Non-Linear Shape Optimization Using Local Subspace Projections Supplementary Material

Przemyslaw Musialski ${ }^{1 *}$ Christian Hafner ${ }^{1 *} \quad$ Florian Rist $^{1} \quad$ Michael Birsak $^{1} \quad$ Michael Wimmer $^{1 \dagger} \quad$ Leif Kobbelt $^{2 \dagger}$

${ }^{1}$ TU Wien
${ }^{2}$ RWTH Aachen

1 Introduction

In this document, we present the details of the FEM framework used in our paper.

2 The Stiffness Matrix

In our representation, a 3d model is formed by two triangle meshes with boundary (inner and outer), that have identical topologies. Two corresponding triangles are connected to form a triangular prism. An additional node is introduced at the center of each edge of the prism in order to create " 15 -node wedge" elements. Each element has a local $(\xi, \eta, \zeta)=\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=\boldsymbol{\xi}$ coordinate frame and a local node numbering, see Fig. 1.

Figure 1: 15 -node wedge element.
Each node $\mathfrak{i} \in\{1, \ldots, 15=n\}$ has a shape function $N_{i}: \Omega \rightarrow \mathbb{R}$, where Ω is the element interior. It holds that $N_{i}\left(\mathbf{p}_{i}\right)=1$ and $\mathrm{N}_{\mathfrak{i}}\left(\mathbf{p}_{\mathfrak{j}}\right)=0$ for $\mathfrak{i} \neq \mathfrak{j}$, where \mathbf{p}_{k} is the position of node k in the local coordinate frame. The shape functions form a partition of unity on Ω. Any quantity q_{i} that is defined at the nodal positions can be interpolated at a point $\mathbf{p} \in \Omega$ as $\sum q_{i} N_{i}(\mathbf{p})$.
Let $\left(\tilde{x}_{i}, \tilde{y}_{i}, \tilde{z}_{i}\right)=\tilde{\mathbf{x}}$ be the global coordinates of node i. Let

$$
\tilde{X}=\left(\begin{array}{ccc}
\tilde{x}_{1} & \cdots & \tilde{x}_{n} \\
\tilde{y}_{1} & \cdots & \tilde{y}_{n} \\
\tilde{z}_{1} & \cdots & \tilde{z}_{n}
\end{array}\right)
$$

be the 3-by-n matrix of global coordinates. The global coordinates are interpolated on Ω as $\tilde{\mathbf{X}} \mathbf{N}$, where $\mathrm{N}=\left(\mathrm{N}_{1}, \mathrm{~N}_{2}, \ldots, \mathrm{~N}_{\mathrm{n}}\right)^{\mathrm{T}}$. Let $\mathrm{G}(\mathbf{p})$ be the n -by-3-matrix-valued gradient of the shape functions N_{i} at \mathbf{p} w.r.t. to the local coordinates s.t. $G_{i j}(\mathbf{p})=\frac{\partial N_{i}}{\partial \varepsilon_{j}}$. Then the Jacobi matrix of the transformation between global and local coordinates can be written as $J=\tilde{X} G=\frac{\partial \tilde{\mathbf{x}}}{\partial \xi}$. The definition of the

[^0]stiffness matrix requires the quantity $\frac{\partial \mathbf{N}}{\partial \tilde{\mathbf{x}}}=\overline{\mathrm{B}}=\mathrm{GJ}^{-1} \in \mathbb{R}^{\mathrm{n} \times 3}$. Knowing the entries of $\overline{\mathrm{B}}$, let

Let C be the 6-by-6 matrix representation of the stiffness tensor

$$
\begin{aligned}
C & =\frac{E}{(1+v)(1-2 v)} . \\
& \left(\begin{array}{cccccc}
1-v & v & v & & & \\
v & 1-v & v & & & \\
v & v & 1-v & & & \\
& & & \frac{1}{2}-v & & \\
& & & & \frac{1}{2}-v & \\
& & & & & \frac{1}{2}-v
\end{array}\right),
\end{aligned}
$$

where E is Young's modulus in v is Poisson's ratio, constant across all elements.

Then the stiffness matrix of one element is defined as

$$
\mathbf{K}^{e}=\sum_{g=1}^{\mathrm{n}_{\mathrm{G}}} w_{g} \operatorname{det}\left(J\left(\mathbf{p}_{g}\right)\right) \mathrm{B}\left(\mathbf{p}_{g}\right)^{\mathrm{T}} \mathrm{CB}\left(\mathbf{p}_{g}\right) \in \mathbb{R}^{3 \mathrm{n} \times 3 n} .
$$

The quantities $w_{g}, \mathbf{p}_{g}, g \in\left\{1, \ldots, n_{G}\right\}$ are the weights and nodes of a Gauss quadrature scheme, which remains constant. \mathbf{p}_{g} are given in local coordinates. The global stiffness matrix of the assembly of elements is computed by pasting the entries of each \mathbf{K}^{e} into the appropriate rows and columns determined by a global node numbering. If an entry in the global stiffness matrix has contributions from more than one element stiffness matrix, these contributions are accumulated.

3 Gradient of the Stiffness Matrix

Let the global node coordinates $\tilde{\mathbf{x}}$ be a function of shape parameters $\tilde{\mathbf{x}}=\tilde{\mathbf{x}}\left(\alpha_{1}, \ldots, \alpha_{p}\right)$. The goal is to compute $\frac{\partial \mathbf{K}^{e}}{\partial \alpha_{i}}$.
The gradient of the global coordinates w.r.t. the shape parameters $\frac{\partial \tilde{X}}{\partial \alpha_{i}} \in \mathbb{R}^{3 \times n}$ can be inferred from the parametrization of the shape. Then $\frac{\partial J}{\partial \alpha_{i}}=\frac{\partial \tilde{X}}{\partial \alpha_{i}} G$, because G only depends on the local coordinates of the Gauss quadrature points and thus not on the global coordinates.
The derivative of J^{-1} is given by $\frac{\partial J^{-1}}{\partial \alpha_{i}}=-J^{-1} \frac{\partial \tilde{X}}{\partial \alpha_{i}} G J^{-1}$. The derivative of $\overline{\mathrm{B}}$ is given by $\frac{\partial \overline{\mathrm{B}}}{\partial \alpha_{i}}=-\mathrm{GJ}^{-1} \frac{\partial \tilde{X}}{\partial \alpha_{i}} \mathrm{GJ}^{-1}$. From this the entries in $\frac{\partial \mathrm{B}}{\partial \alpha_{i}}$ can be found by reordering like in Eq. 1 .

The derivative of $\operatorname{det}(J)$ is given by $\frac{\partial \operatorname{det}(J)}{\partial \alpha_{i}}=\operatorname{tr}\left(\operatorname{adj}(J) \frac{\partial \tilde{X}}{\partial \alpha_{i}} G\right)$, where "tr" denotes the trace and "adj" denotes the adjugate. Finally,

$$
\begin{align*}
\frac{\partial \mathbf{K}^{e}}{\partial \alpha_{i}}= & \sum_{g=1}^{n_{G}} w_{g}\left[\operatorname{tr}\left(\operatorname{adj}(J) \frac{\partial \tilde{X}}{\partial \alpha_{i}} G\right) B^{\top} C B+\right. \\
& \left.\operatorname{det}(J)\left\{\left(\frac{\partial B}{\partial \alpha_{i}}\right)^{\top} C B+\left[\left(\frac{\partial B}{\partial \alpha_{i}}\right)^{\top} C B\right]^{\top}\right\}\right] \tag{2}
\end{align*}
$$

where the arguments \mathbf{p}_{g} have been left out for clarity.

4 The Mass Matrix

The mass matrix of an element can be written as

$$
\mathbf{M}^{e}=\sum_{g=1}^{\mathrm{n}_{\mathrm{G}}} w_{\mathrm{g}} \operatorname{det}\left(\mathrm{~J}\left(\mathbf{p}_{\mathrm{g}}\right)\right) \mathrm{H}\left(\mathbf{p}_{g}\right)
$$

where H is a $3 n$-by- 3 n matrix that does not depend on the global coordinates. Therefore it can be precalculated once for every Gauss quadrature node \mathbf{p}_{g} and then used for every element.
The gradient of the mass matrix is

$$
\frac{\partial \mathbf{M}^{e}}{\partial \alpha_{i}}=\sum_{g=1}^{n_{G}} w_{g} \operatorname{tr}\left(\operatorname{adj}(J) \frac{\partial \tilde{X}}{\partial \alpha_{i}} G\right) H
$$

5 Equations of Motion

Let \mathbf{K} be the global stiffness matrix and \mathbf{M} the global mass matrix. The finite element equations of motion for vibrations are given by

$$
\mathbf{K} \ddot{\mathbf{u}}+\mathbf{M u}=0 .
$$

By solving the generalized eigenvalue problem

$$
\mathbf{K} \mathbf{v}_{i}=\lambda_{i} \mathbf{M} \mathbf{v}_{i}
$$

the solutions to the original equations of motion are given as harmonic oscillations with frequencies of $f_{i}=\frac{\sqrt{\lambda_{i}}}{2 \pi}$.
The derivatives of λ_{i} are given by

$$
\frac{\partial \lambda_{i}}{\partial \alpha_{j}}=\mathbf{v}_{i}^{\top}\left(\frac{\partial \mathbf{K}}{\partial \alpha_{j}}-\lambda_{i} \frac{\partial \mathbf{M}}{\partial \alpha_{j}}\right) \mathbf{v}_{i}
$$

The derivatives of f_{i} are given by

$$
\frac{\partial f_{i}}{\partial \alpha_{j}}=\frac{1}{4 \pi \sqrt{\lambda_{i}}} \frac{\partial \lambda_{i}}{\partial \alpha_{j}} .
$$

6 Derivatives of eigenvalues and eigenvectors

The following applies for non-repeated eigenvalues. Each eigenpair fulfills the equations

$$
\mathbf{K} \mathbf{v}_{i}=\lambda_{i} \mathbf{M} \mathbf{v}_{i}, \quad \mathbf{v}_{i}^{\top} \mathbf{M} \mathbf{v}_{i}=1 .
$$

Assuming that all quantities depend on a shape parameter p_{j}, the first partials are given by

$$
\begin{gathered}
\left(\mathbf{K}-\lambda_{i} \mathbf{M}\right) \frac{\partial \mathbf{v}_{i}}{\partial p_{j}}-\mathbf{M} \mathbf{v}_{i} \frac{\partial \lambda_{i}}{\partial p_{j}}=\left(\lambda_{i} \frac{\partial \mathbf{M}}{\partial p_{j}}-\frac{\partial \mathbf{K}}{\partial p_{j}}\right) \mathbf{v}_{i} \\
2 \mathbf{v}_{i}^{\top} \mathbf{M} \frac{\partial \mathbf{v}_{i}}{\partial p_{j}}=-\mathbf{v}_{i}^{\top} \frac{\partial \mathbf{M}}{\partial p_{j}} \mathbf{v}_{i} .
\end{gathered}
$$

This can be expressed using block matrix notation as

$$
\left(\begin{array}{cc}
\mathbf{K}-\lambda_{i} \mathbf{M} & -\mathbf{M} \mathbf{v}_{i} \\
2 \mathbf{v}_{i}^{\top} \mathbf{M} & 0
\end{array}\right)\binom{\frac{\partial \mathbf{v}_{i}}{\partial p_{j}}}{\frac{\partial \lambda_{i}}{\partial p_{j}}}=\binom{\left(\lambda_{i} \frac{\partial \mathbf{M}}{\partial p_{j}}-\frac{\partial \mathbf{K}}{\partial p_{j}}\right) \mathbf{v}_{i}}{-\mathbf{v}_{i}^{\top} \frac{\partial \mathbf{M}}{\partial p_{j}} \mathbf{v}_{i} .}
$$

This $(N+1) \times(N+1)$ system has a unique solution if λ_{i} is a non-repeated eigenvalue.

[^0]: * Joint first authors.
 ${ }^{\dagger}$ Joint last authors.

