"Can we reduce [...]? Yes we can!"

"I enjoyed reading this mathematically very sound paper."

"... an advance to an important problem often encountered ..."

Curve Reconstruction with Many Fewer Samples

<u>Stefan Ohrhallinger¹</u>, Scott A. Mitchell² and Michael Wimmer¹

¹TU Wien, Austria, ²Sandia National Laboratories, U.S.A.

Why Sample Curves with Fewer Points?

Each sample costs:

Sampling Condition ↔ Reconstruction

S. Ohrhallinger, S.A. Mitchell, M. Wimmer

Algorithm HNN-CRUST

HNN-CRUST Reconstruction Results

Samples

CRUST [Amenta et al. '98]

HNN-CRUST

Earlier Sampling Conditions

ε<0.2: CRUST [Amenta et al. '98] **ε<0.3**: NN-CRUST [Dey, Kumar '99]

ε<0.47: Our HNN-CRUST

What is ε-Sampling?

M = medial axis [Blum '67] *lfs* = local feature size [Ruppert '93] D = disk empty of C

$||s,p|| < \varepsilon^* lfs(p)$

The Problem of Large ε

Required Ifs vanishes at samples $\rightarrow s_1$ connects wrongly to s_1

So We Designed p-Sampling

reach does not vanish at samples!

Works for Large p

Results for p<0.9 Sampling

Bounding Reconstruction Distance

d=bounded Hausdorff distance (in % of larger axis extent)

Reconstruction Distances Compared

WIEN

Improved Bound for ε-Sampling

 $\epsilon < 0.\overline{3}, 131 \text{ samples} \epsilon < 0.47, 94 \text{ samples}$

 ρ <0.9, 58 samples

 $\varepsilon < r$ -sampling $\rightarrow \rho < r/(1 - r)$ -sampling

Proof: reach(I) \geq (1-r)Ifs(p)

 $\rho < 0.9 \rightarrow \epsilon < 0.47$ (or $\epsilon < 0.9$ at constant curvature)

Limits of HNN-CRUST

Conclusion and Outlook

1) Simple variant HNN-CRUST 2) Sampling cond.≡ reconstruction

3) p<0.9 close to tight bound

4) Corollary: $\epsilon < 0.\overline{3} \rightarrow \epsilon < 0.47$

All figures/tables reproducible from open source (link in paper)

Now extending it to:

<u>Contact:</u> Stefan Ohrhallinger TU Wien, Austria

3D

Computer-Assisted Proof of p<0.9

Blue disks = exclusion zone of C, must contain point z (=farthest connected to s_1 instead of s_2 by HNN-CRUST)

C is defined by points x, s_1 , y, s_2

C is bounded by parameters: r= $|s_0s_1|/|s_1,s_2|$, in]0..1] α , β with s₁-tangent, [0°..27°]

Sample parameter space in tiny steps, worst case combinations

Computer-Assisted Proof – More Cases

r=1, α=β=27°

 $r=\frac{1}{\sqrt{2}}, \alpha=\beta=27^{\circ}$

 $r = \frac{1}{\sqrt{2}}, \alpha = 27^{\circ}, \beta = 0^{\circ}$

