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Abstract
This paper presents a method for the visual quantification of cerebral arteries, known as the Circle of Willis (CoW).
It is an arterial structure with the responsibility of supplying the brain with blood, however, dysfunctions can
lead to strokes. The diagnosis of such a time-critical/urgent event depends on the expertise of radiologists and the
applied software tools. They use basic display methods of the volumetric data without any support of advanced
image processing and visualization techniques. The goal of this paper is to present an automated method for
the standardized description of cerebral arteries in stroke patients in order to provide an overview of the CoW’s
configuration. This novel representation provides visual indications of problematic areas as well as straightforward
comparisons between multiple patients. Additionally, we offer a pipeline for extracting the CoW from Time-of-Flight
Magnetic Resonance Angiography (TOF-MRA) data sets together with an enumeration technique for labeling
the arterial segments by detecting the main supplying arteries of the CoW. We evaluated the feasibility of our
visual quantification approach in a study of 63 TOF-MRA data sets and compared our findings to those of three
radiologists. The obtained results demonstrate that our proposed techniques are effective in detecting the arteries
and visually capturing the overall configuration of the CoW.

Categories and Subject Descriptors (according to ACM CCS): I.4.0 [Image Processing and Computer Vision]:
General—Image processing software; J.3 [Computer Applications]: Life and Medical Sciences—Health

1. Introduction

The human brain is a very delicate structure that is highly
dependent on a well-functioning blood supply. A vascular
disease in the brain can lead to a stroke, which is the second
most common cause of death and the major cause of acquired
disability in the developed world [The16b]. Stroke treatment
relies on the application of imaging techniques and the inves-
tigations done by radiologists. The focus of an examination
lies hereby on the arterial blood supply, which is guaran-
teed by the Circle of Willis (CoW). This arterial circle is
depicted in Figure 1. The radiologist inspects the TOF-MRA
data set (hereby simply referred to as data set) using tra-
ditional display methods, such as slice-by-slice views and
Maximum Intensity Projection (MIP) to identify the cause
of a dysfunction. This diagnostic process is complicated due
to its urgent nature and the time-constraints of stroke treat-
ment. In contrast, the process is time-consuming and every
patient is viewed as a case of its own without considering

preexistent cases. Side-by-side comparisons are impeded by
the traditional display methods. As the CoW exhibits a high
variability across different patients, its shape and topology
are highly relevant for stroke assessment. To support stroke
assessment in a timely manner, we propose a standardized
visualization of the CoW, rectifying the above shortcomings.
The main contributions of our work are:

• A fully automatic CoW extraction pipeline
• A systematic description of the CoW
• A standardized visualization of the CoW
• A visual indication of problematic areas of the CoW
• An efficient comparison of multiple patients

The above mentioned features are combined in a visual-
ization, that we call the Circle of Willis Radar/Radial Visu-
alization (CoWRadar). It is not only targeted at the initial
assessment of strokes but it could also be potentially useful
at the treatment stage, where it is still often required to have
an overview of the CoW.
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Figure 1: A schematic representation of the CoW standard
configuration with anatomically-correct labeled arteries and
a subdivision into three parts.

2. Related Work

In this paper we use established image processing methods
but also introduce novel methods that are required for the
visual quantification of the CoW. The standardized visualiza-
tion of the CoW relies on a vascular model , referred to as
vessel graph, that has to be extracted first. The most closely
related methods and algorithms for the proposed pipeline, as
shown in Figure 2, are described in this section. A general
introduction to medical image processing and visualization is
given by Preim and Botha [PB13].

Standardized representations in medical visualization have
already been addressed for several anatomical structures. Ter-
meer et al. [TBB∗07] presented the volumetric bull’s eye
plot, where the cardiac muscle wall is unfolded to visu-
alize scar tissue. Neugebauer et al. [NGB∗09] describe a
map display to interactively show scalar flow features of
cerebral aneurysms by combining a 3D model of the vas-
cular anatomy with surrounding 2D maps. Hartkamp and
Van der Grond [HvdG00] investigated morphological vari-
ations of the CoW using Magnetic Resonance Angiogra-
phy (MRA). The authors describe different variations of the
standard configuration.

Kirbas and Quek [KQ03] reviewed vessel extraction meth-
ods targeted at neurovascular structures. They divided the
algorithms into six main categories: pattern-recognition tech-
niques, model-based approaches, tracking-based approaches,
artificial intelligence-based approaches, neural network-

based approaches, and miscellaneous tube-like object de-
tection approaches. Pock describes in his master’s thesis
rules to convert centerlines to a graph representation [Poc04].
Motivated by this approach, we similarly convert the seg-
mented blood vessels of the CoW into a vessel graph in
order to propose a systematic description afterwards. Our
segmentation is based on the Hysteresis Thresholding (HT)
method by Canny [Can86], which requires two parame-
ters: A high and a low threshold value. Both values can
be estimated by a histogram analysis, as described by Con-
durache and Aach [CA05].

The CoW is supplied by three main arteries and can be
divided into three parts, each responsible for the blood trans-
port to a separate area of the brain. The segmentation result
has to be separated into the same three parts, in order to
reflect this natural division of the CoW. In the work of Bul-
litt et al. [BMJ∗05] the authors described a method for the
subdivision of the intracranial circulation into four vessel
clusters. The centerline extraction or skeletonization is a first
step in vessel modeling. A skeletonization approach based on
topological thinning was introduced by Lee et al. [LKC94].
Vascular structures are commonly modeled as a vessel graph
with edges and nodes that represent segments and branch-
ing points. A detailed vessel model is described by Mistel-
bauer [Mis13], which is also used in this work.

An automated labeling of the CoW is proposed by Bo-
gunovic [Bog12]. His approach is concerned with identifying
the anatomically correct names of the bifurcations by using
a maximum a-posteriori estimation. He evaluated his auto-
mated approach on a set of 50 images of healthy patients and
reported to have labeled 60% of the cases entirely correct.
However, his technique favors sensitivity over specificity and
rather tends to find a false bifurcation than to miss one, which
is a potential weak point. Tang and Chung [TC06] proposed a
tree-matching algorithm for 3-D rotational X-ray angiography
data based on the concept of a theoretical tree edit distance.
A method to create planar visualizations of blood vessels and
airways is described by Marino and Kaufman [MK16].

The CoW can be described by multiple vascular trees (one
tree per supplying artery) that are connected at their leaves
nodes. Motivated by the circular layout of the CoW, a ra-
dial graph layout is an appropriate choice to display the
branching structure and topology of the CoW comprehen-
sibly. Draper et al. [DLR09] described radial design methods
as visualizations that arrange data in an elliptical fashion and
identified different design patterns. The Handbook of Graph
Drawing and Visualization by Tamassia [Tam14] gives a sur-
vey of current graph drawing algorithms and visualizations.

This work is an extended version of the paper by the same
authors [MMNG15]. The pipeline, see Figure 2, was extended
to increase the comprehensibility of the processing steps. We
added another use case in order to show the correspondence
between the labeled vessel graph and the CoWRadar.
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Figure 2: Our fully automatic pipeline for visual quantifi-
cation of the CoW. It consists of a sequence of operations
that are sequentially executed. Intermediate results are shown
with the images on the right.

3. Morphology and Topology of the CoW

For stroke treatment radiologists are interested in the blood
supply of the brain tissue and, consequently, in the CoW.
The identification of the collateral blood flow is especially
important. By inspecting medical data sets, physicians are
able to locate the source of the stroke and decide upon suitable
treatment strategies.

The CoW can be naturally separated into three parts that
we refer to as subtrees. See Figure 1 for the standard con-
figuration of the CoW. Each subtree is primarily supplied
by one main artery. The Left Internal Carotid Artery (LICA)
supplies the left anterior subtree, the Right Internal Carotid
Artery (RICA) supplies the right anterior subtree and the
Basilar Artery (BA) supplies the posterior subtree. Other
important arteries are the A1 segment of the Anterior Cere-
bral Artery (A1), the M1 segment of the Middle Cerebral
Arteries (M1) and the P1 segment of the Posterior Cerebral
Artery (P1). The subtrees are connected to form a circle by
the communicating arteries to create a collateral blood supply.
The anterior subtrees are connected by the Anterior Com-
municating Artery (ACoA) and the posterior subtree is con-
nected to the anterior subtrees by the left and right Posterior
Communicating Arteries (PCoAs). The communicating arter-
ies (ACoA and PCoAs) provide valuable information about
the collateral blood circulation whereas the main arteries
ensure the supply of a major part of the brain.

4. Data Acquisition

As data acquisition modality we use 3D Time-of-Flight Mag-
netic Resonance Angiography (TOF-MRA) (see Figure 2).
It is typically applied to acquire high-resolution data sets of
stroke patients without the need to administer a contrast agent
to capture blood vessels. According to Hartung et al. [HGF11]
the signal from stationary tissue is saturated by excitation
pulses, resulting in a suppressed background signal. The in-
coming blood will be free of the excitation pulse and therefore
have a high signal intensity. This method has a high signal-to-
noise ratio, but turbulent or slow flow can cause signal loss
from blood vessels. As a result, these vessels are represented
by only low intensity values.

5. Methodology

We propose a visual indication of problematic areas and a
simple standardized display of a patient’s CoW. In order to
relieve radiologists of tediously inspecting the entire data
set, we propose a fully automated pipeline that processes
TOF-MRA data sets to create appropriate standardized visu-
alizations of the CoW (see Figure 2). We developed a soft-
ware solution for the clinical practice that does not introduce
additional working steps.

Firstly, in a preprocessing step, we identify the skull bone
of the patient and derive the Region of Interest (ROI) con-
taining the CoW. In the second step, we extract the main
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arteries of the CoW. Thirdly, we convert the intensity-based
representation of the blood vessels into a graph. We intro-
duce a novel method for the systematic labeling of this vessel
graph. Finally and fourth, we visually map the vessel graph
to a standardized radial layout that we refer to as CoWRadar.
Subsequently, each of these steps is explained in detail.

5.1. Preprocessing

We need to preprocess the TOF-MRA data sets in order to
extract the blood vessels of the CoW. The intensity values in
the provided data vary between 0 and 962. The overlapping
intensity ranges of the skull and arteries lead to problems
for the HT-based segmentation-approach. Hence, the skull
needs to be excluded from further processing. We segment
the skull by shooting rays from the outside of the data sets to
the inside and look for the first intensity peak along the rays.
However, the human skull has holes in the eye sockets and the
base of the skull that allow rays to pass through. Therefore,
rays are only shot laterally into the volume. For both lateral
directions, the rays will hit the skull first before reaching the
brain and its arteries. The bones are hereby detected by using
a threshold of 150, which is an empirically motivated value
that has been suitable for all of our results. Once all rays
have been cast, the location of the skull can be estimated by
considering the intensity peaks that were detected first along
the rays. They give a rough estimation of the skulls’s location
(see Figure 2b).

Then, we place a super-ellipsoidal ROI that includes the
CoW (see Figure 2c). The location and size of the ROI are
based on an empirically defined ratio determined from the
skull. This shift and scaling of the super-ellipsoid is defined
by considering the average location and size of the CoW in
the provided data (12 TOF-MRAs). The center (cx,cy,cz)
of the skull-voxels is computed as the mean of the skull-
voxel positions. The center of the ROI (px, py, pz) is shifted
from (cx,cy,cz) by using the following empirically motivated
factors: px = cx ·1.02, py = cy ·0.78 and pz = cz ·1.2.

This heuristic guarantees the placement of the ROI in close
proximity to all arteries of the CoW. Next, the shape of the
ROI has to be adjusted. The goal is to cover the entire CoW,
but not too much of the surrounding tissue. This is done
by setting the semi-axes A, B and C of the suggested super-
ellipsoid. For this purpose, the average Euclidean distance
r between (cx,cy,cz) and the skull-voxel positions are com-
puted. r is thereby regarded as an approximative radius of
the skull. The semi-axes are then empirically calculated as
follows: A = r ·0.52, B = r ·0.46 and C = Z ·0.52, where Z
defines the extent of the data set along the z-axis. Since the
skull is not entirely covered by the scan, the C-parameter of
the super-ellipsoid is adjusted by using Z instead of r. The
detected ROI covering the CoW specifies the spatial range of
our subsequent approach. By adjusting the axes-lengths, the
size and the roundedness of the super-ellipsoid, differently
shaped CoWs can be covered.

5.2. Vessel Extraction

The arteries are represented by voxels and their intensity
values inside the ROI. In order to create a vascular model,
we distinguish between artery and background voxels. We
extract the vessel centerlines, which are good abstractions for
the arteries due to their tubular structure.

The arteries are segmented using HT and the result is
shown in Figure 2d. This work suggests a histogram-based
estimation of the thresholds that is related to the work of
Condurache and Aach [CA05]. Our method solely analyzes
the histogram of the voxels inside the ROI for the automated
estimation of the two thresholds. Empirical percentiles around
98.8% for the low threshold and 99.9% for the high threshold
have shown to produce good results.

The segmentation result is then divided into three parts in
order to reflect the natural subdivision of the CoW into three
subtrees. We thereby project the segmentation result along
the x-, y- and z-axis, reducing the data sets to three image
planes, which are shown in Figure 3. We exploit the shape
and arrangement of the arteries in the two-dimensional image
planes.

Initially, we separate the segmentation result in each of the
three planes. Then, we use the results from the three individ-
ual planes to determine the subdivision of the segmentation
result in the 3D volume. In Figure 3 the orange part is as-
sociated with the right anterior subtree, the cyan part with
the left anterior subtree and the violet part with the posterior
subtree. The separation into subdivisions is performed in the
three planes by using reference points, which are based on the
shape and location of the super-ellipsoidal ROI. The pixels in
the sagittal and transverse planes are assigned to the closest
reference point.

In the coronal plane the right and left anterior reference
points are at (px +A, pz) and (px −A, pz). Using the image
planes, a rough estimation of the BA’s location can be done.
As the coronal plane in Figure 3a shows, the BA is normally
located in-between the two carotid arteries. This fact is ex-
ploited to get a better approximation of the location of the
BA on the x-axis. For this reason, a ray casting method is
additionally applied. Rays are shot from left and right. After
the first object is hit, the ray terminates if it hits a background
point. Finally, the center cBA of the left (cyan) and right (or-
ange) areas are calculated as an approximation of the BA’s
location on the x-axis.

The sagittal plane is used to assign the P1 segments to the
posterior subtree. The reference points are at (py +B, pz −C)
and (py −B, pz +C) and the result is shown in Figure 3b.

In the transverse plane the posterior reference point is
defined by (cBA, py +B), the left anterior reference point is
located at (cBA +A, py −B), and the right anterior reference
point is positioned at (cBA −A, py −B). Only those voxels
that have not been marked already in the sagittal and coronal
planes are considered. The result is shown in Figure 3c.
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(a) Coronal plane (b) Sagittal plane (c) Transverse plane (d) Marked segmentation result

Figure 3: The three image planes of the segmentation result and the initial subdivision. (a) displays the coronal plane, where the
left and right anterior parts are marked. (b) displays the sagittal plane, which is used to mark the P1 segments in the posterior
subtree. (c) shows the transverse plane where the posterior part is marked. (d) shows the segmentation result marked according to
the image planes. The arrows point to small areas that are not assigned to the correct subtree yet.

The subdivision of the segmentation result in the 3D vol-
ume is then determined according to the results from the
image planes in the following order: transverse, coronal and
sagittal. If a segmented voxel is marked twice, the last mark-
ing is taken. After this procedure, some small parts are still
incorrectly assigned as shown in Figure 3d. To address this
issue, we apply the following approach: We determine the
largest connected components of each of the three parts and
take them as the initial areas. Then, these initial areas grow in
a breadth-first manner and absorb parts that do not belong to
another initial area. The final result is displayed in Figure 2e,
which shows the correct separation of the segmentation result
into the three subtrees.

This approach allows us to quickly perceive the absence
of a main artery. In such a case, a major part of the brain is
potentially under-supplied with blood, which is a highly rele-
vant information for the domain experts. The main arteries
are the largest arteries of the CoW. Their presence can be
detected by comparing the different (colored) parts in the im-
age planes with each other. The transverse MIP in Figure 4a
shows an example data set with a missing LICA according
to the domain expert. If the left or right part in the coronal
plane is relatively small, then we assume that a main artery is
missing, as illustrated in Figure 4b. Compared to the example
in Figure 3a, this CoW is not symmetric since the LICA is
missing. The area of the cyan left anterior part is smaller than
the area of the orange right anterior part. As a result, the CoW
is separated into two subtrees instead of three, in order to
reflect this irregular blood circulation, where the left anterior
part of the brain seems to be under-supplied. (see Figure 4c).
The smaller cyan area is then discarded since we assume that
these smaller arteries are not supplied by the LICA.

In order to provide a sufficiently smooth segmentation
for the subsequently performed skeletonization, we apply
morphological operations such as closing. We use the skele-
tonization approach by Lee et al. [LKC94] to extract the
centerlines of the arteries of the CoW.

(a) Transverse MIP (b) Coronal plane (c) Subdivided result

Figure 4: Detection of a missing main artery using the coronal
plane. (a) shows the transverse MIP with an arrow pointing
to the location of the missing LICA. (b) shows that the cyan
area is much smaller than the orange area. (c) displays the
CoW separated into two subdivisions instead of three.

5.3. Vessel Modeling

Until now, the arteries are still represented by voxel intensity
values. In this section we describe methods to create a model
that represents the arteries and their branching points. This
model is then used as the basis for the visualization.

The centerlines are converted into a graph. The output is a
representation of the CoW, which we refer to as vessel graph.
The vessel graph has to be corrected in order to remove noise
introduced during the segmentation and skeletonization steps.
This assures a more accurate representation of the vasculature
by the vessel graph.

The inaccuracies are partially due to noise in the data
set and also result from the combination of the methods
which we applied to extract the centerlines. We first use
the skeletonization approach by Lee et al. [LKC94] for the
extraction of centerlines. Then we apply the conversion rules
by Pock [Poc04] to convert the centerlines to a vessel graph.
In the resulting vessel graph, disconnections tend to appear.
We therefore call it uncorrected vessel graph. In order to
remove these errors in the topology, we propose a bifurcation
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(a) Disconnected bifurcation (b) Merged bifurcation

Figure 5: Illustration of the merging of a disconnected bi-
furcation. The dashed circles show the search radius around
the vertices 3, 4 and 5. Endpoint 2 is not merged since it is
already connect to one of the initial vertices.

(a) Disconnected segment (b) Merged segment

Figure 6: Illustration of the segment merging and the removal
of duplicate segments. Endpoints 7 and 8 are separated only
by a small distance and have to be merged. After the end-
points are merged, there is a duplicated connection between
vertices 6 and 9. The shorter one is removed.

merging and a segment merging approach. For bifurcation
merging, we connect those vertices in the uncorrected vessel
graph that lie within a small distance from each other. This
approach is illustrated in Figure 5.

Due to the noise in the data and errors in the segmenta-
tion, also the segments in the uncorrected vessel graph can
be disconnected or falsely duplicated. For the merging of
segments, a small radius around the endpoints is checked in
order to look for potential endpoints to connect. If segments
are merged, short duplicated connections are removed, since
they are most likely noise. Figure 6 illustrates our segment
merging approach. The two merging methods (Figure 5 and 6)
correct the errors in the vessel graph, but in some cases they
also merge bifurcations and segments where it is undesired.
However, these false merges are rarely observed in the pro-
vided data sets and are, therefore, accepted for the benefit of
a more accurate vessel graph.

Labeling typically refers to the assignment of the anatom-
ically correct names to the segments of the vessel graph.
We developed a different approach in collaboration with our
domain expert. During the diagnosis, the radiologist is less in-
terested in the anatomical names of the segments, but more in

Figure 7: Systematic labeling of the standard configuration
of the CoW. All segments are labeled, starting from the main
arteries (root segments, shown underlined). Since the stan-
dard configuration of the CoW contains all communicating
arteries, each segment receives three labeling terms. The left
anterior root segment is labeled R5aL0aB3b, the right ante-
rior root segments is labeled R0aL5aB3b and the posterior
root segment is labeled R3bL3bB0a.

how the brain is supplied and, consequently, in the topology
of the CoW. Neuro-radiologists can easily derive the identity
of an artery by considering its connection to the supplying
main artery. Based on this idea, we propose a systematic
labeling of the vessel graph, starting at the main arteries,
which we refer to as root segments. Each segment can be
labeled based on the supplying arteries as long as there is a
connection. A label consists of zero to three terms, depending
on the segments connections to the main arteries. A labeling
term is thereby described by the regular expression:

[R|L|B][0−9]+[a− z] (1)

The letters R, L and B specify the root segment where R
stands for the RICA, L for the LICA, and B for the BA. The
subsequent numeral specifies the number of branching points
between a segment and its root segment. Lower case charac-
ters at the end indicate the branch index, which enumerates
the child branches. This approach is illustrated on the stan-
dard configuration of the CoW in Figure 7. Every segment is
labeled from three directions and therefore, is assigned up to
three labeling terms.

Figure 2f shows a vessel graph labeled with our approach.
The effectiveness of our labeling approach is illustrated on the
example of the segment with the label R2aL4b. The R2a term
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indicates that this particular segment is two branching points
away from the RICA. The L4b term indicates that there is a
connection between the left and right anterior subtree and the
segment is four branching points away from the LICA. There-
fore, it can be assumed that there is an ACoA to connect the
anterior subtrees. Since the enumerator of the right labeling
term is smaller than the left one, this segment is located on the
right anterior subtree. Furthermore, the fact that this segment
is not labeled from the BA is a clear indication that there is
no connection between the anterior and posterior part. The
PCoAs are absent on both sides. This relevant information
can be extracted from the single segment label.

Finding the starting point of the labeling is crucial in our
approach. For each subtree, the root segment must be detected.
We determine the root arteries heuristically by analyzing the
following seven attributes of each segment:

1. Length li: The main arteries are longer than the other
segments.

2. Position on the z-axis ui: The main arteries supply the
CoW from below. Therefore, their positions on the z-axis
are likely to be lower than those of the other arteries in
their subtrees.

3. Centrality on the x-axis vi: This attribute is used for
identifying the BA since it has a medial position on the x-
axis. We thereby use the cBA value from the coronal plane.
The centrality is calculated from the average distance of a
segment to the cBA by only considering the x-components
of the positions.

4. Distance to the centroid of the subtree di: The centroid
is usually close to its main artery since the main artery is
the largest one in the subtree.

5. Intensity values bi: Due to the properties of MRAs, the
main arteries have the highest intensity values. bi is the
average intensity value along the segment.

6. Vertical alignment ai: The main arteries run vertically
upwards until they bifurcate into the CoW. A segment is
approximated by a vector between start and end point ai
is calculated from the angle between this vector and the
z-axis.

7. Affiliation to the respective subtree si: This is a three-
dimensional vector where each component defines the
affiliation of a vessel segment to the three subtrees.

Finally, we calculate the rank of each segment in the vessel
graph to be selected as one of the root segments. For each sub-
tree, the segment with the highest associated rank is selected
as the root segment by using the following rank-function:

Ci, j = sgn(si, j) · (li ·L j +ui ·U j + vi ·V j

+di ·D j +bi ·B j +ai ·A j) (2)

Ci, j is the rank of segment i to be selected as the root of
subtree j, for j = 1,2,3. The variable si, j is the component j
of the affiliation vector s of segment i. It describes to which
subtree the segment i can be assigned to. The above described
attributes have different ranges. Therefore, we normalize

the ranges to lie between 0 and 1 in order to equalize their
influence. sgn(·) is the sign function. si, j is only positive,
if a segment is part of subtree j. This guarantees that the
RICA can only be considered as a candidate for the root
segment of the right anterior subtree, the LICA for the left
anterior subtree and the BA for the posterior subtree. The
influence of the attributes is regulated by the weights L j , U j ,
V j, D j, B j, A j. The three main arteries LICA ( j = 1), RICA
( j = 2), and BA ( j = 3) differ in size, location, alignment, and
shape and are therefore not determined by the same attributes.
For this reason, the weights have to be adjusted accordingly.
We empirically determined L1 = L2 = 0.4, U1 = U2 = 0.2,
V1 =V2 = 0, D1 = D2 = 0.5, B1 = B2 = 0.5, A1 = A2 = 0.2
as weights for the LICA and RICA root segments. Hereby,
the centrality attribute vi is eliminated since the LICA and
the RICA are in the lateral parts of the ROI. For the BA root
segment, we use the following weights L3 = 0.3,U3 = 0,V3 =
1,D3 = 0.3,B3 = 0.4,A3 = 0.8. Hereby, ui is eliminated since
the BA is not the lowest segment in the posterior subtree.
Usually, the two vertebral arteries are below the BA.

5.4. Visual Mapping

The vessel graph contains information about different prop-
erties of the CoW, which have to be communicated to the
user. Figure 2f displays the labeled vessel graph together with
the MIP from the transverse view. This display is disadvan-
tageous since the content cannot be fully perceived without
changing the viewing direction. In this section we propose a
visual mapping to abstract the CoW in such a way that it can
be easily comprehended by the radiologist. Our visualization
supports the physician to observe the overall configuration
of the CoW, while still retaining sufficient details for an ex-
tensive analysis. Our proposed visual abstraction displays the
CoW in a similar way as before, namely in a radial graph
layout. The CoW consists of subtrees that are connected with
each other at the leaves. We chose a circular layout that offers
an effective way of displaying the subtrees inside different
sectors. Figure 2g illustrates our approach, which we refer to
as Circle of Willis Radar/Radial Visualization (CoWRadar).

We convert the labeled 3D vessel graph into a 2D graph
representation, i.e., segments are represented by nodes and
branching points by edges. Neuro-radiologists are primar-
ily interested in the blood supply and collateral circulations,
which can be easily observed in a graph representation. Fur-
thermore, other important attributes of the segments are visu-
ally better encoded inside a node than an edge.

The main arteries are located at the center of the radial
graph, at the zeroth level. Increasing level numbers indicate
the direction of the blood flow. Every level is represented by
a concentric circle, starting from the center and simultane-
ously encoding the distance of a segment to its corresponding
main supplying artery. In essence, we visually depict the
subsequent three different Levels of Detail (LODs) that suc-
cessively provide more information:
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Figure 8: Two nodes are depicted. The visual representation
gives a detailed view of the attributes inside a segment. The
left node depicts the LICA and the right node depicts the
ACoA of the exemplar CoW shown in Figure 2g. Attributes
are displayed in diagrammatic form inside the nodes with
multiple circular arcs. The inner purple arc depicts the inten-
sity range of the segment and the outer yellow arc depicts
its length. Furthermore, the dark purple inner arc depicts the
minimum and the bright purple arc depicts the maximum
intensity value.

1. Low LOD: The overall blood supply to an affected region
of the CoW can be derived from the global arrangement of
a node within a single sector. An empty sector is immedi-
ately spotted, representing a problematic blood circulation
in this region. This is supposed to be a time-crucial and
life-saving aspect and is, therefore, encoded at the lowest
LOD to be as fast perceivable as possible (see Figure 12).

2. Medium LOD: At this LOD, the branching structure can
be observed from the nodes and edges in the CoWRadar.
The edges connecting two sectors are important since
these indicate collateral blood circulation. It is a major
aspect to determine if a certain region is still supplied with
blood despite being not connected to its spatially closest
main artery [HvdG00]. Again, this can be easily observed
in our CoWRadar (see Figure 2g).

3. High LOD: The highest LOD offers the possibility to
inspect the attributes inside the nodes, which are shown
in diagrammatic form (see Figure 8). The nodes allow
the radiologist to compare attributes of different segments
with each other. For example, length and intensity val-
ues are displayed to provide additional information. The
length allows the radiologist to distinguish between the
different segments. Arteries are further differentiated by
intensity values for various reasons. The main arteries
are the brightest in the CoW. Low intensity values could
indicate a stenosis.

The CoWRadar shown in Figure 2g can be interpreted as
follows. The connection between the left anterior and right
anterior sector is established by the ACoA, which we labeled
as R3aL2b. This label consists of two labeling terms, the R3a
term indicates that this segment is three branching points
away from the RICA segment and the L2b term indicates that
it is two branching points away from the LICA. Furthermore,
each segment in the anterior subtrees is labeled from both,
the RICA and LICA root segments and therefore, carries
two labeling terms. The missing third label implies that the
posterior subtree is not connected to the anterior subtrees.

Figure 9: Screenshot of the graphical user interface devel-
oped in our work. (a) displays a multi-axial slice view. (b)
displays a 3D MIP with the vessel graph overlay. (c) shows
the corresponding CoWRadar.

Consequently, we can assume that the PCoAs are missing on
both sides.

The attributes used for the identification of the main ar-
teries as described above can be visualized inside the nodes
as circular charts, which are normalized to the respective
maximum value of all segments. This layout offers a compact
representation of information, while minimizing the covered
space and retaining the overall topology of the CoW. Exam-
ples are given in Figure 8, showing the LICA and the ACoA.
The LICA is much longer than the ACoA, which is shown
by the outer yellow arc. The inner purple arc shows that the
LICA has much higher intensity values than the ACoA. The
inner arcs convey the minimum and the maximum intensity
values of the segment. These two attributes play an essential
role in selecting the root segment since they characterize the
main arteries.

6. Implementation

All steps in the proposed pipeline were implemented in a
software solution for the radiologists, see Figure 9. We de-
veloped the software as an extension to the AngioVis frame-
work [The16a]. The methods have been implemented on the
CPU. We use OpenGL and Qt to render the geometrical ele-
ments of the visualization. The software processes the data
sets automatically and requires the radiologist only to read-
in the data set and start the pipeline. The radiologist uses
multiple slice views and a MIP for the traditional inspection
of the data set. They are implemented in the software and
linked to the CoWRadar in order to contextualize the informa-
tion in the visualization. The CoWRadar provides diagnostic
assistance through an additional view. In this way, it comple-
ments the workflow of the radiologist, but does not change it.
Currently, a data set is processed in 55 seconds on average.
The sizes of these data sets are between 448×512×64 and
512×512×156 voxels. The voxels are represented by 16 bit
unsigned integers. The time measurements were done on an
Intel Core i5 with 3.4 GHz and 16 GB system memory.
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(a) Vessel graph with anatomical labels

(b) CoWRadar with labels

Figure 10: An example CoW where every segment is cor-
rectly identified by our approach. We manually added the
Latin names in order to show the correspondences between
the original data set and our CoWRadar.

7. Results

The data sets were acquired from patients with various dis-
eases such as brain tumors or other cerebrovascular diseases,
with the majority being suspected stroke patients. All data
sets have been automatically processed using our proposed
approach, without any manual interventions or adjustments.

In the first example (see Figure 10), we present a case
where all three communicating arteries are missing accord-
ing to the gold standard. This circumstance is successfully
depicted in our CoWRadar. As the communicating arteries
are absent, there are no connections between the three sectors.
We manually annotated the vessel graph and the CoWRadar

(a) Transverse MIP (b) Subtrees

(c) CoWRadar

Figure 11: In this patient 91% of the arteries could be cor-
rectly identified using our proposed method. (a) shows a
transverse MIP indicating a missing left PCoA (yellow ar-
row). (b) illustrates the subdivision result and (c) shows the
CoWRadar with the ACoA (yellow arrow) connecting both
anterior subtrees.

with the Latin names of the segments in order to show their
correspondences. In the second example (see Figure 11) 91%
of the segments were correctly identified. According to the
gold standard, all arteries of the CoW are present in this
data set, except for the left PCoA. As depicted in the trans-
verse MIP (see Figure 11a), the left PCoA is the only artery
missing, which is indicated by the yellow arrow. The sep-
aration into the three subtrees is shown in Figure 11b and
the CoWRadar is presented in Figure 11c. The arc-shaped
connection between the two anterior subtrees indicates the
presence of the ACoA (yellow arrow in Figure 11c). The right
P1 segment could not be identified due to low intensity values.
The right PCoA is correctly detected but not represented by a
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(a) Transverse MIP (b) Subtrees

(c) CoWRadar

Figure 12: Limitations of our approach. In this subject only
58% of the arteries could be correctly identified with the
proposed method.

connection to the posterior sector since the right P1 segment
is not correctly identified.

The third example (see Figure 12) demonstrates the limita-
tions of our proposed method. According to the gold standard,
the LICA is missing as shown in Figure 4a. The only other
missing artery is the ACoA. We correctly identified the miss-
ing LICA, but our approach does not detect the remaining
arteries of the left subtree since the root segment is absent.
This means that the left M1 and A1 segments will not be
assigned to the left sector.

8. Evaluation

We conducted a study consisting of 63 TOF-MRA data sets
that were investigated by an expert neuro-radiologist and
three volunteering radiologists. The neuro-radiologist, being

much more experienced than the three radiologists, created
the gold standard. For the study, the radiologists analyzed
the raw data on their workstations and marked the twelve
arterial segments in a standardized questionnaire as being
present or absent. We compared the findings of our approach
and the findings of the radiologists to the gold standard and
calculated the sensitivity, specificity and negative predictive
value to evaluate the results.

The separate evaluation of the main arteries and the entire
CoW is motivated by the way our approach works. We pro-
pose a method that automatically identifies the main arteries
by certain attributes. The remaining arteries are not directly
identified but labeled with our systematic labeling approach.
Our method displays their connections to the main arteries
and the branching structure that lies in-between, hence the
arteries are visually described.

The sensitivity metric, or true positive rate, measures the
proportion of existing segments that could be correctly iden-
tified. The specificity metric, or true negative rate, measures
the proportion of missing arteries that could be detected as
absent. Finally, the negative predictive value is the proportion
of the correctly classified absent arteries. For a comprehen-
sive evaluation of our approach, all three of these metrics
have to be analyzed. The visualizations of the 63 data sets
were presented to the neuro-radiologist for interpretation and
verification if the arteries could be correctly detected by our
approach.

The sensitivity values are shown in Figure 13a. The sensi-
tivity value demonstrates the ability of our proposed method
to detect the presence of arteries. 80.66% of all present ar-
teries could be detected correctly, which is slightly below
the performance of the radiologists. The value is mainly de-
creased by arteries that are represented with low contrast.

Figure 13b shows the specificity values. According to the
gold standard, the RICA is absent in two and the LICA is
absent in one data set. All three cases have been correctly
classified by our proposed method. The main arteries’ speci-
ficity is therefore 100%. Overall, 115 of the total 756 arterial
segments (63 data sets × 12 investigated segments) were
classified as missing by the gold standard. 93.04% were cor-
rectly identified as such by our approach. The specificity of
the participating radiologists is in general lower compared
to our method. This is because of increased false positives.
The radiologists have the highest number of false positives
in the communicating arteries, which means that they tend to
identify the presence of a communicating artery where the
gold standard states the opposite. The main reason for the
slight decrease of the specificity for all arteries is caused by a
false connection between the left and right anterior subtree.

Our approach seems to favor specificity over sensitivity.
This means, a segment is rather detected as missing than
as being present. However, these two values do not fully
demonstrate how precise our approach is in detecting the
missing arteries by taking the false negatives into account.
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(a) Sensitivity

(b) Specificity

(c) Negative predictive value

Figure 13: The evaluation shows that the performance of
our automatic approach is slightly below the radiologists’.
(a) Sensitivity: Almost all main arteries could be correctly
identified. (b) Specificity: A specificity of 93.04% for the
entire CoW indicates that our approach performs better in de-
tecting missing arteries than the radiologists. (c) The negative
predictive value seems in general to be quite low.

This is given by the negative predictive value, which is
shown in Figure 13c. The reason for the low value is the
same as for the sensitivity value. Since the number of absent
arteries is relatively small compared to the number of present
arteries, the influence of the false negatives is much larger on
the negative predictive value.

9. Limitations and Discussion

According to the evaluation our proposed method performs
well in the detection of absent arteries. This is potentially of
great interest for the diagnostic process since missing arteries
are often the cause of problems. Our approach mostly devi-
ates from the gold standard in those cases where the arteries
are represented by relatively low intensity values. In such

(a) Correct ACoA location. (b) Falsely detected ACoA.

Figure 14: Incorrect identification of the ACoA using our
approach. (a) displays the transverse slice at z = 60 where
the actual ACoA is located. Due to low intensity values, this
artery could not be segmented. (b) shows the slice at z = 58,
where our approach detects a false connection resulting in a
connection of the two ACAs at the wrong position.

cases, the arteries are not segmented and consequently not
represented in the CoWRadar. In general, the performance
seems to be the lowest with the communicating arteries. The
ACoA forms the connection between the two anterior sub-
trees, branching from the Anterior Cerebral Artery (ACA).
Especially the detection of this artery poses a challenge for
our approach as well as for the radiologists since it is very
short and has low contrast. As Figure 14 shows, our approach
is not able to correctly detect the ACoA in this patient.

The closing operation during the step 10 in the pipeline
merges the two ACAs and falsely forms a connection between
the left and right anterior parts, as is demonstrated in Fig-
ure 14b. Therefore, the connection is mistaken as the ACoA.
In this case, the artery is considered to be falsely identified.

Another limitation of our approach is given by the way how
our labeling works. If a segment is disconnected due to locally
low intensity values, our approach stops the labeling at this
point. This causes the remaining segments in the respective
subtree to be left unlabeled or assigned to the wrong subtree.

The sample data sets are randomly selected and there was
no case with an aneurysm among them. Hence, we could not
test our approach on such patients. However, changes in the
vasculature would probably be detected and the pathologies
would be indirectly depicted by anomalies in the affected
area in the CoWRadar.

One characteristic of our approach is that the outcome
is controlled by multiple parameters that are heuristically
motivated by the vascular anatomy. We designed these pa-
rameters together with their values based on the experience
of the domain expert. We tackled the problem of over-fitting
by applying our approach to unknown data sets as well. Out
of the 63 data sets, only 12 are the basis for the tuning of the
parameters and 51 data sets are randomly selected and were
unknown before the evaluation.
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10. Conclusion and Future Work

We propose an automated pipeline for the visual quantifica-
tion of the CoW in stroke patients. Thereby we developed a
novel method for the systematic labeling of the vessel graph.
In addition, we proposed heuristics for the identification of
the main arteries based on seven attributes of each segment
in the vessel graph. The CoW is finally visually represented
in a standardized manner in order to provide a preliminary
assessment of the CoW’s configuration as well as a visual in-
dication of problematic areas. This can be used as an interface
for comparisons across multiple patients.

One key aspect of our proposed workflow was to pro-
vide the CoWRadar as a standardized overview of the CoW
without introducing manual processing steps for radiologists.
Since the topological configuration of the CoW is the main
interest during diagnosis, the CoWRadar abstracts away most
of the spatial information given in the volumetric data. It only
communicates the essential information to the radiologists in
order to allow them a quick overview of the entire CoW in
a single image. Therefore, we focused on the development
of the entire pipeline, from preprocessing to visualization,
instead of finding an optimal solution to a subtask in this
process. For future work, it could be very interesting to see
which of the steps in our pipeline could be replaced with
different approaches in order to improve the final result.

So far we compared our technique against radiologists,
but not how they would perform by using the CoWRadar. In
the future we plan to study whether they would increase in
accuracy and speed of diagnosis when accompanied by the
CoWRadar. Another interesting challenge would be to pro-
cess a large number of data sets with our automatic pipeline
and combine the findings into a single visualization, e.g. an
average CoW. This would enable the comparison of different
groups of CoW.

Concluding, the evaluation demonstrated the feasibility
and practicability of our approach, especially considering
the heterogeneity of the data sets in the study. The domain
expert stated that the findings of our proposed fully automatic
method are already as good as those of a beginner radiologist.
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