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1 Introduction
In this document, we present the details of the FEM framework
used in our paper.

2 The Stiffness Matrix
In our representation, a 3d model is formed by two triangle meshes
with boundary (inner and outer), that have identical topologies.
Two corresponding triangles are connected to form a triangular
prism. An additional node is introduced at the center of each edge
of the prism in order to create “15-node wedge” elements. Each
element has a local (ξ,η, ζ) = (ξ1, ξ2, ξ3) = ξ coordinate frame
and a local node numbering, see Fig. 1.
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Figure 1: 15-node wedge element.

Each node i ∈ {1, . . . , 15 = n} has a shape function Ni : Ω → R,
where Ω is the element interior. It holds that Ni(pi) = 1 and
Ni(pj) = 0 for i 6= j, where pk is the position of node k in the
local coordinate frame. The shape functions form a partition of
unity on Ω. Any quantity qi that is defined at the nodal positions
can be interpolated at a point p ∈ Ω as

∑
qiNi(p).

Let (x̃i, ỹi, z̃i) = x̃ be the global coordinates of node i. Let

X̃ =

x̃1 · · · x̃n
ỹ1 · · · ỹn
z̃1 · · · z̃n


be the 3-by-n matrix of global coordinates. The global coordinates
are interpolated on Ω as X̃N, where N = (N1,N2, . . . ,Nn)T . Let
G(p) be the n-by-3-matrix-valued gradient of the shape functions
Ni at p w.r.t. to the local coordinates s.t. Gij(p) = ∂Ni

∂ξj
. Then

the Jacobi matrix of the transformation between global and local
coordinates can be written as J = X̃G = ∂x̃

∂ξ
. The definition of the
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stiffness matrix requires the quantity ∂N
∂x̃ = B = GJ−1 ∈ Rn×3.

Knowing the entries of B, let
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∂ỹ

· · · 0 ∂Nn
∂z̃

∂Nn
∂ỹ
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
∈ R6×3n

(1)

Let C be the 6-by-6 matrix representation of the stiffness tensor

C =
E

(1 + ν)(1 − 2ν)
·

1 − ν ν ν
ν 1 − ν ν
ν ν 1 − ν

1
2 − ν

1
2 − ν

1
2 − ν

 ,

where E is Young’s modulus in ν is Poisson’s ratio, constant across
all elements.

Then the stiffness matrix of one element is defined as

Ke =
nG∑
g=1

wg det(J(pg))B(pg)TCB(pg) ∈ R3n×3n.

The quantitieswg, pg,g ∈ {1, . . . ,nG} are the weights and nodes of
a Gauss quadrature scheme, which remains constant. pg are given
in local coordinates. The global stiffness matrix of the assembly
of elements is computed by pasting the entries of each Ke into the
appropriate rows and columns determined by a global node num-
bering. If an entry in the global stiffness matrix has contributions
from more than one element stiffness matrix, these contributions
are accumulated.

3 Gradient of the Stiffness Matrix

Let the global node coordinates x̃ be a function of shape parameters
x̃ = x̃(α1, . . . ,αp). The goal is to compute ∂Ke

∂αi
.

The gradient of the global coordinates w.r.t. the shape parameters
∂X̃
∂αi
∈ R3×n can be inferred from the parametrization of the shape.

Then ∂J
∂αi

= ∂X̃
∂αi

G, because G only depends on the local coor-
dinates of the Gauss quadrature points and thus not on the global
coordinates.

The derivative of J−1 is given by ∂J−1

∂αi
= −J−1 ∂X̃

∂αi
GJ−1. The

derivative of B is given by ∂B
∂αi

= −GJ−1 ∂X̃
∂αi

GJ−1. From this
the entries in ∂B

∂αi
can be found by reordering like in Eq. 1.



The derivative of det(J) is given by ∂ det(J)
∂αi

= tr
(

adj(J) ∂X̃
∂αi

G
)

,
where “tr” denotes the trace and “adj” denotes the adjugate. Finally,

∂Ke

∂αi
=

nG∑
g=1

wg

[
tr
(

adj(J)
∂X̃

∂αi
G

)
BTCB+

det(J)


(
∂B

∂αi

)T
CB+

[(
∂B

∂αi

)T
CB

]T
 , (2)

where the arguments pg have been left out for clarity.

4 The Mass Matrix
The mass matrix of an element can be written as

Me =

nG∑
g=1

wg det(J(pg))H(pg),

where H is a 3n-by-3n matrix that does not depend on the global
coordinates. Therefore it can be precalculated once for every Gauss
quadrature node pg and then used for every element.
The gradient of the mass matrix is

∂Me

∂αi
=

nG∑
g=1

wgtr
(

adj(J)
∂X̃

∂αi
G

)
H.

5 Equations of Motion
Let K be the global stiffness matrix and M the global mass matrix.
The finite element equations of motion for vibrations are given by

Kü + Mu = 0.

By solving the generalized eigenvalue problem

Kvi = λiMvi,

the solutions to the original equations of motion are given as har-

monic oscillations with frequencies of fi =
√
λi

2π .
The derivatives of λi are given by

∂λi

∂αj
= vTi

(
∂K
∂αj

− λi
∂M
∂αj

)
vi.

The derivatives of fi are given by

∂fi

∂αj
=

1
4π
√
λi

∂λi

∂αj
.

6 Derivatives of eigenvalues and eigenvec-
tors

The following applies for non-repeated eigenvalues. Each eigenpair
fulfills the equations

Kvi = λiMvi, vTi Mvi = 1.

Assuming that all quantities depend on a shape parameter pj, the
first partials are given by

(K − λiM)
∂vi
∂pj

− Mvi
∂λi

∂pj
=

(
λi
∂M
∂pj

−
∂K
∂pj

)
vi,

2vTi M
∂vi
∂pj

= −vTi
∂M
∂pj

vi.

This can be expressed using block matrix notation as(
K − λiM −Mvi

2vTi M 0

)( ∂vi
∂pj
∂λi
∂pj

)
=

(λi ∂M
∂pj

− ∂K
∂pj

)
vi

−vTi
∂M
∂pj

vi.


This (N + 1) × (N + 1) system has a unique solution if λi is a
non-repeated eigenvalue.


