“Can we reduce [...]? Yes we can!”

“I enjoyed reading this mathematically very sound paper.”

“... an advance to an important problem often encountered ...”

Curve Reconstruction with Many Fewer Samples

Stefan Ohrhallinger1, Scott A. Mitchell2 and Michael Wimmer1

1TU Wien, Austria, 2Sandia National Laboratories, U.S.A.
Why Sample Curves with Fewer Points?

Each sample costs:

- €61
- €26

57% off
Sampling Condition ↔ Reconstruction
Algorithm HNN-CRUST
HNN-CRUST Reconstruction Results

Samples | CRUST [Amenta et al. ‘98] | HNN-CRUST

Sharp angles

Open curves
Earlier Sampling Conditions

- $\epsilon < 0.2$: CRUST [Amenta et al. '98]
- $\epsilon < 0.3$: NN-CRUST [Dey, Kumar '99]
- $\epsilon < 0.47$: Our HNN-CRUST
- $\rho < 0.9$: Our HNN-CRUST
What is ε-Sampling?

- $M = \text{medial axis}$ [Blum ’67]
- $lfs = \text{local feature size}$ [Ruppert ‘93]
- $D = \text{disk empty of } C$

$$||s,p|| < \varepsilon \cdot lfs(p)$$
The Problem of Large ε

Required Lfs vanishes at samples $\rightarrow s_1$ connects wrongly to s_i
So We Designed ρ-Sampling

Interval $I(p_0, p_1)$:
$\text{reach}(I) = \min lfs(I)$
[Federer '59]

$||s, p|| < \rho \ast \text{reach}(I)$

reach does not vanish at samples!
Works for Large ρ

\[\rho \approx 1 \]

\[s_0 \quad s_1 \quad s_2 \]

$C \quad M$
Results for ρ<0.9 Sampling

ε<0.3

Samples: 61

ρ<0.9

Samples: 26
Bounding Reconstruction Distance

ε < 0.3:
131 samples

ρ < 0.9:
58 samples

ρ < 0.9, d = 1%:
60 samples (+2)

d = bounded Hausdorff distance (in % of larger axis extent)
Reconstruction Distances Compared

$\varepsilon < 0.3$

$\rho < 0.9$

d

∞

1%

0.3%

0.1%

0.03%
Improved Bound for ε-Sampling

$\varepsilon < 0.3$, 131 samples

$\varepsilon < 0.47$, 94 samples

$\rho < 0.9$, 58 samples

$\varepsilon < r$-sampling \rightarrow $\rho < r/(1 - r)$-sampling

Proof: $\text{reach}(l) \geq (1-r)\text{lfs}(p)$

$\rho < 0.9 \rightarrow \varepsilon < 0.47$ (or $\varepsilon < 0.9$ at constant curvature)
Limits of HNN-CRUST

Samples | GathanG [Dey, Wenger ‘02] | HNN-CRUST

Sharp angles

Very sharp angles
Conclusion and Outlook

1) Simple variant HNN-CRUST
2) Sampling cond. ≡ reconstruction
3) $\rho < 0.9$ close to tight bound
4) Corollary: $\varepsilon < 0.\overline{3} \rightarrow \varepsilon < 0.47$

All figures/tables reproducible from open source (link in paper)

Now extending it to:

Contact:
Stefan Ohrhallinger
TU Wien, Austria

noisy samples
3D
Computer-Assisted Proof of $\rho<0.9$

Blue disks = exclusion zone of C, must contain point z (=farthest connected to s_1 instead of s_2 by HNN-CRUST)

C is defined by points x, s_1, y, s_2

C is bounded by parameters: $r=|s_0s_1|/|s_1s_2|$, in $[0..1]$ α, β with s_1-tangent, $[0^\circ..27^\circ]$

Sample parameter space in tiny steps, worst case combinations

Case $r=1$, $\alpha=\beta=27^\circ$
Computer-Assisted Proof – More Cases

$r=1, \alpha=\beta=27^\circ$

$r=\frac{1}{3}, \alpha=\beta=27^\circ$

$r=\frac{1}{\sqrt{2}}, \alpha=\beta=27^\circ$

$r=\frac{1}{\sqrt{2}}, \alpha=27^\circ, \beta=0^\circ$

$r=\frac{1}{\sqrt{2}}, \alpha=13^\circ, \beta=27^\circ$

$r=\frac{1}{\sqrt{2}}, \alpha=\beta=0^\circ$

$r=0, \alpha=\beta=0^\circ$

$r=1, \alpha=0^\circ, \beta=27^\circ$