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(a) State of the art [DK99], ε < 1
3 : 61 points. (b) We prove ε < 0.47 to reduce to 43 points. (c) Our reach-based ρ < 0.9 needs just 26 points.

Figure 1: A smooth curve (black) with the relevant subset of its medial axis and its reconstruction (red) with the proposed HNN-CRUST

algorithm. We first tighten the state-of-the-art sampling condition (a) from ε < 1
3 to ε < 0.47 (b). Then we show that our new sampling

condition based on the reach reduces samples even further (c). For the shown example, the state-of-the-art sampling condition requires 135%
more samples than ours, which are irrelevant for homeomorphic reconstruction.

Abstract
We consider the problem of sampling points from a collection of smooth curves in the plane, such that the CRUST family of
proximity-based reconstruction algorithms can rebuild the curves. Reconstruction requires a dense sampling of local features,
i.e., parts of the curve that are close in Euclidean distance but far apart geodesically. We show that ε < 0.47-sampling is
sufficient for our proposed HNN-CRUST variant, improving upon the state-of-the-art requirement of ε < 1

3 -sampling. Thus we
may reconstruct curves with many fewer samples. We also present a new sampling scheme that reduces the required density
even further than ε < 0.47-sampling. We achieve this by better controlling the spacing between geodesically consecutive points.
Our novel sampling condition is based on the reach, the minimum local feature size along intervals between samples. This is
mathematically closer to the reconstruction density requirements, particularly near sharp-angled features. We prove lower and
upper bounds on reach ρ-sampling density in terms of lfs ε-sampling and demonstrate that we typically reduce the required
number of samples for reconstruction by more than half.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Line and
curve generation

1. Introduction

The connect-the-dots game without numbers on the dots corre-
sponds to the problem of reconstructing the connectivity of a planar
curve from a set of unstructured points sampled on that curve.

More formally, our problem is to sample points from a curve,
throw away the curve, then connect points to those nearby. For the
reconstruction to be correct, the points should be connected in the
same order as on the curve. A sparser sampling is valuable when-

ever placing points, storing them, or reconnecting them is expen-
sive. But it must not be too sparse because the connectivity must be
restorable from just the points.

The samples capture the essential shape information, topologi-
cal and geometric. The Human Visual System is able to complete
the connectivity based on the Gestalt principles of Proximity and
Continuity. Familiar examples are planting flower bulbs to form a
shape, or animating patterns in the night sky by lit drones. Recon-
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struction algorithms are also built on these proximity and conti-
nuity principles. Potential applications include generating efficient
shape descriptors based on points (as opposed to curve-based de-
scriptions), and compressing or progressively streaming point sets.
These can be used to decide whether to request additional samples
from a sensor, or that the sample set is of sufficient quality.

If the curve is sampled densely, connecting nearby points will re-
construct the correct curve. The less dense the sampling, the more
challenging it is to reconstruct the curve, especially at features
where two intervals of the curve come close to each other, or where
the curvature is high. Reconstruction algorithms require some sam-
pling conditions on the input in order to guarantee a correct output.
The particular algorithm determines the required density.

Sampling algorithms also guarantee some sampling conditions
on the output. However, these are rarely of exactly the same form,
and it is non-trivial to describe the reconstruction algorithm’s re-
quirements in terms of the sampling algorithm’s guarantees. This
leads to a mismatch between the minimum local density required
for reconstruction, and the maximum local density a sampling al-
gorithm produces. Typically we choose some local measure of a
curve, and sample density is guaranteed to be some parameterized
fraction of that measure. The closer the guarantees match the re-
quirements, and the tighter we can describe the necessary and suf-
ficient parameter values, the more efficient we can make our sam-
pling. This leads to our goal: to sample curve features as sparsely as
possible, yet still guarantee that the reconstructed curve is correct.

We describe the reconstruction algorithm HNN-CRUST, a vari-
ant of NN-CRUST [DK99]. Many sampling algorithms use the
ε-sampling condition, which is based on comparing ε times the
local feature size (lfs) at a point to the distance to its nearest
sample [ABE98]. The known parameter bounds for this combina-
tion, ε < 1/3-sampling, appear weak, and we show a better one,
ε< 0.47-sampling. Furthermore, we provide a better sampling con-
dition based on a different measure of the curve, the reach, ρ. The
reach is bounded by the minimum local feature size at all points be-
tween two samples. The reach is more suitable for HNN-CRUST,
and we believe for proximity-based reconstruction in general.

Our first contribution is the tightening of ε < 1/3-sampling to
ε < 0.47-sampling.

Our second and main contribution is the new reach-based ρ-
sampling condition, with the following properties:

• ρ-sampling is simple, with a single parameter like ε-sampling.
• ρ < 0.9-sampling guarantees that HNN-CRUST correctly recon-

structs the curve.
• The polygonal reconstruction geometrically approximates the

original curve, similar to ε < 0.47-sampling.
• ρ < 0.9-sampling has only half the samples when lfs is constant,

and never more than ε < 0.47-sampling.
• The same condition holds when limiting the Hausdorff distance

from the polygonal reconstruction to the original curve.
• Thus, ρ< 0.9-sampling permits much sharper angles: up to 73◦,

compared to 120◦ for ε < 1
3 -sampling.

Programs for sampling smooth curves under both sampling con-
ditions are provided online as open source. One can explore varying
ε and ρ parameters, as well as Hausdorff distance limits.

2. Related Work

We briefly review curve reconstruction algorithms and their associ-
ated sampling conditions. Early methods guaranteed curve recon-
struction from uniformly dense samples, where the maximum dis-
tance between consecutive samples is a global constant [EKS83,
KR85,FMG94,Att97]. However, since the sampling density is con-
stant, it depends on the maximum curvature, which is inefficient
for flat parts of the curve. Those methods work well for curves
whose curvature is limited above by a global constant, such as for
r-regular sets [DT14, DT15], for which guarantees are given for
non-noisy [Ste08] and noisy point sets [ST09].

Sampling framework: To get rid of this over-sampling, the
seminal paper by [ABE98] proposed the CRUST algorithm. It
filters edges from the Delaunay triangulation. Sampling density
varies according to both curvature and Euclidean distance be-
tween geodesically-far curve intervals. They also introduced a non-
uniform sampling condition based on local feature size, called ε-
sampling, and proved that CRUST reconstructs a manifold bound-
ary; [Dey06] proved ε < 0.2 is sufficient. Many subsequent meth-
ods use this sampling framework. [Gol99] optimized and simplified
CRUST to a single-step algorithm. This family of algorithms con-
strain their output to edges of the Delaunay triangulation.

Proximity-based algorithms: [DK99] introduced the simple
proximity-based algorithm NN-CRUST for general dimensions. It
guarantees reconstruction of closed curves for ε < 1/3. [Alt01]
improved the condition to ε < 0.5, but required α > 151◦. [Len06]
claims a better bound for NN-CRUST: ε < 0.4, or ε < 0.48 with ad-
ditional angle restrictions, but does not show proof. He also noted
shortcomings of ε-sampling, e.g. for sharp corners, as open prob-
lems. These investigations show that there is still room for improve-
ment. Without angle restrictions, the best proven bound is ε < 1/3-
sampling, and this is not tight.

Extensions: NN-CRUST was extended to CONSERVATIVE-
CRUST [DMR99] to handle open curves, and later to Gath-
anG [DW02], which modified the sampling condition to handle
sharp corners, but requires α > 150◦ otherwise. [FR01] introduced
the notion of curve reconstruction as requiring a homeomorphism
between the polygonal reconstruction and the curve, but not ge-
ometric closeness. They also presented their own sampling con-
dition, requiring several parameters, in order to reconstruct col-
lections of open and closed curves with sharp corners. Other ap-
proaches proposed a sampling condition using a vision function
based on human perception and some empirically established pa-
rameters [ZNYL08,NZ08]. [OM13] presented a three-step method
which is able to reconstruct very sparsely-sampled features, for
closed curves, by considering it as a global problem. The first step
guarantees reconstruction for ε < 0.5, but in order to handle the
sharp angles of 0◦–60◦ it requires an additional constraint, slowly
varying density as a maximum ratio between adjacent edge lengths.

Sampling: [LKvK∗14] generate connect-the-dot puzzles from
curves which vary in the criterion of connectivity, using differ-
ent sampling criteria. Their variant connect-the-closest-dot corre-
sponds closely to our problem, but our sampling condition neither
requires encoding of topology indicators nor a minimum distance
between points.
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3. Overview

We describe a variant of NN-CRUST [DK99] that we call HNN-
CRUST, which permits reconstruction of angles sharper than < 90◦,
as small as 60◦. While it improves the reconstruction, it is mostly a
vehicle to compare our ρ-sampling condition to the widely used ε-
sampling condition [ABE98]. We consider only these two sampling
conditions for comparison because the others are highly tailored to
specific reconstruction algorithms and require careful adjustment
of many parameters.

The HNN-CRUST reconstruction algorithm implies that two
edges meet at an angle of at least 60◦. The reconstruction is correct
for ε < 0.47. The angle between consecutive edges is related to cur-
vature and sampling density: the flatter the curve and the denser the
sampling, the larger the angle. (In the limit, for an infinite sampling
of a regular curve, we get 180◦.)

The essence of our paper is a new sampling condition that sam-
ples more sparsely where possible, closer to the minimum toler-
ated by the reconstruction. The weakness of ε-lfs sampling is that,
in essence, the sampling condition’s output guarantee is that the
maximum distance between consecutive samples is limited by the
lfs at a point half way between them. The sampling condition is
less sensitive to the lfs at other points, and the lfs at the samples
themselves are completely irrelevant. In contrast, the reconstruc-
tion algorithm’s input requirements are sensitive to small lfs at the
samples themselves. This mismatch leads one to select an ε small
enough that the algorithm is correct even when the lfs changes
rapidly between the midpoint and the sample. The sampling den-
sity is driven by this worst case, and is much denser than necessary
when the lfs is not changing rapidly. The strength of our new mea-
sure, the reach, is that it is sensitive to small lfs at the samples, and
so the sampling condition is more closely matched to the recon-
struction requirements.

The rest of the paper is organized as follows. In Section 4 we
introduce the required background and definitions. We explain the
reconstruction algorithm in Section 5 together with some proper-
ties. In Section 6 we give our improved ρ < 0.9-sampling condition
based on the reach rather than local feature size. In Section 7 we
prove that ρ < 0.9-sampling suffices. We also prove bounds relat-
ing ρ-sampling to ε-sampling, which indirectly proves ε < 0.47-
sampling suffices. We compare the results of our reconstruction
algorithm and sample density for our sampling condition in Sec-
tion 8. In Section 9 we give our conclusions along with potential
extensions.

4. Definitions

We give the following definitions, most of which have been intro-
duced by [ABE98]:

The domain is a collection of smooth curves C, by which we
mean bounded 1-manifolds embedded in R2, which are twice-
differentiable everywhere except perhaps at boundaries. This per-
mits C to consist of multiple connected components, such as a cir-
cle and a closed segment, but without crossings, T-intersections or
sharp angles. The boundary of a closed segment consists of two
terminus points. Note that each connected component of C induces

a natural geodesic ordering of its points, which can be traversed
in one of the two possible directions. Based on such a directed or-
dering, we say that a curve point lies before or after another, or
between two curve points. The interval I(p) ≡ [s0,s1] is the set of
points p ∈ C between s0 and s1. A chord is the straight edge be-
tween two points of an interval.

The set of samples is S. Samples s0 and s1 are adjacent or con-
secutive if there is no other sample on their interval. Let ‖−→n ‖ de-
note the Euclidean L2-norm. We measure distances in the Euclidean
metric, except where we specifically denote geodesic distance.

The nearest neighbor s0 to sample point s1 is
argmins j∈S\s1

‖s1,s j‖. The half neighbor s2 is the closest
sample in the half-space H which is partitioned by the per-
pendicular bisector of the edge s0s1 and does not contain s0:
argmins j∈S\s1,s j∈H ‖s1,s j‖. We often order all neighbors by
Euclidean distance: let ni be the i-th nearest sample to s1.

We define the manifold boundary B as the correct piece-wise lin-
ear reconstruction of C, which connects the samples of each con-
nected component in the same order as on C and adds no other
edges.

The medial axis M of C is the closure of all points in R2 with
two or more closest points in C [Blu67].

We define the local feature size lfs(p) for a point p ∈ C as the
Euclidean distance from p to its closest point m of M. This defi-
nition is loosely based on [Rup93], but simplified because we are
only considering smooth curves. Note lfs(p) is slowly varying, 1-
Lipschitz continuous with |lfs(p0)− lfs(p1)| ≤ ‖p0, p1‖.

Definition 1 is the widely used lfs sampling condition [ABE98]:

Definition 1 A smooth curve C is ε-sampled by point set S if every
point p ∈ C is closer to a sample than an ε-fraction of its local
feature size: ∀p ∈C,∃s ∈ S : ‖p,s‖< ε lfs(p).

In contrast, the reach [Fed59] for a set S is the largest “radius”
r such that points closer than r to S have a unique closest point
of S. The reach is similar to the smallest distance to the medial
axis. This inspires our definition of the reach of a curve interval I
as inf lfs(p) : p ∈ I, where the lfs is defined by all of C.

5. Our Improved Reconstruction Algorithm HNN-CRUST

HNN-CRUST simply connects each sample s ∈ S to its nearest and
half neighbor. (If s is a terminus of a curve, then only the nearest
neighbor gets an edge. If the terminus is not specifically marked,
then the reconstruction will have an extra edge.) Let h be the per-
pendicular bisector of the nearest neighbor edge, and H its half-
space containing s. Then the half neighbor lives in H but outside
the nearest-neighbor radius around s; see Figure 2. In Figure 3 we
show how CRUST and HNN-CRUST compare when consecutive
samples make sharp angles.

5.1. HNN-CRUST Mimics the Human Vision System

Three Gestalt principles are implicitly present in HNN-CRUST.
(Since our algorithm does not attempt to reproduce the Human Vi-
sion System, some reconstructions will not match typical human
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Figure 2: HNN-CRUST reconstruction of an edge-pair for a sam-
ple s. Edge e0 connects s to its nearest neighbor n0. The other edge
e1 is the shortest edge connecting s with a vertex in halfspace H.
Further, observe that this vertex (here n3) must lie inside the white
shaded area of H, since no sample is closer to s than n0. This im-
plies the two edges meet at an angle of at least 60◦.

perception.) These principles can be observed in Figure 3, and are
as follows:

• Proximity is enforced by always connecting the nearest neighbor,
and for the second neighbor choosing the nearest neighbor inside
the restricted halfspace.
• Good Continuity arises from requiring angles between incident

edges to be more than 60◦.
• Closure means we close the curve, unless excessive distance be-

tween points implies a hole or an open curve.

6. An Improved Sampling Condition

We will show that HNN-CRUST reconstructs a smooth curve for
an ε-sampling with ε < 0.47. For higher values of ε, [ABE98]
observed some interesting properties. Theorem 12 noted that for
ε < 1, the reconstruction B ⊂ DT (Delaunay Triangulation). The-
orem 13 showed that the distance from any point p ∈ C to the
polygonal reconstruction B is bounded above by ε

2lfs(p)/2. How-
ever, we have not seen any attempts to guarantee reconstruction for
0.47≤ ε < 1, so we will investigate why this is hard.

6.1. Large ε Do Not Keep Geodesically Distant Intervals Away

Lfs ε-sampling (Definition 1) just requires a sample to be within
an ε-fraction of the lfs at that point. Thus, as p ∈ C approaches
a sample point, lfs(p) may be arbitrarily small, and the sampling
condition is still satisfied. The only thing keeping geodesically dis-
tant curves sections separate is the ε-lfs condition at points farther
away, such as the point x ∈C midway between samples often used
in proofs. Therefore, for an ε-sampling with 0.47 ≤ ε < 1, HNN-
CRUST may connect non-adjacent samples and fail.

6.2. The Solution for Keeping Them at the Proper Distance

To sample more sparsely where samples are not needed, but still
ensure samples are dense enough where the curve approaches itself,

we must have a sampling condition that depends more strongly on
the lfs near samples. Our sampling condition replaces lfs(p) by the
reach, the minimum lfs on an interval.

Definition 2 The reach [Fed59] of interval I is infp∈I lfs(p).

Definition 3 A smooth curve C is ρ-sampled by point set S if every
point p ∈ C is closer to a sample than a ρ-fraction of the reach of
the interval I(s0,s1) of consecutive samples containing it. That is,
∀p ∈ I = [s0,s1] with s0,s1 ∈ S : ‖p,s0‖ < ρ reach(I) or ‖p,s1‖ <
ρ reach(I).

7. Correctness of HNN-CRUST for ρ < 0.9 and ε < 0.47.

The goal of this section is to show reconstruction provides correct
output for certain ρ. Indeed, we will show that every ε-sample is
also a ρ-sample, so this implies correctness for certain ε. The idea
is to show that consecutive samples are close together, that geodesi-
cally close samples are farther, and geodesically distant samples are
farther as well. We establish a series of geometric preliminaries re-
lating distances between samples, the curve, and its medial axis.
Most are similar to previous observations, but in some cases we
provide stronger results or more elegant proofs.

The first lemma is useful for geodesically close samples. Theo-
rem 2 in [OM13] shows, amongst other things, that Euclidean chord
length increases monotonically with geodesic distance, as long as
chords do not intersect M. In particular, for I = [p0, p2], as x ad-
vances on C from p0 to p2, chord length ‖p0x‖ is strictly increas-
ing, and has no local maxima. Here we show something stronger,
with a more elegant proof.

Lemma 1 Let p0, p2 ∈C. If the chord h≡ p0 p2 does not cross the
medial axis M of C, the interval I = [p0, p2] lies inside the smallest
circle O02 containing p0 p2. Moreover, for t ∈ I, distances ‖p0t‖
and ‖p2t‖ are strictly monotonic in t’s ordering on I.

Proof See Figure 5 left. For each point x on segment h, consider
the largest radius disk O centered at x with no points of C in its
interior. Let t be a point of C on the boundary of O. Then we have
the function T (x) = t with t ∈ C and x ∈ h. Note T (p0) = p0 and
T (p2) = p2, with radius zero. If T is discontinuous (multivalued) at
some x, then O touches C at two or more points, and x ∈M. Hence
T (x) must be continuous. Thus {t} must lie on a single connected
component of C, an interval, and h is a chord. Since O can never
contain p0 or p2 in its interior, O lies inside the diameter disk, and
hence so must all t. Observe O has strictly higher curvature (i.e.
smaller radius) than O02.
The continuity and curvature limit of T implies I can not be perpen-
dicular to h: if it were, then t⊥ = T ({x}) for some continuous range
of x. Continuity of T at the boundary of this range implies the cur-
vature of I at t⊥ is at most that of O02, a contradiction. Hence the
{x}where T (x) = t is a single point for all t. Hence T is monotonic.
This leads to the range of T being I. For curves that are topologi-
cal circles, the range might instead be I′, where I′ = [p2, p0]. Since
here the orientation of I is arbitrary, we will label the enclosed in-
terval “I”.
Besides t = T (x) being monotonically ordered on I, the distance
‖p0t‖ is also monotonic. It two points t1 and t2 of I are equidistant
from p0, then they lie on a circle Op0 centered at p0. Let t1 be the
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(a) CROCODILE point set. (b) CRUST reconstruction. (c) HNN-CRUST reconstruction.

Figure 3: CRUST only guarantees correct reconstruction for flat angles: consecutive samples must make angles > 90◦. In contrast, HNN-
CRUST succeeds for sharper angles, requiring only angles > 60◦.

Figure 4: Open and closed curves. Left: Sample points. Center:
CRUST reconstruction. Right: HNN-CRUST reconstruction.

Figure 5: If a chord does not cross a medial axis point, then the
curve interval must lie in the diameter disk. Left, tangent point t
varies continuously and monotonically with circle center x along
p0 p1. Right, distance from p0 to t is strictly increasing, else t2 is
unreachable.

one closer to h. (They cannot be equidistant because T is single-
valued.) Then any circle in O touching t2 has t1 in its interior, a
contradiction. By symmetry, ‖p1t‖ is also monotonic in x.

The next two lemmas quantify the fact that consecutive sam-
ples are close. We exploit the principle that an ε-sampling en-
sures that an adjacent sample s2 is close to s1 in terms of lfs.
From [ABE98] Lemma 1’s proof:

Lemma 2 Let s1,s2 be adjacent samples in C. For an ε-sampled
curve ∃y ∈ I[s1,s2] such that

‖s1s2‖ ≤ 2‖s2y‖= 2‖s1y‖< 2εlfs(y)

lfs(s1)/(1+ ε)< lfs(y)< lfs(s1)/(1− ε)

Proof ε-sampling ensures 2‖s1y‖ < 2εlfs(y) and the triangle
inequality provides ‖s1s2‖ ≤ 2‖s1y‖. Since lfs is 1-Lipschitz,
lfs(y) ≤ lfs(s1) + ‖s1y‖ replaced with above inequality for ‖s1y‖
yields lfs(y)< lfs(s1)/(1− ε). Also from the 1-Lipschitz property,
lfs(y) ≥ lfs(s1)−‖s1y‖ replaced with ‖s1y‖ from above provides
lfs(y)> lfs(s1)/(1+ ε).

Lemma 3 For adjacent samples s0,s1,s2, let x ∈ I[s0,s1] with
‖s0x‖= ‖s1x‖ and y ∈ I[s1,s2] with ‖s2y‖= ‖s1y‖. Then,

lfs(x)>
1− ε

1+ ε
lfs(y).

For the reach, the situation is considerably simpler.

Lemma 4 For a ρ-sampled curve with consecutive samples s0 and
s1, ‖s0s1‖< 2ρ reach(I01)≤ 2ρ lfs(s1). Moreover, for midpoint x,

lfs(s1)/(1+ρ)< lfs(x)< (1+ρ)lfs(s1).

Proof ∃x ∈ I[s0,s1] such that ‖s0,x‖ = ‖x,s1‖ < ρ reach(I01) ≤
ρ lfs(s1). The bound on lfs(x) follows from reach(I01)≥ lfs(x) and
1-Lipschitz.

The next two lemmas show that geodesically distant samples are
also far in Euclidean distance. We then relate ρ- and ε-sampling.
Finally we provide additional restrictions on the interval between
consecutive samples, quantifying how close it must be to a straight
line, and additional lower bounds on Euclidean distance.

We call a disk with no point of C in its interior “C-free”,
and a disk with no point of M in its interior “M-free” Recall
[ABE98] Lemma 7:

Lemma 5 A disk tangent to a smooth curve C at a point p with
radius at most lfs(p) is C-free.

We generalize Lemma 5 to the following.

Lemma 6 A rolling tangent circle Rty with center interior to circle
O(y, lfs(y)) touches C at a single point p in interval O(y, lfs(y))∩C.

Proof By definition, O(y, lfs(y)) is M-free. Following the proof of
Lemma 5, growing a tangent disk at y with continuously increasing
radius cannot intersect another point of C before the radius reaches
lfs(y), else the center would be a point of M. By the same argument,
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Figure 6: Forbidden regions: the red circles are C-free except for
I = [s0,s1], and I lies in their lune-shaped intersection and x ∈ I on
the green line inside that lune. The lunes bound the extreme cases
of constant curvature, where lfs = reach = lfs(x). In (a), the black
lines have length 0.5lfs and the blue lines lfs. In (b), the black lines
have length lfs and the blue triangles are equilateral.
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s0 s2

yα
θ ρ

(a) ∠s0s1s2 bound.

H

H

s1x

s0

y
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(b) s2 ∈ H

Figure 7: Ranges for x,y,s1,s2, angles and H for ρ-sampling. The
red circles are tangent to C at s1 with radius lfs(s1), and are C-
free and exclude x,y,s1, and s2 from their interior. In (b), the green
circle is O(s1, lfs(s1)), and contains x and y. Sample s0 lies in the
union of the three purple sectors and one green sector to the left of
s1. Hence H contains the purple and green right sectors and s2.

we may now continuously vary the center within O(y, lfs(y)), keep-
ing a continuous tangent at p in an interval around y.

Combining the idea of growing a tangent ball at y with the fact
that local curvature is less than 1/lfs(y) results in the forbidden
regions from [ABE98]. We summarize the properties we use in the
following lemma.

Lemma 7 The two circles through consecutive samples s0 and s1
with the maximum curvature allowed by the sampling condition
are C-free except for I = [s0,s1]. Moreover, I lies in the lune of
intersection of the two circles. See Figure 6.

In the following sense, our ρ-sampling is at least as good (i.e. as
sparse) as ε-sampling:

Theorem 1 Any ε < r-sampling is also a ρ < r/(1− r)-sampling,
for r < 1. E.g. an ε < 0.5-sampling is also a ρ < 1-sampling, and
an ε < 1/3-sampling is also a ρ < 0.5-sampling.

Proof The proof is the same as the proof of Lemma 2, com-
bined with using Lemma 1 to show distances are monotonic along
I = [s0s1]. For any ε-sampled interval I = [s0,s1], we first show
reach(I) ≥ (1− ε)lfs(x), then show the condition holds ∀p ∈ I.

Let x ∈ I be equidistant from s0 and s1. From Lemma 1, ‖xp‖ ≤
‖xs0‖. By 1-Lipschitz, lfs(p) ≥ lfs(x) − ‖xp‖ > (1 − ε)lfs(x).
Thus reach = infp lfs(p) ≥ (1 − ε)lfs(x). Again by Lemma 1,
∀p ∈ [s0,x],‖ps0‖ ≤ ‖xs0‖ ≤ ε/(1− ε)reach. The argument for
p ∈ [x,s1] is the same. Thus, for r < 1, any ε < r-sampling is also
a ρ < r/(1− r)-sampling.

Corollary 1 ρ < r/(1−r)-sampling does not require more samples
than ε < r-sampling.

Lemma 8 For a ρ < 1-sampling, ∠s0s1s2 ≥ π− 4arcsinρ/2 and
∠xs1y≥ π−2arcsinρ/2. This is tight for constant curvature.

Proof Consider the C-free tangent disk to s1 of radius lfs(s1). The
reach on each interval containing s1 is at most lfs(s1). In Fig-
ure 7(a), this leads to ‖xs1‖ ≤ ρ lfs(s1), then θ = 2arcsin(ρ/2) and
∠s0s1s2 ≥ 2α = π−2θ.

Lemma 9 For an ε-sampled curve, with ε < 0.5, the angle spanned
by three adjacent samples is at least π−4arcsin(ε/(2−2ε)).

Proof Combine Lemma 8 with Theorem 1.

Lemma 8 is a restatement of Lemma 10 from [ABE98], with ε

replaced by ρ. This is weaker, but, to our knowledge, Lemma 10
from [ABE98] remains unproven. Our corollary, Lemma 9, is an
improvement over the bound of ∠s0s1s2 ≥ π− 2arcsin(ε/(1− ε))
in [Dey06]: here ε < 0.5 gives angles at least 60◦, whereas [Dey06]
does not provide a lower bound on the angle.

To bound the distance between the reconstruction and the curve,
Lemma 13 from [ABE98] applies, which we reformulate:

Lemma 10 For a ρ-sampling of a curve in R2, with ρ < 1, the
distance from a point p to a point on the correct polygonal recon-
struction of the samples is at most (ρ2/2)lfs(p).

Theorem 2 For a ρ < 0.9-sampled smooth curve C, the reconstruc-
tion algorithm HNN-CRUST outputs the manifold boundary B.

Proof Consider consecutive samples s0, s1 and s2. We wish to show
that edges s0s1 and s1s2 are formed. Without loss of generality, let
s0 be the closer of the two samples to s1. We further consider a sam-
ple z 6= s0,s1,s2 to investigate the existence of a counter-example.
We first show that s0 is the nearest neighbor to s1. We have two
cases, depending on whether s1z intersects M. If it does not, then
by Lemma 1, z lies on interval I with s0 (or s2) between z and s1,
and s0 (or s2) is strictly closer to s1 than z is. Hence z is not a nearest
neighbor.
The second case is s1z intersects M. Let q be the closest point of
I02 = [s0,s2] to z. Suppose q ∈ I12 = [s1,s2]. If q is s2, then z is
closer to s2 than s1, and Lemma 7 demonstrates z is farther from
s1 than s2. Otherwise q is an interior point of I and segment zq is
perpendicular to I at q. By Lemma 5 it passes through the diameter
of a disk tangent to q with diameter 2lfs(q). Then ‖zs1‖ ≥ ‖zq‖ ≥
2lfs(q). But lfs(q) ≥ reach(I2) and by Lemma 4 2ρ reach(I2) >
‖s1s2‖. Hence ‖zs1‖ > ‖s1s2‖∀ρ ≤ 1. Using the same arguments,
if q ∈ [s0,s1] then ‖zs1‖> ‖s0s1‖.
We have now shown that s0 is the nearest neighbor to s1, and it
remains to show that s2 is the half neighbor. From Figure 7(b), the
admissible region for s1 leads to s2 ∈ H as follows. As s0 varies
along the boundary of a red circle, H rotates around the center of
the circle, but never contains the admissible region for s2. As s0
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moves off a red circle, H just retreats farther from s2’s admissible
region.
Thus, we need only show that no other sample z in H is closer.
While showing that s0 was the nearest neighbor, we already es-
tablished that any z was farther than ‖s1s2‖ except perhaps when
zs1 ∩M 6= ∅ and its closest point of I is q ∈ [s0,s1]. For ρ < 0.5,
the remainder is trivial because ‖zs1‖ ≥ lfs(s1) > 2ρ‖s1s2‖. For
larger ρ, the main idea of the proof is to use rolling tangent
balls to cover the part of O(s1,‖s1s2‖) in H. From Lemma 7,
I = [s0,s2] is restricted to lie in the union of two lunes, which pro-
vides a lower bound on the radii of the rolling tangent balls from
Lemma 6. Hence the balls are large and cover the portion of the
circle O(s1,‖s1s2‖) in H. Unfortunately, we do not have a closed-
form algebraic description of this fact. Instead, we have a computer
assisted proof. We consider the possible ranges of positions, with
ratio=‖x,s1‖/‖s1,y‖ ∈ [0,1] and the tangent angles between xs1
and s1y ∈ [0◦,53.5◦] (Lemma 8). We divide each of these three
ranges into small intervals. For all feasible combinations of inter-
vals, we take the worst case value for each quantity independently
when used. For all ranges we construct a collection of rolling tan-
gent circles that covers O(s1,‖s1s2‖). Figure 8 provides a few rep-
resentative examples. These figures and all other feasible combina-
tions can be reproduced with a matlab script available online.

Theorem 3 For an ε-sampled smooth curve C, with ε < 0.47,
HNN-CRUST outputs the manifold boundary B.

Proof This follows immediately from Theorems 1 and 2.

8. Results

8.1. Comparison of HNN-CRUST

Figure 4 shows that unlike the CRUST [ABE98], our pro-
posed algorithm reconstructs sharp corners up to 60◦ and han-
dles close curves well. Our reconstruction algorithm is local
and therefore scales well to large point sets. HNN-CRUST also
handles open curves gracefully. It only outputs edges which
are reconstructed bijectively, i.e. are consistent from both end
points, in order to avoid catastrophic failure. We provide open
source code for this algorithm that reproduces figures and tables
of this paper: https://github.com/stefango74/hnn-
crust-sgp16.

8.2. Comparison of ρ < 0.9-sampling

Algorithm Sampling condition Bound min α circle par.

GATHANG ‖p, s[0|1]‖ < ε lfs(p) ε < 0.5 > 150◦ 12 2
CRUST ∃s : ‖p, s‖ < ε lfs(p) ε < 0.2 > 157◦ 15.7 5
NN-CRUST ∃s : ‖p, s‖ < ε lfs(p) ε < 1

3 > 142◦ 9.4 3
NN-CRUST* ∃s : ‖p, s‖ < ε lfs(p) ε < 0.4 > 134◦ 7.8 2.5
[Len06]* —”— ε < 0.48 > 124◦ 6.5 2.1
HNN-CRUST —”— ε < 0.47 > 126◦ 6.6 2.1
HNN-CRUST ∃s : ‖p, s‖ < ρ reach(I(p)) ρ < 0.9 > 73◦ 3.4 1.1

Table 1: Bounds for differing sampling conditions (*=not proven),
guaranteed minimum angles spanned between three adjacent sam-
ples for constant curvature and based on those the averaged num-
ber of points required to sample a circle and parallel lines with
length equal to their distance. Here, p ∈ C is in the curve interval
I(p) between adjacent samples s0 and s1, and s is any sample.

(a) ratio=1, α = β = 27◦ (b) ratio=1/3, α = β = 27◦

(c) ratio=1/
√

(2), α = β = 27◦ (d) ratio=1/
√

(2), α = 27◦, β = 0◦

(e) ratio=1/
√

(2), α = 13◦, β = 0◦ (f) ratio=1/
√

(2), α = β = 0◦

(g) ratio=0, α = β = 0◦ (h) ratio=1, α = 0◦, β = 27◦

Figure 8: For ρ-sampling with ρ = 0.9, s2 is the half neighbor
because rolling tangent balls cover O(s1,‖s1s2‖) ∩H (red disk
right of red line in quadrant II). Their radii are bounded below
by the curve (or its lower bound approximation, the x-axis). Here
ratio=‖x,s1‖/‖s1,y‖ ∈ [0,1] and α,β ∈ [0◦,27◦]. We assign the
tangent of C at s1 as the x-axis, with α its angle with s1x and β its
angle with s1y.
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(a) PARALLEL LINES.

(b) BUNNY clipart consisting of cubic bezier curves.

(c) CAT clipart consisting of cubic bezier curves.

Figure 9: Curves with polygonal reconstruction (red). Left: An ε <
1
3 -sampling. Right: ρ < 0.9 permits much sparser sampling.

In Table 1 we compare sampling conditions w.r.t. their minimum
angle and how many samples this represents on a circle or on paral-
lel lines. Note that we derive the minimum angle for all conditions
from the given bounds, except for GATHANG [DW02], which re-
lies on additional conditions to handle sharp corners. Note espe-
cially that for constant curvature (circular arcs, parallel lines), our
proposed ρ < 0.9-sampling requires just little more than a third of
the samples than ε < 1

3 -sampling.

We implemented a sampling algorithm which can apply both ε-
sampling and ρ-sampling and outputs a number of samples on the
input curve. The parameters ε,ρ and d (the Hausdorff distance be-
tween original curve and polygonal reconstruction) can be varied.
To verify whether the edges in the reconstruction are correct, they
are output as well (see Figures 9, 10 and 11). As input curves we
use cubic Bezier curves and subsample them very densely to ap-
proximate the needed lfs closely at these curve points. The imple-
mentation is also available as open source online.

Figure 9 visualizes sampling different curves with ε < 1
3 -

sampling and ρ < 0.9-sampling. The number of respective samples
together with ε < 0.47-sampling are shown in Table 2.

Figure 10 shows the advantage of ρ < 0.9-sampling over ε < 1
3 -

sampling when the sampling must also ensure that the recon-
structed polygon lies within Hausdorff distance d of the original
curve.

Table 2 shows that a ρ < 0.9-sampling requires many fewer sam-

Model ρ < 0.9 ε < 0.47 ε < 1
3

PARALLEL 20 35 (75%) 48 (140%)
TEASER 26 43 (65%) 61 (135%)
BUNNY 58 94 (62%) 131 (126%)
CAT 180 254 (41%) 356 (98%)

Table 2: Number of samples required for the given sampling con-
ditions (* = in the limit) for example curves and the % of redundant
samples compared with ρ < 0.9 in brackets (see Figures 1 and 9).

ples than an ε< 0.47-sampling, while still guaranteeing reconstruc-
tion with HNN-CRUST, approaching half of what ε < 1

3 -sampling
produces. Since for curve intervals of constant local feature size the
reach is equal to this lfs, circular arcs or parallel lines require only
exactly half the samples in the limit. The lower bound of ρ < 0.9-
sampling is therefore ε < 0.9-sampling, the upper bound ε < 0.47-
sampling as shown in Corollary 1.

The more drastically the lfs changes, the more samples have to
be placed, approximating the limit of ε < 0.47-sampling.

Hausdorff distance ρ < 0.9 ε < 0.47 ε < 1
3

∞ 58 94 (62%) 131 (126%)
1% 60 94 (57%) 131 (118%)

0.3% 73 99 (36%) 133 (82%)
0.1% 105 123 (17%) 148 (41%)

0.03% 173 186 (8%) 204 (18%)

Table 3: Number of samples required for the given sampling con-
ditions for the BUNNY curve and given Hausdorff distance limit in
terms of maximum point set dimension, the % of redundant samples
compared with ρ < 0.9 in brackets.

Table 3 shows how sample redundancy for ε-samplings de-
creases as the required Hausdorff distance between the reconstruc-
tion and original curve becomes smaller than the feature size. Note
that for the BUNNY in Figure 9(b), the ρ < 0.9-sampling requires
just adding 2 samples to achieve the 1% reconstruction error (see
Figure 10).

The limits of HNN-CRUST are shown in the lower half of Fig-
ure 11, where the sampling condition is violated by too close curves
or too sharp corners, while its top half shows that GathanG yields
for such cases rather arbitrary results due to a lack of an intu-
itively understandable sampling condition. Those can be handled
by specialized algorithms such as GATHANG [DW02], which rely
on heuristics or global data structures such as Delaunay triangula-
tion. Their disadvantage is that due to the heuristic criteria, they
cannot give as good guarantees w.r.t. angles as ours. Also the re-
quired global data structures cannot be well partitioned for local
construction, such as is possible for the kd-tree we use for deter-
mining nearest neighbors.

9. Conclusion and Future Work

Both improving the existing bound for ε-sampling from ε < 1
3 to

ε < 0.47 and introducing a new condition for sampling smooth
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(a) ε < 1
3 requires 131 samples. (b) ρ < 0.9 needs just 60 samples.

Figure 10: Sampling the original curve and limiting its reconstruction to a Hausdorff distance of 1% of its total extent: Here, ε < 1
3 requires

more than double the samples than ρ < 0.9, which are redundant since not contributing to the reconstructed geometry within the specified
error.

(a) GATHANG (b) HNN-CRUST

(c) GATHANG (d) HNN-CRUST

Figure 11: Top left: GATHANG connects some edges seemingly
arbitrary compared to Local HNN-CRUST on the right. Bottom
left: GATHANG handles very sharp corners and undersampling by
exploiting the global context. Right: Local HNN-CRUST indicates
(by producing leaf vertices on an assumed closed curve) where ρ <
0.9 is violated.

curves, ρ-sampling, has enabled us to prove a much tighter bound
in terms of local sampling density. That new bound, ρ < 0.9, per-
mits reconstruction of smooth curves with our proposed simple and
fast algorithm HNN-CRUST. We believe that 0.9 is close to tight,
based on Figure 8(d). The bound allows for much more sparse
sampling while keeping the geometric approximation of the recon-
structed polygon to the original curve. The improved ε-sampling
bound already requires up to 45% fewer samples (in the limit, for
constant curvature). Additionally, based on that new sampling con-
dition, smooth curves can be reconstructed from even fewer points,
typically half of the state-of-the-art bound, in the limit roughly one
third. We are currently working on framing conditions to enhance
our sampling framework to support non-smooth curves, as [OM13]
shows they can be reconstructed for extremely sparse sampling.

Further we believe that it can be extended to handle noisy sam-
ples with outliers in the sense of [DS06]. Another work in progress
is the extension of the reconstruction algorithm into R3 for surface
reconstruction with a similar condition for the sampling required on
a smooth boundary, together with the above enhancements. While
the edge-pairs reconstructed at points in R2 correspond to closed
triangle fans in R3, the output of the reconstruction algorithm does
not match, as shown in [OMW13]. Flat tetrahedra can lie parallel
to the surface (slivers) and so an additional condition is required to
yield a unique triangulation.
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