
Fast KNN in Screenspace on
GPGPU

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Media Informatics and Visual Computing

by

Dominik Schörkhuber
Registration Number 1027470

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Assistance: Mag. rer. soc. oec. PhD Stefan Ohrhallinger

Vienna, 03.04.2016
Dominik Schörkhuber Stefan Ohrhallinger

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at





Erklärung zur Verfassung der Arbeit

Dominik Schörkhuber
Mühlbachstrasse 21, 4451 Garsten

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit –
einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i





Kurzfassung

Durch das Voranschreiten der 3d-scanning Technologien in den letzten Jahren wurde das Digita-
lisieren von Objekten sehr populär und leistbar. Heute ist es nicht nur möglich statische Objekte,
sondern auch bewegte 3-dimensionale Szenen aufzunehmen. Das Rendern solcher Aufnahmen
ist schwierig, da die Objekte als Punktwolken aufgenommen werden, und erst durch Vorver-
arbeitungsschritte in Polygonmodelle umgewandelt werden. Ein wichtiger Teil der Vorverarbei-
tung ist es für jeden Punkt der Punktwolke die k nächsten Nachbarn zu finden, um die Oberfläche
lokal rekonstruieren zu können. In dieser Arbeit wird eine Methode präsentiert welche es erlaubt
die k nächsten Nachbarn für Punktwolken in Echtzeit zu bestimmen. Der gesamte Algorithmus
ist parallelisiert implementiert, und basiert auf dem Nvidia CUDA parallel computation frame-
work. Des Weiteren arbeiten große Teile das Verfahrens ausschließlich im Bildbereich. Dadurch
wird gewährleistet dass redundante und verdeckte Punkte frühzeitig erkannt und eliminiert wer-
den. In einer beispielhaften Anwendung wird der FastKnn Algorithmus außerdem verwendet
um Punkwolken in Echtzeit zu rekonstruieren, und durch Splatting zu rendern.

iii





Abstract

Virtualization of realworld objects and scenes became very popular in recent years due to af-
fordable laser-scanning technology. Nowadays it’s not only possible to capture static frames
but also realtime frame sequences. Rendering of those captures is difficult because visually ap-
pealing renderings involve the computation of local surface reconstruction from pointclouds and
therefore a lot of preprocessing. This is usually not possible in realtime.

One important processing step is the computation of nearest neighbours for each 3d-point.
The neighbourhood information is not only used for normal reconstruction and local surface
estimation, but can also be utilized for collision detection.

In this paper we present a method for computing the k-nearest-neighbor sets for pointclouds
in realtime. To achieve high frame rates we parallelize the algorithm on the GPU, using the
Nvidia CUDA parallel computation framework. Furthermore computations are limited to op-
erate in screen-space, to reduce computational complexity even further, and effectively prevent
rendering invisible geometry. We also utilize the invented FastKnn algorithm to estimate local
surface reconstruction for splat rendering of pointclouds in realtime and show how it compares
to a state of the art algorithm.

v





Contents

List of Figures viii

1 Introduction 1
1.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 State of the art 5

3 Methodology 7
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Screenspace Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Quadtree construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 K-Radius estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.5 Candidate search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.6 Final sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Implementation 13
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Projection to Screenspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Quadtree Layout and Construction . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 k-Radius Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.5 Quadtree Traversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.6 Iterative Radius Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.7 Sorting and Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Analysis 21
5.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Appendix 29
Appendix A: Tables for Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

vii



Bibliography 33

List of Figures

1.1 Example for k nearest neighbours search. Blue points describe the point set P , the
green point is an element of the query set Q. In this case k was set to 3 . . . . . . . 2

3.1 Each point represents an occupied pixel in screenspace. Point numbers are accumu-
lated in each quad-tree node. Starting with the lowest quad-tree node level covering
only one pixel, the size of a node quadruples in each step. On its highest level the
quad-tree has only one node, containing all points. (read from left to right) . . . . . 9

3.2 This illustration continues the example from figure 3.1. On the bottom we see the
expected packed quad-tree buffer. The number in each node describes its index
in the packed buffer, which is equal to its z-iteration order. Indices in the lowest
quad-tree level point to exactly one entry. For construction of the packed buffer we
compute the index offsets from right (highest-level) to left (lowest level). . . . . . . 9

3.3 A point P with an estimated screenspace radius rS which projects to an estimated
view-space radius rV . Only Q3 is inside the k-radius-sphere and is therefore con-
sidered as k-nearest-neighbour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1 For each tested model, the percentage of correctly sized candidate-sets after n iter-
ations is shown. We observed that three iterations are enough to generate appropri-
ately sized sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Computation times for increasing numbers of k-nearest-neighbours. For k = 8 a
specialized register based implementation was used. It shows a 20% faster sorting
step compared to the general solution. . . . . . . . . . . . . . . . . . . . . . . . . 19

5.1 Total computation time for one frame in FastKNN (right) compared to the render-
ing time of Autosplats (left). Whereas the time needed for projection and splatting
match the times of Autosplats, FastKNN computes the k-nearest-neighbour sets sig-
nificantly faster. For all tests FastKNN is capped at 3 iterations. . . . . . . . . . . . 22

5.2 The percentage of completely correct k-nearest-neighbour sets compared to an exact
solution is shown after one, two, and three iterations. The colours indicate the abso-
lute number of correct nearest neighbours for a given percentage. For comparison
also the render times are shown on the bottom. . . . . . . . . . . . . . . . . . . . . 23

viii



5.3 Scene transformations over time can reveal inconsistencies in the computed surface
normals. The two images are taken at slightly different angles. Pay attention es-
pecially to the surface boundaries, where normal estimation errors tend to appear.
These errors are not consistent over different transformations, and might be per-
ceived as visual flickering artefacts. . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.4 Comparision of normal quality between Autosplats (left), and FastKNN (right).
Dark blue areas show no error, green areas indicate an error of up to 22.5 degrees,
and red areas show errors above that. . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.5 Figure 5.4 continued. Autosplats above, FastKNN below. FastKNN produces a
similar visual quality compared to Autosplats. Especially for the dragon model,
Autosplats generates many errors along the boundary, whereas FastKNN remains
stable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

ix





CHAPTER 1
Introduction

In recent years the development of 3d-scanning technologies made huge steps forward. While
these technologies are now widely available it is still not trivial to render scanned data. Algo-
rithms in the field of computer graphics usually work with polygonal meshes as basic geometry
input. This has been done for decades and todays graphics hardware is highly optimized towards
polygonal mesh data structures. However 3d-scanners do not output polygonal data.

The output of a 3d-scanner is usually a set of points in R3, remodelling in it’s entirety
the surface of the scanned object. We refer to these sets of points as point-clouds. To utilize
current graphics hardware for rendering of objects or scenes represented as point-clouds, an
often applied strategy is to first reconstruct the objects surface to a polygonal mesh and then
render the extracted mesh. Speaking of very large data-sets in general, the surface reconstruction
is computationally very expensive. Further it is difficult to map between a point-cloud and a
polygonal mesh representation. For particular applications this approach is not suitable.

As first example think of continuously streamed point-cloud videos [1]. In that case the
reconstruction approach does not scale very well. The 3d-information needs to be recovered for
each frame in a lengthy preprocessing step. Another example are editing operations on point-
cloud data. While editing point-cloud data in it’s raw form is of course possible. The editor can
benefit from an instantly computed closed surface representation.

Therefore we choose a more direct rendering approach. Splatting needs less preprocessing
to render a closed surface representation from a point-cloud than a polygonal mesh. Instead
of rendering triangles we estimate the objects surface by rendering ellipses over each point
in the dataset. For each ellipse we have to estimate its orientation and extent. For a local
surface reconstruction the parameter estimation for each ellipse are influenced by the nearest
surrounding points. Yet it turns out that finding the k-nearest points for each point in the dataset
is a very difficult task. It even takes the by far biggest chunk of time while splat-rendering
objects. By the above stated reasons this thesis shows an approach to estimate the k-nearest-
neighbour set for each point. For means of demonstration this thesis also shows how to utilize
the k-nearest-neighbour estimation for a splat rendering application.

1



Figure 1.1: Example for k nearest neighbours search. Blue points describe the point set P , the
green point is an element of the query set Q. In this case k was set to 3

1.1 Problem

Given a 3d-point-cloud we want to estimate its surface. To locally reconstruct the surface
we compute the k-nearest-neighbours for each point in the point-cloud. Let us denote a d-
dimensional metric space D and let P = {p1, p2, ..., pn} be a set of points in this d-dimensional
space D. Also let Q = {q1, q2, ..., qn} be another set of query points in the same space. In
order to solve the k-nearest-neighbour problem we assign to each query point q ∈ Q the set
of its k-nearest points in P . Figure 1.1 shows an example for k-nearest-neighbour search in a
2-dimensional space. For each point k = 3 nearest neighbours are computed and an euclidean
metric is used to calculate distances.

The most trivial way to algorithmically solve the problem is by a brute force approach.
Listing 1 shows a simple method to do so. But we also see that this algorithm has a huge
computational complexity: O(|P ||Q|d). For reasonably sized point-clouds k-nearest-neighbour
computation in real-time is not possible by this approach.

Algorithm 1 Knn Bruteforce Algorithm
1: procedure COMPUTE KNN(number of nearest neighbours k, sets P and Q)
2: for q ∈ Q do
3: for p ∈ P do
4: d(p) = distance(p, q) . compute a distance metric between p and q
5: end for
6: sorted = sortAscending(P, d)
7: knn(q) = sorted.take(k); . take the first k points
8: end for
9: return knn . k nearest points for each q ∈ Q

10: end procedure

2



1.2 Method

Given an unstructured set of points in 3d-space our method computes the k-nearest-neighbours
for each point in the set. Since we want the computations to happen without any preliminary
available information, except for the point positions, we have to compute the Knn for each ren-
dered frame. If we assume a very complex scene with many parts that do not fit on the screen, or
are just hidden, unnecessary work would be done. To avoid that we adopt the idea from Preiner
et. al. [8] to first project the point-set into screenspace. By doing that we remove all non-visible
points in the scene. Also points that would project to the same pixel position will be rejected.
With common a Z-Buffering technique it is ensured that we only keep the foremost point. Be
advised that this also implies that we are not computing the exact k-nearest-neighbours. Pruning
the point-set to the screenspace projection might remove some exact nearest neighbours. There-
fore the algorithm only produces an approximate solution to the k-nearest-neighbour problem.
We then build a compressed linear quad-tree structure with the remaining points. Additionally
several helping structures are generated for fast indexing. The basic structure is now built up
in memory, and we are ready to issue Knn-queries for each pixel on the screen that has been
covered by a projected point.

To estimate how many neighbourhood candidates we have to consider, we choose the number
of points in the quad-tree nodes. We take an initial estimate by observing a leaf node in the tree,
and then traverse up the quad-tree hierarchy until we reach a node containing at least k points.
By this estimation we compute an initial search radius around the observed point in screenspace.
Through several iterations we refine that search radius, until we receive a k-nearest-neighbour
candidate set. For a valid solution this set contains greater or equal k points. The points in that
now very small set are again considered as candidates for the k-nearest-neighbours of the point
in question. The candidate-set gets then sorted to obtain k points with smallest distance. We
have now retrieved the set of k-nearest-neighbours for the observed point.

Conclusively we can state several interesting benefits for our method. First of all our method
is not dependent on any preliminary computed information. Only the point-clouds itself gets fed
into the algorithm. This makes the algorithm attractive for dynamically changing data. Secondly
the scenes complexity has only little effect on the speed of our algorithm. Since our method is
working mainly in screenspace, the needed computational effort is well constrained by the screen
resolution. Last but not least the chosen data structure is very well suited for parallelization on
the GPU, and therefore grants a great speed-up in comparison to similar solutions.

3





CHAPTER 2
State of the art

The k-nearest-neighbour (Knn) method is widely used for classification [3]. The basic idea is
very simple. Given two sets of points containing a set of training and a set of test data points.
We then select one test data point, and compute the distance between the data point itself and all
points contained in the training dataset. After obtaining the distances we sort the training points
by their distance, to find the k-nearest data points. This procedure is repeated for each point in
the test set. That method works well for small sets of points, but is not well suited for huge point
sets as we encounter them in the fields of pattern recognition or computer graphics. One attempt
to deal with that vast amount of data was to utilize spatial data structures. Due to it’s simplicity
the Knn algorithm happens to be very suitable for parallelization. Today GPGPU frameworks
like OpenCL and Cuda enable even consumer level hardware to solve tremendously expensive
tasks quickly [5].

Garcia et. al. compared different approaches on Nvidia GPUs [4]. Assuming that a brute-
force approach might be suitable for the GPU, they found that also GPU solutions greatly benefit
from the use of spatial data structures. Nikam and Meshram did likewise with a brute-force
algorithm on OpenCL architectures [7].

Zhou et. al. demonstrate the use of SAH k/d-trees on the GPU, by rendering static scenes
with Raytracing and Photonmapping in real-time [10]. Connor and Kumer state that in general
k/d-trees are the best suited data structure for the Knn problem. However for well constrained
problems a quad-tree data structure is better suited. Their probably most important optimization
was to store the quad-tree in Z-order. By that the data itself implicitly contains information about
its spatial relations [2].

The by far most important preliminary work for this thesis has been done by Preiner et. al.
on Autosplats [8]. Autosplats is a point-cloud visualization pipeline, based on splatting. An
important step was to abandon all sorts of pre-computation. Each frame is drawn without any
preliminary knowledge. To simplify the Knn-search and to be able to handle also complex scenes
all computations are designed to happen in screen-space. The implementation of Autosplats
heavily utilizes the GPU. In contrast to other solutions of the Knn problem they did not use any
GPGPU framework, but did all computations in OpenGL Shaders.

5





CHAPTER 3
Methodology

3.1 Overview

We start with a basic overview of the algorithm which consists of five steps. The input of our
algorithm is an unstructured pointcloud. The pointcloud data contains only the point positions
in world-space coordinates.

• Transform to screenspace
In the first step we transform all points into screenspace. By doing that we reduce the
workload of the main algorithm to visible parts of the pointcloud. Points outside get
clipped against the view frustum and points projecting to the same pixel get removed in
this step.

• Quad-tree construction
For the second step we generate a compressed linear quad-tree structure from the remain-
ing points in screenspace. The quad-tree introduces the needed spatial relation into the
former unstructured data.

• K-radius estimation
For the now structured data we perform a radius estimation on each point. This gives us
an approximate search radius in which we hope to find the k-nearest-neighbours.

• Candidate search
By iterating over all points in a given radius we determine the actual number of k-nearest-
neighbour candidates, which results in a set of cardinality greater or equal than k. After
several estimation steps we retrieve the final set of candidates, along with the distances to
its k-nearest-neighbour.

• Sorting
Finally we sort the before acquired points in the k-nearest-neighbour candidate set to pick
the k-nearest-neighbours with smallest distance.

7



3.2 Screenspace Transformation

In the first step all points are projected to screenspace. The pointcloud data might represent
a very big scene, which possibly contains many parts that are not actually visible. If the scene
does not even fit on the screen we would do a lot of unnecessary work. Therefore we do a simple
culling of all input points against the view-frustum. The remaining points get rasterized onto the
image plane. By that we limit the maximum amount of retained points to the pixel resolution of
the render-target. From all points projected on the same pixel position we only keep the foremost
point. We accomplish that by simple Z-Buffering. Points in the background simply get dropped.
This is an important step to constrain the scenes complexity by the size of the view-port. While
rasterizing the points also the original 3d-positions get stored in the render-target. Depending on
variations of the algorithm, additional point attributes like a points color can be transferred too.

3.3 Quadtree construction

As pointed out in section 1.1 the k-nearest-neighbour problem is very computation heavy. To
complete our problem in reasonable time we speed-up the Knn queries by spatially pre-sorting
the input data. Similar to Connor et. al. [2] we utilize a quad-tree data-structure.

Currently the remaining points lie unordered on the render-target. To access the points effi-
ciently in later steps of the algorithm, we attempt to pack the points tightly into a 1-dimensional
array in Z-order [6] [2]. To do so the first step of the quad-tree construction is to compute the
total number of points. We assume the screenspace texture to be of square size 2s, s ∈ N+. In
a first step we recursively add up the number of points in each quad-tree child-node and add the
number to their common parent-node. Figure 3.1 illustrates the procedure, which is completed
in s sequential steps. The point accumulation in each step is fully done in parallel as explained
below. The total possible number of points is obviously constrained by (2s)2 = 22s, however the
number of points on the root quad-tree node gives us the actual number N of points to process.

As stated above, the final quad-tree buffer should contain all points packed tightly in Z-order.
We already know the total size of the buffer from the accumulation step, but to pack the quad-
tree buffer in parallel we also need to know the position index of each quadtree-node in the final
packed buffer. We can compute those indices from the already acquired numbers of points in
each node.

For illustration of the problem again consider Figure 3.1. We again do the computation
of indices in s steps, starting off with the root-node. By definition the root-node spans over all
points in the tree. The root-nodes points start at index 0, and containsN points. We then proceed
with computing indices recursively for all other nodes.

Lets assume we have a parent-node p, and we want to compute the starting indices for the
four child-nodes c0..3 of the parent-node p. Further N(node) describes the number of points in
a quad-tree node, and Start(node) describes the starting index of a node in the quad-tree buffer.
The set of points contained in c0..3 is the same set of points as contained in the node p. By
assuming Z-order iteration, we know that Start(c0) = Start(p). The second child, c1, is offset
by the number of points in the first child c0. Which means Start(c1) = Start(c0) + N(c0).
Further the starting index of c2 and c3 can be computed by accumulating the offsets. Where

8



Figure 3.1: Each point represents an occupied pixel in screenspace. Point numbers are accu-
mulated in each quad-tree node. Starting with the lowest quad-tree node level covering only one
pixel, the size of a node quadruples in each step. On its highest level the quad-tree has only one
node, containing all points. (read from left to right)

Figure 3.2: This illustration continues the example from figure 3.1. On the bottom we see the
expected packed quad-tree buffer. The number in each node describes its index in the packed
buffer, which is equal to its z-iteration order. Indices in the lowest quad-tree level point to
exactly one entry. For construction of the packed buffer we compute the index offsets from right
(highest-level) to left (lowest level).

Start(c2) = Start(c1) +N(c1) and Start(c3) = Start(c2) +N(c2) respectively. Again this
computation can be done in parallel for each node on the same level. For an example of the
index calculation derived from figure 3.1 please see figure 3.2.

The final step in the quad-tree construction is to copy the points from the screenspace texture
to the packed quad-tree buffer. We simply read the target index for each point from the index-

9



buffer and copy the point to the packed quad-tree buffer.

3.4 K-Radius estimation

Now that the quad-tree structure has been built up, we estimate a search radius for the k-nearest-
neighbours. All points within the estimated K-Radius will be considered to be in the k-nearest-
neighbour set. Our estimation is roughly based on the number of points in the quad-tree nodes.
Given a point in the quad-tree we want to get a radius estimation for, we traverse the quad-tree
from the target point (leaf node) on its path to the root node. On that path we stop at the first
node holding at least kmin points. Where kmin is the number of k-nearest-neighbours we are
looking for. Since we will further refine the candidate set later on, we can also accept more than
kmin candidates. We can collect up to an implementation dependent number of kmax points.

We refer to the estimated radius as the k-radius-estimation. Since this is only an estimation
we might not hit the actual k-radius, but it enables us to iteratively approach the final solution.
Because the quad-tree nodes cover a square region we are going to map the given point density
to the search radius. Let A be the covered area of the determined quad-tree node, and r be

the k-radius-estimation. The radius in screenspace would be computed as r =
√

A
π . Since we

actually need only kmin points and the nodes covered area is usually not fully covered by points,
we scale the node-area radius appropriately. Let further N be the number of points in the given
node. Then the k-radius-estimation is computed by the following equation.

kmin
N
·A = r2π → r =

√
A

π
· kmin
N

3.5 Candidate search

Given the k-radius-estimation, we traverse the quad-tree nodes from the root-node down to the
leafs. We leave out nodes that do not intersect the k-radius-estimation and further traverse nodes
that are intersecting the radius. All resulting points are collected in the candidate set.

In previous steps we have reduced the initial 3-dimensional point-set to a 2-dimensional
point-set. Although we have stored the world-space position of each point in the quad-tree
structure, our quad-tree only considers the 2-dimensional coordinates for its spacial sorting.
This leaves us with the fact that neighbouring points in the quad-tree are not necessarily near
in world-space because their depth to the camera might differ a lot. Consider figure 3.3 for
illustration of the described problem. By defining the k-radius-estimation we also define the
according search sphere in view-space with radius rV . On the one hand that means we have to
compute the distances between points in world- or view-space. But even more importantly it
means that we are going to reject many points in the candidate set, because they are simply too
far away. Because of that, and because the k-radius-estimation is only approximately correct,
we repeat the estimation and point-collection several times. In each step we adapt the k-radius-
estimation to acquire the candidate-set with size between kmin and kmax points.

To adapt the k-radius-estimation we utilize the now known number of points V inside the
search-sphere, described by rV . We assume the points are equally distributed in screenspace.

10



Figure 3.3: A point P with an estimated screenspace radius rS which projects to an estimated
view-space radius rV . Only Q3 is inside the k-radius-sphere and is therefore considered as
k-nearest-neighbour.

Let rs be the k-radius-estimation in screenspace, and let a be a multiplicative factor to adjust
the k-radius-estimation for the next iteration, such that r′s = rs · a. Assume we have a circular
area A containing V valid points. To receive the new radius we alter that area proportionally to
the number of expected points. Empirically we determined the number of expected points to be
2kmin. The radius for the next iteration r′s is then computed by the following equation.

2kmin
V

A = (a · rs)2π → a =

√
2kmin ·A
V · π

→ r′s = rs ·
√

2kmin ·A
V · π

For a good trade-off between runtime and correctness of the computed k-nearest-neighbour
set we limit the number of iterations to approximate the exact radius. While the approximation
is well suited for areas where the points are equally distributed; the algorithm might produce
visual errors in regions where that is not the case. This is especially true for boundary regions.
We can see some of the produced errors in Figure 5.3.

For our experiments we mostly used a maximum of 3 iterations. Figure 4.1 shows how that
affects the k-nearest-neighbour sets.

If we terminate the iterative search for a point before a suitable radius and a suitable candidate-
set were found respectively, the candidate-set is not optimal. If the radius estimation was too
big, the candidate-set is capped at kmax points. If, on the other hand, the k-radius estimation
was too small, the candidate-set contains less than kmin points.

11



3.6 Final sorting

After determining a set of candidate points along with its distances to the point in question,
we finally determine the k-nearest-neighbour set. To do that we simply sort the points by their
assigned distance, and pick a number of kmin points from the candidate-set. To retrieve the
kmin closest points it is sufficient to partially sort the candidate-set. For this purpose we build a
max-heap [9] with a maximum of kmin elements. Sequentially the biggest element in the heap
is replaced by an element from the candidate-set, and the heap is updated. After all candidates
have been inserted into the heap, we can retrieve the computed kmin nearest-neighbour points
from it.

12



CHAPTER 4
Implementation

4.1 Overview

In this chapter we describe the implementation of the FastKnn algorithm with Nvidia Cuda. In
the particular application FastKnn is utilized to provide input data for a simple splat-rendering
algorithm. Besides Cuda, the demo application also uses the Opengl api for rendering. To share
resources between the two apis we make heavy use of their interoperability capabilities.

FastKnn is split into multiple kernels, which are executed in serial and roughly correspond
to the steps described in Section 3.1. First we upload the point cloud to device memory. The
points are projected, culled and rasterized to a render target. After that we gather the remaining
points and generate an indexing structure for the quad-tree by several Cuda kernels. When the
indexing structure is done, another Cuda kernel packs the points tightly into a buffer in device
memory. The main kernel of the algorithm then estimates the k-nearest-neighbour search radius,
traverses the quad-tree to define a set of candidates, and finally sorts the best matches from the
candidate-set into the knn-set. All used kernels run one thread per pixel on the render-target.

4.2 Projection to Screenspace

The point data is present in host memory, and is uploaded to device memory into an Opengl
Vertexbuffer. Our test implementation does not dynamically change point cloud data, but is per-
fectly suitable for constantly renewed data that is uploaded. The first step in the algorithm is
to project all input points to screenspace. An Opengl Shader for perspective projection renders
the input points to floating point texture attachments in the frame-buffer. We store the trans-
formed view-space position into a separate texture, and bind the Opengl Texture also to a Cuda
texture reference, to make it available for access from Cuda kernels. Initially we followed the
idea to implement the point projection also as a Cuda kernel. But the synchronization cost for
an emulated Z-Buffer was too high. Because of that we use Opengl shaders for the screenspace
projection step.

13



4.3 Quadtree Layout and Construction

To be able to access neighbouring points in screenspace very fast, we sort the projected points
into a Quadtree data structure. For caching reasons it is beneficial to have spatially close points
packed densely in memory. Please consider Figure 3.2 again, which illustrates how we align the
points in memory.

To be able to maintain a pointer-less quad-tree data structure several memory buffers are
used as outlined as below. Depending on their use these buffers are allocated with the size of
the number of nodes in a full quad-tree q or the number of pixels in the view-port of size l. A
view-port of l = 4 · 4 pixels would therefore result in a buffer size of q = 4·l−1

3 = 4·42−1
3 = 21

nodes.

• NumBuffer[q] : uint32
Stores for each quad-tree node the number of points it contains. It corresponds to the
illustration in Figure 3.1. The first l points represent the point numbers of leafs in the
quad-tree. Points from index l to l + l

4 represent the point numbers of one level higher
into the tree, and so on.

• IndexBuffer[q] : uint32
Contains the starting memory index of the points for a node in the PackedQuadtree buffer.
See Figure 3.2 for an illustration. The IndexBuffer follows the same indexing scheme as
the NumBuffer.

• PackedQuadtree[l] : 3xfloat32
Stores the view-space positions of occupied pixels packed densely in Z-Order.

• PackedQuadtreeCoordinates[l] : uint32
Contains the (x, y) pixel coordinate of a point in the PackedQuadtree buffer.

The first construction step is to fill the NumBuffer. The buffer is initialized with zeros. A
Cuda kernel fills the leaf-level of the NumBuffer with ones where a pixel is present. The in-
formation from the leaf-level is then propagated through one kernel run per quad-tree level for
all other quad-tree levels. Each thread in a kernel run sums up the point numbers of the four
sub-nodes and sets the point number of one quad-tree node.

14



Algorithm 2 Compute number of points in each quad-tree node
1: procedure PROPAGATENUMS

2: Mark occupied pixels in the NumBuffer with 1’s
3: for all Quadtree levels from leaf level+1 to root level do
4: for all nodes in level (in parallel) do
5: sum = 0
6: sum += NumBuffer(child0)
7: sum += NumBuffer(child1)
8: sum += NumBuffer(child2)
9: sum += NumBuffer(child3)

10: NumBuffer(node) = sum
11: end for
12: end for
13: end procedure

Similar we run again one kernel for each quad-tree level which computes the starting mem-
ory index of each node, and store it in the IndexBuffer. Since the PackedQuadtree buffer is
arranged in Z-Order, also the IndexBuffer follows that scheme. The upper left child-node is
the first node in the said iteration order. Therefore the starting address of the first sub-node is
equal to the starting address of the node itself. The starting address of the second sub-node is
computed by adding the number of nodes in the first sub-node to the starting address of the node
itself. See Algorithm 4.3 for the full computation scheme.

Algorithm 3 Compute number of points in each quad-tree node
1: procedure COMPUTEINDICES

2: for all Quadtree levels from root level to leaf level+1 do
3: for all nodes in level (in parallel) do
4: IndexBuffer(child0) = IndexBuffer(node)
5: IndexBuffer(child1) = IndexBuffer(child0) + NumBuffer(child0)
6: IndexBuffer(child2) = IndexBuffer(child1) + NumBuffer(child1)
7: IndexBuffer(child3) = IndexBuffer(child2) + NumBuffer(child2)
8: end for
9: end for

10: end procedure

Now that the NumBuffer and IndexBuffer are both filled with data, we are able to find
the memory offset of a quad-tree node in the PackedQuadtree array. To complete the quad-
tree construction we are going to copy the transformed points from the render-target to the
PackedQuadtree buffer. This is possible because the leaf-level of the IndexBuffer corresponds
to the render-target. For each pixel position in the render-target we look up the same position in
the IndexBuffer to get the destination address. We also lookup the view-space position of that
pixel and write it to that destination address. Additionally we also store the (x, y) coordinates

15



of a pixel in the PackedQuadtreeCoordinates buffer, to track the origin of a point in the packed
buffer.

4.4 k-Radius Estimation

Computing the k-radius-estimation is the first step in determining the k-nearest-neighbour set
for each point in screenspace. Section 3.4 already briefly mentioned the strategy to determine
an estimated search radius. We are using the number of points contained in the quad-tree nodes
as an estimate for the point density in a local region of the quad-tree. Starting at the leaf-
node, which represents a pixel, we successively traverse through the parent caquad-tree nodes
towards the root-node. Moving up the hierarchy we check at each node if we already reached
the minimum number of needed points, to form a k-nearest-neighbour set.

Since we actually only need kmin points and the nodes covered area is usually not fully
covered by points, we scale the node-area radius appropriately. Section 3.4 already shows in
detail how to computethe radius.

4.5 Quadtree Traversal

Given the k-radius-estimation we now have to collect the points lying inside that estimated
radius. The quad-tree data structure enables us to search through the data set quickly. We
start the tree traversal at the root-node, and successively move through child-nodes towards the
leaves. To know which nodes to traverse further, and which nodes we can safely reject, the k-
radius-estimation is estimated by a bounding box. If the bounding box of a node intersects the
k-radius-estimation bounding box, we follow that node, otherwise it is rejected. If the viewed
node is a leaf-node, we compute its distance to the current query point, and store the distance
and point index in an array in local memory with a maximum capacity of kmax elements. Since
the target number of points while finding the k-radius-estimation was kmin, we hope to find a
number of kmin to kmax points inside the search radius. This is of course not always the case, a
solution to the problem is further discussed in Section 4.6.

Common quad-tree structures are mostly built of pointers referring from one node to its
children. However, we have laid out our data-structure in a more beneficial way which lets one
find the starting memory index of a node, and read out all of its contained nodes in sequence.
As with a pointer-based data structure, it is simple to move from one node to its children. Recall
the structure of the Index- and NumBuffer in Figure 3.2 and Figure 3.1 respectively. Given
the (x, y) coordinates of any node, and its quad-tree level e, we are able to compute its index
in the Index- and NumBuffer. For the root-node e is 0, and increases while moving towards
the leaf-level. From the quad-tree level e we can determine the number of nodes in a quad-
tree level 22e = 2 << e. First we determine the index-offset ioff for the observed quad-tree
level e. Section 4.3 explained already how to do that. The index itself is then computed by
ioff + x · (1 << e) + y.

The traversal steps itself are implemented in an iterative fashion, instead of being recursive.
For this purpose a stack is allocated in local memory. This stack contains the level of a node, and
also its (x, y) coordinates which refer to the IndexBuffer. Initially the root node is pushed onto

16



the stack. Each processed node is first popped off the stack. Then its four sub-nodes are tested
against the bounding-box containing the estimated radius. If the bounding boxes intersect, the
sub-node is pushed on the stack, otherwise it is ignored.

In practice we do not traverse to the leaf-level of the quad-tree, because this would be too
computationally heavy. Instead we terminate the traversal at a specifically set level before reach-
ing the leaf-level. In our implementation the minimal size of nodes being traversed is 8x8, so if
a node of size 4x4 is hit, all of its points get processed directly. We simply iterate over all points
inside that quad-tree node, which can be received from indexing the PackedQuadtree buffer as
described before.

4.6 Iterative Radius Optimization

Traversing the quad-tree with a given radius estimate gives us a candidate-set of points, which
is, at least approximately, a super set of the k-nearest-neighbour set. We expect a set of size
kmin to kmax points. If we do not receive a set of the expected size, our estimated radius was
erroneous. In that case the radius estimation is slightly adapted, and we repeat the quad-tree
traversal process as a whole. A set of size 2 · kmin is the target, because of that we are scaling
the radius estimation by a factor of

√
2·kmin

|candidateset| .
This process is not guaranteed to converge in a specific number of iterations, but our exper-

iments showed that a maximum of three iterations is already sufficient to have a candidate-set
of the correct size for 99% of all point points. Figure 4.1 shows the percentage of points with a
correctly sized candidate-set after n iterations.

Depending on if the radius estimation was too conservative or too generous, we have two
cases of errors. Depending on the application of FastKnn, we can adjust the algorithm to tend to
rather over- or underestimate the candidate-set. In our testing application the nearest neighbour
points are used for local surface estimation, where a plane is fitted through the knn points to
reconstruct a surface normal. If we get less points in the candidate-set we can still estimate a
surface normal, but it might not be perfectly accurate. In the other case the candidate-set might
have been too big. Since we preallocate the array to store the candidate-set in local memory, it is
not possible to store more than kmax candidate points. The traversing algorithm then terminates
early to save time. In that sense it is very application dependent if we can deal with that kind of
error.

4.7 Sorting and Filtering

After collecting all the possible candidates, the k-nearest-neighbour candidate set contains (for
most cases, as noted before) between kmin and kmax points. We want the k-nearest-neighbour
set to be of size kmin. To obtain such a set we partially sort the candidates through a min-heap,
depending on their squared distance in world space. The used distances have been already com-
puted during the quad-tree traversal step, and reside with the candidate-set itself in local mem-
ory. For performance reasons the heapsort algorithm has been, just like the quad-tree traversal,
implemented in a iterative way. This implementation of the sorting algorithm uses an array in

17



Figure 4.1: For each tested model, the percentage of correctly sized candidate-sets after n
iterations is shown. We observed that three iterations are enough to generate appropriately sized
sets.

local memory to represent the heap. To speed up the sorting even further, a specialized register-
based sorting algorithm is used. Sadly Cuda does not allow to dynamically index register based
arrays. Because of that it is not straight forward possible to implement the heapsort algorithm on
registers only. For the sake of demonstration we implemented the register based heapsort only
for a fixed heap size of 8 elements, and statically typed the tree comparisons in code. This is
very inflexible, but provides a significant improvement in speed. Figure 4.2 shows the compu-
tation times of the sorting algorithm. Whereas for k = 8 the optimized version is depicted. The
optimized version is about 20% faster than the version using a thread local array. Depending on
where the results of FastKnn are needed, the output can be stored in local or global device mem-
ory. This might be a limitation for algorithms needing a dynamic range of different k values.
However, if the parameter range for k is known a code generator would be able generate all the
needed function implementations.

18



Figure 4.2: Computation times for increasing numbers of k-nearest-neighbours. For k = 8 a
specialized register based implementation was used. It shows a 20% faster sorting step compared
to the general solution.

19





CHAPTER 5
Analysis

5.1 Analysis

In this section we compare the FastKNN and Autosplats [8] algorithms in terms of speed and
accuracy. To do a fair comparison, the Autosplats pipeline has been integrated into our render-
ing pipeline, and acts there as an alternative rendering path. This enables us to obtain detailed
timings for all stages of the algorithms. We also utilize the Autosplats pipeline for the final
point splatting. Since the FastKNN and the Autosplats algorithm, are only approximative solu-
tions, we compare their results to an exact solution. This exact k-nearest-neighbour solution is
computed by a kd-tree implementation on the CPU. All shown results have been computed on a
Geforce GTX970, which was a mid- to high-end consumer graphics card in 2015.

Speed

In terms of speed FastKNN is able to compute the k-nearest-neighbour sets in about half of the
time compared to the shader-based implementation of Autosplats. Dependent on the scene the
projection step can take a significant amount of time, to project visible points, and eliminate
invisible points. Through the interoperability between Cuda and Opengl resource, only little
overhead is added to the overall time. Figure 5.1 shows the computation speeds for one frame
for a variety of input pointclouds.

Accuracy

Since the resulting k-nearest-neighbour sets are only approximative solutions we analyzed the
correctness of the computed sets, compared to an exact solution computed by a kd-tree computed
on the CPU. The culling step at the beginning of the pipeline already removes many points.
This helps to make the algorithm more efficient, but also creates problematic cases especially
in boundary regions of a model, where the normal vectors are close to perpendicular to the
image plane. In this comparison we compute the correctness of the knn-sets after they had

21



Figure 5.1: Total computation time for one frame in FastKNN (right) compared to the rendering
time of Autosplats (left). Whereas the time needed for projection and splatting match the times
of Autosplats, FastKNN computes the k-nearest-neighbour sets significantly faster. For all tests
FastKNN is capped at 3 iterations.

been projected to screen. This removes the errors produced by the projection, but enables us to
measure the errors produced by the search radius estimation and point gathering steps. Figure 5.2
shows the number of correct points after a number of k = 8 iterations. Figure 5.4 and 5.5 also
show a visual comparison of normal qualities for Autosplats and FastKNN compared to an exact
solution. To visualize the normal error, false-color rendered splat ellipses as follows: Dark blue
areas show no error, green areas indicate an error of up to 22.5 degrees, and red areas show
errors above that. Especially high-frequency surface regions, and regions with normals close
to being perpendicular to the image plane appear to be problematic. Table 4 shows mean and
standard deviation for FastKNN and Autosplats for different models. We again observe very
similar results in terms of quality, while FastKNN is always slightly ahead.

22



Figure 5.2: The percentage of completely correct k-nearest-neighbour sets compared to an exact
solution is shown after one, two, and three iterations. The colours indicate the absolute number
of correct nearest neighbours for a given percentage. For comparison also the render times are
shown on the bottom.

23



Normal consistency

Especially for the case of surface reconstruction, we have observed the problem of surface con-
sistency. Relative to the model, the estimated normal of the surface should be always identical.
FastKNN computes the k-nearest-neighbour set only approximatively. This means that the k-
nearest-neighbour set can slightly differ depending on the viewing angle and distance of the
camera. While the shown normal estimation errors are usually low, and do not harm the vi-
sual quality much, scene transformations over time affect the temporal coherence. While trans-
forming the scene the k-nearest-neighbour sets for points can change due to the approximative
computation, and further produce a different normal vector estimation. While static errors for
surface normals are not easily seen, change of normals over time tend to be much more visible.
Figure 5.3 shows the differences in two slightly transformed frames.

24



Figure 5.3: Scene transformations over time can reveal inconsistencies in the computed surface
normals. The two images are taken at slightly different angles. Pay attention especially to
the surface boundaries, where normal estimation errors tend to appear. These errors are not
consistent over different transformations, and might be perceived as visual flickering artefacts.

25



Figure 5.4: Comparision of normal quality between Autosplats (left), and FastKNN (right).
Dark blue areas show no error, green areas indicate an error of up to 22.5 degrees, and red areas
show errors above that.

26



Figure 5.5: Figure 5.4 continued. Autosplats above, FastKNN below. FastKNN produces a
similar visual quality compared to Autosplats. Especially for the dragon model, Autosplats
generates many errors along the boundary, whereas FastKNN remains stable.

27



5.2 Conclusion

This paper showed how the GPU can be utilized to parallelize the k-nearest-neighbour prob-
lem for general unstructured pointclouds. While a very similar approach has been taken by
Autosplats before, our mostly GPGPU based solution shows great improvements in terms of
computation speed on consumer graphics hardware. Especially laser-scanners produce massive
amounts of data which are usually difficult to render in real-time. FastKNN enables processing
of such datasets without further preprocessing. However, the algorithm is limited by the scene
size in the sense that all points need to be projected initially into screen-space. By this we elim-
inate unseen points why would project to the same pixel position. Future work could mitigate
this problem by working with multiple layers of depth buffers to store the front most n pixels.

The FastKNN approach solves the k-nearest-neighbour only approximative. Depending on
the application for FastKNN this might be suitable or not. In our implementation of FastKNN
we have shown that surface estimation for splatting is a possible application of the algorithm.
While the surface representations are not exact, the rendering speed is very high. This could be
utilized for interactive previews and editing operations in future.

Finally we can say FastKNN is a competitive algorithm in terms of quality, and outperforms
previous algorithms in terms of speed.

28



Appendix

Appendix A: Tables for Figures

Algorithm Model Total [ms] Knn [ms] Projection [ms] SplatVBO [ms] Splatting [ms]
Autosplats Armadillo 15.50 10.69 1.09 0.77 2.93
FastKNN 9.27 4.62 1.08 0.64 2.91
Autosplats Bunny 7.15 4.59 0.27 0.20 2.07
FastKNN 3.76 1.45 0.25 0.09 1.94
Autosplats Dragon 19.78 13.33 2.22 1.35 2.87
FastKNN 14.37 6.56 2.58 1.78 3.44
Autosplats Buddah 23.93 18.06 1.72 1.26 2.88
FastKNN 16.61 9.95 1.98 1.52 3.13
Autosplats Model006 18.87 13.83 0.38 1.06 3.58
FastKNN 12.19 6.72 0.46 0.97 4.01
Autosplats Gnome 12.09 8.76 0.55 0.58 2.18
FastKNN 7.56 4.36 0.56 0.59 2.04

Table 1: Rendering times for different models. Data for Figure 5.1

29



k Time [ms]
3 5.2
4 5.8
5 6.3
6 6.75
7 7.3
8 6.3
9 8.95
10 9.55
11 9.5
12 10.55
13 11
14 12.25
15 13.65
16 15.25

Table 2: Computation time for increasing k-nearest-neighbours. Data for Figure 4.2.

# Dragon Armadillo Bunny
1 2 3 1 2 3 1 2 3

0 0.0410 0.0032 0.0001 0.1600 0.0014 0.0000 0.1200 0.0021 0.0000
1 0.0037 0.0006 1.4e-5 0.0210 0.0003 0.0000 0.0068 9.7e-5 0.0000
2 0.0022 0.0003 3.8e-5 0.0062 0.0002 0.0000 0.0042 0.0002 0.0000
3 0.0017 0.0002 3.4e-5 0.0020 0.0003 2.5e-5 0.0027 0.0002 0.0000
4 0.0021 0.0002 0.0002 0.0007 0.0002 0.0001 0.0007 9.7e-5 0.0000
5 0.0041 0.0021 0.0021 0.0004 0.0011 0.0011 9.7e-5 0.0003 0.0003
6 0.0240 0.0250 0.0250 0.0021 0.0053 0.0054 0.0011 0.0028 0.0029
7 0.1200 0.1200 0.1200 0.0130 0.0300 0.0300 0.0110 0.0160 0.0160
8 0.8000 0.8500 0.8500 0.7900 0.9600 0.9600 0.8500 0.9800 0.9800

Table 3: Fraction per correct number of nearest neighbours. Data for Figure 5.2

30



Algorithm Model Mean Stdev
FastKNN Armadillo 8.62 6.51
Autosplats 8.74 6.97
FastKNN Bunny 9.86 8.67
Autosplats 9.81 8.76
FastKNN Dragon 4.20 4.35
Autosplats 4.52 5.60
FastKNN Buddah 6.43 7.86
Autosplats 6.72 9.19
FastKNN Model006 1.22 2.94
Autosplats 6.28 17.57
FastKNN Gnome 6.66 7.42
Autosplats 6.95 11.05

Table 4: Comparison of mean and standard deviation of the normal errors per pixel for different
models.

31





Bibliography

[1] Alvaro Collet, Ming Chuang, Pat Sweeney, Don Gillett, Dennis Evseev, David Calabrese,
Hugues Hoppe, Adam Kirk, and Steve Sullivan. High-quality streamable free-viewpoint
video. ACM Transactions on Graphics (TOG), 34(4):69, 2015.

[2] Michael Connor and Piyush Kumar. Fast construction of k-nearest neighbor graphs for
point clouds. Visualization and Computer Graphics, IEEE Transactions on, 16(4):599–
608, 2010.

[3] Thomas M Cover and Peter E Hart. Nearest neighbor pattern classification. Information
Theory, IEEE Transactions on, 13(1):21–27, 1967.

[4] Vincent Garcia, Eric Debreuve, and Michel Barlaud. Fast k nearest neighbor search using
gpu. In Computer Vision and Pattern Recognition Workshops, 2008. CVPRW’08. IEEE
Computer Society Conference on, pages 1–6. IEEE, 2008.

[5] David Kirk et al. Nvidia cuda software and gpu parallel computing architecture. In ISMM,
volume 7, pages 103–104, 2007.

[6] Guy M Morton. A computer oriented geodetic data base and a new technique in file
sequencing. International Business Machines Company, 1966.

[7] VB Nikam and BB Meshram. Parallel knn on gpu architecture using opencl. Int. J. Res.
Eng. Technol, 3:367–372, 2014.

[8] Michael Wimmer Reinhold Preiner, Stefan Jeschke. Auto Splats: Dynamic Point Cloud
Visualization on the GPU. IEEE CS Press, 2012.

[9] John William Joseph Williams. Algorithm-232-heapsort, 1964.

[10] Kun Zhou, Qiming Hou, Rui Wang, and Baining Guo. Real-time kd-tree construction on
graphics hardware. ACM Transactions on Graphics (TOG), 27(5):126, 2008.

33


	List of Figures
	Introduction
	Problem
	Method

	State of the art
	Methodology
	Overview
	Screenspace Transformation
	Quadtree construction
	K-Radius estimation
	Candidate search
	Final sorting

	Implementation
	Overview
	Projection to Screenspace
	Quadtree Layout and Construction
	k-Radius Estimation
	Quadtree Traversal
	Iterative Radius Optimization
	Sorting and Filtering

	Analysis
	Analysis
	Conclusion

	Appendix
	Appendix A: Tables for Figures

	Bibliography

