
Molekuel-Rendering in Unity3D
mit Hilfe von Stylesheets

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Medieninformatik und Visual Computing

eingereicht von

Lukas Prost
Matrikelnummer 1225511

an der Fakultät für Informatik
der Technischen Universität Wien

Betreuung: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Mitwirkung: Dipl.-Ing. Reinhold Preiner

Wien, 5. September 2016
Lukas Prost Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Molecule Rendering in Unity3D
Using Stylesheets

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Media Informatics and Visual Computing

by

Lukas Prost
Registration Number 1225511

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Assistance: Dipl.-Ing. Reinhold Preiner

Vienna, 5th September, 2016
Lukas Prost Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Lukas Prost
Taborstrasse 22/2/34, 1020 Vienna

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 5. September 2016
Lukas Prost

v

Danksagung

Ich würde mich gerne bei meinem Supervisor Reinhold Preiner dafür bedanken, dass
er mich so sehr bei meiner Arbeit unterstützt hat und dafür, dass er mich mit meiner
Arbeit zur CESCG gebracht hat, was ein besonderes Erlebnis für mich war.

Außerdem möchte ich mich bei Philipp Wissgott und Klemens Senn wie auch bei
Matthias Maschek für die Unterstützung im praktischen Teil meiner Arbeit bedanken.

Weiters danke an Michael Wimmer für die Unterstützung.
Ein großer Dank geht ebenfalls an meine Familie für die ganze Unterstützung wä-

rend des Studiums und der Arbeit. Ohne sie hätte ich es nicht geschafft, diese Arbeit
abzuschließen.

vii

Acknowledgements

I want to thank my supervisor Reinhold Preiner for his ordinary support and for bringing
me to CESCG with my thesis, which was a great experience for me.

Moreover, I want to thank Philipp Wissgott, Klemens Senn as well as Matthias
Maschek for their support during the practical part of my thesis.

Also, I would like to hank Michael Wimmer for his support.
Lastly, I want to thank my family for their support. Without them, my studies and

therefore this thesis would not have been possible.

ix

Kurzfassung

Aufgrund der immer weiteren Verbreitung von Smartphones werden sie immer häufiger
in den Unterricht eingebunden. Neben der Verwendung für Recherche Tätigkeiten können
sie dabei auch für komplexere Aufgaben verwendet werden, wie z.B. zur Betrachtung von
Molekülen im Chemie Unterricht.

Der Stil, mit welchem die Moleküle gerendert werden sollen, ist dabei oft schwer
festzulegen und variiert abhängig von der Altersgruppe. Noch schwieriger wird es, wenn
nicht nur für Schüler, sondern auch für z.B. Wissenschaftler ein ansprechender Stil
gefunden werden muss. In solchen Fällen sind oft verschiedene Designs erforderlich. Diese
zu erstellen liegt in der Regel an Designern. Jenen mangelt es jedoch häufig an den
ausreichenden Programmierkenntnissen, um ihre Designs umzusetzen, was dazu führt, dass
sie einen Entwickler für die Umsetzung und Bearbeitung ihrer Designs benötigen. Selbst
wenn es sich dabei nur um kleine Arbeiten handelt. In dieser Arbeit präsentieren wir ein
konfigurierbares System für Rendering Effekte entwickelt mit Unity3D, welches die visuelle
Gestaltung von Molekülen via eines JSON Stylesheets erlaubt. Programmierkenntnisse
werden dabei keine vorausgesetzt.

Wir zeigen die technische Umsetzung verschiedener Rendering Effekte für mobile
Geräte. Das Resultat demonstrieren wir anhand einer kommerziellen Molekül Visualisie-
rungs App, in die wir unser System als Erweiterung eingebaut haben. Dabei erstellen
wir mit unserem System verschiedene Rendering Stile für Moleküle in der App, die für
Schüler, aber auch für Wissenschaftler und Marketing, ansprechend sind.

xi

Abstract

Due to their omnipresence and ease of use, smart phones are getting more and more utilized
as educational instruments for different subjects, for example, visualizing molecules in a
chemistry class.

In domain-specific mobile visualization applications, the choice of the ideal visual-
ization technique of molecules can vary based on the background and age of the target
group, and mostly depends on the choice of a graphical designer. Designers, however,
rarely have sufficient programming skills and require an engineer even for the slightest
adjustment in the required visual appearance. In this thesis we present a configuration
system for rendering effects implemented in Unity3D, that allows to define the visual
appearance of a molecule in a JSON file without the need of programming knowledge.

We discuss the technical realization of different rendering effects on a mobile platform,
and demonstrate our system and its versatility on a commercial chemistry visualization
app, creating different visual styles for molecule renderings that are appealing to students
as well as scientists and advertisement.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

List of Figures xvi

List of Tables xviii

List of Algorithms xix

1 Introduction 1

2 Background and Related Work 3
2.1 Overview . 3
2.2 Molecule Visualization and Related Software 3
2.3 Unity3D . 5
2.4 Ambient Occlusion . 6
2.5 Comic Shading . 9
2.6 Outline Rendering . 10
2.7 Depth of Field Rendering . 13

3 Applying Different Rendering Styles in a Mobile Molecule Visualiza-
tion App 17
3.1 Using Stylesheets for Molecule Rendering 17
3.2 Screen Space Ambient Occlusion . 21
3.3 Comic Shading and Outline Rendering . 25
3.4 Depth of Field . 31

4 Results and Evaluation 35
4.1 Visual Styles . 35
4.2 Rendering-Performance on Mobile Devices 39

5 Conclusion and Future Work 43

xv

Bibliography 45

List of Figures

2.1 A HIV protease rendered using three different visual metaphors. FLTR: Bond
diagram, Space-filling diagram and Ribbon diagram. Image taken from [Goo05]. 4

2.2 A scene with ambient occlusion, where the AO term is set as color. Image
taken from [PG04] . 7

2.3 The calculation for the occlusion factor and average light direction. Image
taken from [PG04] . 7

2.4 Comic shading can be seen on the characters in Ni no Kuni by Bandai Namco
Games. 9

2.5 Methodology of the hard shading algorithm. 10
2.6 Texture map used by Team Fortress 2 for the light calculation. Image taken

from [MFE07] . 10
2.7 A two dimensional texture map. Image taken from [BTM06] 10
2.8 A landscape shaded with a 2D texture map and depth-based attribute mapping.

Image taken from [BTM06] . 11
2.9 Outline rendering in Ōkami by Capcom. 11
2.10 An open box with its edges labeled: (B) boundary, (C) crease, (M) material

and (S) silhouette. Image taken from [AMHH08] 11
2.11 Depth of field in Divinity Original Sin Enhanced Edition by Larian Studios. . 13
2.12 Visualization of a lens that projects an object (blue to the left) onto the image

plane to the right. The red objects to the right denote possible results of this
projection if the object would not be in the focus of the lens. In such a case
the object is blurry based on the circle of confusion (CoC). 14

3.1 Relation of the extension (blue) to the Unity scene elements (orange) 19
3.2 UML diagram of the shader provider module 20
3.3 Visualization of SSAO with the observer to the top left. The scene is repre-

sented by the depth buffer (red line). To calculate the occlusion factor for
point P , random samples are placed around it. The distances of these samples
to the observer are compared to the corresponding depth values in the depth
buffer. The red samples are farther away and are therefore considered to be
inside the geometry, even if it is not the case in the scene. The ratio of red
samples to blue samples defines the occlusion factor for the point P . The
higher this ratio, the more is the point occluded. 22

xvi

3.4 Noise texture used for SSAO kernel randomization. 23

3.5 Left: Generated occlusion buffer. Right: Blurred using smart Gaussian filter
[FM08]. 25

3.6 Rendered magnesium without (left) and with (right) SSAO. 25

3.7 Resulting images of shading using Equation 3.5 with α = 0.5, β = 0.5, γ = 2
and s = {2, 4, 8} (from left to right). 27

3.8 Resulting images of shading using different outline thresholds given by the
numbers to the lower right. 28

3.9 Resulting images of shading using the hull method. Hull size given by the
number to the lower right. 30

3.10 Resulting images of post-processing edge detection. Sample distance from left
to right 1, 3 and 5. 31

3.11 DoF layers (l.t.r): near, transition near to focus, focus, transition focus to far,
far. 32

3.12 Layers after separation and blurring and final composition from top left
to bottom right: near layer, far layer, focus layer and final composition.
Transition range parameters: [0.5, 0.59, 0.6, 0.9] 33

4.1 Different edge rendering methods from left to right: via dot product, via hull
method and via post-processing. 35

4.2 Using the dot product outline rendering technique, connecters turn black if
the viewing angle is to steep. 38

4.3 Using the hull method outline rendering technique, the outline unintentionally
appears under certain viewing angles. 38

4.4 Close up look at the advertising style. 39

4.5 Benchmarks of the different styles measured in FPS presented in a Box-
Whiskers plot. The blue points show the measured FPS. The dark grey
boxes cover the interval [1stquartile,median] and the lighter grey boxes
[median, 3rdquartile]. The extending lines, the whiskers, show the minimum
and the maximum of the data with a maximum distance from the according
quartile of 1.5 times of the interquartile range. Points outside the whiskers
are outliers. 42

xvii

List of Tables

3.1 Different distributions of the hard shading borders caused by varying combi-
nations of the bias β and the exponent γ. α = 1 and s = 4. 28

4.1 Different molecules rendered with different styles defined by the summarized
style sheets in Table 4.2. 36

4.2 Summarized stylesheets defining the visualizations in Table 4.1. 37
4.3 Molecules used for benchmarking the visual styles. 41

List of Algorithms

xix

CHAPTER 1
Introduction

During the last decade mobile devices have seen an unrivalled rise in popularity. From the
bulky and cumbersome early smartphones, mobile technology nowadays is the de facto
leader in terms of customer electronics. This technological leadership is accompanied
with revolutionary miniaturization and, consequently, strong computation power and
high resolution screens. Furthermore, their scope of application has widened such that
nowadays they can be also used for complex renderings and visualizations in real time.

Apart from pure mobile gaming, smartphones have also become important for ed-
ucational and scientific purposes recently. Here, interactive 3D visualization can help
tremendously in terms of understanding and presentation. For example, the 3D visual-
ization of molecules can be useful for many different groups e.g. scientists and students
for analysing or learning about molecules and their structure. Enabling these groups to
learn and work on a mobile device, simplifies the access to such information enormously.

By being so useful for different groups, the target audience for mobile molecule
visualization is very diverse. A single visual style can be hardly appealing to cover all the
bases of the audience. E.g. a plain rendering of molecules may be ideal for scientists, but
may be too boring for students. But a rendering that looks great for students may be too
cluttered for scientists. Hence, optimized styles are required for the different user groups.

Often it is up to a designer to create the visual appearance. And in the case stated
before, he even has to design many of them. Designers, however, rarely have the technical
skills to realize their design in a graphical rendering framework on their own, resulting
in the need for an engineer. And for every design the designer creates, the engineer is
needed to implement the development.

Moreover, the first drafts of a designer are often not final. Yet they need to be
implemented and evaluated. And every time a slight adjustment is made, the engineer is
needed to do the same work of building and deploying the application with a new style.
And even after the application is released, updates to the style are still possible. This
results in the need of at least two people to maintain an application’s update life cycle.

1

In this thesis, we present an extension for the mobile molecule visualization app Waltz-
ing Atoms implemented in Unity3D, that allows to easily modify the visual appearance of
molecules with the help of JSON stylesheets. Designers can change the rendering style by
setting parameters in these stylesheets e.g. which shaders to use or where lights should
be placed with no required programming skill whatsoever. In the following chapters we
will elaborate on this extension and how the shaders available in the stylesheet work.
We will explain how to apply high quality rendering effects like screen space ambient
occlusion, depth of field, comic shading and outline rendering. Those effects were chosen
based on the three target groups of the app, namely students, scientists and companies
who want to use it for advertisement.

The rest of this thesis is structured as follows:
The first chapter Background and Related Work will give some background information

on molecular visualization e.g. which different types of visualization are used for molecules.
Moreover, the techniques used to achieve the different styles will be presented with an
overview of common methods. Because the app was developed with the Unity3D game
engine, the implemented extension will also be developed in the Unity3D framework.
Therefore a section describing the Unity3D engine is enclosed.

The second chapter, Applying Different Rendering Styles in an Mobile Molecule
Visualization App, will explain the implementation in more detail. Firstly, the extension
processing and applying the stylesheets will be presented. Then, the rendering techniques
implemented for the different styles are described in detail (Screen Space Ambient
Occlusion, Comic Shading, Outline Rendering and Depth of Field).

The third chapter Results and Evaluation presents the final styles for named target
groups. They will be benchmarked to the standard appearance which is given by the app.

Finally, there will be an conclusion and an outlook for future work.

2

CHAPTER 2
Background and Related Work

2.1 Overview

To allow a designer to create various styles for the different target groups using a stylesheet,
a toolset of rendering techniques is required. Comic shading and outline rendering should
make molecules look more like a cartoon, making them appealing to students and younger
users, whereas more realistic rendering techniques like depth of field and ambient occlusion
are provided for advertisement styles. For scientists, no special rendering techniques are
required, since a plain style not hiding any information is desired.

Before those techniques will be presented below, an overview over molecular visual-
ization, related software and the game engine Unity is given.

2.2 Molecule Visualization and Related Software

Molecules are a group of two or more atoms. They can have complex structures with
different properties depending on their composition of the atoms and the relation between
them.

The aim of molecular visualization is to show their structure and make their properties
visible. Chemists and pharmacists can use those visualizations to design new molecules.
Molecular visualization, however, has the problem that a realistic representation of
molecules does not exist in the real world because atoms are smaller than the wave length
of light. Therefore, metaphors are used for the sake of understanding. Defining such
metaphors is the main research issue of molecule visualization. [Goo05]

Precursors of molecule visualization appeared in the 17th century as hand drawn
pictures and go back to Kepler (1611) and Huygens (1690). They used spheres to show
the structure of crystals by arranging them in a three dimensional array. Other precursors
were Frankenheim (1842) and Bravais (1848) who used a ball-and-spoke representation.
[Smi60] Van der Waal (1873) used a representation that took the "size" of atoms into

3

account by using spheres for atoms with the "size" of the atoms encoded in their radius.
[KKL+15]

Nowadays three metaphors are mainly used for molecular visualization: bond diagrams,
ribbon diagrams and space-filling diagrams. Those are shown in Figure 2.1. Combinations
of these three are also common. [Goo05]

Bond diagrams are used to show covalent bonds. It is a bond-centric model, discarding
electrons to focus on atom pairs and the structure of the molecule. [KKL+15] A common
form of this model is the ball-and-stick representation. Atoms are represented as spheres,
whereas their connections are represented as sticks. [Goo05]

Space-filling diagrams are use to display the properties of electrons. Spheres are
placed at the positions of the atoms, with a radius corresponding to the distance between
atoms. [Goo05] This metaphor is one of the most often used visualization methods.
[KKL+15]

Ribbon diagrams are mainly used to present bio molecules. A ribbon diagram ignores
single atoms and focuses on their structure instead. Mainly on chains and their orientation
to show molecule folding. [Goo05] In contrast to bond and space-filling diagrams, ribbon
diagrams are abstract. They focus on showing information that is not clearly visible in
models which show single atoms. [KKL+15]

Figure 2.1: A HIV protease rendered using three different visual metaphors. FLTR: Bond
diagram, Space-filling diagram and Ribbon diagram. Image taken from [Goo05].

Nowadays, many mobile applications are available to visualize molecules. To name
some: Molecules, Atomdroid, Molecular Viewer 3D and NDKMol as well as ESMol. All
these apps can visualize molecules and some, e.g. Molecules, can download molecular
data directly from PubChem and Protein Data Bank. These apps, however, are not
as flexible as programs running on computers, meaning that they often provide only
one or two metaphors for the user to choose from. Atomdroid renders molecules using
the ball-and-stick metaphor, whereas NDKMol and ESMol are able to convert polymer
structures into ribbon diagrams. [LH13]

Another app for molecular visualization is presented by Quinn et al. [QBC+15].
RCSB PDB Mobile is designed for using it as an access point for the RCSB Protein Data

4

Bank. Molecules can be searched, downloaded and visualized. The visualization is based
on NDKMol, which is open source.

Waltzing Atoms, the app we developed the extension for, uses Bond diagrams. Ele-
ments are encoded in color and the radii of the spheres which represent the atoms. The
use of this metaphor is determined by the planned use of the application. Besides just
visualizing molecules, the app also allows to render molecules with missing atoms. To
exercise and learn, students can fill this holes with atoms like in a game. That excludes
ribbon diagrams as a possible model because they do not show single atoms. Space-filling
diagrams could be used. However, the ball-and-stick model seems to be more suitable
because sticks without a sphere at the end indicate missing atoms very intuitive, whereas
showing such information in space-filling models would be more difficult.

2.3 Unity3D

Unity3D (Unity) is a general-purpose game engine. It can be used for creating games of all
genres but also to build scientific and business applications. An important feature of Unity
is its ability to build and deploy software for many different platforms including Android,
iOS, Windows Phone and consoles. (All of them with a single code base.) Overall,
Unity supports 23 different platforms. In comparison, the Unreal Engine supports nine
platforms [uef] and Cryengine, another game engine, only six [cry]. The broad support
of different platforms and the good documentation are the reasons why Unity was used
for the app.

A Unity project consists of different scenes which can be thought of as levels in
a game. An object appearing in the scene is called a Game Object (GO). A GO is a
container for components and the type of a GO is defined by the combination of those.
Some examples for components are: Transform, Mesh, Light, Camera and so on. Each
component has its own parameters and can interact with other components of the same
GO. Such components are provided by the engine or can be written by the developer as
scripts.

2.3.1 Rendering in Unity

Some of the platforms supported in Unity have dedicated graphic cards while others have
SoCs with an integrated graphics unit. Certain platforms may support only OpenGL,
whereas others depend on Direct3D. Considering this variety, Unity provides its own
shader language ShaderLab, which is syntactically similar to CgFX and the Direct3D
shader language. Shaders written in ShaderLab are transpiled and compiled by Unity to
shaders usable by the target platform.

A ShaderLab shader consists of sections. E.g. the first one is a property section,
defining the data available in the shader like colors or textures. This section is then
followed by a list of subshader sections. Each subshader is, contrary to its name, a
complete shader. This gives developers the option to write the same shadings techniques
with different complexities. For example the first subshader calculates complex light

5

simulations using modern graphics API, whereas the second subshader just approximates
the functionality using simpler methods. As soon as Unity has to render a mesh using
this shader, it takes the first subshader that does not use API calls or functionality that
are not supported by the user’s device and uses it for rendering. If none of the given
subshaders is supported, a fallback shader (often a standard Unity shader) is used.

A subshader itself has a list of tags which support some basic settings like enabling
z-buffer writing or backface culling. After the tags pass sections are defined, which can
be seen as normal rendering passes.

Shaderlab supports three abstraction levels. [unia] These abstraction levels are not
bound to a whole subshader, but can vary from pass to pass:

• Fixed Function Shaders
These are the most abstract shaders. They can only be used for simple effects and
allow little to none customization.

• Surface Shaders
A surface shader is less abstract than a fixed function shader. In a surface shader,
the developer writes a method which defines the lighting and a surf function. The
surf function receives the needed input parameters (Unity determines them by
analyzing the code) like the UV coordinate of the currently processed fragment
or light directions, does some transformations/calculations with it and saves it in
an output structure. The values therein can then be used in the lighting method.
Unity, however, already provides basic lighting methods simplifying shader writing
with surface shaders.

• Vertex and Fragment Shaders
These shaders are written by creating a vertex and a fragment function that are
transpiled to normal vertex and a fragment shader. Shaders written that way are
highly customizable. Compared to Surface Shaders, however, more code has to be
written.

To assign a shader to an object, it needs to be combined with a material component.
A material in Unity defines how an object is rendered. Shaders are attached to materials
and materials are attached to GOs.

2.4 Ambient Occlusion
Ambient occlusion (AO) adds shadows to points on a surface that are more or less
occluded by other points like crevices or valleys, since they do not receive as much light
as a surfaces directly exposed to a light source. An example is shown in Figure 2.2. AO
is a part of Ambient Environment, which is a substitute for "bounce" and "fill" lights
which are used to give more realism to a scene by adding shadows and highlights based
on the form and the environment of an object. Instead of using fill light that would be

6

Figure 2.2: A scene with ambient occlusion, where the AO term is set as color. Image
taken from [PG04]

needed to be placed by hand, an environmental map (EM) is used for defining them.
Landis [Lan02] describes an AO algorithm to determine the darkening of different surface
points. Many rays are casted in a hemisphere around each point. The amount of rays
that collide with a point or a surface is then proportional to the occlusion factor.

The directions of the rays that do not collide are then used to calculate the average
direction from where the available light is coming from. The new calculated direction is
called bent vector which is used as the new lookup direction in the EM.

Figure 2.3 shows an AO calculation in 2D for a point P. Five rays are casted, from
which231 three collide with nearby geometry. The other two are used to calculate the
bent vector B.

Figure 2.3: The calculation for the occlusion factor and average light direction. Image
taken from [PG04]

The example in Figure 2.2 shows the darkening of the crevices. The influence of the
bent vector can be seen as a darkening at the bottom of the model. The image is rendered
by Pharr and Green [PG04] and the used algorithm is based on the description of Landis.

The method described by Landis (casting rays for each surface point) was developed
during the production of the movie Pearl Harbor. The approach is, however, not suitable
for real time rendering. Scenes can become complex and ray casting is very expensive.

7

Moreover, it needs up to 256 rays to calculate a good AO effect [Chr03]. This cannot be
done in real time with the currently available hardware.

An approach that avoids ray casting is given by Bunnell [Bun05]. His method
interprets a mesh as a set of surface elements which can emit, transmit and reflect light.
Such surface elements are disks, created for each vertex and orientated along the normal
vector of the vertex. They are used to calculate the occlusion factor by summing up the
amount off occlusion of all individual disks above the point the occlusion is calculated
for.

Hoberock [Hob07] provides modifications for this algorithm which reduces artifacts.
Some examples for other solutions for AO are given by Evans [Eva06], Hegeman et al.
[HPAD06] and Ren et al. [RWS+06].

All of these AO algorithms are working in the object-space and have according to
Engel [Eng09] one or more of the following problems:

• Expensive Preprocessing
E.g. AO algorithms using ray casting have to do this more than a hundred times
for each triangle.

• Dependency of the scene complexity
Since the occlusion factor must be calculated for every point of a model, it becomes
more expensive to calculate AO for more geometry.

• Difference in preprocessing of static and dynamic geometry
If a model is static, AO can be precomputed as ambient lighting because it does
not change. Therefore, more complex and realistic methods can be used than on
models which are dynamic and need to be processed every frame.

• Complexity
The implementation of an AO algorithm usually is a complicated and time consum-
ing procedure.

In Contrast to the object-space AO methods presented above, screen space ambient
occlusion (SSAO) operates in the screen space. This has many advantages. Firstly, no
preprocessing is required. (The algorithm calculates AO for the visible part of the scene
in real time.) Secondly, the computing effort is independent of the geometry in the scene.
SSAO has to process a constant amount of data every frame that is only defined by the
size of the screen space. Thirdly, the geometry does not need to be stored in special data
structures as in most object-space AO algorithms.

SSAO was developed by Vladimir Kajalin in 2007 and first used in Crytec’s game
Crysis. Mittring [Mit07] describes the method. SSAO simulates occlusion from nearby
surfaces by using the depth buffer to approximately reconstruct local geometry. For the
occlusion determination, random samples are placed around each fragment’s view space
position which are then compared against the depth of the surrounding geometry using

8

depth buffer lookups. The more samples are covered by the surrounding geometry, the
more the fragment is occluded. Filion and McNaughton [FM08] describe an improved
version of Mittring [Mit07] by aligning the samples on a hemisphere around the surface
normal reducing self occlusion dramatically.

Méndez [Mén10] presents an even more primitive approach. Instead of comparing
samples with the depth buffer, he simply calculates the occlusion factor for a pixel based
on its distance and angle to its sample pixels randomly chosen from the sample area.

2.5 Comic Shading

Figure 2.4: Comic shading can be seen on the characters in Ni no Kuni by Bandai Namco
Games.

Comic shading (see Figure 2.4 for an example) aims to render objects such that they
look like cartoons, which are in general two dimensional with little to no details. To
achieve such a style, comic shader (also called toon shader) often use just one or two solid
colors without a color gradient. For two colors, Lake et al. [LMHB00] presents the hard
shading technique. One Color is used for the lighted areas and a second one, usually a
darker tone of the first color, is used for surfaces lying in the shadow. This method adds
more details to the geometry than a one color approach by adding a sense for the form
of the object and its position in the scene. The colors are defined in a texture that has
two texels in its simplest form. To determine which color to use for a point on a model,
a transition boundary is defined based on the dot product between the light direction
and the surface normal. Depending on the position relative to the transition boundary,
a point on the model is either rendered with the light or the shadow color, as seen in
Figure 2.5). Note that hard shading is not limited to two colors.

Mitchell, Moby and Eng [MFE07] provide a different approach by using a texture
map, seen in Figure 2.6, with a value for the whole visible dot product range from 0 to 1.

In contrast to the method provided by Lake et al. [LMHB00], the looked up value is
not used as the resulting color of the point on the object, but as a substitution for the
Lambert term in their lighting equation resulting in an artistic style.

A two dimensional texture map is used by Barla, Thollot and Markosian [BTM06].
Figure 2.7 shows an example for such an texture map.

9

Figure 2.5: Methodology of the hard shading algorithm.

Figure 2.6: Texture map used by Team Fortress 2 for the light calculation. Image taken
from [MFE07]

The horizontal axis is still used for the lookup of the resulting value for a given dot
product between the light direction l̂ and the surface normal n̂. The additional vertical
axis is used for the level of detail (LoD) lookup. The D in Figure 2.7 denotes detail.
For every level of detail a different one-dimensional texture map is used. Therefore, the
two-dimensional texture map can be seen as a stack of one dimensional texture maps.
An example for a scene rendered using this algorithm is shown in Figure 2.8.

Figure 2.7: A two dimensional texture map. Image taken from [BTM06]

2.6 Outline Rendering

Outline rendering focuses on emphasizing the important edges and silhouettes of objects
by rendering them with a defined outline color. An example is shown in Figure 2.9. Since
those depend on the position of the observer, they need to be determined every frame.
Consequently, the used algorithms need to be fast and efficient. [IFH+03] To provide a
better understanding of outlines and support a more fine distinction between different

10

Figure 2.8: A landscape shaded with a 2D texture map and depth-based attribute
mapping. Image taken from [BTM06]

Figure 2.9: Outline rendering in Ōkami by Capcom.

types of outlines, Akenine-Möller, Haines and Hoffman [AMHH08, p.510] provide an
overview of types of edges and silhouettes based on the box shown in Figure 2.10:

Figure 2.10: An open box with its edges labeled: (B) boundary, (C) crease, (M) material
and (S) silhouette. Image taken from [AMHH08]

11

• Boundary
Boundary edges, also called border edges, exist only on non-closed polygons. A
solid object usually does not have these. [IFH+03] [AMHH08, p.510]

• Crease
Creases can be defined as edges where both adjacent polygons confine an angle,
also called dihedral angle [AMHH08, p.510], greater than a predefined threshold.
[IFH+03] Creases are also called hard edges or feature edges. [AMHH08, p.510].

• Material
These are lines between to polygons that do not fulfill the other given edge definitions.
They are no real edges but are still important. Also called self-intersection lines
[IFH+03], they can be lines between to polygons with different materials or different
colors. Also, it can be a designer’s choice to place them somewhere on the model.
[AMHH08, p.511]

• Silhouette
Isenberg et al. [IFH+03] suggest the following definition: ".. we define the silhouette
edges of a polygonal model as edges in the mesh that share a front- and a back-
facing polygon". Another way to define a silhouette is given by Akenine-Möller,
Haines and Hoffman [AMHH08]. They define it via the dot product between the
normal vector of the processed point and the vector defined by the direction to the
viewpoint.

A heuristic solution for outline rendering is presented by Akenine-Möller, Haines
and Hoffman [AMHH08, p.512]. They render a surface point as an outline if the dot
product between the point’s normal and the view vector is near zero. As long as the
rendered model does not consist of large polygons it returns fine results, but misses
creases, material edges or boundaries. If the object has large polygons, the method tends
to render big parts of the model as silhouette. Moreover, the thickness of the silhouette
is varying, "depending on the curvature of the surface" [AMHH08, p.512]. This method
is computationally cheap, making it a good candidate for the use on mobile devices.

Another solution is given by Isenberg et al. [IFH+03]. Using the viewpoint every
polygon is categorized either facing forwards or backwards. Then all edges that are
shared by a front-facing and a back-facing polygon are rendered as outline. These edges
represent the silhouette. Boundaries, ceases and material edges are not detected.

A solution using a special data structure is shown by Buchanan and Sousa [BS00].
They introduce an edge buffer : an a-priori defined buffer that classifies an edge either as
a part of the silhouette or not. To do so, the edge buffer stores at least two bits for every
edge. These bits are representing a front facing flag and a back facing flag. If both flags
are set, the edge belongs to the silhouette. This buffer has to be updated every frame.
Like the method before, this method only detects silhouette edges.

Card and Mitchell [CM02, p.328] describe an algorithm working in image space using
the depth values as well as the normal vectors. Those are given in a normal and a

12

depth buffer, making it easy to implement this method if deferred rendering is used.
To detect edges, the gradients of the buffers are determined by convoluting them with
an image filter e.g. the Sobel operator. Big normal buffer gradients indicate a strong
curvature whereas big depth buffer gradients indicate big depth changes. Since this are
properties of edges, points with big gradients are considered as being part of an edge. The
edges detected by processing the world-space normal vectors are creases and boundaries,
whereas the processing of the depth values detects the silhouette.

The silhouette however, is not guaranteed to be found. For instance, if the differences
in the depth buffer are too little, e.g. a sheet of paper lying on a surface, silhouettes
may not be detected since the gradient may be to small. On the contrary, if a point is
processed that is near an edge, it can be falsely be classified as silhouette point [AMHH08].
Also, there is little possibility to stylize the resulted lines [IFH+03].

Another approach is the "halo" or "shell" method also presented by Akenine-Möller,
Haines and Hoffman [AMHH08]. This method renders the object in two passes. The first
pass renders the object’s back faces with the outline color, where vertices are translated
alongside their normal vectors such that the object is enlarged. This creates a hull around
the object, which becomes visible as an outline after the projection. In the second render
pass, the front faces are rendered normally. "The method is simple to implement, efficient,
robust, and gives steady performance" [AMHH08].

2.7 Depth of Field Rendering

Figure 2.11: Depth of field in Divinity Original Sin Enhanced Edition by Larian Studios.

Depth of field (DoF) is a physical effect created by the refraction of light inside a
lens, which causes objects that are in focus to appear sharp on the image plane, whereas
objects out of focus to appear blurry. An example is shown in Figure 2.11.

The distance u an object can have to the lens to appear sharp is depending on the
lens’s focal length f (see Figure 2.12). u is called focal distance (the distance from the
lens where an object is in focus) and can be calculated using the lens Equation 2.1:

1
u

+ 1
v

= 1
f

(2.1)

13

v describes the distance between the image plane and the lens [RTI04].
If the distance of an object from the lens equals the focal distance, the lens projects

every point of the object 1:1 onto the image plane. If the distance is larger or smaller
than the focal distance, its projection onto the image plane appears blurry. The amount
of blur is defined by the circle of confusion (CoC) (see Figure 2.12). If the radius of the
CoC equals 0, the point is projected sharp.

Figure 2.12: Visualization of a lens that projects an object (blue to the left) onto the
image plane to the right. The red objects to the right denote possible results of this
projection if the object would not be in the focus of the lens. In such a case the object is
blurry based on the circle of confusion (CoC).

The radius c of the CoC can be calculated with Equation 2.2 using Equations 2.3
and 2.4 [CPC84]. It is calculated for an object with the distance d to the lens. n denotes
the aperture number.

c = |Vd − Vu|
f

2nVd
(2.2)

Vu = fu

u− f
for u > f (2.3)

Vd = fd

d− f
for d > f (2.4)

In computer graphics, rendering is done using a projection model that simulates a
pinhole camera. A pinhole camera creates images by receiving emitted light rays of the
scene through an infinitely small hole, causing that each point in the scene projects to
exactly one point on the image plane. As a result, a perfectly sharp image is created.
To achieve a DoF effect, the corresponding lens physics have to be explicitly simulated.
Many different algorithms exist to do so.

Cook, Porter and Carpenter [CPC84] present a method using ray tracing for a realistic
simulation of DoF. To achieve the DoF effect, they trace rays through an artificial lens,
which is described by its focal length and and the aperture number. Latter one defines
how much light the lens receives. By tracing the rays through the lens, they simulate
light refraction and create realistic DoF.

14

Haeberli and Akeley [HA90] present a method using the accumulation buffer. In
contrast to Cook’s et al. method, the scene is rendered from different positions of an
artificial lens. The created images are then accumulated in the accumulation buffer
resulting in an image exhibiting a DoF effect. The quality is depending on the number
of accumulated images. Effects like ghosting or duplicated images are visible, if too few
images are rendered.

Potmesil and Chakravarty [PC82] present a method (Demers [Dem04] refers to it as
Forward-Mapped Z -buffer DoF), which is a post-processing effect creating DoF using
the color and the depth buffer. To generate the effect, pixels are blended from the color
buffer into the frame buffer as circular sprites, where the size of the circle depends on
the CoC of the blended point. The CoC for a point is calculated based on its depth.

Another method is shown by Arce and Wloka [AW02] (Demers [Dem04] refers to it
as Reverse-Mapped Z -buffer DoF), which is also a post-processing effect using a color
and the depth buffer. Like in Forward-Mapped Z -buffer DoF, the depth buffer is used to
calculate the CoC for every pixel. But instead of blending sprites, pixels are blurred with
different kernel sizes depending on the size of the CoC. An example for an implementation
is given by Riguer, Tatarchuk and Isidoro [RTI04, p.529–p.556].

Filion and McNaughton [FM08] present Layered DoF. The scene is divided into a
set of depth levels which can be defined arbitrarily. A focal distance is also defined.
All elements around this distance are sharp, whereas objects at a different distance are
blurred. Based on the depth level a object belongs to, it is rendered into different image
buffers. The DoF image is created by using four color buffers and a depth buffer. The
color buffers contain pre-blurred images of the scene at a specific level. The resulting
image is created by interpolating between these images depending on the CoC calculated
from the depth buffer.

Different variations of this method exist. E.g. the Unreal Engine [unr] uses Layered
DoF, but its DoF implementation divides the scene only into three sections. Another
version presented by Riguer, Tatarchuk and Isidoro [RTI04, p.529–p.556] uses only two
depth buffers, one containing the normal rendered and one containing the blurry scene.
This algorithm is very fast but does not consider the spatial distance of objects.

We implemented Layerd DoF. The ray tracing method was dismissed because it is
expensive and not suitable for mobile devices. The same goes for the accumulation
buffer method. Forward-Mapped Z -buffer DoF was not chosen since the task of blending
millions of sprites from one buffer to another is not well supported by graphics hardware
and needs therefore be done on the CPU with software [Dem04]. Reverse-Mapped z-buffer
DoF would have been an eligible option, yet Layered DoF is used by many popular
real-time applications like the Unreal Engine or the computer game Starcraft II because
of its good performance and results.

15

CHAPTER 3
Applying Different Rendering
Styles in a Mobile Molecule

Visualization App

In this section we go into further detail by explaining how the extension and the shaders
work with focus on the implementation. The extension parses and applies a stylesheet (a
file provided by a designer) that defines a molecule rendering style. We will describe the
structure of the stylesheet and how the extension processes and applies it on the molecules.
Afterwards, we will show how our implementations of screen space ambient occlusion
(SSAO), comic shading, outline rendering and depth of field (DoF) are developed using
ShaderLab by Unity with focus on mobile devices.

3.1 Using Stylesheets for Molecule Rendering
We implemented an extension that parses and applies a stylesheet whenever a molecule
is loaded, resulting in the change of the rendering style of the molecule. The stylesheet
allows to define all parameters important for rendering such as:

• declaring what shaders should be used to render which type of object and what the
parameters of these shaders should be.

• placing different types of lights with various options like its color or whether it
should cast a shadow.

• defining the projection of the camera either as orthographic or perspective.

In the following, we first introduce the sheet’s structure before dwelling deeper on
the implementation. A template of a JSON stylesheet is shown in Listing 3.1.

17

For the sake of simplicity, we use JSON as the syntax of the stylesheet. Data is
stored as name/value pairs. While the name is always a string, the value stores different
types of data, ranging from simple types (number, string) to complex types like arrays or
objects. An array can contain values, arrays and objects. Objects can store name/value
pairs. For more details about JSON and its syntax, see the JSON specification [jso].

Listing 3.1: Template of a JSON stylesheet used to configure a molecule rendering style.
1 {
2 "camera" : {
3 "orthographic" : <boolean> ,
4 "bgcolor" :
5 [<integer> , <integer> , <integer>]
6 },
7 },
8 "shaders" : [
9 <{

10 "name" : <string> ,
11 "shader" : <string> ,
12 "properties" : { ... } },
13 }>*
14],
15 "mapping" : {
16 <<string> : <string>>*
17 "post_effects" : [<string>*] },
18 },
19 "lights" : [
20 <{
21 "type" : <string>,
22 "position" :
23 [<integer> , <integer> , <integer>],
24 "color" : [<integer> , <integer> , <integer>],
25 "intensity" : <float> ,
26 "shadow" : <string> ,
27 "strength" : <float> ,
28 "movable" : <boolean> ,
29 }>*
30]
31 }

The stylesheet consists of four sections:

• camera
The camera key holds an object with the two keys orthographic and bgcolor. The
former defines the projection type of the camera (whether it should be orthographic
or perspective). The latter defines the background color of the scene which is the
clear color of the camera with a 3-dimensional vector and values within the range
of [0, 255].

• shaders
This key stores an array of shader objects. A shader object defines a name for the
shader valid in the context of the stylesheet and a second name valid in the context
of the application referencing the implemented shader to use. Moreover, it holds a
"properties" object, which is shader specific.

18

• mapping

In this section, the user defines the shaders used to render an object type (e.g.
atoms or bonds). mapping maps shaders to objects. For the Waltzing Atoms app,
there are three entries: atom, connector and post_effects. The first two each have
as value a shader name which needs to be present in shaders. post_effects is an
array storing names of shaders used for post-processing. These shaders are applied
in the order of their appearance in post_effects from top to bottom.

• lights

The last key holds an array of light objects, of which each defines one light source
in the scene. Such an object stores various parameters: its position, color and
intensity, type (point light or directional light) and a shadow strength. Moreover, a
light object allows to define whether a light should cast a shadow and whether a
light is static or moves with the camera as it rotates.

An overview over the structure of our extension is given in Figure 3.1. It consists of
three independent modules. Each of them changes a specific part of the scene based on
the used stylesheet.

Figure 3.1: Relation of the extension (blue) to the Unity scene elements (orange)

The LightProvider as well as the CameraProvider are both small modules. The first
one works with the lights section of the stylesheet and consists of a single class with one
method: placeLights. When the method is called, all default lights are removed and new
lights are placed according to the stylesheet.

The CameraProvider module consists only of the CameraPropertySetter component.
This component is attached to the Game Object (GO) that holds the main camera compo-
nent. Since components of a GO can interact with each other, the CameraPropertySetter
can change the parameters of the camera component according to the camera section of
the stylesheet.

19

The last and by far largest module is the ShaderProvider. Its UML class diagram
can be seen in Figure 3.2. It loads and holds the shaders for GOs as well as post-
processing shaders for the camera. As soon as a GO or the camera request a shader, the
ShaderProvider passes them the shaders accordingly to the stylesheet’s mapping section
with the corresponding shader parameters set.

<<interface>>

IShaderProvider

+ SetShader (string, Material): int
+ SetShaderForElement (SupportedPrefabs, Material): void
+ SetPostProcessingShader (string, Camera, Material): void
+ GetPostProcessingShadersList (): Dictionary<string, PostProcessingShader>

<<enumeration>>

SupportedPrefabs

Atom
Connector

<<enumeration>>

PostProcessingShader

None
EdgeDetection
DoF
SSAO

JsonShaderProvider

+ shaderFileName: string
- jsonShaderString: string

+ <<constructor>> JsonShaderProvider()
- get<<Shader>>Config (JsonData): <<Shader>>Config
- getShaderByName (string): string
- getShaderPropertiesByName (string): JsonData

PostProcessing

+ mat: Material
+ RandomTexture: Texture
- usedPostProcessingShaders: Dictionary<string, PostProcessingShader>
- usedPostProcessingMaterials: Dictionary<string, Material>
- usedPostProcessingShader: PostProcessingShader
- resizeFactor: int(2)

~ Start (): void
~ OnRenderImage (RenderTexture, RenderTexture): void
-ApplyEdgeDetection (RenderTexture, RenderTexture, Material): void

<<interface>>

IShaderGenerator

+ SetShader(Material): void

<< use >>

<< use >>

<<Shader>>SG

- config: <<Shader>>Config

+ <<constructor>> <<Shader>>SG (BasicShaderConfig):

<<Shader>>Config

+ <<Shader>>Attributes

Figure 3.2: UML diagram of the shader provider module

The operation of the module can be seen by considering an example of a single atom
GO which is going to be rendered as a part of a molecule. It has a material component
that defines how it is rendered based on the shader that the material component holds.
This shader, however, is not set yet since it depends on the stylesheet which defines the
shader used for the rendering of atoms.

Therefore, the atom GO uses the SetShaderForElement (SupportedPrefabs, Material):
void of the IShaderProvider to ask for the shader it shall use. The input is Atom of the
SupportedPrefabs enumeration and the material of the atom GO.

The JsonShaderProvider, provided as IShaderProvider, currently used by atoms and
connectors resorts to the mapping section in the stylesheet to find a shader for atoms
and connectors. The example assumes that a toon shader is set. Now the provider calls
SetShaderForElement (string, Material): void with the toon shaders name gathered from
the stylesheets mapping sections and the material of the atom GO as input parameters.

20

This method uses a shader generator (SG) to load the shader and set the properties given
by the stylesheet.

Every available shader has to provide a SG, abbreviated with the shader name as
prefix and SG, like ToonSG. A SG takes a data object as constructor parameter containing
all the properties the set shader should have. Those properties are provided by the
JsonShaderProvider and are parsed from the shader section. After the corresponding SG,
in the example’s case the ToonSG, is generated, the material of the atom GO is passed
to the SG’s SetShader (Material): void method. This method sets the shader with the
parameters defined in the stylesheet in the material.

After this whole procedure, the atom GO has the correct shader assigned and can
be rendered accordingly to the stylesheet. Shaders, however, are not solely available for
GOs to be rendered. The stylesheet also provides the option to define post-processing
effects in the mapping section, which also have to be managed by the Shader Provider.
For this reason, the module provides the PostProcessing component that is attached to
the GO that holds the main camera component.

The PostProcessing component takes the JsonShaderProvider, provided as IShader-
Provider, to get the list of the used post-processing shaders which is set in the mapping
section. The component then creates a material for every shader. The shader for the
material is set using the SetPostProcessingShader (string, Camera, Material): void
method. This procedure is similar to the atom GO example before. The only difference is
the additional Camera parameter. Depending on the post-processing effect, the Shader-
Provider tells the camera to provide either a depth or a normal buffer or both for the
post-processing shaders. During a rendering step, the PostProcessing component cycles
through the created materials applying the shaders on the rendered image in the given
order of the stylesheet.

3.2 Screen Space Ambient Occlusion

Screen space ambient occlusion (SSAO) calculates the occlusion of the scenery per frag-
ment using the depth buffer as a discretized representation of the visible scene. For every
fragment, random samples from its neighbourhood are collected. This neighbourhood
has a constant size in view space, meaning that the size of the projected neighbourhood
is inversely proportional to the depth values in the depth buffer. The SSAO methods
presented by Mittring [Mit07] and Filion and McNaughton [FM08] transfer those samples
into view space, where their depth is compared to the depth stored in the corresponding
depth buffer position. A sample that is farther away from the observer than the depth
stored in the depth buffer is considered to be occluded by the geometry, otherwise it is
considered unoccluded. The final occlusion factor for a fragment depends on the amount
of samples that are considered as inside the geometry. The higher this number is, the less
light is received by the surface point stored in a given fragment. The process is shown in
Figure 3.3.

For performance reasons, however, we chose to implement the approach given by
Méndez [Mén10]. He calculates the occlusion factor ao using Equation 3.1, where ~n

21

Figure 3.3: Visualization of SSAO with the observer to the top left. The scene is
represented by the depth buffer (red line). To calculate the occlusion factor for point P ,
random samples are placed around it. The distances of these samples to the observer are
compared to the corresponding depth values in the depth buffer. The red samples are
farther away and are therefore considered to be inside the geometry, even if it is not the
case in the scene. The ratio of red samples to blue samples defines the occlusion factor
for the point P . The higher this ratio, the more is the point occluded.

denotes the normal vector of the point P .

ao = 1
|Samples|

∑
S∈Samples

max(0, ~n · (S−P)
‖S−P‖)

1 + ‖S − P‖ (3.1)

In our implementation, we use a shader with one subshader and four passes. The
first pass creates the buffer where the occlusion factors are stored per fragment. The
second and third pass apply one dimensional Gaussian filters. The last pass blends the
occlusion texture into the rendered image.

The first pass is written with the vertex and fragment shader method provided by
ShaderLab. We want to focus on the fragment shader (see Listing 3.2), since the vertex
shader only transforms the vertices using the MVP matrix and passes the uv-coordinates.

The fragment shader has a hard coded array of offset vectors describing the samples.
For every frame and every fragment, the shader iterates over those samples. For perfor-
mance reasons, we use only 8 random samples, which is a lot less compared to the at
least 256 required according to to Engel [Eng09]. The lack of samples causes a visible
pattern defined by the samples.

A solution for this problem is given by Filion and McNaughton [FM08]. They use
a 2D random texture that stores a random vector per texel. Each sample is reflected
on the respective random vector, creating a individual set of random samples for each
fragment. Consequently, the pattern is no longer visible.

22

Our random texture is shown in Figure 3.4. A random vector fetched from this
texture is referred to as rand_norm and used in Line 15 of Listing 3.2 where it reflects
the random sample creating a pseudo random direction.

Figure 3.4: Noise texture used for SSAO kernel randomization.

The next step is to calculate final offset vector using Equation 3.2.

−−−−→
offset =

−−−−→
randdir ∗Radius

1 + depth
(3.2)

The
−−−−→
randdir vector is scaled by a radius that can be chosen by the user. Then the

offset vector is perspectively foreshortened based on the depth of the processed fragment.
Using this offset vector, we generate a new sample and calculate its view space position
as seen in 19. Finally, we use Equation 3.1 to calculate the occlusion factor. To simplify
the blending process in the last pass, we store the inverse occlusion factors. The buffer
holding them can be seen in the left image of Figure 3.5.

Some puncturing artifacts remain due to the small sample count. They can simply be
removed by applying a low pass filter, in our case a separated Gaussian. High-frequency
details are lost, yet the gain in overall quality makes omitting them reasonable. It is,
however, important that the blur does not simply filter every pixel equally. It has to
respect edges of different objects inside the scene to avoid ambient transitions between
different objects. Filion and McNaughton [FM08] use a smart Gaussian filter that extends
the original one by taking the normal vector and depth value of each sampled texel into
account. If the difference between the depths or the dot product between the normals of
a neighbor sample and the center of the blurring kernel is too big, the neighbor sample
is omitted. The result of the high pass filtered texture is shown in the right image of
Figure 3.5.

In the final step the image needs to be combined with the occlusion buffer. As seen
in Equation 3.3, the final color of the pixel c is calculated by multiplying the given color
cS with the inverse ambient occlusion factor ao raised to the power of a scale value k
defined by the user in the stylesheet to strengthen or weaken the effect.

c = cS ∗ aok (3.3)

The final result can be seen in Figure 3.6, where it is compared with the unprocessed
rendering. It can be seen that shadows are added at the crevices between the spheres.

23

Listing 3.2: Code sample showing the calculation of the occlusion factor in the fragment
shader.

1 f loat3 norm ;
2 f loat depth ;
3 DecodeDepthNormal (tex2D (_CameraDepthNormalsTexture , i . uv) ,
4 depth , norm) ;
5
6 half4 pos = depthToViewPos (i . uv) ;
7
8 half3 rand_norm = normal ize (tex2D (_RandomTexture , i . uv_rand) . xyz
9 ∗ 2 .0 − 1 . 0) ;
10
11 f loat ambient_occlus ion = 0 .0 f ;
12
13 for (int s = 0 ; s < RANDOM_SAMPLES_COUNT; ++s)
14 {
15 half3 rand_dir = r e f l e c t (RANDOM_SAMPLES[s] , rand_norm) ;
16
17 f loat2 o f f s e t = rand_dir . xy ∗ _Radius / (1 + depth) ;
18
19 half4 samplePos = depthToViewPos (i . uv + o f f s e t) ;
20
21 half3 d i f f = half3 (samplePos − pos) ;
22 half d i s t ance = length (d i f f) ;
23 half3 d i r e c t i o n = normal ize (d i f f) ;
24
25 ambient_occlus ion += max(0 . 0 , dot (d i r e c t i on , norm))
26 ∗ (1 . 0 / (1 . 0 + d i s t ance)) ;
27 }
28
29 ambient_occlus ion /= RANDOM_SAMPLES_COUNT;
30
31 ambient_occlus ion = 1 − ambient_occlus ion ;

24

Figure 3.5: Left: Generated occlusion buffer. Right: Blurred using smart Gaussian filter
[FM08].

Figure 3.6: Rendered magnesium without (left) and with (right) SSAO.

3.3 Comic Shading and Outline Rendering

We implemented one comic shading method and three techniques for outline rendering,
giving a designer many different options on creating a cartoon style. Our comic shader
uses the hard shading technique presented by Lake et al. [LMHB00], but since the
stylesheet should be the only file required to define a visual style, we are not using

25

lookup textures. Using such textures would have required external image files besides
the stylesheet. Instead, we decided to discretize the gradient and evaluate the shading
color on the fly in the shader. Regarding the three outline rendering techniques, we
implemented the dot product and the halo method presented by Akenine-Möller, Haines
and Hoffman [AMHH08, p.512], as well as the post-processing technique shown by Card
and Mitchell [CM02, p.328].

Two shaders have been implemented for this effects. One comic shader performing
the hard shading as well as the dot product and halo method and a post-processing
shader for the post-processing technique. The comic shader consists of one pass using
the vertex and a fragment function where the hull for the halo method is rendered and
a surface shader method with a modified lighting method, which will be transpiled to
passes by Unity.

3.3.1 Hard Shading and the Dot Product Method

The hard shading as well as the dot product method are done using the surface shader
method. It passes the color and the albedo to the lighting method shown in Listing 3.3.

This method applies the hard shading as well as the outline rendering using the dot
product method. Line 7 and 20 are calculating the basic color using a modified Lambert
term based on the work of Mitchell, Francke and Eng [MFE07] who use Equation 3.4 for
their cartoon shading.

kd

[
a(n̂) +

L∑
i=1

ciw
(
(α(n̂ · l̂) + β)γ

)]
(3.4)

The warp function w(x) maps the modified Lambert term (α(n̂ · l̂) + β)γ with the
constants α, β and γ to a texture value (see Figure 2.6). Those constants can be set in
the stylesheet. The result is multiplied with the light color ci and added to the ambient
term a(n̂). Finally the result is multiplied with the albedo kd sampled from the object’s
texture map.

In our implementation, we alter this Equation to a discretized version that can be
seen in Equation 3.5. The discretization results in the hard shading look.

kd ∗
(α+ β)γ

s
∗
⌊

(α(n̂ · l̂) + β)γ ∗ s
(α+ β)γ

⌋
(3.5)

The parameter s, which can also be set in the stylesheet, defines the number of hard
shading borders for the rendered object. The result with different s can be seen in Figure
3.7.

The discretization is linear and does not provide the same degree of freedom as a
lookup texture would. Yet it is still possible to modify the distribution of the hard
shading borders by choosing different β and γ, as shown in Table 3.1.

26

Figure 3.7: Resulting images of shading using Equation 3.5 with α = 0.5, β = 0.5, γ = 2
and s = {2, 4, 8} (from left to right).

Listing 3.3: Lighting method used by the surface shader for cell shading and outline
rendering

1 half4 LightingModif iedLambert (SurfaceOutput s , half3 l i gh tD i r ,
2 half3 viewDir , half atten)
3 {
4 half4 c = _OutlineColor ;
5 i f (dot (viewDir , s . Normal) > _OutlineBias) {
6
7 half modNdotL =
8 pow(s ∗ dot (s . Normal , l i g h tD i r) + _Bias
9 , _Exponent) ;
10
11 f i x ed3 albedo ;
12 half maxValue = pow(s + _Bias , _Exponent) ;
13
14 half s tepDe l ta = maxValue / _Steps ;
15 half i nve r s eStepDe l ta = 1 / stepDe l ta ;
16
17 albedo = s . Albedo ∗ s tepDe l ta
18 ∗ int (modNdotL ∗ i nve r s eStepDe l ta) ;
19
20 c . rgb = albedo ∗ _LightColor0 . rgb
21 ∗ (modNdotL ∗ atten ∗ 2) ;
22 }
23
24 c . a = s . Alpha ;
25 return c ;
26 }

Besides the shading, Listing 3.3 also shows the dot product outline rendering method.
The resulting color c is initialized with the outline color provided by the stylesheet (seen
at Line 4). This color is only replaced if the dot product between the view vector and
the normal vector exceeds a user defined threshold. Renderings using different thresholds
can be seen in Figure 3.8.

27

Figure 3.8: Resulting images of shading using different outline thresholds given by the
numbers to the lower right.

Exponent γ
0.0 0.3 0.6 1.0

B
ia
s
β

0.
0

0.
3

0.
6

1.
0

Table 3.1: Different distributions of the hard shading borders caused by varying combi-
nations of the bias β and the exponent γ. α = 1 and s = 4.

28

3.3.2 Hull Method

The hull method presented by Akenine-Möller, Haines and Hoffman [AMHH08] is calcu-
lated in a separate pass before the hard shading is applied. It is implemented using the
vertex and fragment shader methods of ShaderLab. The fragment shader only forwards
the color given by the vertex shader. Therefore, we take a closer look at the vertex
shader, shown in Listing 3.4. The implementation of this method is straightforward, with
little variety in the concrete realization, which is why the implementation of the vertex
shader of the Unity Wiki [unib] was used.

Listing 3.4: Vertex shader creating a hull for outline rendering by Unity Wiki [unib].
1 f r ag In ver t (ve r t In v) {
2
3 f r ag In o ;
4
5 o . pos = mul (UNITY_MATRIX_MVP, v . ver tex) ;
6
7 i f (_HullSize > 0 .0001) {
8 f loat3 norm =
9 normal ize (mul ((float3x3)UNITY_MATRIX_IT_MV, v . normal)) ;
10
11 f loat2 o f f s e t = TransformViewToProjection (norm . xy) ;
12
13 o . pos . xy += o f f s e t ∗ o . pos . z ∗ _HullSize ;
14
15 o . c o l o r = _OutlineColor ;
16 } else {
17 o . c o l o r . a = 0 ;
18 }
19
20 return o ;
21 }

Firstly, the normal of the vertex is transformed into view space using the inversed
transposed model view matrix provided by Unity, UNITY_MATRIX_IT_MV . Then
the x and y coordinate of the normal vector are transformed into projection space using
Unity’s method. The z coordinate can be discarded because the hull shall be enlarged
along the object’s height and width, not its depth. This offset is multiplied with a
user defined hull size scale and the z position of the vertex after its transformation for
scaling. Note that front-face culling has to be activated in advance, by using an according
ShaderLab tag. To allow the disabling of the technique, the outlines are only generated
if the user defined hull size exceeds 0.0001, an arbitrarily chosen small value. The results
of this outline rendering technique can be seen in Figure 3.9.

29

Figure 3.9: Resulting images of shading using the hull method. Hull size given by the
number to the lower right.

3.3.3 Outline Rendering Using Post-Processing

The post-processing method for outline rendering shown by Card and Mitchell [CM02,
p.328] is done by calculating the gradients of the depth buffer and normal vector buffer
for every fragment. If those gradients exceed a certain threshold, the fragment is rendered
as an outline.

In our implementation, we use a simple 4-connected neighborhood for their computa-
tion. Their uv-coordinates are calculated in the vertex shader and are there stored in
an array as seen in Listing 3.5. Since the array is interpolated during the rasterization
stage, we avoid to calculate the used neighbours in every fragment.

Listing 3.5: Calculation of the sample uv coordinates in the vertex shader
1 o . uv [1] = uv + _MainTex_TexelSize . xy
2 ∗ half2 (1 , 1) ∗ _SampleDistance ;
3 o . uv [2] = uv + _MainTex_TexelSize . xy
4 ∗ half2 (−1,−1) ∗ _SampleDistance ;
5 o . uv [3] = uv + _MainTex_TexelSize . xy
6 ∗ half2 (−1 , 1) ∗ _SampleDistance ;
7 o . uv [4] = uv + _MainTex_TexelSize . xy
8 ∗ half2 (1 ,−1) ∗ _SampleDistance ;

Listing 3.6: Determination whether the fragment is part of an edge or not in the fragment
shader. Sample A and B are samples of the opposite direction (top and bottom, left and
right).

1 f loat normDiff = length (sampleANorm − sampleBNorm) < 0 . 9 ;
2
3 f loat depthDi f f = abs (sampleADepth − sampleBDepth) <
4 0 .045 ∗ (sampleADepth + sampleBDepth) ;

To make sure that the samples are actually scaled in pixel size, the offset vectors are
multiplied with the by Unity provided _MainTex_TexelSize. Its x and y value hold
1/viewportWidth and 1/viewportHeight.

To determine whether a fragment belongs to an edge or not, we calculate the gradients
in the fragment shader using the neighbors as seen in Listing 3.6. The threshold 0.9 was
arbitrarily chosen. For the depth gradient, we adjust the threshold perspectively. To do

30

so, we choose the mean of the two samples. The division by 2 is already considered in
the term 0.045.

To obtain a simple control over the thickness of the outline rendered with the method
of Card and Mitchell, we extended their technqiue by allowing a varying sampling stride
for the estimation of the gradients. The results of this simple, yet effective extension is
depicted in Figure 3.10 for different sampling strides.

Figure 3.10: Resulting images of post-processing edge detection. Sample distance from
left to right 1, 3 and 5.

3.4 Depth of Field

For the depth of field (DoF) effect we implemented Layerd DoF as presented by Filion
and McNaughton [FM08] and Riguer, Tatarchuk and Isidoro [RTI04, p.529–p.556]. Our
implementation uses three main layers (near, focus and far) and two transition layers
providing a smooth conversion between the main layers.

Our algorithm first divides the scene into the main layers based on the z-buffer,
storing each of them in a particular frame buffer. The near and the far layer are blurred
and finally composed back together with the focus layer to the result image.

The boundaries of the layers can be defined in the stylesheet. Since we use the depth
buffer for the decomposition of the scene, these intervals have to be within the range [0, 1].
The layer distribution is given as an array of size four, referred to as _TransitionRanges
(TR) in the following code listings. TR[0] defines where the focal layer starts, TR[1]
where the near layer ends. The far layer starts blending in at TR[2], and the focal layer
ends at TR[3]. The transition layers are given implicitly by the overlaps. (TR[0] ≤ TR[1]
≤ TR[2] ≤ TR[3])

Our DoF shader consists of one subshader with six passes: one pass for each layer
segmentation (near, focus and far), two passes for a separated Gaussian filter and one
pass for the final composition. All these passes are written using vertex and fragment
shader functions.

The shaders used to divide the image into different layers are equivalent. Therefore,
the fragment shader segmenting the near layer is shown as an example in Listing 3.7.

31

Figure 3.11: DoF layers (l.t.r): near, transition near to focus, focus, transition focus to
far, far.

Firstly, the depth value for a fragment is read from the depth buffer. Then it is compared
to the according transition range parameters. If the pixel (stored in the _MainTex)
does belong to the near layer, its color is stored in the corresponding frame buffer. This
happens also for the focus and the far layer.

An example for a result of the layer segmentation with the final composition is shown
in Figure 3.12. It can be seen that the focus layer has elements which are part of the
near layer as well as of the far layer due to their overlap.

The next step is to blur the near layer and the far layer by applying a separated
Gaussian filter. Finally, all layers are composed back together into a single image. The
composition is done using the fragment shader shown in Listing 3.8. The near layer is
referred to as _NearTex, the focus layer as _MainTex and the far layer as _FarTex.

To create the final image, texels are fetched from the corresponding layer frame buffers
based on the depth value of the processed fragment. If the depth value lies outside of
any transition range, a single layer texture is used. Otherwise, the final fragment color
is created by interpolating between two layers. This is done by using the provided lerp
(linear interpolation) function.

32

Listing 3.7: Fragment shader used to create the near layer of the scene
1 half4 f r a g (v2f i) : SV_TARGET {
2
3 f loat3 normalValues ;
4 f loat depthValue ;
5
6 DecodeDepthNormal(
7 tex2D (_CameraDepthNormalsTexture , i . uv . xy) ,
8 depthValue , normalValues) ;
9
10 i f (easeDepth (depthValue) < _TransitionRanges [1])
11 return tex2D (_MainTex , i . uv) ;
12 else
13 return _ClearColor ;
14 }

Figure 3.12: Layers after separation and blurring and final composition from top left to
bottom right: near layer, far layer, focus layer and final composition. Transition range
parameters: [0.5, 0.59, 0.6, 0.9]

33

Listing 3.8: Fragment shader used to composite all layers into a final image
1 half4 c ;
2
3 i f (depthValue <= _TransitionRanges [0]) {
4
5 c = tex2D (_NearTex , i . uv) ;
6 }
7 else i f (depthValue > _TransitionRanges [0]
8 && depthValue <= _TransitionRanges [1]) {
9
10 f loat v = (depthValue − _TransitionRanges [0])
11 / (_TransitionRanges [1] − _TransitionRanges [0]) ;
12
13 c = l e rp (tex2D (_NearTex , i . uv) ,
14 tex2D (_MainTex , i . uv) , v) ;
15 }
16 else i f (depthValue > _TransitionRanges [1]
17 && depthValue <= _TransitionRanges [2]) {
18
19 c = tex2D (_MainTex , i . uv) ;
20 }
21 else i f (depthValue > _TransitionRanges [2]
22 && depthValue <= _TransitionRanges [3]) {
23
24 f loat v = (depthValue − _TransitionRanges [2])
25 / (_TransitionRanges [3] − _TransitionRanges [2]) ;
26
27 c = l e rp (tex2D (_MainTex , i . uv) ,
28 tex2D (_FarTex , i . uv) , v) ;
29 }
30 else {
31 c = tex2D (_FarTex , i . uv) ;
32 }
33
34 return c ;

34

CHAPTER 4
Results and Evaluation

4.1 Visual Styles

The final styles generated for the three target groups (students, scientists and advertise-
ment) are shown in Table 4.1, where we rendered selected molecules for demonstration.
The corresponding summarized stylesheets can be seen in Table 4.2.

4.1.1 Education Style

The comic shader is used to give the molecules a cartoon style amplifying the app’s
gamification effect. For the hard shading we settled on four gradient steps (since this
is a subjective choice, any other number of hard shading borders is also valid). For
edge rendering, however, the choice to use this technique is based on the strengths and
weaknesses of the different outline rendering methods. For spheres alone, all methods
would be suitable. But the connectors cut into the atom spheres producing creases,
making a rendering of their outlines not trivial.

Figure 4.1: Different edge rendering methods from left to right: via dot product, via hull
method and via post-processing.

35

Education Scientific Advertisement

Fu
lle

re
n(
C

60
)

A
rs
en

ik
(A
s 2
O

3)
A
nt
hr
ac
en

(C
14
H

10
)

M
ag

ne
siu

m
(M

g
)

Table 4.1: Different molecules rendered with different styles defined by the summarized
stylesheets in Table 4.2.

36

Education Scientific Advertisement

1 " camera " : { <... > } ,
2 " mapping " : {
3 " atom " : " s c h o o l " ,
4 " connector " : " s c h o o l

" ,
5 " p o s t _ e f f e c t s " : [
6 " edge "]
7 } ,
8 " shaders " : [
9 { " name " : " s c h o o l " ,

10 " shader " : " toon " ,
11 " p r o p e r t i e s " : {
12 " c o l o r " : [0 , 0 , 0] ,
13 " h u l l _ s i z e " : 0 . 0 ,
14 " o u t l i n e _ b i a s " : 0 . 0 ,
15 " s c a l e " : 0 . 5 ,
16 " b i a s " : 0 . 65 ,
17 " exponent " : 1 ,
18 " s t e p s " : 4 }
19 } ,
20 {
21 "name " : " edge " ,
22 " shader " : " edgePost " ,
23 " p r o p e r t i e s " : {
24 " sample_dist " : 1 }
25 } ,] ,
26 " l i g h t s " : [<... >]

1 " camera " : {
2 " o r t h o g r a p h i c " : "

t r ue " ,
3 . . .
4 }
5 " mapping " : {
6 " atom " : " s c i e n c e " ,
7 " connector " : " s c i e n c e

" ,
8 " p o s t _ e f f e c t s " : []
9 } ,

10 " shaders " : [
11 { " name" : " s c i e n c e " ,
12 " shader " : " b a s i c " ,
13 " p r o p e r t i e s " : {
14 " smoothness " : 0 . 5 ,
15 " m e t a l l i c " : 0 . 2}
16 }] ,
17 " l i g h t s " : [<... >]

1 " camera " : { <... > } ,
2 " mapping " : {
3 " atom " : " advert " ,
4 " connector " : " advert

" ,
5 " p o s t _ e f f e c t s " : [
6 " dof " , " s sao "] } ,
7 " shaders " : [
8 { " name " : " advert " ,
9 " shader " : " b a s i c " ,

10 " p r o p e r t i e s " : {
11 " smoothness " : 0 . 15 ,
12 " m e t a l l i c " : 0 . 3 }
13 } ,
14 { " name " : " dof " ,
15 " shader " : " dofPost " ,
16 " p r o p e r t i e s " : {
17 " l a y e r s " :
18 [0 . 1 , 0 . 2 , 0 . 37 , 0 . 43] }
19 } ,
20 { " name " : " s sao " ,
21 " shader " : " ssaoPost "

,
22 " p r o p e r t i e s " : {
23 " r a d i u s " : 0 . 03 ,
24 " s s a o _ f a c t o r " : 1}
25 }] ,
26 " l i g h t s " : [<... >]

Table 4.2: Summarized stylesheets defining the visualizations in Table 4.1.

The dot product method was the first choice because it provides a good performance
and pleasant results. Its visual appearance compared to other techniques is shown in
Figure 4.1. The main drawback, however, is the handling of large polygons, which turn
entirely black when exhibiting a particular orientation in view space. This tends to be
a problem for the connectors as shown in Figure 4.2. Another minor disbenefit is the
variance of the line strengths as seen in the leftmost image of Figure 4.1.

The hull method was the second choice, since it only adds a pass doing vertex
transformations. The result can be seen in the middle image of Figure 4.1. Compared to
the first method, all lines have approximately the same thickness. Yet, this method also
has drawbacks due to the outline being an object in the 3D space. The first one can be
seen in Figure 4.3, where the outline unintentionally appears under certain viewing angles.
The second one, visible in the middle image of Figure4.1 and also in Figure 4.3, are the
rendered outlines in the middle of connectors. They appear because a connector consists
two cylinders. Since the enlarging of the hull is done per vertex without consideration of
the context, the base of the cylinders is also enlarged, resulting in the hull of the closer
connector overlapping the more distant one.

The post-processing method renders outlines with approximately same thickness, yet
without the artifacts of the hull method. Moreover, more edge types are outlined using

37

Figure 4.2: Using the dot product outline rendering technique, connecters turn black if
the viewing angle is to steep.

Figure 4.3: Using the hull method outline rendering technique, the outline unintentionally
appears under certain viewing angles.

this method than case with the other two. This quality arguments made this approach
the method of choice for the implementation in the app. A style that uses this method
can be seen in the first column of Table 4.1 and in the last image of Figure 4.1.

4.1.2 Scientific Style

The scientific style was designed to be functional (see second column in Table 4.1). The
shading is kept plain such that the spectator is not distracted from the information given
by the structure of the molecule. Moreover, an orthographic projection is used instead
of a perspective one to support the perception of the structure, because perspective
projection makes it difficult to see relative sizes. For shading, the default Unity surface
shader is used. Post-processing effects are not applied.

4.1.3 Advertisement Style

The purpose of the advertisement style is to make molecules look spectacular. The idea
was to achieve this by applying techniques from photorealistic rendering The rendering of
the atoms and bonds is done by the standard Unity surface shader. Realism was added
using the implemented post-processing effects SSAO and Layered DoF. The result can
be seen in the third column of Table 4.1.

38

The DoF effect is applied by blurring the part farthest away to set the front of the
molecules in focus. We decided to do so to hide artifacts of Layered DoF. Because the effect
is applied during post-processing, it misses some information leading to approximation
errors, especially in the near layer. If an object is blurred because it is too close to
the camera, the edges should also be blurred. Yet, this only can be done correctly if
the occluded objects are known, which is not possible after the scene has already been
rendered. As a result, the implemented DoF effect does not blur the borders of near
objects correctly.

Figure 4.4 shows a close up look on the visual effects of the transition layer. The
marked atom is a part of both the focus layer and the far layer, placing it in the transition
layer. This results in the atom being rendered sharp, with a glow around the borders.
This is another approximation artifact of this DoF method. However, it is only noticable
at a closer lookup and can hardly be seen on mobile devices.

Figure 4.4: Close up look at the advertising style.

Figure 4.4 also shows the use of SSAO in the advertisement style. We decided to use
it subtly, such that it is almost unnoticeable, but still enhancing the visual style of the
molecule. This can be best seen at the silhouettes of the atom spheres (see, e.g., the
Magnesium example in Table 4.1).

4.2 Rendering-Performance on Mobile Devices

To evaluate the applicability of the used rendering techniques, data was gathered to
benchmark the performance of the different styles. For this reason, the app was modified
to run the same set of molecules with varying visual styles. In the meantime, performance
data (frames per second (FPS)) was sent to a server for analysis.

This test setup allowed to benchmark on many different devices without the need for
supervision. The app could simply be distributed to the devices of test users who just
needed to start the app and run the benchmarks.

39

Five molecules with varying size were used to test the performance: Water, Anthracen,
NaCl, C60 Fulleren and Haemoglobin (see Table 4.3).

Figure 4.5 shows the results of this performance benchmarks. Performance information
is given per exercise as FPS, the default rendering performance is used as reference.

We collected performance data from 15 devices. The great variety of test devices can
be seen in the high standard deviation almost every performance data shows. High-end
tablets were used as well as entry-level smart phones.

To set the collected benchmarks in relative reference, we will compare the performance
of the education, scientific and advertisement styles with the performance of a default
rendering that only applies a simple Phong illumination without any advanced shader
effects. Using the comic style, the mean of the FPS drops by 24% and the median
decreases by 20%. Although the comic style only uses a slightly modified shading and
one post-processing effect, it has a relative high cost. Looking at the data of the water
molecule, however, both the median and the mean are above 30 FPS, suggesting that
the performance is still good enough such that the style is usable.

The scientific style exhibits a slightly better performance than the default rendering.
The mean of the FPS increases by 9% and the median by 5%. It is without doubt
performant enough to be used even on weaker devices.

The advertisement look is the style with the highest performance cost. The FPS
mean drops by 76% and the median by 80%. No device was able to provide a smooth
interaction. The high-end devices were able to still provide interactive framerates, yet
it is not suitable for real-time purposes on mobile devices in general. Nevertheless, it
generates nice pictures, which was the main purpose of this style.

40

Molecule Vertices Triangles
W
at
er
(H

2O
)

4,900 6,800

A
nt
hr
ac
en

(C
14
H

10
)

36,400 47,500

So
di
um

ch
lo
rid

e(
N
a
C
l)

68,100 101,400

Fu
lle

re
n(
C

60
)

104,100 130,600

H
ae
m
og

lo
bi
n

117,200 156,600

Table 4.3: Molecules used for benchmarking the visual styles.

41

Style / Exercise

Default Education Scientific Advertisement

 Anthracen Fulleren Hemoglob
in

 Sodium
chloride

 Water Anthracen Fulleren Hemoglob
in

 Sodium
chloride

 Water Anthracen Fulleren Hemoglob
in

 Sodium
chloride

 Water Anthracen Fulleren Hemoglob
in

 Sodium
chloride

 Water

10

20

30

40

50

60

FP
S

Figure 4.5: Benchmarks of the different styles measured in FPS presented in a Box-
Whiskers plot. The blue points show the measured FPS. The dark grey boxes cover
the interval [1stquartile,median] and the lighter grey boxes [median, 3rdquartile]. The
extending lines, the whiskers, show the minimum and the maximum of the data with a
maximum distance from the according quartile of 1.5 times of the interquartile range.
Points outside the whiskers are outliers.

42

CHAPTER 5
Conclusion and Future Work

This work implemented a setup to define styles for a mobile molecule visualization app.
This setup was then used to define styles for three different target user groups. One for
students, one for scientist and one for marketing. Six well known rendering techniques
were implemented in Unity and made available for defining styles in the stylesheet.

These rendering techniques are mainly screen spaced methods, because they are the
optimal choice for mobile devices with regards of performance. However, using a screen
space effect does not guarantee a good performance on mobile devices.

For example, the comic style we defined in Section 3.3 uses only one screen space
effect, but is already 20% slower than the default rendering. The advertisement style
uses two more complex screen space effects and is not suitable for real-time purposes and
thus only used for generating.

However, the styles that have to run at real-time framerates are the comic style and
the scientific style. As shown by the performance analysis in Section 4.2, they are actually
suitable for this task.

With the implementation of this work, the app is now capable of changing its
appearance even during runtime. This feature was used during the tests to change
the styles between the runs of the benchmark exercises. For defining new styles, no
programming or shader knowledge is necessary. It is enough to define a configuration file
with the required parameters. Yet, there are challenges that are beyond the scope of this
work.

Firstly, the manipulation of the stylesheet could be even more user friendly (e.g.
with a GUI). Moreover, the implemented techniques were all developed because at the
beginning of the project, we already had the required styles in our mind. More available
shaders would make the stylesheet even more powerful, resulting in more creative freedom
for the designer. n the future, we also want to optimize the given shaders for mobile use.

43

Bibliography

[AMHH08] Tomas Akenine-Möller, Eric Haines, and Naty Hoffman. Real-time rendering.
CRC Press, 2008.

[AW02] Tomas Arce and Matthias Wloka. In-game special effects and lighting, 2002.

[BS00] John W. Buchanan and Mario C. Sousa. The edge buffer: A data structure for
easy silhouette rendering. In Proceedings of the 1st International Symposium
on Non-photorealistic Animation and Rendering, NPAR ’00, pages 39–42,
New York, NY, USA, 2000. ACM.

[BTM06] Pascal Barla, Joëlle Thollot, and Lee Markosian. X-toon: An extended
toon shader. In Proceedings of the 4th International Symposium on Non-
photorealistic Animation and Rendering, NPAR ’06, pages 127–132, New
York, NY, USA, 2006. ACM.

[Bun05] Michael Bunnell. Dynamic ambient occlusion and indirect lighting. Gpu
gems, 2(2):223–233, 2005.

[Chr03] Per H Christensen. Global illumination and all that. SIGGRAPH 2003
course notes, 9:31–72, 2003.

[CM02] Drew Card and Jason L Mitchell. Non-photorealistic rendering with pixel
and vertex shaders, 2002.

[CPC84] Robert L. Cook, Thomas Porter, and Loren Carpenter. Distributed ray
tracing. SIGGRAPH Comput. Graph., 18(3):137–145, January 1984.

[cry] Cryengine cross plattform. http://cryengine.com/features/
cross-platform. Accessed: 17.10.2015.

[Dem04] Joe Demers. Depth of field: A survey of techniques. GPU Gems, 1(375):U390,
2004.

[Eng09] Wolfgang Engel. Shaderx7. Charles River Media, 2009.

[Eva06] Alex Evans. Fast approximations for global illumination on dynamic scenes.
In ACM SIGGRAPH 2006 Courses, pages 153–171. ACM, 2006.

45

http://cryengine.com/features/cross-platform
http://cryengine.com/features/cross-platform

[FM08] Dominic Filion and Rob McNaughton. Effects & techniques. In ACM
SIGGRAPH 2008 Games, SIGGRAPH ’08, pages 133–164, New York, NY,
USA, 2008. ACM.

[Goo05] David S Goodsell. Visual methods from atoms to cells. Structure, 13(3):347–
354, 2005.

[HA90] Paul Haeberli and Kurt Akeley. The accumulation buffer: Hardware support
for high-quality rendering. In Proceedings of the 17th Annual Conference
on Computer Graphics and Interactive Techniques, SIGGRAPH ’90, pages
309–318, New York, NY, USA, 1990. ACM.

[Hob07] Jia Hoberock. High-quality ambient occlusion. GPU Gems, 3, 2007.

[HPAD06] Kyle Hegeman, Simon Premože, Michael Ashikhmin, and George Drettakis.
Approximate ambient occlusion for trees. In Proceedings of the 2006 sympo-
sium on Interactive 3D graphics and games, pages 87–92. ACM, 2006.

[IFH+03] T. Isenberg, B. Freudenberg, N. Halper, S. Schlechtweg, and T. Strothotte.
A developer’s guide to silhouette algorithms for polygonal models. Computer
Graphics and Applications, IEEE, 23(4):28–37, July 2003.

[jso] Json specification. http://www.json.org/. Accessed: 13-02-2016.

[KKL+15] Barbora Kozlikova, Michael Krone, Norbert Lindow, Martin Falk, Marc
Baaden, Daniel Baum, Ivan Viola, Julius Parulek, and Hans-Christian Hege.
Visualization of biomolecular structures: State of the art. EuroVisSTAR2015,
pages 061–081, May 2015.

[Lan02] Hayden Landis. Production-ready global illumination. Siggraph course notes,
16(2002):11, 2002.

[LH13] Diana Libman and Ling Huang. Chemistry on the go: review of chemistry
apps on smartphones. Journal of chemical education, 90(3):320–325, 2013.

[LMHB00] Adam Lake, Carl Marshall, Mark Harris, and Marc Blackstein. Stylized
rendering techniques for scalable real-time 3d animation. In Proceedings of the
1st international symposium on Non-photorealistic animation and rendering,
pages 13–20. ACM, 2000.

[Mén10] José María Méndez. A simple and practical approach to ssao. Graphics
Programming and Theory, gamedev. net.(May 2010). http://www. gamedev.
net/page/resources/\/technical/graphics-programming-and-theory/a-simple-
and-practical-approach-to-ssao-r2753, 2010.

[MFE07] Jason Mitchell, Moby Francke, and Dhabih Eng. Illustrative rendering
in team fortress 2. In Proceedings of the 5th international symposium on
Non-photorealistic animation and rendering, pages 71–76. ACM, 2007.

46

http://www.json.org/

[Mit07] Martin Mittring. Finding next gen: Cryengine 2. In ACM SIGGRAPH 2007
courses, pages 97–121. ACM, 2007.

[PC82] Michael Potmesil and Indranil Chakravarty. Synthetic image generation with
a lens and aperture camera model. ACM Trans. Graph., 1(2):85–108, April
1982.

[PG04] Matt Pharr and Simon Green. Ambient occlusion. GPU Gems, 1:279–292,
2004.

[QBC+15] Gregory B Quinn, Chunxiao Bi, Cole H Christie, Kyle Pang, Andreas Prlić,
Takanori Nakane, Christine Zardecki, Maria Voigt, Helen M Berman, Philip E
Bourne, et al. Rcsb pdb mobile: ios and android mobile apps to provide
data access and visualization to the rcsb protein data bank. Bioinformatics,
31(1):126–127, 2015.

[RTI04] Guennadi Riguer, Natalya Tatarchuk, and John Isidoro. Real-time depth
of field simulation. ShaderX2: Shader Programming Tips and Tricks with
DirectX, 9:529–556, 2004.

[RWS+06] Zhong Ren, Rui Wang, John Snyder, Kun Zhou, Xinguo Liu, Bo Sun, Peter-
Pike Sloan, Hujun Bao, Qunsheng Peng, and Baining Guo. Real-time soft
shadows in dynamic scenes using spherical harmonic exponentiation. ACM
Transactions on Graphics (TOG), 25(3):977–986, 2006.

[Smi60] Deane K. Smith. Bibliography on molecular and crystal structure models,
1960.

[uef] Unreal Engine faq. https://www.unrealengine.com/faq. Accessed:
17.10.2015.

[unia] Unity3d Documentation materials and shaders. http://docs.unity3d.
com/Manual/Shaders.html. Accessed: 07-07-2015.

[unib] Unity3d Wiki silhouette-outlined diffuse. http://wiki.unity3d.com/
index.php/Outlined_Diffuse_3. Accessed: 16-11-2015.

[unr] Unreal Documentation depth of field. https://docs.unrealengine.
com/latest/INT/Engine/Rendering/PostProcessEffects/
DepthOfField/index.html. Accessed: 04-10-2015.

47

https://www.unrealengine.com/faq
http://docs.unity3d.com/Manual/Shaders.html
http://docs.unity3d.com/Manual/Shaders.html
http://wiki.unity3d.com/index.php/Outlined_Diffuse_3
http://wiki.unity3d.com/index.php/Outlined_Diffuse_3
https://docs.unrealengine.com/latest/INT/Engine/Rendering/PostProcessEffects/DepthOfField/index.html
https://docs.unrealengine.com/latest/INT/Engine/Rendering/PostProcessEffects/DepthOfField/index.html
https://docs.unrealengine.com/latest/INT/Engine/Rendering/PostProcessEffects/DepthOfField/index.html

	Kurzfassung
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Background and Related Work
	Overview
	Molecule Visualization and Related Software
	Unity3D
	Ambient Occlusion
	Comic Shading
	Outline Rendering
	Depth of Field Rendering

	Applying Different Rendering Styles in a Mobile Molecule Visualization App
	Using Stylesheets for Molecule Rendering
	Screen Space Ambient Occlusion
	Comic Shading and Outline Rendering
	Depth of Field

	Results and Evaluation
	Visual Styles
	Rendering-Performance on Mobile Devices

	Conclusion and Future Work
	Bibliography

