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Abstract

Background: In the field of root biology there has been a remarkable progress in root phenotyping, which is the
efficient acquisition and quantitative description of root morphology. What is currently missing are means to efficiently
explore, exchange and present the massive amount of acquired, and often time dependent root phenotypes.

Results: In this work, we present visual summaries of root ensembles by aggregating root images with identical
genetic characteristics. We use the generalized box plot concept with a new formulation of data depth. In addition to
spatial distributions, we created a visual representation to encode temporal distributions associated with the
development of root individuals.

Conclusions: The new formulation of data depth allows for much faster implementation close to interactive frame
rates. This allows us to present the statistics from bootstrapping that characterize the root sample set quality. As a
positive side effect of the new data-depth formulation we are able to define the geometric median for the curve
ensemble, which was well received by the domain experts.

Keywords: Uncertainty visualization, Bioinformatics visualization, Curve ensembles

Background
One of the largest challenges in biology is relating the
genotype (i.e. the configuration of genes in the genome)
to the phenotype (i.e. the properties of living systems,
e.g. the physical appearance of an organism). In the past
years, there have been major breakthroughs to efficiently
determine the genotype using next generation sequenc-
ing technologies. Moreover, in several fields, such as plant
biology, major progress has been also made to efficiently
and accurately quantify the phenotype [1, 2].
In particular, the root is frequently the subject of sys-

tematic and large-scale phenotyping, as its growth prop-
erties are of major importance for plant productivity, but
has not been the target for extensive breeding efforts. As
a simple model, the root of the model plant Arabidopsis
thaliana plays an important role in the root phenotyp-
ing community. This is not only because Arabidopsis is
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a small plant that can easily grow in large numbers in
vitro to allow for efficient image acquisition of the root,
but is also a great object for transgenic approaches [3, 4],
it has large mutant collections [5], and many sequenced
genotypic variations are available [6].
The aim of Arabidopsis root phenotyping experiments

is to observe the growth of as many roots as possible with
various genotypes. A large-scale phenotyping pipeline has
been recently developed [2] allowing for the acquisition of
thousands of root images per day in very high resolution
and over subsequent days. Seeds are placed on the sur-
face of agar plates that are filled with a nutrition gel. Each
compound of that gel is very accurately controlled, so that
each plant has the same conditions to develop. The place-
ment of the seeds are guided by a predefined grid layout,
so the genotypes of each particular plant can be traced
back during analysis. Apart from image acquisition events,
the plates are kept in a growing chamber, in controlled
conditions.
The resulting images are subjected to image-processing

based analysis methods for measuring traits (e.g. length,

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-016-1445-3&domain=pdf
mailto: vad@cg.tuwien.ac.at
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


The Author(s) BMC Bioinformatics 2016, 18(Suppl 2):65 Page 2 of 15

tortuosity, growing angle at a specific timestamp). While
the computational analysis of these and other root phe-
notypic data is developed well [7–10], there is no tool
allowing to visually explore or compare the complex phe-
notypes of multiple individuals or their statistical prop-
erties. Moreover, with hundreds of thousands of images
and different genotypes distributed to many images, it is
a challenge to conduct visual checks or to produce figures
for presentations of specific genotypes. Finally, after pub-
lication of such data, the current method to share visual
(non-abstracted) root data is to mail complete hard disks
of images upon request making data sharing bothersome.
These problems are amplified when working with time
series of such complex data.
In this work we propose a system that supports root

growth phenotyping of young seedlings of Arabidopsis
thaliana, being designed for analyzing its earlier stages
when the root individuals have not developed lateral
branches. The domain experts usually use that early-
staged analysis when they are interested in comparing
geometric properties of the root individuals (length, grow-
ing angle, etc.). A simplified explanation of root pheno-
typing is the following. The researchers group individuals
according to their genotype. In our test dataset a typi-
cal group has 10-15 individuals, but sometimes less, and
in extreme cases many more is possible. For each indi-
vidual in group traits are measured. Then, statistics (e.g
mean) are used resulting in one trait representing a geno-
type. Finally Genetic Wide Associaton Mapping helps to
reveal statistical relevance between themeasured trait and
the genetic sequences. This statistical approach already
led to significant results, however it does not convey the
characteristics of processed data.
In this paper we focus on a visualization system,

which helps characterize the phenotypicical expressions,
grouped by a common property (same genotype or same
growing environment).
In root phenotyping it is common to measure 15-20

individuals per group. However, according to the knowl-
edge of the authors, the question was never approached
if 20 individuals per group is enough for a valid statis-
tics in root phenotyping. Our system allows the domain
researchers to visually explore many individuals which are
grouped by their genotypes. This allows for the generation
of highly informative figures for presentation and publica-
tions that go beyond root trait averages and make it pos-
sible to intuitively asses heterogeneity between different
individuals.

Related works
The shape variability between roots of one genotype can
be analysed with respect to different properties. One
possible way is to consider each root as a curve in a two-
dimensional space. Since each root (i.e. curve) represents

a possible different growth pattern, which defines the
source of uncertainty in this context, one can make use of
descriptive statistics to analyse the uncertainty associated
to the process.
Graphical representations of one dimensional descrip-

tive statistics (e.g. boxplots) have been widely used for
statistical analysis in many different fields. Its main pur-
pose is to visually convey statistical quantities estimated
from the data with few assumptions on the underlying dis-
tribution. Several generalizations for multivariate statis-
tics have been proposed. Bagplot [11], one of the earliest
point-wise generalizations, uses convex hull peeling to
convey the notion of centrality, spread, correlation, skew-
ness and tails of the estimated distribution. Distance based
depth functions (e.g. Mahalanobis depth) are also a classic
estimation strategy with the additional property of being
simple to implement, while achieving good centrality esti-
mates [12]. It has been shown that carefully aggregating
many different plots into a single one can be an effec-
tive way to summarize such statistics in a meaningful way,
while avoiding cluttering [13].
From the data perspective, the linear root growth is

highly related to trajectory data, like simulated ensem-
ble of hurricane trajectories [14, 15]. The shape variability
of the trajectories ensemble exposes the need for a bet-
ter understanding of the underlying uncertainty of the
simulation process.
In the scientific visualization literature there have been

many successful attempts to provide algorithms for under-
standing uncertainty through visualization. They are able
to deal with different kinds of complexity such as: high
dimensionality of the data, time series and ensemble sim-
ulations. In this sense, the visualization contribution of
our work can be categorized as uncertainty visualization
of ensemble of functions [16, 17].
Cox et al. [14] propose a visual representation of path

ensembles in the context of hurricane forecasts. However,
while it can lead to a cluttered and sometimes over-
crowded visualization, its aggregation strategy can nicely
convey the notion of shape variability among one ensem-
ble of curves. We use a similar strategy as one part of
our system by aligning the roots to a common starting
point, which allows for the domain experts to explore the
variability of shapes within each genotype.
In a similar context of weather forecast models, Sanyal

et al. [18] propose a visual metaphor combining 1D col-
ormaps with variable sized circular glyphs in order to
encode variability among ensemble members, which does
not allow for easily comparing different ensembles and
also does not take into account time dependency.
The recent usage of Radial Basis Functions (RBFs) with

adaptive bandwidth selection, in the context of hurri-
cane prediction, improves the smoothness of such visu-
alizations by interpolating a simplicial depth sampled
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from its path ensemble [15]. Apart from leaving some
parameters to be set by the user, their strategy is costly
since, for each time step, they need to solve linear sys-
tems with the order equal to the number of samples,
then to estimate minimum enclosing ellipses, and to per-
form a nonlinear filtering for smoothing its time step
trajectories.
In descriptive statistics the data depth conveys the

notion of centrality of the samples within the data dis-
tribution. In order to perform such estimates, one needs,
among other things, to define the notion of center-
outwards ordering, called data depth, where the "deepest"
sample is the closest to the center. In the 1D case it is
straightforward to do so by using a simple ordering of
the samples, and using the distance to the median as
the centrality measure. There are many different ways
on generalizing this concept to higher dimensional sam-
ples (e.g. simplicial depth)[12], to curves or functions (e.g
functional depth).
Sun et al. generalized data depth to 1D functions defined

on a common interval. The authors defined bands with J
samples, J at least two. A band consists of functions, cho-
sen from the ensemble. A function lies in a band, if for the
entire common domain interval its value can be bounded
by other values coming from functions from the band. A
data depth of a function is defined as the estimated prob-
ability of the function-in-question lying inside a band. It
was also proved that computing band depth with itera-
tively increased J, than summing up the result gives amore
robust estimator.
Mirzargar et al. took the aforementioned method, and

generalized it to multidimensional curves [19]. In their
approach a curve lies in a band, if for the entire domain
interval its points are inside the convex hull of the points,
which are evaluated from the curves of the band.
In the aforementioned methods the most representative

sample (function/curve) is chosen to be the one, which
has the highest depth value, consequently it is the most
“central” one. As we show it with examples, this approach
works well if there are enough samples for the analysis.

Methods
Motivations
Biology researchers use numerical traits to describe root
ensembles. These traits are crucial to understand the
underlying phenomenon. However, these biological traits
describe only one aspect of a root ensemble, therefore it is
difficult to give answers for questions which relate to the
behavior of the root ensemble as a whole. Before thorough
analysis it could be very useful to explore:

• What are the growing trends in the ensemble?
• What is the variability of the ensemble?
• What could be a typical root in ensemble?

• What is the statistical quality of the ensemble?
• Is the acquisition feasible at all?

We were looking for a Visual Descriptive Statistics,
which addresses some of these requirements.
Our system is tailored for early-staged phenotyping

(the root individuals did not start developing branches),
and the traits used in these experiments aim to describe
the shape of the root individuals. Moreover, our domain
experts claim that if a root branch (including the main
root) already developed a shape, that part will not change
in future in these in-vitro experiments. In other words, to
model the shape of the main root, it is enough to represent
the time dependent position of the root-tip. Putting the
aforementioned detail under consideration, we decided
that an early-staged growing process of a root individual
can be modelled as a time-dependent parametric planar
curve.
An overview of our system pipeline can be seen at

Fig. 1. Our system is a visual analysis frontend of
the Busch-lab Root Analysis Toolchain system (BRAT),
which was developed by Busch et al. [2]. For our
methods we turned the representation of root indi-
viduals from pixel-based to a curve-based one. Our
visualization components (Quartile zones, Timelines,
Representative curve, Validity indicator) show various
statistical aspects of a curve ensemble. For the spatial-
variability visualization a centrality estimation is needed.
This is achieved by our robust L1 data depth estimation
component.
The BRAT toolchain outputs a subset of segmented pix-

els, where every pixel belongs to a root individual. For
visual analysis we turn the pixel-wise representation into
B-Spline curve-based representation, where each curve
represents one root individual. The knot vector (which
determines the B-Spline basis) and control points are
stored in an SQL database. During visualization stage,
according to the users needs our client application reads
these parameters for the requested root individuals, and
forms a curve ensemble for further analysis. Every pro-
posed method in this paper takes these B-Spline curve
ensemble as its input.
For our visual statistics of curve ensemble we have cho-

sen the Curve Boxplots (Fig. 2), which is a recent work
of Mirzargar et al. [19]. On one hand our system heav-
ily relies on it, and uses similar visual design for spatial
quartile zones. On the other hand due to the special man-
ner of our application we had to introduce changes and
extensions:

• A more robust curve data depth estimator
• A robust ensemble representation
• Time-lines with confidence zones
• Ensemble validity indicator
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Fig. 1 On overview of our system pipeline. Green indicates imported technologies or methods

Fig. 2 Concept of Curve Box Plot. Dark gray zone represents the 50%
quartile, light gray zone represents the 100% quartile. Green curve is
the most central curve, red curve is the proposed representative curve

The key element of a visual statistical method is the
choice of data depth. In case of functional data (curves) it
is most commonly based on band data depth, as it was the
case also in Mirzargar et al. [19]. However, in our applica-
tion it occurs many times that the size of a root ensemble
is rather low. In these cases the band data depth is not
sensitive enough for the relative distances of the curves.
Furthermore, occasionally in these cases the usual way of
picking a representative curve (the most central one) does
not seem to work properly. So we propose a new represen-
tative curve estimation, which could fit better to the small
sized ensemble intuitively.
In our application we followed the same method as in

the aforementioned works for determining inter-quartile,
and inlier zones. With data depths we have an order-
ing. The median of the depth values is computed, and
samples, whose depth values fall into the range of the
highest depth value and the median depth value are con-
sidered to lie in the inter-quartile zone. A threshold for
inlier/outliers is also computed, as the length of the inter-
quartile depth rangemultiplied by a chosen scalar. For this
scalar parameter we chose 3 in our application (just as in
[19], suggested by Tukey).
Curve Box-Plots only tell us whether a spatial posi-

tion has a probability to be occupied by a root, but it
does not say anything about when it could be reached.
However, growth time is a crucial information for our
domain experts, so we designed a representation to con-
vey that information for the user. In root phenotyping
time and growing speed is an essential property, which
is analyzed thoroughly. Therefore it was vital for us to
develop a visual representation, which could informatively
express the overall growing speed, and its deviation in the
ensemble.

Reconstruction of roots as curves
Our system was built on the top of the Busch-lab Root
Analysis Toolchain system (BRAT), which was developed
by Busch et al. [2]. The BRAT system allows for acquiring
the images and creating binary segmentation. BRAT root
segmentation framework first detects plants by finding
their shoots (green area). Then it is assumed the edges of
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roots can be detected in the proximity of shoots by finding
highly saturated edges (using Sobel filter). Then the main
root pixels are estimated with skeletonization.
Representing roots with their raw segmented pixels has

some drawbacks. Due to the high resolution of scans
these pixels can be numerous, even if the represented
root is relatively smooth. In addition, the segmentation
results can be noisy. Therefore we chose to use a paramet-
ric representation, namely Non-uniform B-Spline curves
[20]. B-Splines are widely used in many fields, includ-
ing CAGD and statistics. They are flexible piece-wise
polynomial representations, which can describe complex
free-form shapes with relatively few parameters. In addi-
tion, with the right number of control points, a B-Spline
representation can smooth out the noise while keeping
the complexity of shape in question. Moreover, since it is
a parametric representation, it allows a visually appealing
rendering.
Each root representation estimation starts with the list

of segmented pixels (samples), which belong to the same
underlying individual root. One of the pixels is selected
as the starting point (i.e. it is the closest one to the
detected seed of the plant). First parameter values have
to be assigned to every discrete pixel. For that the seg-
mented points have to be ordered, which is not necessarily
straightforward due to many segmentation errors. We
used a pixel-based Dijkstra-algorithm, starting from the
chosen start point, and the assigned parameter values are
the resulting Dijkstra-distances, normalized to [ 0, 1].
Choosing the correct number of control points is impor-

tant: using too few will over-smooth, using too many will
over-fit the noisy data. We used a conservative measure
proposed by Yuan et al., which is based on Fourier Anal-
ysis of the B-Splines [21]. Their argument was, that the
lower bound of the number of needed control points is
#CP ≥ #samples

4π(b−a) , where the B-Spline’s domain is [ a, b].
We fit our curves to domain of [ 0, 1], and we empirically
selected #CP = 1.2×#samples

4π . With this choice the num-
ber of control points is above the lower bound, but close
enough to avoid over-fitting. The knot selection comes
from deBoor’s classic knot selection algorithm [20]. It
ensures, that the knots are chosen in a way, that the num-
ber of samples falling into curve segments are relatively
the same.
Then a Least-Squares optimization is performed, deter-

mining the control point coefficients. We used 4th order
(3rd degree) curves. As a result we represented a root
object as a continuous parametric curve in the image
domain. However, our intention is to represent the time-
dependent growth of root individuals with curves, not
only their shape. Therefore we re-parametrized our B-
spline curves from [ 0, 1] to [ 0, d], where d stands for
the day when the image containing the segmented root

individual was acquired. Despite it is a rough time-
parameter approximation, and only accurate in daily unit,
our domain experts agreed that it is enough for their
purposes. However, technically more accurate estimation
is possible. A raw acquired image of a plant, segmented
pixels and reconstructed root-curve can be seen on Fig. 3.

Visual representations of root ensembles
Our visual representations take root ensembles as inputs,
where a root is modelled as a B-Spline curve. The visu-
alizations represent various statistics of curve ensemble,
therefor they can be seen as parallel functionalities in our
pipeline.

L1 data depth
For Curve Box-Plot visualization, which represents the
spatial variation of the ensemble data, a proper data depth
estimation step is responsible for measuring the centrality
of each curve. However, as it was mentioned before, the
high variability in size of our ensemblesmakes it necessary
to apply a robust data depth estimation.
Vardi et al. [22] introduced a robust data depth for mul-

tidimensional Euclidean point-set, that they called L1 data
depth. Their formulation stems from the solution of a
completely different problem, namely the Fermat-Weber
location problem.
The geometric median (multivariate L1-median, spatial

median) is the theoretical solution of the Fermat-Weber
location problem.
In general case the geometric median is estimated

by a simple iterative method, the Weiszfeld algorithm.
Vardi [22] pointed out a “leak” in the original classic
method, and proposed the modified Weiszfeld algorithm.
More importantly, the authors introduced a depth func-

tion, which they called L1-Depth. It can be seen that the
a normalized weighted sum of the distances to the input
samples is assigned to each position of the input space.
It is important to note, the point that maximizes the L1

data depth for a given point-set (therefor it is the most
“central” point), is the fixed point of (modified) Weiszfeld
algorithm, the geometric median. A great advantage of
L1 data depth is its efficiency to calculate. However, a
greater advantage for our application is that it is very sta-
ble, even for small number of samples. For further details
and definitions please refer to [22], or Appendix A for a
summarized version.

Applying L1 data depth to B-Spline curve ensemble
One of our main statements in this paper is that L1 data
depth, which is so far defined on Euclidean space can be
exported to our B-spline representations.
So far, all curves in the ensemble are defined by differ-

ent basis functions. In order to make them comparable,
we have to convert them into a common basis. First, we
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Fig. 3 On the left there is an example of acquired image of a root. The results of pixel level segmentation are shown in the middle. While on the
right, reconstructed curve is shown

check what is the maximal number of control points our
curves in the ensemble have, that will be the control point
number of the common basis. Then, we concatenate all
knots of every B-Spline system in ensemble into a tempo-
rary buffer. After sorting and removing repeated knots, we
define a new knot sequence with the already mentioned
deBoor’s method. Each original curve is evaluated in sev-
eral discreet parameter values, falling into the interval
of the common B-Spline basis. Then with Least-Squares
fitting we get the new curve in the common basis.
In this paragraph we claim that a B-Spline function is

well defined by its coefficients. Also, it is easy to see
that these B-Spline functions Hilbert-space distances can
be approximated by their coefficients Euclidean distance.
For simplicity lets consider 1D B-spline functions at this
moment, which are spanned by the same bases B1 . . .Bn
(Since B-Spline curves are defined by B-Spline functions
as coordinate functions, it is straightforward to see that
similar argument is true for them). The functions are also
members of the Hilbert-space with L2 scalar product. Lets
define an operator

T : Rn → L2(R),T
(
[c1 . . . cn]T

)
:=

n∑
i=1

ciBi, (1)

which maps the coefficient vector to its B Spline function.
It is known, that T is a linear bounded operator. Also, we
can define its adjoint operator

T� : L2(R) → R
n,T�(f ) := [

. . . < f ,Bi > . . .
]T , (2)

which is also known to be a linear bounded operator.
The proof for generic cases (infinite dimensional Hilbert-
spaces) can be found in Chapter 2 in [23], as Lemma
2.1. Assuming that f is a result of Eq. 1 for some coef-
ficients c1 . . . cn, these original coefficients can be traced
back by solving the system G [c1 . . . cn]T = T�(f ), where
G is the Gramm-matrix of Bi-s. The boundedness of the
coefficients comes from the fact that G is a positive def-
inite d-band matrix, where d is the order of the B-Spline
basis.
Our data depth estimation for Non-uniform B-Spline

curve ensemble is simple. We re-define our B-Spline
curves into the same basis. Then for each curve we con-
catenate its control points coefficients, so we represent
each curve as a 2 × n dimensional Euclidean vector. We
compute the L1 data depth for these vectors, and we can
assign these depths as the data depths of the curves.

Geometric median curve
The state-of-the-art methods choose the most central
curve as a representative. In this way the representative
curve is part of the ensemble.
In this section we propose another possibility. After we

computed the L1 data depths each curve is represented
as a 2 × n dimensional vector. We compute the geo-
metric median of these representative vectors. However
this geometric median vector also represents a B-Spline
curve. As a consequence of the linear boundedness prop-
erty of Eqs. 1 and 2, the geometric median based curve
approximately inherits the “most central” property from
the Euclidean vector representation.
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Time information estimation
Since our curves represent a time-dependent root growth,
visualizing time is also an important issue. For time visu-
alization we chose to use a design, where we show a
continuous “front-lines”, or time-lines for different time
values (days, in our application), also with their confi-
dence zones. These confidence zones of time-lines deliver
a visual clue about the variance of the statistical estima-
tion of the particular time-line. It can deliver information
about how diverse the growing speed of the rootsin the
ensemble is.
A naive approach would be to estimate a smoothing

spline for every time-line separately from the evaluated
points of root-curves. However, in that way we would
face technical difficulties, like parameter estimation, but
more importantly we would not be able to ensure that the
splines would not “tangle” to each other.
We followed a different approach. Lets assume that

t1, . . . , tM are discreet values in the (time) domain of
ensemble. The curves in the ensemble are evaluated in all
ti, i = 1 . . .M, resulting in pi ∈ R

2, i = 1 . . .M. We are
looking for an interpolating smooth surface F(x) : R2 →
R, F(pi) = ti, i = 1 . . .M, as shown in Fig. 4. For this task
literature offers many possibilities for statistical surface
interpolation (B-Spline surfaces, Local Linear Regression,
Moving Least-Squares, etc.).
Thin Plate Spline (TPS) surfaces are widely used in

a variety of statistical applications, like machine learn-
ing, or non-linear support vector machines [24]. It is
an interpolating surface with the property, that among
all other smooth surfaces it minimizes the functional∫∫

R2

[(
∂2F(x)

∂x2

)2 + 2
(

∂2F(x)
∂x∂y

)2 +
(

∂2F(x)
∂y2

)2]
dx. This min-

imal property ensures us that the time-lines are not
crossing each other.
A Thin Plate Spline is defined in the form

F(x) = β0 + βTx +
N∑
j=1

αjφj(x), (3)

where β are coefficients for linear part, αj, j = 1 . . .N
are coefficients for the non-linear part, which are deter-
mined by kernel functions φj = ∥∥x − cj

∥∥2 log(∥∥x − cj
∥∥).

Here, the cj ∈ R
2 are pre-established centers. The linear

and non-linear coefficients are found with Least-Squares
fitting.
The reader can notice that estimation of TPS surface

does not need any other parameters (e.g kernel width)
beyond centers.
In literature there are two approaches how to determine

centers. The “classic” way is that samples Pi serve as cen-
ters. However, it produces a huge linear system to solve.

Also, φi(0) = 0, therefore the matrix of the linear sys-
tem would have a zero diagonal, which would lead to a
extremely badly conditioned system. A second approach is
to define centers as points on grid, considering only those
which are inside the convex hull of input samples. How-
ever, that needs predetermining the grid size as an initial
parameter, and also involves inclusion test for each grid
points.
We decided to take advantage of our Non-uniform B-

Spline representations. We used the control points of the
curves as centers. This approach is resolution-less (unlike
the grid version), however the control points are still
“close” to the input samples (evaluated curve points). In
addition, the formulation of the resulting TPS will not
depend on M, the discretization parameter of the curves.
We got very similar results to the one with using sample
points as centers.
The time-lines are rendered as isocurves of the TPS

surface in the planar domain (see Fig. 4).
We also wanted to convey a confidence zone for time-

line. For that, a variance had to be computed for each
timeline isocurve. Every curve in ensemble was evaluated
at the time value in question. Then, the spline surface was
also evaluated, getting the estimated time value for each
position of the curve. The variance is computed from the
differences of the expected time value and the evaluated
time values.
Time-lines are rendered as isocurves of the fitted TPS

spline. For each timestamp (days in our examples) we
strike the isocurve of to the timestamp value. The corre-
sponding confidence zone is rendered by alpha blending,
linearly decaying toward the border of the zone. The
time-lines are connecting to a timestamp indicator ruler
continuously. In addition, each time-line is rendered with
a unique color coming from a colormap. We chose a col-
ormap based on color blue, where brighter blue colors
indicate earlier timestamps. As examples in Fig. 5 show,
this technique immediately conveys diversities in growing
speed among the ensemble.

Validity indicator of median estimation
In this section we propose a visual representation, which
conveys information about how feasible our representa-
tive curve estimation is for the given ensemble. Basically
we compute a spatial confidence zone for the represen-
tative curve estimation, with respect to a “little” change
in the consistency of the given ensemble. Since rep-
resentative curve estimation is a robust deterministic
method, we had to borrow a statistical method, called
bootstrapping.
Lets define E = {x1, . . . xm} as the curve ensemble

represented by Euclidean vectors (see previous Section).
Then, we can define Ei = {xr1, . . . xrm}, where i is a num-
ber between 1 and B, where B is the bootstrap samples,
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Fig. 4 Top left: Input 2D sample (blue), with control points as centers of TPS (red). Top right: Input samples the time value as 3rd coordinate. Bottom:
Fitted TPS surface with its isocurves, representing front-lines

a predefined parameter. Also, rj is a random integer
between 1 and m. These randomly picked indexes do not
necessary have to be distinct, and also it is allowed that
they do not cover all numbers between 1 and m. Then,
since Ei is also an ensemble, we can compute its geo-
metric median representation curve. Lets denote that as
x̂i. If we repeat this computation B times, we can collect
all x̂i into a new ensemble Ê, consisting B vectors (curve

representations). If we compute the L1 data depth for Ê,
the corresponding curves inter-quartile zone represents
the spatial zone, which we call validity indicator of median
estimation.
Although we present this visual representation for a

particular application, since bootstrapping is a general
method, similar approach could be used to visualize the
feasibility of other median/representation estimator.
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Fig. 5 Examples for Time-line visualization for different genotyped
ensembles, with error zones. The technique immediately conveys
diversities in growing speed among the ensemble. Top: Ensemble
with 21 curves. Bottom: Ensemble with 21 curves

Results and discussion
Implementation
We implemented our methods in C++, with the uti-
lization of Eigen and Boost libraries. Visualization was
implemented in OpenGL.
For visualization of the ensemble, roots are represented

by non-uniform B-Splines, whose control points are in
image space, scaled that one unit means one pixel. We
found it informative if we showed a ruler with units in
mm. The metric length could be computed from the dpi
resolution of the scanned image, whom the root individual
was acquired from.
For comparison we also implemented band data depth

for curves, as it was presented in work of Mirzargar et al.
[19]. Since our curves (represented roots) are extremely
irregular, for band depth we were forced to use the tech-
nique, which the authors called modified band depth.
In this case the a curve’s inclusion in a band is not a
binary function, but relative length of parameters where
the curve lies inside the band.
Initially we compared the computational speed of the

two algorithms. In order to create a fair algorithmic com-
parison, we did not use multi-core optimization for either
methods. We evaluated both methods for systematically
increasing ensembles, where the individuals were ran-
domly selected. For band data depth we used 128 dis-
crete samples for curves. Figure 6 shows, that for smaller
sizes, the computational speed is comparable. However
as size increases, the needed computational requirements
became higher by orders. However it is also fair to men-
tion, that band data depth is easily parallelizable, while for
L1 data depth it is not that straightforward to parallelize.

Geometric median curve
Abig difference to the state-of-the-art is that the proposed
representative curve is a virtual curve, it is not part of the
original data ensemble (Examples can be seen in Figs. 7
and 8). Despite the proposed representative curve seems
centralized, we had to verify its representation capability
with domain experts. In addition we wanted to find out
if our method compares better or worse to the existing
state-of-the-art method. For that purpose we conducted a
survey among domain experts with a comparative ques-
tionnaire.
In our survey we created a PDF form, which was spread

by emails to domain experts internationally. The form
started with an introduction, then it contained seven
cases (placed on separate pages). Each case the same root
ensemble were shown with two different versions of curve
box plots next to each other. One version was estimated
withMirzargar’s box plots, using band data depth, and one
visible curve indicated the deepest one as representative.
The other version was also with curve box plots, using the
proposed L1 data depths, and the representative estimated
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Fig. 6 Computational speed for data depth estimations

with our geometric median based method. The order of
methods were randomly chosen. The experts had to rate
from 1 to 5, which version they foundmore representative.
A rating of 1 meant the expert found the left plot more
representative, while 5 indicated the same with right one,
and 3 meant no significant difference.

We scored the answers of the questionnaire. An answer
got score in 5 scales according to preference of the expert,
ranging from “absolutely the Mirzargar’s one” (-2) over
“no difference (0) to "absolutely our one” (2). As it can be
seen on Table 1, the effect is rather small. On the other
hand an important observation is, that if the ensemble

Fig. 7 Comparing boxplots for the same curve ensemble (6 curves), but estimated by different methods. Green curves represent the deepest ones,
red curves show the geometric median-based ensemble representer. Left: Mirzargar’s method. Right: Proposed method
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Fig. 8 Comparing boxplots for the same curve ensemble (6 curves), but estimated by different methods. Green curves represent the deepest ones,
red curves show the geometric median-based ensemble representer. Left: Mirzargar’s method. Right: Proposed method

contained less than 10 samples, the experts preferred
the geometric median curve over the band data depth
median.
Despite that several domain experts found the new rep-

resentation interesting (“In my opinion, the geometric

Table 1 Result scoring of our user study

ensemble size 7 7 14 8 16 9 9

Domain expert1 −1 −1 −1 −1 −1 −1 2

Domain expert2 2 2 0 2 −2 −2 2

Domain expert3 0 0 0 0 0 0 0

Domain expert4 −1 −1 −1 −1 −1 −1 0

Domain expert5 1 2 −1 −1 −1 1 1

Domain expert6 2 2 −1 1 −1 1 2

Domain expert7 −1 2 −1 1 1 1 1

Domain expert8 1 1 0 0 1 1 1

Domain expert9 1 1 1 1 1 −1 −1

Domain expert10 2 −2 −1 2 −1 1 −2

mean 0.6 0.6 −0.5 0.4 −0.4 0 0.6

The methodological preference for an ensemble was computed by averaging the
domain experts scores for the ensemble. If the ensemble contained less than 10
samples, the experts preferred the geometric median curve

median-based curve can represent the group’s overall
position very well”), a smoothing effect over the represen-
ter curve has been noticed. In root phenotyping this is
not desired, since some traits (tortuosity, linearity) are not
represented well. This effect can be related with the pro-
posed feature space and it requires a further investigation
of its cause.

Validity indicator
The validity indicator is defined as the inter-quartile of Ê,
as it was previously detailed. To avoid confusion with the
spatial box plot, we decided to render the indicator as an
outline curve.
A very important question may arise, namely what

parameter should be chosen as the number of bootstrap
iterations. We answered this question empirically. For
some ensembles with relatively high diversity, we com-
puted the validity indicator with increasing number of
bootstrap iterations. Since bootstrapping is a stochas-
tic method, too few iterations will cause changes in the
shapes of indicators. Our decision was that for an ensem-
ble with 15-20 individuals using more than 300 iterations
does not change the indicator shape significantly. An
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example can be seen in Fig. 9. In that plot some changes in
the shape of the indicator can be seen when few iterations
were applied.
A straightforward hypothesis is that the area of validity

indicator increases, as the size of the ensemble decreases.
This hypothesis was confirmed by our experiment. We
have a genotype, to whom around 100 individuals were
segmented. For the full ensemble, and subsequent sub-
samples of them we estimated the validity indicator.
Results can be seen in Fig. 10.
However, an interesting result is that the shape of the

validity indicator can also be different for two ensembles,
even if the ensembles contain around the same number
of root individuals (see Fig. 11). This difference can only
stem from the difference of the ensembles.

Feedback from domain experts
During development, we consulted with domain experts
in root phenotyping. As stated by them, this method
allows efficiently to inspect and compare variation of root
growth patterns. According to their knowledge, there is no
other tool to efficiently do this. This enabled for the first
time to efficiently visualize complex statistical root growth
properties for the roots in multiple large datasets that
already exist. It allows for a quick visualization that would

be otherwise take hours to assemble using the current
workflows.
The visualizations of a large set of accessions led the

domain experts to the immediate insight that there is
a genetically determined control of variance for root
growth that seems to be time dependent. Some geno-
types display control of root growth variation strictly
throughout the five days of the time-course while other
only do it during specific time-points; other genotypes
don’t control for root growth variation very much. These
observations indicate that the parameters for the visual-
ization seem to be suitable for genetic mapping to iden-
tify genetic components that control this root growth
variance.

Conclusions
Presented workflow has taken as input images with seg-
mented pixels of root centerline and resulted into visual
representation of statistics of root shapes for compari-
son within and in between given ensembles. While this
approach has been tailored for the particular problem
in plant phenotyping, the method can be in principle
applied to any application domain where images capture
an evolving structure forming an ensemble. These could
be movement trajectories of obtained from cameras of

Fig. 9 Showing geometric median curve validity indicator computed by different number of bootstrap iterations. Using more than 300 iterations
does not change the indicator shape significantly. Top left: 25 iterations. Topmiddle: 50 iterations. Top right: 100 iterations. Bottom left 200 iterations.
Bottommiddle: 300 iterations. Bottom right: 400 iterations
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Fig. 10 Plots with different ensemble size, with the same genotype.
The area of validity indicator increases, as the size of ensemble
decreases. Left: Ensemble with more than 100 curves. Right: Random
subsample of left, consisting 20 samples

trails in public spaces for urban planning purposes, move-
ment pattern studies of animals, such as flies, bees, ants or
mice to name a few.
We have extended a recently introduced curve box plot

representation with the notion of time. In addition we
introduced a new visual clue to represent the statistical
feasibility of the curve ensemble. We have introduced the
proposed representations to the root phenotyping com-
munity and they seem to have the potential to form a
standard in communicating summary of the emerging
structure of the root ensemble. Last, but not least we
have contributed to the phenotyping community with a
new representation for roots using parameterized curves
that has drastically reduced the storage requirements.
While this is not a strong contribution to visualization
research, it can be a game-changer in how data for root
phenotyping is stored and shared within the respective
research community. A similar approach can be adopted
in research areas dealing with evolving linear struc-
tures where method of sharing data are still large image
collections.

Fig. 11 Plots with similar ensemble size, but with different genotype.
The shape of the validity indicator can also be different for two
ensembles with similar sizes. Left: Ensemble with 20 curves. Right:
Ensemble with 21 curves

Appendix AModifiedWeiszfeld algorithm and L1
data depth
The geometric median (multivariate L1-median, spatial
median) is the theoretical solution of the Fermat-Weber
location problem. Given the sample points X = {x1 . . . xn}
in an Euclidean space, the problem is to find

y = argmin
x

n∑
i=1

‖x − xi‖ (4)

The modified Weiszfeld algorithm starts with initial
value y0 = mean(x0 . . . xn), and until convergence the
following is iterated:

yi+1 =
(
1 − w (yi)

r (yi)

)+ ∑
xi �=x

xi
‖xi − x‖

⎛
⎝∑

xi �=x

1
‖xi − x‖

⎞
⎠

−1

+ min
(
1,

w (yi)
r (yi)

)
yi

(5)

where

r(z) =
∥∥∥∥∥∥
∑
xi �=z

xi − z
‖xi − z‖

∥∥∥∥∥∥
(6)
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and

w(z) = 1 if z = xk , k = 1 . . . n
0 otherwise. (7)

Using w and r, the L1 data depth is defined as follows

L1D(x) = 1 − max (r(x) − w(x), 0)
n

(8)

Appendix B Linear system for TPS fitting
The linear and non-linear coefficients of Eq. 3 are found
with Least-Squares fitting, solving the system of

Ay = b, (9)

where

A =
[
K PT
C 0

]
,Kij = φj(pi),

y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α1
...

αN
β0
β1
β2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

t1
...
tM
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

P =
[

1
p1

. . .
1
pM

]
C =

[
1
c1

. . .
1
cN

]
.

(10)

Since the kernel functions are not compact, the to-be-
solved linear system is badly conditioned. Therefore an
iterative method is advised to use by the literature. In our
experiments we used Conjugate Gradients to solve the
symmetric system ATAy = ATb.

Acknowledgments
The authors would like to thank Manuela Waldner for the help in designing
the survey.

Declarations
This article has been published as part of BMC Bioinformatics Vol 18 Suppl 12,
2017: Proceedings of the Symposium on Biological Data Visualization at VIS
2016. The full contents of the supplement are available online at http://
bmcbioinformatics.biomedcentral.com/articles/supplements/volume-18-
supplement-2.

Funding
This project has been funded by the Vienna Science and Technology Fund
(WWTF) through project VRG11-010 and also supported by EC Marie Curie
Career Integration Grant through project PCIG13-GA-2013-618680. Work in
the Busch lab is supported by funds from the Austrian Academy of Science
through the Gregor Mendel Institute of Plant Molecular Biology (GMI).
Publication costs were funded by the Vienna Science and Technology Fund
(WWTF project VRG11-010) and the Gregor Mendel Institute of Plant Molecular
Biology. These two funding sources have contributed equally.

Availability of data andmaterials
The datasets used during the current study available from Busch Lab in Gregor
Mendel Institute (GMI) on reasonable request.

Authors’ contributions
The general idea of using Curve Box-plots came from VV. He is also responsible
for the implementation of all the proposed methods. The application of
Weiszfeld method and L1 data depth is a contribution of VV and DC. VV and

DC were the major contributors in writing. PF’s contributions include
suggesting the bootstrap method, and verifying the mathematical
correctness. WB acted as our biologist expert and supervisor, and he helped us
in conducting an international survey. IV was the supervisor in visualization, as
such he was responsible for the novelty in the visualization community.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Author details
1TU WIEN, Karlsplatz 13, 1040 Vienna, Austria. 2ICMC – University of São Paulo,
15260 São Carlos, Brazil. 3Gregor Mendel Institute of Molecular Plant Biology
GmbH, Dr. Bohr-Gasse 3, 1030 Vienna, Austria.

Published: 15 February 2017

References
1. Bucksch A, Burridge J, York LM, Das A, Nord E, Weitz JS, Lynch JP.

Image-based high-throughput field phenotyping of crop roots. Plant
Physiol. 2014;166(2):470–86.

2. Slovak R, Göschl C, Su X, Shimotani K, Shiina T, Busch W. A scalable
open-source pipeline for large-scale root phenotyping of arabidopsis.
The Plant Cell. 2014;26(6):2390–403.

3. Lloyd AM, Barnason AR, Rogers SG, Byrne MC, Fraley RT, Horsch RB.
Transformation of arabidopsis thaliana with agrobacterium tumefaciens.
Science. 1986;234(4775):464–6.

4. Clough SJ, Bent AF. Floral dip: a simplified method for
agrobacterium-mediated transformation of arabidopsis thaliana. The
plant Journal. 1998;16(6):735–43.

5. Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson
DK, Zimmerman J, Barajas P, Cheuk R, et al. Genome-wide insertional
mutagenesis of arabidopsis thaliana. Science. 2003;301(5633):653–7.

6. Horton MW, Hancock AM, Huang YS, Toomajian C, Atwell S, Auton A,
Muliyati NW, Platt A, Sperone FG, Vilhjálmsson BJ, et al. Genome-wide
patterns of genetic variation in worldwide arabidopsis thaliana accessions
from the regmap panel. Nature genetics. 2012;44(2):212–6.

7. Galkovskyi T, Mileyko Y, Bucksch A, Moore B, Symonova O, Price CA,
Topp CN, Iyer-Pascuzzi AS, Zurek PR, Fang S, et al. Gia roots: software for
the high throughput analysis of plant root system architecture. BMC plant
biology. 2012;12(1):116.

8. Mühlich M, Truhn D, Nagel K, Walter A, Scharr H, Aach T. Measuring
plant root growth In: Rigoll G, editor. Pattern Recognition: 30th DAGM
Symposium Munich, Germany, June 10–13, 2008 Proceedings. Berlin,
Heidelberg: Springer; 2008. p. 497–506. doi:10.1007/978-3-540-69321-
5_50. http://link.springer.com/chapter/10.1007/978-3-540-69321-5_50.
Accessed 4 Jan 2017.

9. Pound MP, French AP, Atkinson JA, Wells DM, Bennett MJ, Pridmore T.
Rootnav: navigating images of complex root architectures. Plant
Physiology. 2013;162(4):1802–14.

10. Symonova O, Topp CN, Edelsbrunner H. Dynamicroots: A software
platform for the reconstruction and analysis of growing plant roots. PLoS
ONE. 2015;10(6):0127657.

11. Rousseeuw PJ, Ruts I, Tukey JW. The bagplot: a bivariate boxplot. Am
Stat. 1999;53(4):382–7.

12. Liu RY, Parelius JM, Singh K, et al. Multivariate analysis by data depth:
descriptive statistics, graphics and inference, (with discussion and a
rejoinder by liu and singh). Ann Stat. 1999;27(3):783–858.

13. Potter K, Kniss J, Riesenfeld R, Johnson CR. Visualizing summary statistics
and uncertainty. Comput Graphics Forum. 2010;29(3):823–32.

14. Cox J, House D, Lindell M. Visualizing uncertainty in predicted hurricane
tracks. Int J Uncertain Quantif. 2013;3(2). http://www.dl.begellhouse.com/
journals/52034eb04b657aea,3b447596502fa0fe,7d41c3a64ba14ca8.html.
Accessed 4 Jan 2017.

http://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-18-supplement-2
http://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-18-supplement-2
http://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-18-supplement-2
http://dx.doi.org/10.1007/978-3-540-69321-5_50
http://dx.doi.org/10.1007/978-3-540-69321-5_50
http://link.springer.com/chapter/10.1007/978-3-540-69321-5_50
http://www.dl.begellhouse.com/journals/52034eb04b657aea,3b447596502fa0fe,7d41c3a64ba14ca8.html
http://www.dl.begellhouse.com/journals/52034eb04b657aea,3b447596502fa0fe,7d41c3a64ba14ca8.html


The Author(s) BMC Bioinformatics 2016, 18(Suppl 2):65 Page 15 of 15

15. Liu L, Mirzargar M, Kirby RM, Whitaker R, House DH. Visualizing
Time-Specific Hurricane Predictions, with Uncertainty, from Storm Path
Ensembles. Computer Graphics Forum. 2015.

16. Potter K, Rosen P, Johnson CR. From quantification to visualization: A
taxonomy of uncertainty visualization approaches. In: Uncertainty
Quantification in Scientific Computing. Berlin, Heidelberg: Springer; 2012.
p. 226–49. doi:10.1007/978-3-642-32677-6.

17. Bonneau GP, Hege HC, Johnson CR, Oliveira MM, Potter K, Rheingans P,
Schultz T. Overview and state-of-the-art of uncertainty visualization. In:
Scientific Visualization. 120 Charing Cross Rd, London WC2H 0JR, United
Kingdom: Springer; 2014. p. 3–27.

18. Sanyal J, Zhang S, Dyer J, Mercer A, Amburn P, Moorhead RJ. Noodles:
A tool for visualization of numerical weather model ensemble
uncertainty. IEEE Trans Vis Comput Graph. 2010;16(6):1421–30.

19. Mirzargar M, Whitaker RT, Kirby RM. Curve boxplot: Generalization of
boxplot for ensembles of curves. IEEE Trans Vis Comput Graph.
2014;20(12):2654–663.

20. Piegl L, Tiller W. The NURBS Book. Berlin, Heidelberg: Springer; 1997.
21. Yuan Y, Chen N, Zhou S. Adaptive b-spline knot selection using

multi-resolution basis set. IIE Transactions. 2013;45(12):1263–77.
22. Yehuda Vardi C-HZ. The multivariate l1-median and associated data

depth. Proc National Academy Sci USA. 2000;97(4):1423–26.
23. Forster B, Massopust PR, (eds). Four Short Courses on Harmonic Analysis:

Wavelets, Frames, Time-frequency Methods, and Applications to Signal
and Image Analysis. Appl Numer Harmon Anal. Cambridge, MA, USA;
Berlin, Germany; Basel, Switzerland: Birkhäuser Boston; 2010. p. 247.
doi:10.1007/978-0-8176-4891-6. With contributions by Ole Christensen,
Karlheinz Gröchenig, Demetrio Labate, Pierre Vandergheynst, Guido
Weiss, and Yves Wiaux.

24. Ma Y, Fu Y. Manifold Learning Theory and Applications, 1st edn. Boca
Raton: CRC Press, Inc.; 2011.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

http://dx.doi.org/10.1007/978-3-642-32677-6
http://dx.doi.org/10.1007/978-0-8176-4891-6

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Related works

	Methods
	Motivations
	Reconstruction of roots as curves
	Visual representations of root ensembles
	L1 data depth
	Applying L1 data depth to B-Spline curve ensemble
	Geometric median curve
	Time information estimation
	Validity indicator of median estimation

	Results and discussion
	Implementation
	Geometric median curve
	Validity indicator
	Feedback from domain experts

	Conclusions
	Appendix A Modified Weiszfeld algorithm and L1 data depth
	Appendix B Linear system for TPS fitting
	Acknowledgments
	Declarations
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

