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Figure 1: We propose a novel method for local optimization that is applicable to various shape optimization problems, like (1) optimization of
natural frequencies, (2) optimization of mass properties, and (3) optimization of the structural strength of solid objects. Our method computes
locally optimal subspace projections that provide low-dimensional parameterizations. These are suitable for efficient local optimization.

Abstract

In this paper we present a novel method for non-linear shape opti-
mization of 3d objects given by their surface representation. Our
method takes advantage of the fact that various shape properties
of interest give rise to underdetermined design spaces implying the
existence of many good solutions. Our algorithm exploits this by
performing iterative projections of the problem to local subspaces
where it can be solved much more efficiently using standard numer-
ical routines. We demonstrate how this approach can be utilized for
various shape optimization tasks using different shape parameteri-
zations. In particular, we show how to efficiently optimize natural
frequencies, mass properties, as well as the structural yield strength
of a solid body. Our method is flexible, easy to implement, and very
fast.
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1 Introduction
Shape optimization is a research field where computational tools for
optimizing structures described by physical or mechanical models
are developed. With digital fabrication becoming more and more a
consumer-level technology, the demand for novel algorithmic shape
optimization solutions is constantly growing. This is also reflected
in a recent series of papers in the computer graphics community
which aim at a broad range of diverse shape optimization problems,
like structural stability of 3d printed objects [Stava et al. 2012; Lu
et al. 2014; Zhu et al. 2012], objects with desired physical proper-
ties [Prévost et al. 2013; Bächer et al. 2014; Musialski et al. 2015],
or, most recently, objects with desired natural frequency spectra
[Bharaj et al. 2015]. All these solutions are rather specialized and
aim at the computational design of some specific aspects of struc-
ture. However, what they have in common is that they optimize
some specific shape properties parameterized in a well-chosen de-
sign space, and all rely on mathematical optimization of the given
structure, where the objective and the constraints depend on the un-
derlying shape and are in general highly non-convex.
In this paper, we introduce a novel shape optimization framework
that provides a unified representation of these problems with respect
to generic shape properties and parameterizations. Additionally,
we provide an improved local minimization strategy based on the
efficient exploration of an underdetermined shape design space, and
we extend our method with soft box constraints, making it even
more effective if only such constraints are present.
Our method aims at fast and robust non-convex local shape opti-
mization and is inspired by the following observation: If the design
space of a non-convex shape optimization problem is too small—
particularly if it is (nearly) fully determined—it is difficult to find
a solution at all, especially without the knowledge of appropriate
initial values. Making the design space richer provides a remedy,
since more local minima of the objective function exist, and a po-
tentially good design can be found more easily from any starting
position using local optimization. On the other hand, optimization
in such high-dimensional and underdetermined spaces is slow and
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difficult, especially if the evaluation of the gradients of the involved
functionals is expensive. Indeed, since generic local optimization
routines do not take any specific knowledge of the underdetermined
space into account, they often take very long to reach a minimum
or do not converge at all. However, our observation is that one can
exercise local control over many independent shape properties, like
natural vibration frequencies, or mass properties, by varying the
shape parameters in a low-dimensional affine subspace.

Our method tries to exploit that fact: The shape is parameterized in
a rich design space, however, our algorithm repetitively reduces this
space to a locally best matching subspace that is fully determined.
Best matching means that the design variables and the shape proper-
ties (e.g., natural frequencies) are decorrelated in the chosen local
subspace. Subsequently, a local optimization (e.g., quasi-Newton
or Levenberg–Marquardt) is performed in the subspace as long as
the shape parameters are sufficiently decorrelated. When this is not
the case anymore, the problem is again transformed to a new basis
in the embedding design space. This procedure is repeated until
convergence to a local minimum.

In summary, the contributions of this paper are the following:

• We provide a novel subspace parameterization for local
gradient-based shape optimization problems that is more ef-
ficient than traditional generic methods. In particular, our
method performs both faster and it converges more reliably
to a valid local minimum.

• We introduce a constraint mapping strategy that allows us to
formulate box constraints in the objective function. This turns
out to be very efficient in combination with the subspace pro-
jection algorithm.

• We show how to apply our algorithm to a number of problems
using different parameterizations. Specifically, we demon-
strate how this approach can be used for (1) optimization of
natural frequencies, (2) optimization of mass properties, and
(3) optimization of structural strength of a solid object.

2 Related Work

Shape Optimization. Shape optimization aims at the automatic
computation of structural or mechanical designs that suit some de-
sired (global) goals [Delfour and Zolésio 2011]. It has been studied
in the field of optimal control theory and structural engineering for
quite some time, and it spans multiple scientific fields, like classical
geometry, analytic geometry, functional analysis, partial differential
equations, as well as (constrained) optimization, with applications
to classical mechanics of continuous media such as elasticity the-
ory.

In computer graphics, research on shape optimization became pop-
ular due to its applications to digital fabrication. Recent approaches
provide algorithms for improving models for 3d printing, like the
computation of structural stability [Stava et al. 2012], worst-case
structural analysis [Zhou et al. 2013], cost-effective material usage
[Wang et al. 2013], or optimization of both the strength and weight
of printed objects [Lu et al. 2014]. Another series of papers deals
with the physical mass properties of solids that optimize 3d objects
to fulfill various objectives, like stable standing, rotating, or floating
in a liquid [Prévost et al. 2013; Bächer et al. 2014; Musialski et al.
2015; Wang and Whiting 2016]. Recently, works that aim at the op-
timization of the natural frequency spectra of fabricated 3d objects
in order to make them produce desired sounds have been published
[Umetani et al. 2010; Bharaj et al. 2015; Hafner et al. 2015].

Computational Design. Shape optimization can also be seen as
a subfield of general computational design problems, which are
currently under very active research. Various methods have been

proposed that integrate shape optimization into interactive model-
ing tools in order to solve specific problems. For instance, inter-
active systems for computational design tasks, like garment editing
[Umetani et al. 2011], design of physically valid furniture [Umetani
et al. 2012], articulated 3d-printed models [Bächer et al. 2012],
elastically deformable objects [Skouras et al. 2013; Pérez et al.
2015], or construction of inflatable structures with desired shapes
[Skouras et al. 2014] have been proposed.

Another example is material design, where the specification of a
desired deformation behavior can be given a priori, and the com-
posite material with matching elastic behavior is computed by opti-
mization [Bickel et al. 2010]. Recently, a method for the computa-
tional design of elastic materials with constant physical structures
has been proposed [Schumacher et al. 2015; Panetta et al. 2015].

Subset Methods. Modifications to the Levenberg-Marquardt al-
gorithm that iteratively choose a subset of parameters have recently
been proposed. The motivation is to increase numerical stabil-
ity [Ipsen et al. 2011] and efficiency by removing parameters of
low sensitivity and re-evaluating the full problem occasionally [Fin-
sterle and Kowalsky 2011]. Our work has a similar goal, but gener-
alizes the idea to arbitrarily oriented parameter subspaces and pro-
vides a criterion to decide when re-evaluation is necessary.

3 Shape Representation
First, we provide the definitions of all particular building blocks.
Figure 2 provides an overview of the framework, where we define
it here in a generic fashion, but we show in Section 6 how it can be
applied to a number of specific shape optimization tasks.

Shape as a Variable. In the context of shape optimization meth-
ods, a shape is generally considered as a geometric domain Ω ⊂
R3. In this paper, we represent a 3d shape by its boundary ∂Ω,
which is a 2-manifold surface, and we assume that ∂Ω encloses a
bounded region of space, which is considered as the inside. It cor-
responds to the volume (and respectively the mass) of the object,
where we assume a uniform mass density. In practice, we expect
that ∂Ω is represented by a 2-manifold polygonal mesh with n ver-
tex positions concatenated to the vector x ∈ R3n.

Shape Parameterization. Let χ0 be an initial geometric model
represented by vertices x that is to be optimized. We assume that
the shape optimization is achieved by controlling a set of design
variables α = [α1, . . . ,αm], i.e., the actual geometric variables
x are the range of a function χ(α) with χ0 = χ(0). Then χ(α)
is a (linear or non-linear) map encoding the 3d coordinates of all
vertices:

χ : α ∈ D ⊆ Rm 7→ x ∈ R3n ,

where D constitutes the design space which covers all admissible
shapes. In the simplest case, χ can be an affine map

χ(α) = χ0 + Xα , (1)

where the columns of the (3n ×m)-matrix X play the role of dis-
crete shape functions. Common choices for the shape functions
would be radial bumps [Botsch and Kobbelt 2005] or manifold har-
monics [Vallet and Lévy 2008]. In Section 5 we discuss further
details of the used parameterizations.

Material Parameters. All shapes we optimize represent real ob-
jects and should be fabricable. Thus, the physical properties of the
underlying material need to be provided. In cases where the shape
property is derived from the equations of motion, the object is dis-
cretized using a finite element model with second-order elements
[Bathe 2006]. The material is represented with an isotropic model,
whose parameters are given by the Young’s modulus E, Poisson’s
ratio ν, and the material density ρ.
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Figure 2: Overview of our method on the example of optimizing the natural frequencies of a shape. Given a shape, represented by its
geometric variables x, first we provide a parameterization χ. Further, the shape properties can be computed using the parameterization and
some given material properties. Next, given user desired values for the properties, we perform a subspace projection and optimize the shape
in order to fulfill these goals. Finally, the output is the optimized shape x ′.

Shape Properties. The aim of shape optimization is to find
an optimal shape, i.e., one which meets some geometric require-
ments and at the same time exhibits some desired properties.
These entities are further denoted as the so-called shape prop-
erty variables, collected to the vector-valued function ϕ(χ) =
[ϕ1(χ), . . . ,ϕk(χ)]. It delivers the properties of the shape with re-
spect to the design variables α, and it is usually a non-linear and
non-convex mapping. Often, especially in structural and mechani-
cal problems, shape properties are given as solutions to a PDE that
governs the problem. As we will see later in Section 6, a component
ϕi(χ) can stand for, e.g., a geometric property, a mass property, the
frequency of an eigenmode, or any other feature of the object.

User Goals. The final ingredients to our system are the actually
desired target valuesϕ∗i for the shape properties. In particular, if the
goal is to optimize the natural frequency spectrum, the target needs
to be a set of values for the particular fundamental tone (i.e., the
pitch) and the overtones (cf. Section 6.1). In other cases, like mass
properties, the actual behavior of the object if exposed to forces
needs to be specified (cf. Section 6.2). Usually, such desired values
are given by the user. The shape optimization is successful if these
shape properties ϕi(χ) take on the desired target values ϕ∗i .

4 Shape Optimization

Our goal is to provide a generic methodology which allows creating
shapes with desired properties independent of the chosen parame-
terization. In this section we propose a novel local optimization
scheme for efficient shape optimization.

4.1 Shape Optimization Setup

Since we couple the property variables to the design variables via
the geometry of the shape, a setup for a formal optimization prob-
lem can be stated in nested form with the objective functional f de-
fined with respect to the property values ϕ of the design variables
α as

min
α
f(ϕ(χ(α)))

s.t. gj(χ(α),ϕ(χ(α))) 6 0 .
(2)

Besides the properties of a shape, the optimization usually
has to take a number of (quality or inequality) constraints
gj(χ,ϕ(χ)) 6 0 into account, which can either depend directly
on the shape and/or on its property functions. In most cases, the
constraints are necessary in order to enforce physical plausibility of
the shapes, however, in Section 5.3 we propose a method to refor-
mulate some of them as part of the objective function.

In this paper, the actual scalar-valued objective function f is a
(weighted) sum of squared differences between the property vari-

ables and the given target values. Therefore, the generic formula-
tion of our shape optimization objective is

f(α) =

k∑
i=1

ωi ‖ϕ(χ(α))i −ϕ∗i‖
2 ,

whereωi are problem specific weighting factors. We will see in the
application section that many practically relevant application cases
turn out to be special instances of this generic optimization setting.

4.2 Sensitivity Analysis
If the objective function f, the property function ϕ, and the param-
eterization χ are smooth and differentiable with respect to α, we
can use an iterative gradient-based optimization algorithm to ob-
tain a local minimum of the function f. While current numerical
optimization routines are able to compute the derivatives numeri-
cally (e.g., using finite differences), better results can be obtained if
analytical gradient functions can be supplied [Nocedal and Wright
2006]. Due to the nested form of the objective function, the gradient
can be expressed using the chain rule as:

∇αf =
∂f

∂ϕ

∂ϕ

∂χ

∂χ

∂α
. (3)

Additionally, in the case of (non-linear) constrained optimization,
we also need to provide the gradients of gi:

∇χgi =
∂gi

∂χ

∂χ

∂α
and ∇ϕgi =

∂gi

∂ϕ

∂ϕ

∂χ

∂χ

∂α
. (4)

In general, equipped with the ingredients from Equations (2) to (4),
we could perform local optimization using standard optimization
routines.

4.3 Subspace Projection
Rationale. Applying standard local numerical solvers to the
generic optimization problem (2) usually leads to very poor con-
vergence. This is due to the fact that the m (typically in the range
of 10s to 100s) shape parameters α make the problem heavily un-
derdetermined, which creates many redundant (shallow) directions
where shape changes do not imply significant changes in the tar-
get functional. Moreover, since each shape parameter αi can sig-
nificantly influence several (or even all) shape properties ϕi(χ) in
a non-linear fashion, there are potentially many local minima in
which iterative solvers can get trapped. Finally, since (at least) the
gradient of the target functional needs to be evaluated in each iter-
ation, the large number of shape parameters negatively affects the
compute cost per iteration.
One option would be to reduce the dimensionality of the design
space D. However, if the design space is too restricted, i.e., too
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particular property functionϕ is at the same time the actual objective f, which is not the case in general. Moreover, for illustration purposes,
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Figure 4: Illustration of the shape property decorrelation on an
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ϕ2(α1,α2) are mapped to ϕ1(β1,β2) and ϕ2(β1,β2).

low-dimensional or even fully determined, a solution could be non-
existent or very difficult to find with a local optimization approach
without appropriate initial values. On the other hand, our key ob-
servation is that shape properties, while non-linear, can locally be
controlled in a low-dimensional affine parameter subspace. This is
achieved by decorrelating the shape properties, even if they origi-
nally exhibit strong correlations in the embedding design space (cf.
Fig. 4).

Local Preconditioning. We hence propose a numerical algo-
rithm that is based on a proper (local) pre-conditioning of the prob-
lem such that negative effects emerging from underdetermined-ness
and interference between shape parameters are lessened or even
eliminated. Intuitively, the idea is to find a projection from the de-
sign space D into a local subspace R ⊆ Rk with new shape param-
eters β = [β1, . . . ,βk] ∈ R, each dominantly controlling one of the
shape properties ϕi(χ) and having only little influence on the oth-
ers. Due to the non-linearity of the shape properties, finding such a
reparameterization globally would be very challenging. However,
if we restrict ourselves to a local region in the design space, i.e., the
vicinity of the current location α, a linear map

α = Bβ

with an (m×k) parameter transform matrix B turns out to be suffi-
cient. Figure 4 depicts the effect of the decorrelation of the property
functions in the subspace R, while their projections into the design
space D exhibit strong correlations.

The (local) dependency of the shape propertiesϕ on the new shape

parameters β is expressed by the gradient

∂ϕ

∂β
=
∂ϕ

∂χ

∂χ

∂α

∂α

∂β
=
∂ϕ

∂χ
XB

where, for simplicity, we assume χ to lie in an affine space spanned
by the matrix X (cf. Eq. (1)). At a given design space location α
(or, equivalently, for a given intermediate shape χ(α)) we obtain
maximum decorrelation between the new shape parameters β if

∂ϕ

∂χ
XB = diag(γ1, . . . ,γk).

Here, the diagonal coefficients γi = ωiϕ∗i are chosen such that the
scale differences between different shape properties ϕi are prop-
erly compensated. Setting γi = 1 would lead to potentially large
anisotropies if, e.g., the different shape properties are measured in
different physical units. The matrix B can easily be computed as
the least-norm solution of

min
∥∥ B̃ ∥∥2

2 s.t.
[
∂ϕ

∂χ

∂χ

∂α

]
B̃ = Ik , (5)

where B = B̃ diag(γ1, . . . ,γk), and Ik is a k × k identity matrix.
Choosing the least-norm solution preserves the design space struc-
ture in the sense that each parameter βi controls the property func-
tion ϕi mostly through those αj that also have a strong influence
on ϕi.

Algorithm. Our iterative numerical optimization scheme runs
two nested loops. In the outer loop, the shape parameter transform
matrix B is computed for the current design space location α (or,
equivalently, for the current intermediate shape χ(α)). In the in-
ner loop, gradient-based iterations are applied to optimize the new
(local) shape parameters β. The inner loop stops if either a local
minimum is found or if the diagonal dominance

1
k

k∑
i=1

|Gii|∑
j |Gij|

of the gradient matrix

G = [Gij] =

[
∂ϕ

∂χ

∂χ

∂α

]
B =

∂ϕ

∂β
(6)

falls below a certain threshold τ, which is usually chosen in the
range of 0.5 < τ < 1.0. The latter indicates that the shape parame-
ters β are no longer sufficiently decorrelated. In this case, the next



outer iteration starts with the computation of a new matrix B at the
updated design space position α(β) = Bβ.

In each local optimization step of the inner loop, the gradient G
only depends on k � m parameters. This means that the deriva-
tives of ϕ need only be computed w.r.t. the parameters β of the
subspace. This constitutes a significant reduction in computational
cost compared to the evaluation of the gradient in the full design
space. The inner loop continues as long as the subspace parame-
ters β retain effective control over the shape properties, which is
expressed by the diagonal dominance criterion above.

Our method turns out to be very efficient for optimization of shapes
parameterized in an underdetermined design space. As we show
later in the results (cf. Section 6), our algorithm performs both faster
and it converges more reliably to a good minimum compared to a
standard local optimization. Figure 3 shows a simplified summary
of the method in a low-dimensional case (D ∈ R2 7→ R ∈ R).

4.4 Choice of the Local Method

The shape optimization algorithm using iterative subspace projec-
tion employs continuous local optimization in the inner loop. The
choice of the local optimization algorithm depends on the applica-
tion, the objective function, and the constraints of problem. Re-
cent works in shape optimization favor BFGS-type algorithms like
quasi-Newton (QN) and the sequential quadratic programming al-
gorithm (SQP), which is why we focus our evaluation on this class.
Their great advantage is that box constraints, linear constraints, and
non-linear constraints, which are ubiquitous in many shape opti-
mization tasks, are supported by off-the-shelf implementations like
the ones provided in MATLAB.

If the nature of the problem facilitates the constraint mapping strat-
egy discussed in detail in Section 5.3 and contains no additional
constraint beyond that, we show how it can be transformed into an
unconstrained problem. In this case, the special non-linear least-
squares structure of the objective function permits the use of the
Levenberg-Marquardt (LM) algorithm as an alternative to BFGS.
We conduct an evaluation of both QN and LM using subspace pro-
jection in Section 6.1. The results reveal that subspace projection
accelerates both algorithms significantly and that the performance
of LM is superior to that of QN (cf. Figure 9 and Table 1).

5 Parameterizations and Constraints
This section describes the parameterizations used in the applica-
tions of Section 6. We also introduce a constraint mapping scheme
that relaxes the restrictions imposed on the design space by box
constraints and improves the effectiveness of our subspace projec-
tion method.

5.1 Parameterizations

Manifold Harmonics. For most of our applications, we use a pa-
rameterization given by the manifold harmonics of the surface of
the shape, as recently proposed by Musialski et al. [2015], which
we briefly summarize in this section. It defines a 3d volume as the
volume enclosed by two 2-manifold surfaces, the outer surface M
and the inner surface M. If the surfaces have boundaries, the closed
3d model is formed by connecting them.

The outer surface M is given by the user and remains constant
throughout the optimization in order not to distort the appearance of
the model. The inner surface M is defined as an offset surface to M,
where the per-vertex offset directions vi ∈ V are precalculated and
the per-vertex offset magnitudes δi are controlled by the optimiza-
tion variables. For the vector field V we utilize the surface normals
(in Section 6.1), or a mean curvature flow vector field [Tagliasacchi
et al. 2012] (in Sections 6.2 and 6.3).

Figure 5: Left: Nine of the first 24 manifold harmonics on the rab-
bit mesh. Right: Influence regions of the parameters in the reduced
design space for the optimization of natural frequencies.

Since the surfaces are given as triangle meshes, this would usu-
ally introduce an unacceptably large number of design parameters
δ = [δ1, . . . , δn]

T , which is equal to the number of vertices. In
order to deal with this problem, we utilize the manifold harmonics
parameterization. It uses the k eigenvectors corresponding to the k
smallest eigenvalues of the discrete Laplace-Beltrami operator on
M. These vectors constitute an orthonormal basis, often denoted as
manifold harmonic basis [Vallet and Lévy 2008], which can be used
to build a set of design parameters α = [α1, . . . ,αm]T ∈ D , where
m � n. Let Γm = [γ1, . . . ,γm] be the matrix containing these m
eigenvectors in its columns. Then a vertex xi of the inner surface
can be expressed through an offset to the corresponding vertex xi
of the outer surface as (cf. Eq. (1))

xi = xi + δivi, δ = Γmα. (7)

Here, the offsets are spanned by the basis Γm, and the coefficients
are the design parameters α. Fig. 6 (left) portrays the influence of
the individual design parameters αi in two dimensions.
It is important to enforce geometric constraints that prevent self-
intersections of M and intersections between M and M, as illus-
trated in Fig. 6. Local self-intersections of M can be reduced
through a good choice of offset directions vi. To prevent global
intersections, box constraints on the offset magnitudes δi have to
be introduced. Using the definition in Eq. (7), they can be written
as

δl � Γmα � δu. (8)

The lower bounds δl can be used to enforce a minimum wall thick-
ness, i.e., a minimum distance between M and M. However, due to
the global support of Laplacian eigenvectors, these box constraints
can greatly diminish the freedom of all design parameters α. This
happens if the lower and upper offset bounds are in close proxim-
ity even for small regions of the model. The constraint mapping
scheme in Section 5.3 proposes a remedy for this problem.

Cage Deformation. In Section 6.1, we show that optimization
using subspace projection can also be combined with cage param-
eterizations, which are used by Bharaj et al. [2015] for the opti-
mization of frequency spectra. A 2d shape is embedded into a de-
formation cage with n control points (cf. Figure 10). Three of the
2n degrees of freedoms are fixed in order to eliminate rigid-body
modes, yielding a (2n − 3)-dimensional design space D. In order
to create a 3d solid, the deformed 2d shape is extruded along its
normal by a constant thickness value.

Symmetric Bell Parameterization. Radially symmetric instru-
ments, like church bells and handbells, are best optimized using a
parameterization that preserves the symmetry. Otherwise, orthogo-
nal pairs of mode shapes with the same frequency, which are intrin-
sic to radially symmetric shapes, will be lost. The parameterization



Figure 6: Left: Manifold harmonics with increasing frequencies.
Top right: Perturbations in the design variables easily violate con-
straints in thin regions of the model. Bottom right: Constraint map-
ping performs a soft clamping of offset magnitudes near the bounds.

we use is based on variations of the wall thickness in the model’s
cross section. Every parameter has local support and thickens or
thins the wall at a particular location. A result using this parame-
terization is shown in Section 6.1.

5.2 Choice of the Parameterization
The shape parameterizations discussed in Section 5.1 each have
their merits in terms of geometric faithfulness to the target shape,
ease of optimization, and available manufacturing methods. Most
of the results in this paper use a manifold harmonics basis to pa-
rameterize the shape space. One advantage is that the silhouette of
a 2d shape or the outer surface of a thin-shell model can easily be
preserved this way, while the desired shape properties are attained
through thickness modifications. Secondly, the constraint mapping
strategy can be applied to eliminate box constraints, which leads to
an unconstrained optimization problem in many cases.
Cage-based deformation of a 2d shape has the advantage that it per-
mits the use of cheaper fabrication techniques like laser cutting an
object from sheet metal. However, this parameterization is less geo-
metrically faithful because it allows large deviations from the orig-
inal silhouette. Additionally, it is necessary to introduce constraints
on the cage handles to avoid non-physical deformations like local
inversions of the silhouette.
The special-purpose parameterization for radially symmetric ob-
jects preserves orthogonal shape modes by construction. Therefore,
the number of target modes can be reduced to simplify optimiza-
tion because coupled modes will automatically retain the same fre-
quency. Results of this parameterization can often be manufactured
on a CNC lathe.

5.3 Constraint Elimination
As mentioned, box constraints like those in Eq. (8) impose
strong restrictions on the design space. We therefore introduce a
constraint-mapping scheme to eliminate them, which offers a num-
ber of advantages:

• It counteracts the degradation of the design space that is of-
ten introduced by box constraints. This is achieved by mod-
ifying the shape parameterization to obey the constraints by
construction.

• It improves the effectiveness of the subspace projection algo-
rithm described in Section 4.3.

• In applications that have no additional hard constraints, it en-
ables the usage of unconstrained optimization routines like
Levenberg–Marquardt or quasi-Newton, which provide run-
time advantages over constrained optimization routines.

Our constraint mapping scheme defines a transfer function for each
per-vertex offset magnitude δi to eliminate a constraint of the form

δl,i < δi < δu,i. The mapped offset δ ′i is calculated via a “soft”
clamping of δi to the bounds δl,i and δu,i via

δ ′i =
δu,i − δl,i

π
tan-1 (δi − oi) + oi, with

oi =
δu,i + δl,i

2
.

δl,i

δu,i

δi

δ’i The graph of the mapping is plotted
for a particular δl,i and δu,i in the fig-
ure to the left. Note that at the begin-
ning of an iteration, the origin of each
vertex offset δi is additionally shifted
such that the constraint mapping func-
tion maps δi = 0 to δ ′i = 0. There-

fore, δi = 0 corresponds to the initial position of the inner surface
M at that iteration. The original shape parameterization from Eq. 7
is replaced by

xi = xi + δ
′
ivi. (9)

Since δ ′i is ensured to be in the bounded region, the box constraints
can be removed. Fig. 6 (right) shows how constraint violations in-
duced by a perturbation in a high-frequency component are solved
by constraint mapping.
Although this is not a novel method to remove constraints, it has
a particular advantage in combination with the subspace projection
algorithm. Eq. (5) uses the gradients ∂ϕ/∂α of the property vari-
ables with respect to the shape parameters. Comparing the two ver-
sions of the gradients,

∂ϕ

∂δ

∂δ

∂α
and

∂ϕ

∂δ ′
∂δ ′

∂δ

∂δ

∂α
,

with and without constraint mapping, the only difference is the ad-
ditional factor corresponding to the slope of the transfer function.
As is evident in the inset figure above, the slope has low values
near the bounds, and higher values in the region far away from the
bounds.
Consequently, the value of ∂ϕi/∂αj is lowered if the shape re-
gions controlled by αj are close to the bounds. Since Eq. (5) is
a least-norm problem, such parameters will barely contribute to the
reduced design space R if there are suitable parameters that control
regions further away from the bounds. The effect is that regions of
M which have been moved close to the bounds already in a previous
iteration are less likely to be picked up again in the current iteration.
Furthermore, the optimization routine concentrates on regions fur-
ther away from the bounds, which are less restricted in movement
and thus have a higher potential to decrease the objective function.

6 Applications and Results
Many objectives of shape optimization applications can be written
as a (weighted) sum of property variables or powers thereof. We
have implemented three shape optimization problems, all of which
are defined in terms of properties and use the subspace projection
algorithm. Specifically, the effectiveness of subspace projection is
shown on the examples of frequency spectrum optimization, the op-
timization of mass properties for static stability and buoyancy, and
the optimization of structural strength under given load conditions.

6.1 Optimization of Natural Frequencies
The natural spectrum of a 3d object describes the physically re-
alizable oscillations that the object can undergo in the absence of
external loads. A particular manifestation is the lingering sound of
a musical instrument after it has been struck by the player. The
sound depends on both material and shape of the object and can
be decomposed into a sequence of tones that correspond to the os-
cillatory frequencies. The challenge of frequency optimization is
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Figure 7: From left to right: Rendering of outer surface; Cross sec-
tion of optimized model; Influence of parameters; Photo of milled
result.

Mode 1 Mode 2 Mode 3 Mode 4

Figure 8: The first four shape modes of a fish model, where the
first corresponds to the frequency of the fundamental tone, and the
following three to the overtones.

to find a 3d model that is similar to a target shape and exhibits a
set of target frequencies when fabricated from the target material.
We show that our optimization algorithm is capable of solving this
task by computing and fabricating a series of metallophones using
different parameterizations.

Recently, this problem has also been tackled by Bharaj et al. [2015]
using a combination of global and local optimization. We demon-
strate that the local optimization of natural frequencies can be
significantly accelerated by the subspace projection algorithm de-
scribed in Section 4.3.

Objective. The natural frequencies of a non-trivial elastic solid
cannot be determined analytically, and thus they are approximated
with a finite-element model. To aid computation, the internal fric-
tion of the object is neglected in favor of an undamped system,
which yields a generalized eigenvalue problem [Bathe 2006]

Kvi = λiMvi, vTiMvi = 1 . (10)

The stiffness matrix K and the mass matrix M are large, sparse
matrices that depend on the finite-element discretization of the ob-
ject. Every eigenpair (λi, vi) with λi > 0 corresponds to an oscil-
lation mode of the solid. The eigenvector vi is referred to as the
shape mode and describes the geometric deformation induced by
the mode (cf. Figure 8). The frequency and amplitude of the mode
are given by

φi =
1

2π

√
λi and ai = F

T |vi|,

where F is the force profile of the initial excitation, and | · | denotes
the element-wise absolute value. The primary goal is the optimiza-
tion of the frequencies φi, and therefore they are used as property
variables ϕi = φi. The objective is given by

f(α) =
∑
i∈I

∥∥∥∥ φi(α) − φ∗iφ∗i

∥∥∥∥2

, (11)

where I is the index set of target modes, and φ∗i are the target fre-
quencies. As noted by Bharaj et al. [2015], the amplitudes can be
optimized as well using a second optimization step

fa(α) =
∑
i∈I

‖ai(α) − a∗i ‖
2 s.t. φi(α) = φ

∗
i , ∀i ∈ I ,

however, we found this to have limited effect on the quality of the
results.

Note that the lowest frequency φ1 corresponds to the fundamental
tone of the sound spectrum and determines its pitch. The higher
frequencies φ2,φ3, . . . determine the overtones of the spectrum and
thus the timbre of the sound.

Gradients. The subspace projection algorithm requires the
derivatives ∂ϕ/∂α in order to find an optimal subspace R. These
are given by the frequency derivatives

∂φi

∂αj
=

1
4π
√
λi

∂λi

∂αj
, with

∂λi

∂αj
= vTi

(
∂K

∂αj
− λi

∂M

∂αj

)
vi .

If the amplitudes are part of the objective, the derivatives of the
eigenvectors are needed as well. In this case we combine the com-
putation of the eigenvalue and eigenvector derivatives by solving
the linear system(

K− λiM −Mvi

2vTiM 0

)( ∂vi
∂αj

∂λi
∂αj

)
=

(λi ∂M∂αj
− ∂K
∂αj

)
vi

−vTi
∂M
∂αj
vi

 .

Please consult the supplemental document for a derivation of the
analytical gradients of K andM for isoparametric elements. Com-
puting these derivatives in a high-dimensional design space is a
computationally expensive task and demonstrates a strength of the
subspace projection method: We only evaluate the derivatives with
respect to all design variables α once in each subspace projection
step. The local optimization routine on the other hand runs on a
strongly reduced set of design variables β, and therefore the gradi-
ent computation for local methods is a lot faster.

Parameterizations. For most of our results, a manifold harmon-
ics basis as discussed in Section 5.1 is used to define the design
space D. This parameterization is suitable for both 2.5d shapes,
like the glockenspiel in Fig. 9, and full 3d shapes, like the rabbit-
shaped bell in Fig. 15. The dimension of the design space D was
chosen to be 64 for the glockenspiel animals shown in Fig. 9 and the
bell shown in Fig. 15. The dimension of the reduced design space
R, which equals the number of simultaneously optimized natural
frequencies, varies between 3 and 4. Fig. 5 shows the influence re-
gions of a few manifold harmonics parameters αi with increasing
frequencies, and the influence regions of the parameters β1,β2,β3,
which locally control the three target frequencies in a decorrelated
manner.
Subspace projection can also be used in combination with cage-
based deformation. The cage we use has nine control points, yield-
ing a 15-dimensional design space D after eliminating rigid-body
modes. For the optimization of three frequencies, the reduced de-
sign space R is controlled by three parameters β1,β2,β3. Fig. 10
shows the influence of these parameters on the control points in
order to optimize a fish-shaped metallophone.
For the optimization of thin-walled, radially symmetric shapes like
church bells and handbells, we use the symmetric bell parameteri-
zation described in Section 5.1. We do not evaluate this parameter-
ization in detail, but we have optimized a handbell to the tone A7
(3520 Hz) and produced it using a milling machine. The result is
shown in Fig. 7 and demonstrated in the supplemental video.

Results. In order to show that optimization using subspace pro-
jection converges well regardless of the initial parameter values, we
optimized the fish glockenspiel bar with 10 randomly chosen start-
ing values, each one with and without subspace projection. Fig. 13
shows the objective value plotted against run time for all 20 itera-
tions. Not only is the optimization using space projection almost
three times as fast on average, it also converges to a valid solution
for all initial parameter values. In comparison, only 8 of the 10 it-
erations converge when using the full design space. Table 2 lists
statistics of the converged iterations.
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Figure 9: Glockenspiel of 2.5d animals optimized using our method, where we optimized the fundamental and 3 overtones for each shape.
The columns correspond to the desired pitch of each object. Row 1: resulting 3d models. Row 2: the measured frequency spectrum. Row
3: the fabricated instruments. Row 4/5: plots that track the decrease in objective value over time. Each shape was optimized with 5 initial
values, once with subspace projection (orange), and once without (blue). Row 4: quasi-Newton solver. Row 5: Levenberg-Marquardt solver.

Figure 10: Influence of the three parameters in the reduced design
space on the cage handles.

As depicted in Fig. 9, we have optimized and produced a glocken-
spiel with bars in the shape of animals. This result is inspired by
the work of Bharaj et al. [2015], who have optimized a similar in-
strument using cage-based deformation. In contrast, we use a mani-
fold harmonics parameterization that varies the thickness of the bars
while keeping the outlines of the input shapes intact to avoid strong
distortions. As is evident from the graphs tracking the improvement
of the objective value over time, our method (orange) converges
more quickly on average and for a larger number of initial param-
eter values than optimization on the full design space (blue). Our
constraint mapping scheme leads to an unconstrained optimization
problem with a non-linear least-squares objective. This permits the
use of the Levenberg-Marquardt (LM) algorithm, whose runtime
performance we compare to a quasi-Newton (QN) solver. LM per-
forms better than QN, both in terms of runtime and convergence.
However, subspace projection improves performance for both opti-
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Figure 11: Graph of run time versus objective values for the cage-
based optimization of three animal models. The blue curves corre-
spond to optimization on the full design space, the orange curves
use subspace projection.

mization routines. Exact timings and the number of objective func-
tion evaluations are listed in Table 1.
Fig. 14 demonstrates the effect of changing the number of parame-
ters in D, and the number of frequencies that are being optimized.
The blue bars show that the run time of the subspace projection
algorithm only increases slightly if the number of parameters is in-
creased, while optimization using the full design space becomes
noticeably slower. Additionally, subspace projection converges for
significantly more of the difficult test cases in which the number of
parameters is low and the number of optimized frequencies is high.
We also evaluate subspace projection in combination with cage-
based deformation. In Fig. 12, the difference between the original
fish model and the optimized versions using cage deformation and
manifold harmonics is demonstrated. The manifold harmonics ver-
sion has a geometry which is much closer to the original because



Figure 12: Comparison between the original fish model (left), the
optimized version using cage deformation (center), and the opti-
mized version using manifold harmonics (right).
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Figure 13: Run time versus objective value for the optimization
of the fish model using manifold harmonics with 10 random initial
parameter values.

the boundary shape is preserved. Fig. 11 compares the run time
versus objective value graphs of cage-based optimization, with and
without subspace projection. Subspace projection accelerates con-
vergence by a factor between 2 and 3. Statistics are given in Table 3.
Our most difficult example is the optimization of a nearly radially
symmetric bell model in the shape of a rabbit. Many of the eigen-
values computed as the solution to Eqs. 10 have multiplicity two in
the radially symmetric case. If the symmetry is only approximate,
the twin frequencies diverge slightly and produce an unfavorable
frequency spectrum. Therefore one has to fix the two natural modes
to the same frequency in order to optimize a single tone.
Using the subspace projection algorithm, we can optimize a total of
5 natural modes for the rabbit-shaped bell shown in Fig. 15. Due
to fabrication reasons, we have used only a half-bell in order to be
able to mill the shape from a solid block of aluminum. We have
optimized the frequencies to the spectrum D6, F6, A6, D7, and F7.
Fig. 15 shows a 3d render of the outer surface, a render of the front
and back, and the milled aluminum result.
Finally, in Fig. 16 we plot of run time versus objective value for
the failed attempt using a full 32-dimensional manifold harmonics
design space and the converged attempt using subspace projection.
A dashed line represents recomputation of the reduced space R,
and the plateau in the curve following it corresponds to the time it
takes to evaluate the gradient of the property function w.r.t. all 32
parameters.

Discussion. The results presented here are inspired by the pio-
neering work by Bharaj et al. [2015], who were the first to com-
putationally optimize multiple natural frequencies for the purpose
of instrument fabrication. Their work focuses on accurate predic-
tion of the frequencies using third-order finite elements and a global
sampling strategy that uses local optimization in each iteration.
By contrast, the paper at hand proposes a modification of the local
optimization step that, firstly, accelerates convergence compared to
optimization using the full design space and, secondly, achieves
convergence in a larger percentage of test cases. This was shown
on a number of 3d models, different shape parameterizations, and
multiple iterations using a Halton sequence [Kuipers and Nieder-
reiter 2012] for sampling initial parameter values. By using only
second-order elements, and coarser finite element meshes, we trade
some accuracy in favor of very short computation times. Most of
our models take between 2 and 10 minutes to converge, while a full
computation cycle including frequency and amplitude optimization
using the method of Bharaj et al. [2015] takes between 2-3 hours
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Figure 14: Run time of multiple iterations optimizing the fish
model. The number of manifold harmonics was varied between 4
and 24 (vertical axis), and the number of optimized frequencies be-
tween 1 and 4. Non-converged iterations are marked with a ×.
Time is given on the horizontal axis in minutes.

Figure 15: Optimized rabbit bell with 5 modes. Left: render of
outer surface. Center: the front an back including the mesh. Right:
the result of the (half) bell milled with a 5-axis milling machine from
solid aluminum.

for a 2d example and 5-6 hours for a 3d example according to per-
sonal communication with the authors. Furthermore, our manifold
harmonics parameterization avoids the strong distortions of animal
silhouettes that can be observed in their results (cf. Fig. 12).
As can be seen in Fig. 9, the predicted frequencies have a near-
constant negative shift with respect to the target frequencies. This
suggests that the material properties for aluminum, like density and
Young’s modulus, used in the frequency computations deviate from
the true material properties. Another source of error for our animal
glockenspiel is the production error introduced by CNC milling,
which lies in a range of 0.2−0.4 mm. This process is lengthier than
cutting pieces from an aluminum plate with a waterjet cutter and
allowed us to do fewer production iterations to maximize accuracy.

6.2 Optimization of Mass Properties
In this section we explore the optimization of mass properties, i.e.,
the mass, center of gravity, and the inertia tensor [Bächer et al.
2014; Musialski et al. 2015] using subspace projection and con-
straint mapping on the examples of static stability and buoyancy.
Control over these properties enables influencing the behavior of
objects to make them stand stably, spin stably, float in water, or
return to an upright position when tilted. We demonstrate that con-
straint mapping significantly enlarges the manifold harmonics de-
sign space compared to the version with box constraints, and that
subspace projection further accelerates convergence.

Static stability. The property variables required to formulate the
objectives considered here are the volume V and the center of mass
c = [cx, cy, cz]

T of a model. Given a constant material density,
these quantities are defined as the volume integrals

V =

∫
V

dV and c =

∫
V

xdV ,
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Figure 16: Graph of run time versus objective values for the opti-
mization of 4 natural modes of a rabbit-shaped bell.

but can be transformed into sums of surface integrals over the tri-
angles comprising M and M using the divergence theorem [Eberly
2010]. If the volume of the outer surface V(M) is needed, one may
consider only the triangles comprising M. The formulation using
surface integrals is also amenable to analytic differentiation with
respect to a shape parameter α. s The condition for static stability,
i.e., stable standing of an object, is that the center of mass projects
onto the base of support along the direction of gravity (0, 0, -1)T .
The base of support of an object is the convex hull of all its points
that are touching the ground. Additional stability can be gained by
placing the center of gravity as low as possible. Before optimizing
a model, we place its origin at the center of the base of support.
Then the objective for static stability can be written as

f(α) = ω1
(
cx(α)

2 + cy(α)
2
)
+ ω2 cz(α). (12)

Buoyancy. The second objective we tackle is to make an object
float in a liquid in an upright position. This is made possible by
equilibrating the gravitational force −ρg and the buoyant force
ρfluidV(M)g while the center of mass c and the center of buoyancy
cb are aligned in the (x,y)-plane. The center of buoyancy equals
the center of mass evaluated on the outer surface M of the model,
without considering the triangles of M. An additional constraint re-
quires that cb,z be higher than cz to guarantee a stable equilibrium
state.

These goals can be combined in the objective function

f(α) =

3∑
i=1

ωi fi , where (13)

f1 =
∥∥ ρfluidV(M) − ρV

∥∥2
,

f2 = ‖ cx − cb,x ‖2
+ ‖ cy − cb,y ‖2 ,

f3 = ‖max (0, cz + t− cb,z) ‖2 .

The constant t is a threshold that determines a safety margin be-
tween the heights of the center of gravity and the center of buoy-
ancy, which we set to 2 mm.

Results and Discussion. We have implemented and compared
the objectives in order to demonstrate the benefits of our method
over optimization in the full design space with constraints as per-
formed by Musialski et al. [2015]. Fig. 17 shows the results of op-
timizing the armadillo model for static stability and the fish model
for optimized flotation in water. All models have been optimized
using manifold harmonics, once without and once with subspace
projection and constraint mapping.

The main insight to be gained here is that the constraint mapping
approach improves the results considerably compared to the ap-
proach of Musialski et al. [2015]. One can clearly see that the
solution using constraint mapping takes advantage of the increased
expressiveness of the design space by introducing sharp features as
part of the inner surface of the armadillo. It gives the inner void a
less smooth but a more flexible shape, and resembles nearly a plane
as in the results shown by Prevost et al. [2013].

Figure 17: Optimized armadillo and fish models: with full box-
constraints (left models, armadillo not converged, fish converged),
with constraints mapping and subspace projection (right models,
both converged).
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Figure 18: Improvement of the objective value over time for the
optimization of the armadillo model for static stability.

For the optimization of the armadillo, we use a 72-dimensional
manifold harmonics basis to define the design space D. We com-
pare the run times of three methods, as shown in Fig. 18: optimiza-
tion on D using box constraints on the offset magnitudes (blue);
optimization on D using constraint mapping (red); optimization us-
ing subspace projection and constraint mapping (yellow). Vertical
dashed lines mark the points at which the reduced parameter space
R was calculated anew using subspace projection. The method us-
ing box constraints (blue) does not converge to a valid solution be-
cause the design space is too restrictive. Constraint projection alle-
viates this problem, and the two methods using it (red and yellow)
behave similarly, with subspace projection slightly outperforming
optimization on the full design space.

Table 4 summarizes statistics from the optimization of the fish and
the armadillo. It also includes results of a constrained formulation
of the problem, in which the safety margin between the centers of
gravity and buoyancy, and the projection of the center of gravity
onto the base of support respectively, are modeled as non-linear
hard constraints and solved via SQP.

6.3 Optimization of Structural Strength

To demonstrate the suitability of our subspace projection scheme
to problems apart from frequency optimization and mass property
optimization, we apply it to the optimization of structural strength.
In the same vein as Lu et al. [2014], we optimize a 3d model to
have minimal material cost while respecting a maximal material
stress level in a given load scenario.

Objective. We measure the structural stability of a 3d model us-
ing the von Mises yield criterion [Mises 1986]. This criterion pos-
tulates that yielding of a material begins once the second invariant
of the Cauchy stress tensor σ,

J2 =
1
6
[
(σ11 − σ22)

2 + (σ22 − σ33)
2 + (σ33 − σ11)

2
]

+ σ2
12 + σ

2
23 + σ

2
31,

reaches a critical value of κ2, where κ is the yield stress of the
material in shear.



In a valid solution to the strength optimization problem, the critical
stress value is approached, but not exceeded in any point through-
out the object. We evaluate this condition by computing J2 for every
node in every element of the finite element mesh. This set of non-
linear constraints is transformed into the objective

fJ =
∑
n∈N

J2(n)>Jmax

‖ J2(n) − Jmax ‖2 , Jmax = (1 − ε)κ2 ,

where N is the set of all nodes in all elements. The constant ε can
be adjusted to penalize stresses that come too close to the critical
stress value. We have found that a value of 0.05 works well. In
combination with the objective to minimize material consumption,
we obtain the objective function

f(α) = ω1m(α)2 + ω2 fJ(α) , (14)

where m is the mass of the object. The weights ω1 and ω2 are
chosen to prioritize the objective fJ, such that a region of valid so-
lutions is approached quickly by the optimization routine.
We project the design space of this problem onto a two-dimensional
subspace R, which is computed as the solution to the least-norm
problem (5). The two properties ϕ(α) for this problem correspond
directly to the objectives m and fJ, both of which can be differ-
entiated analytically w.r.t. the design parameters α. An important
ingredient to the computation of these gradients is the derivative
of the displacement vector u, which is the solution to the finite-
element equation Ku = F, with the stiffness matrix K and the load
vector F. Through implicit differentiation, we arrive at the solution

∂u

∂αi
= K-1

(
∂f

∂αi
−
∂K

∂αi
u

)
.

Based on this quantity, the gradients of J2 and, in consequence, of f
are readily determined.
Results. We perform strentgh optimization on a thin-walled 3d
model of a kitten, depicted in Fig. 19, using the manifold harmonics
parameterization. Table 5 collects timings of this optimization, with
and without subspace projection. The external force is assumed to
be a concentrated load applied to the head of the model. Originally,
the model has a constant wall thickness of 1.5 mm and is predicted
to yield near the point of load application.
The optimization algorithm is run on the model to double the maxi-
mum allowable load, which results in a thickening of the wall at the
head and the belly of the model. Both the original and the optimized
model were 3d printed from polylactic acid (PLA) and subjected to
a compressive test in a universal testing machine. Fig. 19 shows the
force-displacement curves of the test and photographs of the de-
stroyed models to verify that the locations of initial yielding were
predicted correctly.
Discussion. The goal of strength optimization through an auto-
matic procedure was previously explored by Stava et al. [2012],
Wang et al. [2013], and Lu et al. [2014]. The optimization algo-
rithms proposed in these works distribute elements like struts and
air bubbles throughout a model to maximize the strength-to-weight
ratio. Therefore, these methods work with discrete variables, like
the total number of newly introduced elements, making them ill-
suited to optimization via Newton-like methods.
As noted by Stava et al. [2012], the main limiting factor of strength
optimization algorithms that rely on the computation of stress gra-
dients is the high computational expense. However, through com-
putation of the stiffness matrix and its gradient on the GPU, and
drastic reduction of the parameter set, our approach remains com-
putationally feasible despite a large design space. It is also fully
continuous and can thus be solved using a Newton-based optimiza-
tion routine. However, our method is currently limited by its inabil-
ity to handle topological changes.

7 Implementation and Fabrication
Implementation. All applications presented in this paper have
been implemented using the linear algebra routines and optimiza-
tion routines in MATLAB. To solve optimization problems, we
use the quasi-Newton algorithm implemented in fminunc for un-
constrained problems and the active-set algorithm implemented in
fmincon for constrained problems. Sparse generalized eigenvalue
problems are solved with the Lanczos algorithm implemented in
eigs in order to find the k smallest eigenvalues with correspond-
ing eigenvectors.

For the optimization of natural frequencies and of structural
strength, we use a finite-element discretization of the governing
PDEs. Since our models are described as the volume between two
triangle meshes with identical topology, second-order triangular
wedges are a natural choice of element. The most time-consuming
operations in the optimization pipeline are the computations of the
element stiffness matrices Ke, the element mass matricesMe and,
most importantly, their derivatives ∂Ke/∂αi and ∂Me/∂αi. These
computations were moved to the GPU and implemented in CUDA.
Global matrix assembly is performed by the sparse matrix con-
structor in MATLAB after reading back the data from the GPU. The
running time of this step was improved significantly by arranging
the data in column-first order on the GPU prior to matrix construc-
tion.

Fabrication. All instruments shown in this document and in the
supplemental video were manufactured on a Spinner U-620 CNC
milling machine from AlCuMgPb F37, an aluminium alloy with a
purity of about 95%. The milling tool paths were computed with
the software SprutCAM 10. The 3d models used to test structural
strength optimization and buoyancy optimization were produced
from PLA on an Ultimaker 2, a 3d printer based on fused deposition
modeling. The compression test on the kitten model was performed
on a universal testing machine by the Zwick Roell Group (Z050).

8 Conclusions
Summary. In this paper we have proposed a novel strategy for
the efficient local parameterization of underdetermined shape op-
timization problems. The rationale of our method is based on the
observations that shape properties can be well optimized in rich de-
sign spaces, however, local preconditioning combined with dimen-
sionality reduction improves both the speed and the convergence
of local optimization. Such an approach is novel and has not been
documented before to our knowledge.

Additionally, we provided a generic formulation for the optimiza-
tion of various shape properties, and we demonstrated the effective-
ness of our approach on three different shape optimization prob-
lems. We showed on the basis of these examples that our approach
performs better than optimization in the whole design space in al-
most every case. Moreover, we showed that the method is indepen-
dent of the chosen parameterization.

Limitations. We have applied our subspace projection method to
three different problems with various models and parameterizations
and showed that it performs better than optimization the full design
space in almost all cases. While it converges in most cases from
any initial values, it is not ensured that it always converges. It is
still a local optimization approach which can be trapped in a bad
local minimum.

Another limitation of our method is its dependency on a smooth
and differentiable parameterization, since the subspace is derived
from the gradient in the design space. We have not tested how the
method behaves with non-smooth objective functions.

Finally, we have not tested if our method could be applied to
topology optimization problems, like the voxel-carving approach
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Figure 19: (1) Original model, (2) optimized model. Left: cross-section and stress distribution under concentrated load from the top. Center:
photograph of 3d printed models after compression test. Right: force-displacement diagrams with yield points marked.

of Bächer et al. [2014]. However, it would be interesting to explore
further applications domains of our method.

Future Work. For future work we plan to investigate the appli-
cability of the subspace projection method to further optimization
problems in order to broaden the range of its applications. More-
over, we plan to analyze the method in combination with other local
optimization strategies, like interior point methods.

Acknowledgments

We would like to thank Thomas Koch for help with the strength
tests, Thomas Auzinger for initial discussions, and the anonymous
reviewers for valuable suggestions. This research was funded by
the Austrian Science Fund (FWF P27972-N31), the Vienna Sci-
ence and Technology Fund (WWTF, ICT15-082), the European Re-
search Council (ERC Advanced Grant "ACROSS", grant agreement
340884), and the German Research Foundation (DFG, Gottfried-
Wilhelm-Leibniz Programm).

References

BÄCHER, M., BICKEL, B., JAMES, D. L., AND PFISTER, H.
2012. Fabricating articulated characters from skinned meshes.
ACM Transactions on Graphics 31, 4 (jul), 1–9.

BÄCHER, M., WHITING, E., BICKEL, B., AND SORKINE-
HORNUNG, O. 2014. Spin-It: Optimizing Moment of Inertia
for Spinnable Objects. ACM Transactions on Graphics 33, 4
(jul), 1–10.

BATHE, K.-J. 2006. Finite Element Procedures. Prentice Hall.

BHARAJ, G., LEVIN, D. I. W., TOMPKIN, J., FEI, Y., PFISTER,
H., MATUSIK, W., AND ZHENG, C. 2015. Computational
design of metallophone contact sounds. ACM Transactions on
Graphics 34, 6 (oct), 1–13.

BICKEL, B., BÄCHER, M., OTADUY, M. A., LEE, H. R., PFIS-
TER, H., GROSS, M., AND MATUSIK, W. 2010. Design and
fabrication of materials with desired deformation behavior. ACM
Transactions on Graphics 29, 4 (jul), 1.

BOTSCH, M., AND KOBBELT, L. 2005. Real-Time Shape Editing
using Radial Basis Functions. Comput. Graph. Forum 24, 3,
611–621.

DELFOUR, M. C., AND ZOLÉSIO, J. P. 2011. Shapes and Geome-
tries: Metrics, Analysis, Differential Calculus, and Optimiza-
tion, Second Edition. Advances in Design and Control. Soci-
ety for Industrial and Applied Mathematics (SIAM, 3600 Market
Street, Floor 6, Philadelphia, PA 19104).

EBERLY, D. H. 2010. Game physics, 2. edition ed. Morgan Kauf-
mann, Burlington, Mass.

FINSTERLE, S., AND KOWALSKY, M. B. 2011. A truncated
Levenberg–Marquardt algorithm for the calibration of highly pa-
rameterized nonlinear models. Computers & Geosciences 37, 6
(jun), 731–738.

model algo. variant conv. time #ffe #spfe

C7 QN (64) Full+CM 0/5 n/a n/a
SP+CM 3/5 5.5 min 5.3 27.7

LM (64) Full+CM 5/5 7.6 min 12.4
SP+CM 5/5 3.5 min 3.8 15.6

D7 QN (64) Full+CM 1/5 7.1 min 16
SP+CM 5/5 2.3 min 3.4 12.2

LM (64) Full+CM 5/5 2.5 min 5.6
SP+CM 5/5 1.1 min 2 4.6

E7 QN (64) Full+CM 1/5 6.4 min 16
SP+CM 5/5 3.2 min 5.2 16.4

LM (64) Full+CM 5/5 3.1 min 7.4
SP+CM 5/5 1.7 min 2.8 9.6

F7 QN (64) Full+CM 0/5 n/a n/a
SP+CM 3/5 2.9 min 4 19

LM (64) Full+CM 5/5 5.5 min 11.8
SP+CM 5/5 1.7 min 2.6 10.2

G7 QN (64) Full+CM 2/5 14.0 min 36
SP+CM 2/5 3.3 min 5 25.5

LM (64) Full+CM 5/5 3.3 min 8.4
SP+CM 5/5 2.7 min 6 8.2

A7 QN (64) Full+CM 1/5 10.1 min 18
SP+CM 4/5 3.8 min 4 17.5

LM (64) Full+CM 5/5 2.9 min 5.2
SP+CM 5/5 2.4 min 3.6 4.6

B7 QN (64) Full+CM 5/5 7.0 min 16.2
SP+CM 4/5 2.4 min 2.8 20.8

LM (64) Full+CM 5/5 2.2 min 4.8
SP+CM 5/5 1.1 min 2 4.2

C8 QN (64) Full+CM 2/5 17.3 min 38
SP+CM 2/5 7.1 min 7 61

LM (64) Full+CM 5/5 3.5 min 7.2
SP+CM 5/5 2.6 min 4.8 6.2

Table 1: Results for glockenspiel computation with 64
shape parameters across multiple runs. QN=quasi-Newton;
LM=Levenberg-Marquardt; conv.=number of converged runs;
ffe=objective and gradient evaluations on full parameter space;
spfe=objective and gradient evaluations on reduced parameter
space. Times, #ffe, and #spfe are averaged over all converged runs.

HAFNER, C., MUSIALSKI, P., AUZINGER, T., WIMMER, M.,
AND KOBBELT, L. 2015. Optimization of natural frequencies
for fabrication-aware shape modeling. In ACM SIGGRAPH 2015
Posters on - SIGGRAPH ’15, ACM Press, New York, New York,
USA, 1–1.

IPSEN, I. C. F., KELLEY, C. T., AND POPE, S. R. 2011. Rank-
Deficient Nonlinear Least Squares Problems and Subset Selec-
tion. SIAM Journal on Numerical Analysis 49, 3 (jan), 1244–
1266.

KUIPERS, L., AND NIEDERREITER, H. 2012. Uniform Distribu-
tion of Sequences. Dover Books on Mathematics. Dover Publi-
cations.

LU, L., CHEN, B., SHARF, A., ZHAO, H., WEI, Y., FAN, Q.,
CHEN, X., SAVOYE, Y., TU, C., AND COHEN-OR, D. 2014.



model algo. variant conv. time #ffe #spfe

Fish QN (18) Full+CM 8/10 2.4 min 36.8
SP+CM 10/10 0.9 min 4.3 19.3

Table 2: Results of fish-bar optimization using 10 different initial
values and 18 shape parameters. For abbreviations see Table 1.

model algo. variant conv. time #ffe #spfe

Fish QN (15) Full 1/1 36.8 s 12
SP 1/1 20.4 s 2 10

Giraffe QN (15) Full 1/1 85.2 s 14
SP 1/1 44.9 s 2 12

Elephant QN (15) Full 1/1 202.4 s 29
SP 1/1 49.6 s 2 17

Table 3: Results for 9-node cage-based deformation on different
models. For abbreviations see Table 1.

Build-to-Last: Strength to Weight 3D Printed Objects. ACM
Transactions on Graphics 33, 4 (jul), 1–10.

MISES, R. V. 1986. The mechanics of solids in the plastically-
deformable state.

MUSIALSKI, P., AUZINGER, T., BIRSAK, M., WIMMER, M.,
AND KOBBELT, L. 2015. Reduced-Order Shape Optimization
Using Offset Surfaces. ACM Transactions on Graphics (Proc.
ACM SIGGRAPH 2015) 34, 4 (jul), 102:1–102:9.

NOCEDAL, J., AND WRIGHT, S. 2006. Numerical Optimization.
Springer Series in Operations Research and Financial Engineer-
ing. Springer New York.

PANETTA, J., ZHOU, Q., MALOMO, L., PIETRONI, N., CIGNONI,
P., AND ZORIN, D. 2015. Elastic textures for additive fabrica-
tion. ACM Transactions on Graphics 34, 4 (jul), 135:1–135:12.

PÉREZ, J., THOMASZEWSKI, B., COROS, S., BICKEL, B., CAN-
ABAL, J. A., SUMNER, R., AND OTADUY, M. A. 2015. De-
sign and fabrication of flexible rod meshes. ACM Transactions
on Graphics 34, 4 (jul), 138:1–138:12.

PRÉVOST, R., WHITING, E., LEFEBVRE, S., AND SORKINE-
HORNUNG, O. 2013. Make It Stand: Balancing Shapes for
3D Fabrication. ACM Transactions on Graphics 32, 4 (jul), 1.

SCHUMACHER, C., BICKEL, B., RYS, J., MARSCHNER, S.,
DARAIO, C., AND GROSS, M. 2015. Microstructures to control
elasticity in 3D printing. ACM Transactions on Graphics 34, 4
(jul), 136:1–136:13.

SKOURAS, M., THOMASZEWSKI, B., COROS, S., BICKEL, B.,
AND GROSS, M. 2013. Computational design of actuated de-
formable characters. ACM Transactions on Graphics 32, 4 (jul),
1.

SKOURAS, M., THOMASZEWSKI, B., KAUFMANN, P., GARG,
A., BICKEL, B., GRINSPUN, E., AND GROSS, M. 2014. De-
signing inflatable structures. ACM Transactions on Graphics 33,
4 (jul), 1–10.

STAVA, O., VANEK, J., BENES, B., CARR, N., AND MĚCH, R.
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