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Abstract. Accurate segmentation and quantification of brain white mat-
ter hyperintensities (WMHs) is important for prognosis and disease mon-
itoring. Conventional WMH segmentation techniques employ classifiers,
trained on T1 and FLAIR weighted MR images. Yet, there are indica-
tions that including features derived from diffusion weighted MRI, can
improve classification. However, many features can be computed and
feature selection is needed. Selecting adequate features is critical for the
performance of WMH classification, but automated approaches might
still be sub-optimal. In this work, we propose a novel pipeline for the
interactive selection of optimal features for WMH classification, which
involves the user in the process. A Visual Analytics (VA) system is em-
ployed to exploit the user’s cognitive skills and interactively identify the
most important features (T1, FLAIR, MD, and RD; and secondarily CS

and FA). Then, these features are used to train a classifier and its results
are compared to the state-of-the-art. Finally, the VA is used to evaluate
and provide insight into the classifier performance and results.

Keywords: White Matter Hyperintensities (WMHs), Visual Analytics
(VA), Classification, Interactive Feature Selection

1 Introduction

White matter hyperintensities of presumed vascular origin (WMHs) are a com-
mon finding in conventional MR images of elderly subjects. They are a manifes-
tation of cerebral small vessel disease (SVD) and can be associated with cognitive
decline and dementia [1, 2]. Accurate segmentation and quantification of WMHs
is needed for prognosis and disease monitoring. To this end, automated WMH
classification techniques have been developed [3–5]. Conventional approaches in-
clude raw image intensities from T1 and FLAIR weighted MR images, but it is
suggested that diffusion MRI can be beneficial for more accurate WMHs seg-
mentation [6, 7]. However, diffusion MRI can provide many features, and feature
selection is required. Recent approaches indicate that careful feature selection is
more important than the actual classification algorithm [8].

In this work, we propose a novel user-driven, interactive pipeline for identify-
ing an optimal feature list for WMH segmentation. Up to now, expert users have
not been involved in the process of feature selection. However, taking advantage
of their knowledge and skills can potentially outperform automated approaches.
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For this reason, we employ a Visual Analytics (VA) system, where the users
can interactively identify the most important features, which are different than
the ones obtained automatically, in previous literature. Then, this feature list
is used to train a classifier for WMH segmentation, achieving better or similar
results than approaches with automatic feature extraction; however, requiring
less scanning time and computations. Finally, the VA system is used again to
evaluate and to provide understanding on the performance and results of the
classifier.

2 Related Work

Visual Analytics (VA) refers to the field that combines in an interactive way,
visualizations with pattern recognition, data mining and statistics, focusing on
aiding exploration and analytical reasoning [9]. In the past, several VA systems
have been proposed for the exploration of feature spaces, among which Xmdv-
Tool [10] and SimVis [11]. These approaches employ projections to visualize high-
dimensional feature spaces, in combination with other visualization techniques,
to explore the feature space of the data. Recently, more interactive approaches
for the exploration of large multi-field medical data have emerged [12–14]. Some
of these could partially aid the detection of WMHs, while others could partially
allow us to explore the respective feature space of imaging modalities that can
discriminate between WMHs and healthy tissue. Yet, none of these applications
can support all required functionalities, together with an interactive validation
with ground truth data. A recent system, proposed by Raidou et al. [15] fulfills
these requirements. It was designed to tackle intra-tumor characterization, by
employing as central view, a t-Distributed Stochastic Neighborhood Embedding
[16] of the imaging-derived features, used in tumor diagnosis. It consists of multi-
ple interactive views for the exploration and analysis of the underlying structure
of the feature space, providing linking to anatomy and ground truth data. The
application for this system is different, but the concept is similar and we adopt
it into our pipeline. To the best of our knowledge, involving VA and users in
selecting features for WMHs classifiers has not been addressed before.

3 Materials & Method

3.1 Subjects and MRI

We used the subjects of the MRBrainS13 challenge [17], with additional man-
ual WMH delineations. Subjects included patients with diabetes and matched
controls (men: 10, age: 71±4 y). All subjects underwent a standardized 3 T MR
exam, including a 3D T1-weighted, a multi-slice FLAIR, a multi-slice IR, and a
single-shot EPI DTI sequence with 45 directions. All sequences were aligned with
the FLAIR sequence [18]. The diffusion images were corrected for subject mo-
tion, eddy current induced geometric distortions [19], and EPI distortions [20],
including the required B-matrix adjustments [21], using ExploreDTI [22]. These



Employing Visual Analytics to Aid the Design of WMH Classifiers 3

 

Subject Data VA Feature Selection Classification Evaluation 

Fig. 1. The pipeline proposed for the user-driven, interactive feature selection.

subjects were previously reported in a study of Kuijf et al. [7] for the investiga-
tion of the added value of diffusion features in a WMH classifier. We obtained
this exact dataset, including the T1, FLAIR, IR images, and the diffusion fea-
tures FA, MD, axial (AD) and radial (RD) diffusivity, the Westin measures CL,
CP , CS [23], and the MNI152-normalized spatial coordinates [3, 7, 18, 24], and
we will compare to their results.

3.2 Method

We propose a pipeline for user-driven, interactive selection of features that can
be used in a classifier to differentiate between WMH and healthy brain tissue.
Our pipeline consists of three steps, depicted in Figure 1. First, the data are
explored and analyzed in the VA system proposed by Raidou et al. [15]. From
this step, we obtain an optimal list of features for WMH detection, which is used
to train a classifier. After classification, the VA system is used again to evaluate
and provide a better understanding of the classification process and outcomes.

The adopted VA system [15] is employed to interactively explore the subject
data (Figure 2). To easily visualize the otherwise complex high-dimensional fea-
ture space of imaging features of each subject, the VA system requires the use
of dimensionality reduction. t-Distributed Stochastic Neighbor Embedding (t-
SNE) [16] is used to map the high-dimensional feature space into a reduced 2D
abstract embedding view, preserving the local structure of the initial space. This
2D embedding view is the central view of the system (Figure 2-ii), where close-
by 2D data points reflect voxels with similar behavior in the high-dimensional
feature space. Therefore, anatomical structures with similar high-dimensional
features are expected to be grouped together in the embedding, in so-called vi-
sual clusters. These can be possibly divided in several clusters, also due to the
nature of t-SNE. Additionally, the system incorporates anatomical views (Fig-
ure 2-i), where bi-directional linking, i.e., association, of the feature space to
subject anatomy is possible. Ground truth data, i.e., manual delineations, can
be reflected on the embedding view, to identify the visual cluster in the em-
bedding map that contains most of the WMHs. Then, the visual cluster can be
interactively selected and its intrinsic feature characteristics can be explored;
for example, against (other structures of) the brain, or against WMHs voxels
that are not in the selected visual cluster. Several linked views (Figure 2-iii) are
interactively updated when the user selects one or more visual clusters in the
embedding and depict complementary data information. This includes feature
distributions and correlations, multidimensional data patterns, cluster validity
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Fig. 2. The adopted VA system [15] during the exploration of the data of a subject
from the MRBrainS13 challenge [17]. The three components of the system are denoted.

analysis and information on features that help separating visual clusters from
each other, as given by the weights of the separation vector of Linear Discrim-
inant Analysis (LDA). In this way, new aspects of the data are interactively
discovered and features suitable for the detection of WMHs are identified.

The list of features resulting from the VA system is used to train a k-nearest-
neighbor classifier for WMH segmentation, following the approach of Kuijf et
al. [7]. For each set of features, six classifiers are trained with k = 50, 75, or
100, and the neighbor-weighted being either uniform or distance-based. After
classification, the results need to be evaluated and understood. In many cases,
classifiers are treated as black boxes and the process is limited to trial-and-error,
without actual insight on the achieved result. To tackle this, we import the results
of the classification into the VA system for additional interactive exploration.

4 Results

Initially, we performed for each one of the subjects a t-SNE with all the features
described in Section 3.1, excluding the spatial coordinates. The ground truth,
i.e., the manual delineations of WMHs, was initially used in the VA system,
to determine whether the voxels of the WMHs form visual clusters, i.e., share
similar imaging characteristics. In most of t-SNE embeddings of the subjects,
the majority of voxels of the WMHs are grouped together, in one or two visual
clusters. From selecting these visual clusters, we could identify that, for cases
with two visual clusters, these either correspond to the core and the periphery,
or to anterior and posterior WMHs. For large WMHs (top 50%), the visual clus-
ters of the embedding identify 84-98% of the structures. For the rest, the visual
clusters can at least detect the core, with a minimum detection percentage of
54%. The multiple interactive linked views of the VA system show that there
are comparable behaviors within all cases of visual clusters, especially for larger
WMH structures. The cluster analysis view provided information about the sep-
aration vector, resulting from LDA between the visual cluster containing most
of WMHs and the visual cluster of the rest of the brain. This vector represents
the optimal combination of features that is capable of discriminating the two
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Fig. 3. Results for all subjects: the list of most important features, as resulting from
the weights (showed per row, with the color encoding) of the separation vector of the
LDA, performed for the detected visual clusters of WMH voxels against the rest of the
brain. It is the set of MD, RD, T1 and FLAIR (and then, CS and FA).

visual clusters from each other. In all, but three cases, the vectors of separation
were comparable (Figure 3): T1, FLAIR, RD and MD are important, as they
have a considerable weight in the vector of separation. For bigger WMHs, CS

and FA also become important. The contribution of other features such as AD,
CL, CP and IR is not significant. Taking into account the relations between dif-
fusion metrics, we decided on the optimal set of features for the classifier: MD,
RD, T1 and FLAIR (and, secondarily, CS and FA). Here, we added the spatial
coordinates to better represent the brain volume and to suppress non-WMHs.

Based on the results of the VA system, the following six combinations of
feature sets si ∈ S were chosen for the classifier: s1: FLAIR, RD, MD ; s2: s1+
T1 ; s3: s2+ x, y, z ; s4: s1+ FA, CS ; s5: s4+ T1 ; s6: s5+ x, y, z. For each
classifier trained on a feature set si ∈ S, the reported results in Table 1 are the
mean± sd. These results are compared to the traditional feature sets fi ∈ F used
by Kuijf et al. [7]: f1: T1, IR, FLAIR ; f2: f1+ x, y, z ; f3: f1+ FA, MD ; f4:
f2+ FA, MD ; f5: f4+ CL, CP , CS , AD, RD. A guided selection of features with
the VA system can achieve similar or slightly better performance than the näıve
selection of traditional features. The two best performing feature sets of Kuijf et
al. [7] used 8 (f4) and 13 (f5) features respectively, while the current two best
methods (s3 and s6) use 5 and 8 features, respectively, with comparable results.
The VA system led us to discard CL, CP , AD and IR, which do not contribute
in the classification; hereby, saving scanning and also computational time.

To evaluate the classification outcome, we introduce the results of the two
best performing classifiers, s3 and s6, into the VA system. This can help us
explore and analyze the parts of the WMHs that are missed, but also to under-
stand better how classifiers work and how they can be improved. From an initial
inspection, it results that classifier s3 is restricted to the core of the WMHs,
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Table 1. Sensitivity and Dice similarity coefficient (SI) (higher is better) for the clas-
sifiers trained on combinations of features fi ∈ F (light) and si ∈ S (right).

F Sensitivity (%) Dice SI S Sensitivity (%) Dice SI

f1 59.7 ± 0.2 0.349 ± 0.001 s1 58.2 ± 0.4 0.434 ± 0.004
f2 73.4 ± 0.4 0.536 ± 0.005 s2 64.8 ± 0.2 0.460 ± 0.003
f3 67.8 ± 0.3 0.411 ± 0.003 s3 76.2 ± 0.4 0.560 ± 0.005
f4 77.2 ± 0.4 0.565 ± 0.004 s4 61.2 ± 0.2 0.446 ± 0.003
f5 75.2 ± 0.6 0.561 ± 0.003 s5 66.3 ± 0.2 0.471 ± 0.004

s6 76.6 ± 0.5 0.576 ± 0.004

while s6 detects an extension of it. The WMH core is always detected by both
classifiers, as it has consistent imaging characteristics and is well-clustered in
the t-SNE embeddings. In subjects with bigger WMHs, s6 misses only small or
thin structures and part of the periphery. In subjects with smaller WMHs, there
is a tendency to miss periphery parts and posterior structures more often than
the anterior. For bigger WMHs, the core differs in T1, MD, RD with the missed
structures. Also, the latter are not as good clustered as the core, in the t-SNE
embeddings, i.e., they are probably not coherent in their imaging characteristics.
As WMHs become smaller, the influence of T1 becomes less strong, while MD
and RD seem to become more important. The classifiers had a low performance
for one subject (ID: 8), where all posterior WMHs were missed. The VA system
showed that the anterior and posterior WMHs of this subject differ mainly due
to MD and RD. Yet, the directional gradients might also be of influence.

5 Discussion & Conclusions

We proposed a user-driven pipeline for aiding the design of classifiers focusing on
WMHs segmentation. Firstly, we identified using VA, the list of features (MD,
RD, T1, FLAIR and secondarily, FA and CS), suitable for the separation of
WMHs, employing the cognitive skills of the user. Then, this list was used in the
classification, with results similar or slightly better than state-of-art approaches.
However, in our case less features are used, making the feature calculation less
computationally intensive and time consuming. For example, we showed that CL,
CP , AD and IR can be removed from the feature list, which also saves valuable
scanning time (IR: 3:49.6 min). Classifier performance can be further improved
by adding additional post-processing to remove false positive detection, which
was not performed here, to be comparable to Kuijf et al. [7]. After classification,
we evaluated the classifier outcome in the VA system, to understand and generate
hypotheses of how it can be improved. The periphery is constantly missed, which
could be an indication about the accuracy of the manual delineations of the
WMHs. Thin and small structures could have been missed due to partial volume
effect, while the directional gradients might be influencing the separation of
posterior or anterior WMHs. For certain subjects, the missed structures have
intrinsically different characteristics. In this case, more features, such as texture
or tensor information, could show if these are indeed different kinds of WMHs or
if the currently employed feature space does not entirely describe these WMHs.
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Our entire pipeline is user-driven, since the user interacts and guides the anal-
ysis. This has the advantage that the cognitive capabilities of the user, which are
not easily automatized in most of the cases, can be included in feature selection.
However, the results are user-dependent and it remains important to analyze the
bias introduced by the user, in such a pipeline. Additionally, our approach can
be applied to other classifiers and applications, where imaging feature selection
is required. Despite t-SNE is widely used [25] for understanding high dimen-
sional data, errors can also be introduced due to its use. Adding more features
for exploration in the VA system, such as textural features or information from
tensors, could give interesting results. However, certain visualizations of the VA
system do not scale well to a high number of features; thus, new visualizations
would be needed to tackle hundreds of features. Finally, evaluating the use of the
pipeline with a user study to define its general usefulness and also to assess the
performance for other application, is another point for future work. Nevertheless,
employing VA in the design of classifiers has potential for better understanding
the data under exploration and for obtaining more insight into classifiers.
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