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Abstract

In radiotherapy, tumors are irradiated with a high dose, while surrounding healthy tissues are spared. To quantify the prob-
ability that a tumor is effectively treated with a given dose, statistical models were built and employed in clinical research.
These are called tumor control probability (TCP) models. Recently, TCP models started incorporating additional information
from imaging modalities. In this way, patient-specific properties of tumor tissues are included, improving the radiobiological
accuracy of models. Yet, the employed imaging modalities are subject to uncertainties with significant impact on the modeling
outcome, while the models are sensitive to a number of parameter assumptions. Currently, uncertainty and parameter sensitivity
are not incorporated in the analysis, due to time and resource constraints. To this end, we propose a visual tool that enables
clinical researchers working on TCP modeling, to explore the information provided by their models, to discover new knowledge
and to confirm or generate hypotheses within their data. Our approach incorporates the following four main components: (1)
It supports the exploration of uncertainty and its effect on TCP models; (2) It facilitates parameter sensitivity analysis to com-
mon assumptions; (3) It enables the identification of inter-patient response variability; (4) It allows starting the analysis from
the desired treatment outcome, to identify treatment strategies that achieve it. We conducted an evaluation with nine clinical
researchers. All participants agreed that the proposed visual tool provides better understanding and new opportunities for the
exploration and analysis of TCP modeling.

Categories and Subject Descriptors (according to ACM CCS): 1.3.8 [Computer Graphics]: Applications—Applications; J.3 [Com-

puter Applications]: Life and Medical Sciences—Life and Medical Sciences

1. Introduction

At some stage, 60% of all men diagnosed with prostate cancer re-
ceive radiotherapy (RT) treatment [DJFBO0S5]. RT aims at irradiat-
ing tumors with a sufficiently high radiation dose, while sparing the
surrounding healthy tissues. Before treatment, a plan is performed,
during which, different treatment strategies can be followed. These
alternatives consider several points, such as dose escalation, uni-
form or non-uniform tumor irradiation, the amount of the received
dose and eventual fractionation of the treatment, i.e., the division
of the total radiation into smaller doses per session over a pe-
riod of time. For the treatment plan, a specific strategy is chosen
among these alternatives, based on clinical experience and guide-
lines. Then, the plan is performed in a planning system, based on
information from imaging acquisitions of the patient, such as Com-
puted Tomography (CT) and Magnetic Resonance Imaging (MRI),
by radiation oncologists and dosimetrists.

Although clinical practice aims at choosing the most effective
RT strategy based on clinical knowledge and guidelines, clinical
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research aims at thoroughly evaluating all possibilities. In this way,
more targeted treatments can be designed and provided to clinical
practice. To simulate and evaluate the effects of a specific strategy,
clinical researchers need Tumor Control Probability (TCP) mod-
els [WNO3].

Conventional TCP models are statistical models that quantify the
probability that a tumor is effectively controlled, i.e., treated, given
a specific radiation dose. In few words, TCP models answer the
question: What is the probability Y that a tumor is treated with
this strategy, given a dose X ? For example, Figure 1 depicts three
different outcomes of a specific TCP model, each from a specific
RT treatment strategy. In this case, by providing a total treatment
dose of 77 Gy, the first strategy (black) results in 88% probabil-
ity of treating the whole tumor, while the other two have a lower
treatment probability response of 63% (red) and 31% (blue).

In the last years, radiation dose can be delivered in a more local-
ized way and clinical research focuses on providing better tailored
tumor treatment. Therefore, patient-specific tissue characteristics
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from imaging modalities started being included in planning. This
has influenced also TCP modeling, where additional per-voxel in-
formation, i.e., properties indicative of tumor characteristics, are
being incorporated [TOGO6]. In this way, clinical researchers can
predict more accurately the tumor treatment probability at a voxel
level, by adding in their statistical models radiobiological informa-
tion, e.g., from Diffusion Weighted (DW) MRI.

So far, several interesting aspects of TCP modeling are not incor-
porated in clinical research, due to complexity, lack of resources
and time constraints. First of all, imaging modalities are subject
to uncertainties with significant impact on the model outcome and
the simulated treatment response [KTH* 10]. Additionally, there are
many different TCP models and different parameter assumptions in
each one of them [WN93,SMB*07]. Usually, these assumptions are
educated guesses, and awareness on the sensitivity of the models is
important. Moreover, TCP modeling is often applied to entire pa-
tient cohorts, to investigate the inter-patient response variability.
This knowledge can help designing more robust treatment strate-
gies. Finally, clinical researchers are interested in exploring and
analyzing their data in a reverse manner: given a target treatment
outcome for a tumor, identify the RT strategy(-ies) to achieve it. In
this paper, we introduce a visual analytics approach to extend the
exploration of TCP modeling, to cover also these topics that are
currently not possible to incorporate in the analysis.

Our contribution is the design and implementation of a visual
tool that enables clinical researchers to explore the information pro-
vided by their TCP models, to discover knowledge and to confirm
or generate hypotheses within their data. As far as we know, there
is no other tool to serve this purpose. Our approach incorporates
the following four main components:

(C1) It supports the quantification and exploration of imaging-
induced uncertainty and its propagation to TCP modeling.

(C2) It facilitates exploring and analyzing the sensitivity of TCP
models to different assumptions and parameter variations.

(C3) It enables identifying and exploring inter-patient response
variability within cohorts.
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Figure 1: An example of the resulting TCP curves for a given dose,
with three different RT treatment strategies.

(C4) It allows, given a targeted treatment outcome, to identify the
treatment strategies or parameters that would achieve it.

2. Clinical Background

In the last years, RT research aims at designing more effective and
better targeted treatments, to be applied in clinical practice. For the
simulation and evaluation of all different treatment strategies, TCP
models are being built [WN93]. Conventional TCP models are usu-
ally regression models that summarize empirical knowledge about
the effect of radiation to tumors and represent the probability that a
tumor is effectively treated with a specific dose [WN93, SMB*07].

To achieve a more targeted treatment, tailored to the patient-
specific tumor tissue characteristics, information from imaging
modalities was recently incorporated to TCP modeling [TOGO06].
In this way, properties indicative of tissue characteristics were in-
cluded to improve the radiobiological accuracy of modeling, at a
voxel-level [TOGO6]. In this work, we employ a novel TCP model
that involves DW-MRI [CMvdHR*16]. This in-vivo imaging tech-
nique measures quantitatively the per-voxel water diffusion, from
apparent diffusion coefficient (ADC) maps, and is employed to
identify high-density tissue like tumors [BJEK* 11].

This ADC-based TCP model is subject to uncertain-
ties [KTH*10], often due to calculation restrictions in the clinical
setting or due to magnetic field inhomogeneities [BJEK*11].
Although we are considering a specific TCP model, uncertainties
are present in all modalities and our proposed approach could be
extended also to them. These uncertainties need to be quantified
and propagated into modeling to identify their effect on the
prediction outcome. More details about the source, quantification
and propagation of uncertainty in the employed TCP model are
discussed in Section 4.

Additionally, all TCP models, including ADC-based ones, incor-
porate a number of different parameter assumptions. For example,
in the explored TCP model, researchers make assumptions for the
amount of dose or fractionation, or when quantifying the per-voxel
cell density from ADC maps, or when selecting values for param-
eters that model the survival or death of tumor cells after irradi-
ation [CMvdHR™*16]. Still, it is not known which choices lead to
better results, or the effect of different alternatives. Thus, the pa-
rameter sensitivity of the model needs to be incorporated in the
analysis. In state-of-the-art clinical research, the ADC-derived un-
certainty and the model sensitivity to parameter assumptions are
not considered yet, as they cannot be explored with the existing
tools. This is further obstructed by the fact that the evaluation and
analysis of TCP models is usually applied to cohorts of patients, to
account for inter-patient response variability.

Finally, the current TCP modeling workflow is based on the
question: What is the probability that a tumor is controlled, given a
specific dose? Yet, clinical researchers have not managed to find an
easy and insightful way to answer the inverse: Which RT delivery
strategy can achieve a specific target treatment?

After an extensive discussion with clinical researchers working
on TCP modeling, we defined together the most relevant open tasks
for their research, which are also summarized in Figure 2:
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Figure 2: The proposed Visual Analytics approach for the Prediction of RT Treatment Response in TCP Modeling. With colors, we denote
the four requirements (T1-T4) described in Section 2, which are our contributions to the workflow employed in clinical research.

(T1) CQuantification and interactive exploration of the ADC-
induced uncertainty and its propagation to TCP modeling.

(T2) Exploration and analysis of the assumption-induced TCP
model sensitivity.

(T3) Identification of inter-patient variability to radiotherapy
treatment response.

(T4) Bi-directional TCP modeling workflow (RT strategy <> Pre-
dicted/desired outcome).

3. Related Work

There are several frameworks that cover topics similar to ours. To
the best of our knowledge, there is none for the exploration of TCP
modeling. In this section, we review the literature, related to the
tasks mentioned in Section 2.

Visualizing Uncertainty. Uncertainty visualization literature is
vast [JS03, BHJ*14]. It can be roughly divided into the follow-
ing main categories: visualizations using visual variables, such
as color [Hen03, GR04], brightness [DKLP02], fuzziness [LV02],
or texture [BWEOS5]; visualizations that adapt the basic geom-
etry to represent uncertainty [GR04, ZWK10] or surrounding
volume [PH11, PRW11, PMW13]; visualizations with additional
graphical variables, such as glyphs [SZB*09, PRJ12,SSSSW13];
and visualizations employing animations [LLPY07]. The selection
or combination of these approaches is not limitless and must be
done in regard to the data, avoiding clutter. In our case, we need to
visualize not only the inherent uncertainty of the imaging data it-
self, but also how it propagates and affects the outcome of the TCP
model. Therefore, several of the previously mentioned approaches
need to be carefully adapted to suit our application.

Analyzing Parameter Sensitivity. Parameter sensitivity is often
connected to forecasting or prediction models. A conceptual frame-
work for parameter sensitivity analysis was presented by Sedlmair
et al. [SHB*14]. Other examples of systems for exploring multi-
dimensional parameter spaces are the Ensemble-Vis [PWB*09],
Noodles [SZD*10], OVis [HMC™* 13, HMZ*14] and the approach
of Berger et al. [BPFG11]. Visualizations for parameter sensitiv-
ity analysis were also proposed for medical applications [BVPR09,
PCR*11, TWSM™*11]. Most of them employ multiple views in an
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interactive environment, where linking and brushing enables ex-
ploration and analysis. Yet, none of these frameworks can be used
directly for our purposes.

Studying Cohorts. In many cases, patients are not analyzed in-
dividually. Previous work in cohort visualization mainly focuses
on the comparative analysis of shape variability [BBP10, SPA™ 14,
HSSK14]. Recently, Steenwijk et al. [SMB*10], Zhang et al.
[ZGP14] and Klemm et al. [KLR*13,KOJL* 14] proposed interac-
tive visual analysis of cohorts that goes also beyond shape analysis.
However, these methods assume that the structure of interest has
spatial correspondence between patients and can be compared after
matching. This is not valid for tumors. In our case, we need to treat
each tumor in the cohort as an entity that we can compare to the rest
- still, considering and visualizing the within-cohort heterogeneity.

Redesigning the workflow. Several visualizations for redesigning
the usual workflow in a specific application field have been pro-
posed [BM10, CLEK13,DPD*15]. Inspired by these strategies, we
adapted their approaches to fit our requirements.

4. Visual Analytics for the Exploration of TCP Models

The proposed visual tool aims at satisfying the specific exploratory
needs of clinical researchers working on TCP modeling, as de-
scribed in Section 2. Our visual tool consists of the four main com-
ponents (T1-T4) of Figure 2.

Quantification and interactive exploration of uncertainty and
its propagation to TCP modeling (T1). The ADC-based TCP
model [CMvdHR*16] aims at incorporating cell density (CD) in-
formation. This is a common measure in tumor tissue character-
ization, referring to the number of tumor cells within a volume.
The first step in the ADC-based TCP model requires the calcula-
tion of CD from ADC values [CMvdHR*16]. There are two main
approaches for this: (i) the sigmoid approach, where a sigmoid
relationship between ADC and CD is established, or (ii) the
Gibbs approach [GPT07], where histopathological information are
used to establish a linear relationship between ADC and CD. Both
of these approaches are affected by uncertainty. In the first case,
only the uncertainty of the ADC is present, while in the second
case, there is an additional uncertainty in the experimental set-
up that was used to determine the relationship between ADC and
CD [GPTO7].
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Uncertainty in ADC maps has been quantified in previous clin-
ical work [GPT07, KTH"10]. However, each institution has a spe-
cific set-up and the uncertainty of quantitative measurements in
scanners is usually obtained through experimentation. Our clinical
partners modeled experimentally this uncertainty, as the probability
that an ADC value m is measured in imaging, given a quantitative
real value, r. This is given by a probability density function p(m|r),
which is a Gaussian distribution with a standard deviation depen-
dent on the real value r. We are interested, though, in quantifying
the probability that the real ADC value r has occurred, given m,
i.e., p(r|m). From Bayes’ rule, we obtain:

p(r)-p(mlr) __ p(r)-p(m|r) )
p(m) Jyp(r) - p(m|r)dr

p(rlm) =

where p(r) is the prior probability of the value r. This is assumed
to be uniform: p(r) = %, where R is the range of possible values.
Since the standard deviation of p(m|r) depends on the value r, the
calculation of p(r|m) is not trivial and was approximated analyti-
cally, using Taylor expansion. It results to be a skewed Gaussian,
dependent on the measured value m. Therefore, in the first case of
CD calculation, where it is modeled as a sigmoid function of the
ADC, the CD uncertainty is given as a function of p(r|m).

In the second approach, Gibbs et al. [GPT07] conducted an ex-
periment where they associated measured ADC values to CD val-
ues, obtained from histopathological slices. These are the data point
samples in Figure 3. By calculating the linear fit (red dotted line in
Figure 3), Gibbs et al. obtained a relationship between ADC and

CD:CD= W. In this empirical approach, the CD values
are obtained from histopathology and, hence, have no uncertainty,
but ADC uncertainty is not included. When ADC uncertainty, i.e.,
p(r|m), is incorporated, the relationship between ADC and CD is
affected. To quantify this, we randomly sample the ADC uncer-
tainty distribution of each data point of Figure 3 and calculate the
resulting fits for 2 million sets of samples. All generated fits can
be seen in Figure 3: with the grayscale colormap, we denote the
probability of each one of the fitted lines, which is calculated by
the product of the probability functions of the data point samples.
White is the least probable and black the most probable. From the
generated fits, we calculate the CD probability function CD(r|m).

The remaining steps of the TCP model are mathematical equa-
tions [CMvdHR*16], which do not include additional uncertainties
and use the CD value as input. Therefore, for the sigmoid approach,
the uncertainty in the TCP model will depend directly on the ADC
uncertainty p(r|m), while for Gibbs, it will depend on the CD un-
certainty CD(r|m).

For the interactive exploration of the uncertainty, our users are
initially interested in having a global overview on the regions of
the prostate that are most subject to ADC and CD uncertainty.
To simultaneously explore the two uncertainties, we employ a 2D
colormap [Bre94]. In this visual representation, we encoded the
per-voxel difference between the most probable real ADC value
r and the measured value m from the acquisition: ADCy;rr =
argmax{p(r|m)} —m (Figure 4). This difference is always positive
and its magnitude depends on the measured ADC values. There-
fore, we decided to map it to the luminance dimension of the col-

ormap (Figure 4). Also, we encoded the per-voxel difference be-
tween the most probable real CD value - after the propagation of the
ADC uncertainty - and the value measured as proposed by the ex-
periment in the literature: CDy;rr = argmax{CD(r|m)} — CDgipps
(Figure 4). This is mapped to a divergent hue dimension of the
colormap, as both positive and negative values are possible. No
transparency is employed in the colormap. Other approaches, such
height fields, were considered, but a discussion with the users
showed that the colormap was easier to understand and use.

In addition to color-encoding, we enable users to probe the
prostate and interactively explore the entire probability density dis-
tributions for the ADC and CD values per voxel (Figure 4). With
this dual visualization, the user has an overview on the uncertainty
- at prostate level - and locally - at voxel level. Finally, when the
user performs TCP modeling, the uncertainty is propagated also to
the model outcome, as described before, and visualized on the re-
sulting TCP curve as a density band (Figure 4, zoomed view).

Exploration and analysis of the assumption-induced TCP
model sensitivity (T2).In this part, we use two main components.
First, the clinical researcher adds a finite number of combinations
of TCP parameter sets, for the calculation of the respective TCP
models. This is consistent with the traditional way of exploration
of TCP modeling, where one or more TCP models are compared
to each other. In this case, each combination of TCP parameter sets
is encoded to the visualizations depicted in Figure 5-left, which we
call pianola plots, inspired by the scrolls used by the musical instru-
ment. In this example, the clinical user has added three parameter
sets, depicted by the three white planes. Each row of a pianola plot
is a parameter. The first parameter cd is the cell density calculation
approach, which is a categorical variable that defines which ap-
proach is used for the calculation of CD. It can either take the value
Gibbs or sigmoid - or more, if available. This is encoded with the

- - - Linear relation ADC-CD from literature
« Dataset from literature experiment
30 X8 — ADC uncert. (skewed Gaussian distrib.)

N
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Cell Density (CD)
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Figure 3: Dataset extracted from the experiment of Gibbs et
al. (blue points), and linear relation between ADC and CD (red
line) [GPTO7], without uncertainty. Incorporating ADC uncer-
tainty results in a set of linear fits (shown with grayscale: dark
denotes higher probability).
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Figure 4: Quantification and interactive exploration of the ADC-induced uncertainty and its effect on TCP modeling (T1).

dot that is located respectively, either in the middle or the end of
the first row. The rest of the parameters are continuous variables,
which can take values between known and pre-defined ranges. For
these, the selected value for each parameter is encoded to the loca-
tion of each one of the scribbled lines. The user can explore also
the effect of varying one or more parameters continuously through
a range. This is denoted with a box instead of a line, the width of
which depicts the range of values. An example for this is depicted
in the second parameter set, for parameter o (Figure 5-left). To in-
tuitively link these sets to the respective TCP curves, the scribbles
of each pianola plot are assigned to a different hue. In this way, the
clinical user can easily detect how much TCP curves are affected
by different parameter choices (Figure 5-right).

With the current workflow, TCP models can be explored only
globally. Although TCP curves can be extracted per voxel, clinical
researchers currently calculate the expected average response of the
whole tumor to a given dose and they only analyze the whole tumor
TCP curve. They are not able to perform a voxel-based exploration,
to detect whether there are specific parts of the tumor that behave
differently than the rest, or to analyze why this happens. To enable
this, we provide a functionality to probe the TCP curve: either (i)
for a TCP value and see the linked required dose per-voxel (Fig-
ure 6), or (11) for a specific dose and see the linked achieved TCP
per-voxel. The latter relates also to task (T4). The linked variable
is encoded with a heated-body colormap on the imaging slices of
the patient, for direct anatomical reference (Figure 6). When the
user has employed several TCP modeling approaches, we visual-
ize also the variability in the respective dose or TCP value, due
to the effect of these alternatives, using a circular glyph encoding
(Figure 6) [BKC*13]. The size of the glyphs denotes the per-voxel
variability and the blue color is chosen to be complementary to the
underlying colormap. The circular glyphs were chosen, as they pre-
serve visibility on the underlying color-encoded values. This design
also helps identifying the relation between values and variability.

(© 2016 The Author(s)
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Identification of inter-patient variability to treatment response
(T3). The exploration and analysis of the performance of a spe-
cific RT strategy is usually evaluated on a cohort of patients. For ex-
ample, it is interesting for clinical researchers to know how much
the per-voxel achieved TCP or the required dose of their patients
varies within a cohort. Within-cohort variability is important as it
can determine whether a treatment strategy is robust or not with
different patients and can aid the design of better treatment strate-
gies. This step is linked to (T2) : the user probes the TCP curve for
either the TCP response or the dose (Figure 6) and, respectively, the
required dose or achieved TCP per-voxel is calculated for the whole
cohort, also for multiple TCP modeling approaches, as described in
(T2) . We provide functionality, with which the users can explore
the distributions of the calculated dose or TCP - or multiple sets of
these from multiple TCP modeling approaches. Subsequently, they
can partition the cohort of patients to identify patients that behave
similarly throughout different TCP modeling approaches.

To illustrate our approach for the partitioning, we employ the
example depicted in Figure 7. Here, distributions of dose have
been calculated for four patients through three different parame-

cd
df | o8

nf 06

aVv |
B/a

% | % B)

Figure 5: Exploration of the parameter-induced TCP model sen-
sitivity (T2), for three different approaches ((D-Q)).
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Figure 6: Probing the model curve at a specific TCP value, to
inspect the required dose per-voxel (heated-body colormap) and
the respective variability (circular glyphs) (T2).

ter settings in TCP modeling. We want to form groups of patients
that have similar response patterns along different parameter set-
tings. For this, we need to cluster the patients based on the spreads,
i.e., the dispersions in each set of distributions. We quantify the
dispersion of each distribution, using the median absolute devi-
ation (MAD), which is a robust measure of dispersion [Rupll]:
MAD = median; (|X; — median;(X;)|). It is described as the median
of the absolute deviations of the distribution data X; from their me-
dian. After calculating all MAD measures of the distributions, we
employ a k-means clustering algorithm on the per patient vectors
of calculated MADs (Figure 7), which was chosen due to simplic-
ity and computational efficiency.

In our approach, the user interactively selects the number of clus-
ters, k. To aid adequate selection of the number of clusters, we em-
ploy an additional cluster analysis view. For this, we use a visu-
alization employed in our previous work [RvdHD*15], where the
goal of the visual cluster analysis view was to help the users decide
whether the visual clusters are well-defined. This is similar to our
present goal and we decided to adopt their strategy in our system.
In this view, every cluster is mapped to a sphere. For each cluster,
we provide internal validity information, i.e., cohesion and separa-
tion [RvdHD™15], but also inter-patient and inter-assumption vari-
ability. Cohesion is a measure of intra-cluster similarity, while sep-
aration is a measure of inter-cluster dissimilarity. For these two
measures, we employ the same encoding as in our previous pa-
per [RvdHD*15] (Figure 7-legend): small and opaque spheres de-
pict high cohesion within a cluster, while large and transparent
spheres depict low cohesion; also, thin arrows depict well-separated
clusters giving the illusion of distance, while thick arrows depict
less separated clusters. The inter-patient and inter-assumption vari-
ability are encoded to the size of the two dimensions of a box, lo-
cated at the core of each sphere (Figure 7-legend). With the cluster
analysis view, the users interactively change the number of clusters,
while following the graphical changes on the glyphs, and decide
the most satisfactory result based on the visual optimization of the
cluster view, depending on the goal. The users interactively parti-
tion the patient cohort inspecting the achieved TCP response, while
at the same time, they can identify how much these sub-cohorts of
patient responses vary. An automatized initial selection of a good
cluster size or number of clusters would be an interesting future
extension.

patient 1 patient 2 patient 3 patient 4
parameter
A A A A
parameter
AN A A A
parameter .
set 3
calculate
MADs
patient 1| patient 2 | patient 3 | patient 4
t
parsaerrier MADy; | MADy | MADy | MADu
parsaer:‘gter MADx | MADy | MADy | MADx
par;r::ter MADs; | MADz | MADss | MADas

patient; = {MADj}, i: # sets, j: # patients

k-means clustering

@ @)

patient 1 patient 3
patient 2

©)

calculate cluster patient 4
validity measures
T Tcoheson o
coherent incoherent

. separation .
—_—

well-separated badly-separated

5%

variability

inter-parameter

Figure 7: Partitioning a patient cohort based on TCP treatment re-
sponse (T3). The cluster analysis view adapted from [RvdHD™ 15]
is used for the visual optimization of clustering.

Bi-directional design of TCP modeling workflow (T4). With
the introduction of (T4), we enable clinical researchers to start
their workflow from the desired outcome, to identify and compare
the strategies that achieve it. For this, the user defines an acceptabil-
ity range for the desired TCP outcome, by sketching it on a canvas
(Figure 8). Then, all the acceptable parameter combinations that
can achieve this are computed, using a brute-force search. The user
is presented with these combinations, using a heatmap matrix (Fig-
ure 8). In this matrix, every column corresponds to an acceptable
combination and every row to one of the parameters. In the last
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Figure 8: Reversing the workflow in TCP modeling (T4).

row, we present also the quantified uncertainty that is introduced
by each one of these combinations, calculated in the same way, as
in (T1). The colormap denotes the range of values for each pa-
rameter. The user can interact with the matrix and threshold values
that are not plausible or interesting for the analysis, or even select
combinations based on their uncertainty (Figure 8). Probing and
linking is employed for the inspection of the TCP curve of each
combination. The functionality of (T4) is expected to open new
ways of exploration and analysis for clinical researchers, as up to
now the workflow was done in one direction. Now, also the inverse
is possible.

Implementation. We implemented the visual tool in Python as a
DeVIDE module [BPO08], using the Visualization Toolkit (VTK),
numpy, scipy, matplotlib and scikit-learn.

5. Results

To assess the value of our visual tool, we performed an evalua-
tion, inspired by the paper of Lam et al. [LBI*12]. The evaluation
was performed with nine domain experts from two clinical institu-
tions. The group of participants included three physicists, five med-
ical physicists and one biomedical engineer. Their field experience
varies from medium (<5 yrs) to very high (>10 yrs). Two of the
participants were actively involved in the design of our tool; both
with a very high level of experience in the field of TCP modeling.

In the first part of the evaluation, all participants were involved.
‘We demonstrated the visual tool, where we showed the main com-
ponents, simulating the visual environment for the exploration and
analysis of a TCP modeling workflow. The evaluation participants
observed the demonstration and were involved in an active discus-
sion about the various visualizations. Then, they completed a ques-
tionnaire.

The second part was conducted only with the two participants in-
volved in the design of the tool and the analysis was performed with
data already familiar to them. For a deeper understanding on the in-
sights that the tool provides, we performed a case study with hands-
on exploration. Each of the four tasks of Section 2 was performed
with the thinking-out-loud method, as the clinical researchers ex-
plained and reasoned on findings in the data. At the end, we asked
them to complete again the same questionnaire as previously, to
see whether their opinion changed or not, after interacting with the
tool.

(© 2016 The Author(s)
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5.1. Evaluation: Interviews

During the interviews, the participants completed a questionnaire.
The first questions were related to the main tasks of Section 2. Each
question required an open answer, but also grading using Likert
scales (1-5) for the perceived effectiveness, efficiency and satisfac-
tion. To avoid compromising the results, we separated in our analy-
sis the two people involved in the design from the other seven. Half
of the tasks were graded higher by the first group and the other half
by the second, but it results that the two groups had comparable
results without significant difference. Also, we separated our anal-
ysis based on level of experience, as it possibly indicates different
user categories, performing different tasks. Again, the results were
comparable among the different groups. All measured variables re-
ceived high scores (Figure 9), with a minimum average grade of
4. Uncertainty (T1) and Sensitivity (T2) received high grades.
Partitioning (T3) received lower grades, but not lower than 3 (Fig-
ure 9). This was explained by the fact that participants wanted to see
additional information on the data, when partitioning their cohorts.
After the case study of the following section, the two participants
involved in the design recompiled the questionnaire. For the effi-
ciency of (T1) and effectiveness of (T3), the grades improved
(Figure 9). This is interesting, as these two participants consist half
of our group with very high experience, who had initially graded
(T3) lower than all the others. This could be an indication that af-
ter hands-on exploration, this task became clearer to them. Overall,
the results between the two rounds are consistently high (Figure 9).

The nine participants were also asked to compare the visual tool
to what they are currently using and to evaluate the overall use-
fulness of our tool. They commented that they currently, "do not
have any other means of analysis, apart from looking at individ-
ual graphs". For them, the framework requires training and a level
of familiarization, but it "removes a significant overhead from the
analysis", giving "important input". More specifically, the uncer-
tainty part (T1) provides "directly understandable and quantita-
tive feedback", while with sensitivity analysis (T2) they can "per-
ceive directly the influence of the dose prescription". For the cohort
partitioning part (T3), there were mixed opinions. According to
the evaluation participants, it "raises a lot of questions about the
subgroups of the cohorts". It could be the "most important clinical
application”, but it should be done also "based on other variables",
or also "for intra-tumor regions". Reversing the workflow (T4)
can have "great potential". All participants agreed that the visual
tool is overall understandable and useful. The strong features of the
visual tool are the ability to perform a voxel-based analysis - espe-
cially, the probing and linking functionality in the TCP curves and
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Figure 9: Schematic representation of the evaluation results, for each one of the tasks of Section 2.
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Figure 10: Results from the case study.

the view on the variability from the different modeling approaches
(T2), as well as the workflow reversing task (T4).Improvement
proposals were mostly related to cohort partitioning (T3).

5.2. Evaluation: Case study

For the case study, ADC data from a cohort of 11 locally advanced
prostate tumor patients was used. The ADC maps were derived with
a b-value of 1000 and have a size of 256 x 256 x 24 voxels and a
resolution of 0.97 x 0.97 x 3.6.

During the task of uncertainty (T1), it was noticed that CD
might be overestimated in literature, as visualized by the dominant
purple color (see Figure 4). Some voxels (green) have been noticed
to be sometimes misdelineations of voxels that belong to the blad-
der or to the urethra. In the rest of cases, like in Figure 4, these are
locations in the prostate that should be checked more thoroughly.
Less uncertainty is expected within tumors, due to lower ADC val-

ues. The effect of the uncertainty on the TCP was also found to
be interesting: it reaches almost 5% of the TCP for the Gibbs ap-
proach (Figure 10-a, purple curve) and 2.5% for the sigmoid ap-
proach (Figure 10-a, orange curve), at D5qq, i.€., the dose required
for achieving 50% control only in the tumor location.

During the exploration of sensitivity (T2), four examples of pa-
rameter sets were explored. The first two are Gibbs approaches with
the same RT strategy, but they differ in the otVar parameter. The
third is a sigmoid approach with the same RT strategy. The last is
an additional Gibbs approach with a range of o between 0.17 and
0.21. In the resulting TCP curve graph, there are indications that the
sigmoid model might predict tumor control with a lower dose, i.e,
the curve is more to the left, than the respective Gibbs (Figure 10-
b). Also, when the atVar, which is a parameter that models intra-
tumor variability is neglected, then the model suffers less from un-
certainty (Figure 10-b). For ranging «, the effect on the TCP is
more prominent. In this case, probing the TCP at 70% shows that

(© 2016 The Author(s)
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a dose ranging between 43 and 82 Gy is required within the tumor
only. The variability between the four models, though, is large for
the whole tumor (Figure 10-b).

For cohort partitioning (T3), after probing the TCP at 70%,
we obtain the dose distributions per patient (Figure 10-c). Patient
8 seems to have a different behavior. His TCP curve (Figure 10-c,
dotted TCP curve) is on the right side of the average curve, which
means that to achieve a 70% TCP, he requires a higher dose, as he is
a patient with a much larger tumor. After interactive clustering, the
visually optimal cluster analysis view is achieved with two clusters,
where patients behave similarly in terms of TCP curves, e.g., the
ones in the blue cluster are all on the right side of the average curve.

In reversing the workflow (T4), patient 8 was explored to check
whether a more satisfying strategy can be identified. A wide range
of acceptable TCP is drawn (Figure 8). More than 200 difterent
combinations are identified, as seen by the columns of the heatmap
matrix. On first sight, it seems that the sigmoid approach (Figure 8 -
heatmap, first row, purple section) may be less sensitive to changes
in parameters than Gibbs (Figure 8 - heatmap, first row, white sec-
tion), as less combinations are computed for the sigmoid. Also, this
approach may suffer less from uncertainty (Figure 8§ - heatmap, last
row), as the range of uncertainties does not go up to the maximum
value of uncertainty (no deep purple). By redefining the accept-
able limits for the parameters and the uncertainty, only 24 different
combinations are preserved (Figure 8). According to the evaluators,

(T4) functionality could be helpful, to determine the suitability of

this patient for a specific therapy. However, for this, no conclusions
can be made, as it would also require the involvement of oncolo-
gists, and a more extensive study. The examined cases are meant
to demonstrate the use of the visual tool; not as an actual analysis
with direct clinical inferences.

6. Conclusions and Future Work

In this work, we proposed a visual tool to enable clinical re-
searchers to explore and analyze different aspects of the TCP mod-
eling workflow. We tackled the quantification and interactive explo-
ration of uncertainty and its propagation to TCP modeling, parame-
ter sensitivity analysis of TCP models, cohort partitioning based on
treatment response and a novel functionality for enabling also a re-
verse workflow. Nine clinical researchers evaluated and confirmed
the usefulness of the visual tool, as it opens new possibilities and
provides access to new insight in the data. We illustrated this also
with a case study. A direction for future work includes improving
the partitioning of the cohorts to enable clustering also based on
other attributes, and also linking to intra-tumor tissue characteris-
tics [RvdHD*15]. In this way, more meaningful inter-patient anal-
ysis can also be performed. The proposed visual tool is a promising
basis for clinical researchers to gain more knowledge on their com-
plex TCP modeling processes, to explore the data from the models
in a more insightful way and to generate and confirm new hypothe-
ses.
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