (b) 1k seeds (c) 100k seeds

Figure 6.14: Torus standard deviation: Light effects that are hard to sample for the
algorithm populating the seeding pool (BDPT) are also problematic if the pool size is
small (indicated by the arrows).
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Figure 6.15: Varying seed pool-sizes (number of luminance samples): Reducing the size
of the seed pool increases variance of the chain weight W (Section 2.4.3), which in turn
increases overall error (a and c). But this is not the only effect as can be seen in (b)
and (d), where W was replaced by the reference’s W: An increased pool size benefits
low frequencies (while high frequencies are inconclusive). (e) shows two bright and
hard-to-sample light effects: If the seed pool is small, chances are no sample will cover
those effects and W is relatively small, reducing the contribution of the whole chain.
Once luminance samples do cover the light effects, W and therefore the contribution will

be larger. Additionally the probability

of starting several chains from the same path is

high. This means that in case of small seed pools, light effects that are hard to sample

for the seeding method, cause outliers.

More scenes in Figure B.15.
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6.4.2 Number of seeds per pool

Instead of having one large seed pool (Figure 6.16a) it is possible to subdivide the
luminance samples into several smaller pools (Figure 6.16b). In case there is one weight
W per pool, some chains become more important than others. Benefits and drawbacks
apply as described in Section 6.4.1. We implement this type of configuration implicitly
for our descriptor by having many short renderings (Section 4.1.1).

seeg\pool
paths (z; z)): (12 3 456 7 8 9 10

f(z;)/po(z;): 911 30 37813 135 4 20
(a) One seed pool of size L = 10

seed pool 1 seed pool 2
paths (z;  z;): =1= 2= 3 54}5I =6= 7 : 8 =9= 10 :
f(x;)/po(z;): 911 30 37 8 13 135 4 20

(b) S =2 seed pools

Figure 6.16: f(x;)/po(x;) is the contribution of the path. Sampling probability of the
starting path is proportional to that number and the per-pool weight W' is the average.
Conventionally, one seed pool is used in MLT, from which C' chains are sampled (a). It is
possible to divide the L seed paths into S pools (b) and sample C'/S starting paths from
each, resulting in S different chain weights. The probability of starting several chains
from the same path is lower, but weights W are less precise.

The experiment works as follows: The same number of luminance samples (L = 10k),
chain length (512 x 512) and count (C' = 50) are used, but different pooling strategies
are tested by computing the ESE descriptor from A" = 4000 short renders:

1. One chain per pool, luminance samples are divided into 50 pools of size 200. This
strategy guarantees that no sample is used twice as a starting path.

2. Five seeds per pool, luminance samples are divided into 10 pools of size 1000.

3. All 50 seeds from one pool. This is the default implementation in Mitsuba [Jak10].

Figure 6.17 shows the results. There are differences in ensemble mean, but they are not
consistent and likely due to the hard-to-measure outliers. The heads are almost equal,
differences in standard deviation are inconclusive and the strategies have a smaller effect
when the pool size is increasing.

We therefore conclude that the changes introduced to the MLT algorithm by our proxy
are minor and hardly measurable.
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Figure 6.17: ESEs for various pooling strategies of the luminance samples into seed pools.
The total number of luminance samples is 10k, which is partitioned randomly into 50, 10
and 1 seed pools with 1, 5 and 50 chains, each. The body and heads of the variants are
almost equal, differences in tails and standard deviation images are inconclusive. This
indicates that the strategy plays only a minor role, which becomes even smaller when
increasing the overall pool size. More scenes in Figure B.16.

6.4.3 Chain length

Given a fixed sampling budget, it is possible to run either one very long chain (the
original Veach-MLT), several shorter ones (like in Mitsuba [Jak10]), or many very short
ones. Figure 6.18 shows how these options influence the error. Note that increasing the
number of chains puts pressure on the seed pool, i.e., the number of luminance samples
should increase, otherwise problems described in Section 6.4.1 start appearing.

Reducing the chain length seems to fix two problems: First, bright light effects that are
hard to reach for chain mutations are now included through the re-sampling phase (the
starting path is drawn from an almost perfect equilibrium distribution). This is visible
in hard-to-sample refractions of the Box scene (Figure 6.18¢c), ensemble mean strictly
moves down in low and up in high frequencies (Figure 6.18a). Second, if the chain is
stuck somewhere, it is broken up earlier by stopping. This results in less intense pixel
outliers in the door scene, cutting RMSE error to 36% (Figures 6.18b and d).
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Figure 6.18: ESEs for varying chain lengths (100k seed pool, 50 samples per pixel).
Reducing chain length shifts error in the box scene from low to high frequencies (a), i.e.,
less error in refractions (c) and more in pixel outliers. In the door scene, short chains

reduce the amplitude of pixel outliers (d), cutting RMSE error to 36% (b). More scenes
in Figure B.14.

6.4.4 Comparison with Energy Redistribution Path Tracing

In this experiment we want to test how well ERPT can be simulated by MLT configured
for short chains and a large seed pool (labelled SIMUL).

We used the following settings:

e 10 samples per pixel (those are seeding paths) for ERPT and accordingly 512 x
512 x 10 & 2.6e6 luminance samples for MLT.

e on average 1 chain per pixel (they are started probabilistically) for ERPT and
accordingly 512 x 512 = 2.6e5 chains for MLT

e chain length of 200 for ERPT and accordingly 200 samples per pixel for MLT

e ERPT and MLT use only the manifold mutation (MEMLT [JS12]).
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(a) Roughness 1/4 (b) Roughness 1/64 (c) Roughness 1/1024

Figure 6.19: ERPT test with box scene (varying roughness, light size is 50). SIMUL is
MEMLT with parameters tuned to simulate ERPT (see text). MEMLT was not scaled
to match ERPT/SIMUL, therefore only the shape can be compared. The figure shows
that ERPT can be approximated pretty closely by tuning MLT parameters. (c) shows in
addition that ERPT and SIMUL follow the head of MEMLT, avoiding the outliers in
the tail of MEMLT. (b) on the other hand demonstrates that ERPT and SIMUL can
also have a long tail. SIMUL is very slow because the architecture of the used rendering
system was not designed for the tuned parameters (see text).

The rendering time for SIMUL is very long because our MLT implementation is not
designed for this type of workload. Since the total number of samples is equal in both
cases, we scale the error of the inefficient SIMUL using ERPT’s time.

The results are in Figure 6.19, along with a normal MLT algorithm for comparison. The
performance of ERPT and SIMUL are similar: The head of ERPT is slightly below

SIMUL. ERPT has more outliers with roughness 1/64 (b), but that could be coincidence.

MEMLT has the best performance in all three scenes, but that might be due to a less
optimised implementation or a bad parameter choice for ERPT. It is interesting however,
that SIMUL and ERPT in Figure 6.19c seem like a continuation of further increasing the
number of chains in Figure 6.18a: Error in low frequencies is below default MEMLT and
in high frequencies it is above.
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6.5 Stochastic Progressive Photon mapping

Unlike other rendering algorithms discussed in this work, SPPM is biased but consistent.
This means that the output converges to the solution when increasing iteration count,
but its expectation is not the solution. In other words, running SPPM 1000 times for 1
iteration and averaging the result is less precise than running it once for 1000 iterations.
Therefore we cannot create an ESE and expect all frequencies to behave like ©(1/iter).

Instead, we run SPPM with increasing iteration counts, multiply the error curves with
the iteration count and study the movement of the ensemble mean. Similar to the scaling
that we use to accommodate for varying sampling costs (Section 5.3.3), multiplication
neutralises the higher quality of more iterations. If the curves are overlapping, it means
that the convergence rate is exactly ©(1/iter). If the curve with larger iteration count
is higher, it means that convergence was slower than ©(1/iter), otherwise it was faster.
The tails are relatively small, which means that all runs behave approximately the same
and problematic outliers were not found.

Our tests show that the convergence rate is not ©(1/iter) for all frequencies. In the
Door scene (Figure 6.20a) it is slower for mid and high frequencies, while in the Torus
scene (Figure 6.21a) it is slower for low frequencies. This is also visible in standard
deviation images (scaled by v/iter). In the Door scene, error moves to the area above the
door (Figure 6.21c), while in the Torus scene, it moves more and more into the edges of
caustics and shadows (Figure 6.21D).



6.5. Stochastic Progressive Photon mapping
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Figure 6.20: Error descriptors for SPPM on door scene. Error scaled with v/iter. ESE
shows that convergence is slower than ©(1/iter) for mid and high frequencies.
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Figure 6.21: Error descriptors for SPPM on torus scene. Error scaled with v/iter. ESE
shows that convergence is slower than ©(1/iter) for low frequencies.
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CHAPTER

Conclusion

7.1 Synopsis

The aim of this thesis was to improve methods of measuring error in rendering algorithms.

In quantitative comparisons, error is often measured with equal-time MSE or similar
metrics. This can be unreliable due to the variance of MSE. We propose to estimate
MSE’s expectation using a large number of short renderings, and use that for comparisons
instead. This is particularly important for algorithms with correlated pixel values, because
correlation is directly linked with increased variance.

When comparing error qualitatively, state-of-the-art publications use equal-time render-
ings. We show that this is a compromise between visualising error behaviour (correlation,
PDF) and quantity (per pixel or light effect). The former can be more accurately shown
by very short renderings and the latter by standard-deviation-per-pixel images.

In addition to those two, we develop a new tool for investigating the frequency spectrum
and outliers of a given algorithm: The Error Spectrum Ensemble (ESE). This descrip-
tor shows the expectation of the error over frequency, the error’s variability between
observations, its typical behaviour and tendency towards outliers.

In order to validate these tools, understand how they behave and to find limitations, we
ran a number of tests. The main findings are:
e MC algorithms generally have equal error expectation in all frequencies while

MCMC ones have a peak in low frequencies.

e In many scenes, the majority of MLT observations have a better performance than
MC algorithms. However, overall error expectation is worse due to outliers.

e Similarly, BDPT can sample many light effects more efficiently than PT. However,
our tests show that pixel outliers are frequent, resulting in a large error expectation.

81




7. CONCLUSION

82

o Tests with PSSMLT show, that the mutation size of MCMC algorithms is roughly
inverse-proportional to the error-peak width.

e MLT algorithm parameters like number of luminance samples and chain length
(number of chains) have an influence on performance and behaviour.

e When testing SPPM, we found that its asymptotic convergence rates in low and
high frequencies are different (unlike unbiased methods).

7.2 Discussion

When developing rendering algorithms, two things are important:

1. Does the change improve the expected rendering quality and how much?

2. How does the change influence characteristics of the error and what is the logic
behind?

We improved the methods that are used to answer those questions.

Comparing MSE expectation is more accurate than MSE observations, which is especially
important for algorithms with correlated pixel values. In addition, it is possible to
estimate its variance, which would make confidence intervals possible.

As for characteristics, we came to the conclusion that it is important to look at error
from 3 different angles:

e Standard-deviation images show the quantity and location of the error. This shows
the performance depending on lighting effects, geometric features, etc. However,
when converged, it tells nothing about frequency content, outliers or correlation.

e Particular short time renderings show type of noise and correlation. However, they
are not a good way to measure error quantity even when using longer rendering
times.

e Finally, ESE shows the frequency content, type of and tendency towards outliers.

7.3 Future work

Currently, the descriptor does not show whether the tail is long due to a single very large
outlier, or several smaller ones. This might be important if dealing with outlier-filtering
techniques. There are certainly also other directions on improving the visualisation.

We only look at final renderings. If integrated into a rendering system, it would be
possible to get more fine-grained information for error analysis. Interesting questions
could be:



7.3. Future work

e Which lighting effect (light path / number of bounces) produced the error?
e Which MCMC mutations are responsible for error?

e What is the mixing coefficient of a Markov chain, which mutations are responsible
for mixing and how does it affect the error?

Our descriptor needs a high-quality reference image. Online methods, e.g., without
reference, could be useful to adapt rendering parameters to the scene at hand (MCMC
mutation size etc.).

Finally, in this work we completely ignored the error perception of the human visual
system. It might very well be that rendering error in certain frequencies is more bothering
than in others.
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APPENDIX

Results for Complex Scenes

Reference images are visible in Figure A.1, the colour map of standard deviation images
in Figure A.2 with » = 20 in case of absolute error, r = 40 for relative error and r = 5
respectively 10 for the Sponza scene.

1 AT

(a) Bathroom (b) Bookshelf (c) Bottle

(e) Kitchen (f) Torus (g) Sponza

Figure A.1: Reference images for complex scenes.

0 \
0 0.1r 0.2r 0.3r 0.4r 0.5r 0.6r 0.7r 0.8r 0.9r r

Figure A.2: Colour map for standard deviation pictures, see text for values of r.
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A. RESULTS FOR COMPLEX SCENES
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Figure A.3: Bathroom scene, absolute error. There are no MEMLT outliers, we think well
suited for bidirectional mutations. BDPT is worse than PT, MEMLT is best although it
is visible, that there is additional error on edges.
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Figure A.4: Bathroom scene, relative error.
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Figure A.5: Bookshelf scene, absolute error. This scene is very difficult for PT, probably
because many lights are obscured, hidden behind glass in the shelf and direct light
sampling does not work. All other algorithms have problems with the small glossy objects
inside the shelf.
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Figure A.6: Bookshelf scene, relative error.
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A. RESULTS FOR COMPLEX SCENES
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Figure A.7: Bottle scene, absolute error. It is very hard due to depth of refractions. ESE
shows that all algorithms produce pixel outliers, largest one in MEMLT. This might be a
bit surprising because manifold exploration is made for specular chains. We speculate
that bad performance comes from suboptimal large mutation.
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Figure A.8: Bottle scene, relative error.
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Figure A.9: Door scene, absolute error. It is a bit surprising that MEMLT performs
worst (due to outliers), as it was used as a reference scene for path space MLT. Since
head and body are both bottom most, it could be that the outliers were just not caught
in the original paper.
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Figure A.10: Door scene, relative error.



A. RESULTS FOR COMPLEX SCENES
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Figure A.11: Kitchen scene, absolute error. PSSMLT has artefacts on triangle edges of
the red counter, the reason is unclear to us, it might be an implementation bug. Normals
are treated equally in BDPT and PT (strict normals on). MEMLT has large error next
to the dish rack on the counter (c). (d) to (f) did not converge at that place.
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Figure A.12: Kitchen scene, relative error.
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Figure A.13: Torus scene, absolute error. MEMLT shows almost no error on the torus,
but a lot of error in deep refractions. Just as with the bottle we suspect poor performance
of global mutations. MEMLT is worst due to outliers, PT is the best although there is a
lot of error in the caustic.
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Figure A.14: Torus scene, relative error.



A. RESULTS FOR COMPLEX SCENES
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Figure A.15: Sponza scene, absolute error (different ESE scale, std. dev. white >=5).
Not much surprises, directly lit areas on the floor have larger MLT error (like in the
Kitchen scene). MEMLT shows tendency to error on edges (like in Kitchen, Door and

Bathroom).
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Figure A.16: Sponza scene, relative error (different ESE scale, std. dev. white >= 10).
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APPENDIX

Additional Test Results

B.1 Standard deviation and example renderings for box
scene with various parameters

One more standard deviation image is in Figure 6.3.

(a) MEMLT (b) PSSMLT (c) PT (d) BDPT

Figure B.1: Standard deviation per pixel for box scene with roughness 1/4. Light size is
50.
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(a) MEMLT (b) PSSMLT (c) PT (d) BDPT

Figure B.2: Standard deviation per pixel for box scene with light size 400. Roughness is
1/256.

(a) MEMIT (b) PSSMLT | (c) pr h BDPT

Figure B.3: Example renderings for box scene with light size 25, roughness is 1/256.



B.2. ESE for changing percentage of large mutation in PSSMLT algorithms

B.2 ESE for changing percentage of large mutation in
PSSMLT algorithms
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N=4000 frequency (f) N=1000 frequency (f)
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I PSSMLT PLOOO (RMSE:1.4, 5:0.6) (RMSE:1.24, 5:0.241)

(a) PSSMLT (b) Fake MLT

Figure B.4: ESE for changing percentage of large mutations, small mutations 50% of
default value. Box scene with roughness 1/256 and light size 50.
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I PSSMLT PLO50 (RMSE:0.924, 5:0.246) (RMSE:0.531, 5:0.00403)

I PSSMLT PLOO5 (RMSE:0.882, 5:0.278) (RMSE:0.506, 5:0.011)
I PSSMLT PLOOO (RMSE:0.995, 5:0.349) (RMSE:0.717, 5:0.106)
(a) PSSMLT ( b) Fake MLT

Figure B.5: ESE for changing percentage of large mutations, default sized small mutations.
Box scene with roughness 1/256 and light size 50.



B. AbpDITIONAL TEST RESULTS

B.3 Standard deviation and example renderings for
changing size of small PSSMLT and fake algorithm
mutations

The percentage of large mutations is 30%.

(a) 200% mutation size (b) 50% mutation size (c) 10% mutation size (d) 1% mutation size

Figure B.6: Standard deviation for changing small mutation size.

(a) 200% mutation size (b) 50% mutation size (c) 10% mutation size (d) 1% mutation size

Figure B.7: Standard deviation for changing small mutation size (fake algorithm).

(a) 200% mutation size (b) 50% mutation size (c¢) 10% mutation size (d) 1% mutation size

Figure B.8: Example renderings for changing small mutation size.
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B.3. Standard deviation and example renderings for changing size of small PSSMLT and fake
algorithm mutations

(a) 200% mutation size (b) 50% mutation size (c) 10% mutation size (d) 1% mutation size

Figure B.9: Example renderings for changing small mutation size (fake algorithm).
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B. AbpDITIONAL TEST RESULTS

B.4 Standard deviation and example renderings for
changing percentage of large mutations in PSSMLT
and fake algorithm

Small mutations are 25% of the default size.

(a) 100% large (b) 50% large (c) 5% large (d) 0% large

Figure B.10: Example renderings for changing percentage of large mutations.

(a) 100% large (b) 50% large (c) 5% large (d) 0% large

Figure B.11: Example renderings for changing percentage of large mutations (fake
algorithm).

o g ‘
(a) 100% large (b) 50% large (c) 5% large (d) 0% large

Figure B.12: Example renderings for changing percentage of large mutations.
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B.4. Standard deviation and example renderings for changing percentage of large mutations in
PSSMLT and fake algorithm

(a) 100% large (b) 50% large (c) 5% large (d) 0% large

Figure B.13: Example renderings for changing percentage of large mutations (fake
algorithm).
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B.5 MLT seeding and chain length configurations

Here we present ESEs of tests not shown in Section 6.4. All tests have 50 samples per
pixel on average. If nothing else is written there are 50 chains, all sampled from a single
seed pool. The glass roughness parameter of the box scene is set to 1/256 and light size
to 50. Brightness equalisation means, that the image was scaled to match the average
luminance of the reference.
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N=4000 frequency (f) N=4000 frequency (f)
I 1 CHAIN (RMSE:0.876, 5:0.321) (RMSE:1.05, 5:1.02)
I 50 CHAINS (RMSE:0.864, 5:0.285) (RMSE:0.357, 5:0.275)
I 500 CHAINS (RMSE:0.821, 5:0.162) (RMSE:0.328, 5:0.241)
(a) Bathroom (b) Torus

Figure B.14: More ESEs for varying chain lengths and 100k seed pool size. We believe
that the acceptance rate of mutations in those two scenes is higher, therefore they benefit
less from a restart. See also Figure 6.18.



B.5. MLT seeding and chain length configurations
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(a) Bathroom (b) with equalised brightness

1010}

108

error

106

104+

0 50 100 150 200 2500 50 100 150 200 250
N=4000 frequency (f) N=4000 frequency (f)
I 1K SEEDS (RMSE:1.45, s:1.38) (RMSE:1.27, s:1.2)
I 10K SEEDS (RMSE:0.756, 5:0.621) (RMSE:0.748, 5:0.614)
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(¢) Door (d) with equalised brightness

Figure B.15: More ESEs for varying size of the seed pool / number of luminance samples.

The advantage that can be gained by increasing the pool size depends on the scene. Note
however, that RMSE is strictly monotone falling in (a) and (c). See also Figure 6.15
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(a) Door (b) Bathroom

Figure B.16: More ESE for various partion variants of the luminance samples into seed
pools. Partitioning plays only a minor role. See also Figure 6.17.
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APPENDIX

Statistics

In this appendix we show additional figures and findings to Chapter 4.

C.1 Correlation between real and imaginary part

If an outlier lies in the same small area in many observations, then there can be correlation
between real and imaginary part. Samples are distributed close to their axis going through
the origin in the complex plane, as shown in Figure C.2b. The orientation depends on
the spatial position of the outlier area and more specifically on the ratio of sine and
cosine values of the corresponding Fourier frequency at that position (Figure C.1). It
is possible, that there are several outlier areas, in which case samples are distributed
around more than just one axis.

We found that in our experiments this type of correlation was mostly found in low
frequencies of MLT algorithms. This can be observed for instance in Figure C.3, it shows
the correlation coefficients between real and imaginary part for a typical scene when
rendering using MLT and PT. The same can be seen in the phase histogram (Figure C.8)
and mean phase image (Figure C.12).
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Figure C.1: Dependence between real and imaginary part in the Fourier Spectrum. The
left shows the spatial domain, sin and cos waves are weights of the Fourier sum resulting
in the Fourier coefficient of a specific frequency. The right shows the complex plane of
that frequency. A-C are 3 independent examples of dominating error. Assuming the
rest of the error signal in the spatial domain is zero, position A, respectively B and C,
produce values on the corresponding axes in the complex plane. For instance: If outliers
are concentrated at area A and a specific Fourier frequency has the sine and cosine waves
given, then error observations will be along the imaginary axis.
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(a) Path tracing (b) MLT

Figure C.2: Correlation between real and imaginary part of the error spectrum. X and
Y axis are real and imaginary part, respectively. Every colour belongs to a different
frequency (selected randomly in [1,10]), every data point to a different rendering. (a)
shows strong correlation, (b) not. The data is taken from renderings with 100 samples
per pixel.



C.1. Correlation between real and imaginary part

(a) Path tracing (b) MLT

Figure C.3: Correlation between real and imaginary DF'T part, same data as in Figure
C.2. Most correlation happens in low frequencies of MLT renderings.
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C.2 Histograms of Fourier frequencies

Three representative frequencies were selected (0/1, 8/3 and 93/183) which correspond
to plane waves with approximately one, 10 and 200 periods.
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Figure C.4: Fourier error distribution for different frequencies (real part)
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C.2. Histograms of Fourier frequencies
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Figure C.5: Fourier error distribution for different frequencies (imaginary part)
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Figure C.6: Fourier error distribution for different frequencies (magnitude)
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Figure C.7: Fourier error distribution for different frequencies (power (magnitude
squared)). Range clipped for MLT due to long tails.
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Figure C.8: Fourier error distribution for different frequencies (phase)
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C.3. Full discrete Fourier spectra

C.3 Full discrete Fourier spectra

The next plots show data of the whole Fourier spectrum, low frequencies are in the centre.
The shape of the centre in MLT obviously depends on the scene and parameters, but

PSSMLT and MLT are roughly the same.
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25

(a) Path tracing (b) MLT

Figure C.9: Standard deviation of real Fourier part (logl0 domain)

=

(a) Path tracing (b) MLT

Figure C.10: Standard deviation of imaginary Fourier part (logl0 domain)
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Figure C.11: Mean amplitude spectrum (logl0 domain)
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Figure C.12: Mean phase of Fourier error spectrum (-180 to 180 degrees)
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APPENDIX

Pitfalls

D.1 Outliers

Outliers are some times very hard to catch. For instance in some cases we saw outliers
that were more than 2000 times the mean and occurred only in one out of 1000 renderings.

If outliers are simply clamped away, the algorithm becomes biased.

D.2 Bias of implementation
Implementations of otherwise unbiased algorithms can contain programming errors. While

sometimes not visible to the human eye, they can render error measurements useless.

We tested for bias by looking at the RMSE-over-time plot. If the RMSE graph does not
become horizontal, but continues to be ©(1/N), there is no measurable bias. Jumps are
not a problem.
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Table of Rendering Algorithms

E.1 Monte Carlo (MC) methods

PT Path Tracing starts independent paths from the camera.
It samples the BSDF locally and the light sources
directly.

BDPT Bidirectional Path Tracing starts two paths, one from
the camera and one from a light source. It then con-
nects all vertices from the camera path with all vertices
from the light path.

E.2 Markov chain Monte Carlo (MCMC) methods

MLT Path space Metropolis Light Transport employs muta-
tions of existing paths to search important paths close
to the old one. The mutations are in path space, i.e.,
they can employ all informations available to the path.
MEMLT Manifold Exploration MLT, it adds an additional muta-
tion type that employs surface derivatives for a better
exploration of specular chains.
PSSMLT Primary Sample Space MLT, instead of mutating in
path space, the random number generator is manipu-
lated to create correlated chains.
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ERPT Energy Redistribution Path Tracing, uses very short
chains compared to MLT. The chains are started prob-
abilistically from PT samples.

E.3 Biased but consistent methods

SPPM  Stochastic Progressive Photon Mapping casts gathering
points from the camera into the scene. In a second
processing step photons are shot from the light sources.
When they reach a gathering point, the contribution
is added to the corresponding pixel. The connection is
not exact, hence the bias.



F.1 Notation

X Vectors represent the whole
image or spectrum
X[j] Element j in vector X
Xy Hats denote the mean of NV
draws (N can be left out for
brevity)
E[X] Expectation of X (element-
wise for vectors)
Var (X) Variance of X (element-wise
for vectors)
FX Fourier transform of image
X
Re and Im Real and imaginary part
|X| magnitude of a complex
number

F.2 Variables

Unimportant symbols used only in one sec-
tion are left out.

I Integral being computed
I Image being computed

APPENDIX

Table of Symbols

= ==

N~
Zl

Number of samples
Number of short renderings
in the proxy algorithm
Number of elements in a
vector or pixels in an image

Random variable for ren-
dered image after taking N
samples per pixel
Reference solution, R w~
E|]

Error, computed by I-R
Light transport function on
path x

Pixel filter for pixel j
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Glossary

biased Biased means, that the expected value of the solution is not correct. i.e., when
running the algorithm infinitely many times and taking the mean, it will not be
correct. 2, 8, 15, 20, 72

body Position and dispersion of the majority of radial averages of error power spectra.
50

caustic Concentration of light produced by specular objects, for instance glass. 25

confidence Confidence in the statistical sense, i.e., accuracy of the measurement. It
depends on the number of samples and their variance. Confidence is increased
when taking more samples. 51, 54, 58

constant of convergence Constant in ©(1/N). 45, 47

DC term Constant factor of the DFT transform, i.e., the Oth frequency and the mean
of the signal. 22, 23, 40, 42, 52, 58

ensemble frequency Frequency in a radial average or sum of a Fourier (power) spec-
trum. In ESE the ensemble frequencies are on the x-axis. 23, 51, 53, 58

ensemble mean Estimator for the radial average of E [\}" £| \2] 50

Fourier frequency The element (pixel) of a discrete Fourier spectrum or power spec-
trum. 22, 38, 58

head Position and dispersion of the mode of radial averages of error power spectra. 50

importons The dual of photons, i.e., an importance particle emitted from the sensor
which measures the amount of light that will be added to the sensor element when
a light is hit. 7, 14
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light transport function The function that measures the contribution of a certain
path to the sensor. When multiplied with the pixel filter, it is the contribution to
the pixel. 6, 10

photon mapping Approximate rendering method, it is biased but consistent. 2, 4

pixel outlier An isolated, very bright pixel (firefly). It can appear when the error
distribution has a long tail. 34, 43, 81

radial average A vector whose elements are averages of centred circles in a square
matrix (in our context error power spectra). The radii are 0, 1, 2, ... 0.5 x the

matrix size. 23, 50, 56—-5H8

tail Position and dispersion of outlier radial averages of error power spectra. A large
tail means that the error (MSE) jumps when plotted over time. 50

unbiased Unbiased algorithms provide the correct solution on average. 2, 3, 13

Veach-MLT Veach style MLT, i.e., path space MLT with Veach’s original mutation set.
19, 75
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Acronyms

BDPT BiDirectional Path Tracing. 14, 19, 46, 61, 63, 69, 81

BSDF Bidirectional Scattering Distribution Function. 7, 9, 14
CLT Central Limit Theorem. 3, 11, 29, 34, 38, 45
DFT Discrete Fourier Transform. 21, 22

ERPT Energy Redistribution Path Tracing. 4, 19, 20, 76

ESE Error Spectrum Ensemble. 49, 57, 61, 69, 81, 82
i.i.d. independent and identically distributed. 11, 30

MC Monte Carlo. 2, 3, 10, 12-15, 18, 20, 26, 29, 30, 40, 43, 44, 52, 61, 81
MCMC Markov Chain Monte Carlo. 2, 3, 10, 15, 16, 20, 26, 29, 40, 43, 52, 61, 81
MEMLT Manifold Exploration path space MLT. 19, 46

MIS Multiple Importance Sampling. 14, 15

MLT Metropolis Light Transport. 3, 15, 18, 19, 26, 30, 33, 52, 56, 58, 61, 72, 81, 103,
109

MLT path space MLT. 19, 109

MSE Mean Square Error. 3, 24, 25, 44, 46, 49, 50, 57, 81
NPS Noise Power Spectrum. 27

PDF Probability Density Function. 11, 18, 29, 31, 32, 34, 44, 81
PSSMLT Primary Sample Space MLT. 4, 19, 52, 61, 69, 72, 82, 109

PT Path Tracing. 14, 19, 20, 33, 63, 81, 103
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RMSE Root Mean Square Error. 24, 25, 44, 50, 56, 58

SPPM Stochastic Progressive Photon Mapping. 20, 30, 61, 78, 82
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