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Kurzfassung

B
ILDGEBENDE Verfahren wie Computertomographie, Magnetresonanztomo-
graphie und Ultraschall sind aus der medizinischen Diagnostik nicht mehr
wegzudenken; sie sind mittlerweile für die Diagnose unterschiedlichster

Krankheiten unumgänglich geworden. Die Anamnese (der medizinische Diagnoseprozess) mit-
tels bildgebender Verfahren kann durch automatische und interaktive Analysetools in hohem
Maße unterstützt werden. Analysetools können für standardisierte Messungen verwendet wer-
den, zum Bewerten von Pathologien, zum Planen von Behandlungen und Operationen, und
vielem mehr. Um solche Analysetools bestmöglich einsetzen zu können, müssen seitens der
Daten bestimmte Voraussetzungen erfüllt werden. Eine der wichtigsten Anforderungen ist dabei
das Vorhandensein einer Segmentierungsmaske jener inneren Organe oder Strukturen, die von
den Ärzten näher untersucht werden sollen. Die Segmentierung von medizinischen Daten ist
nach wie vor ein fehleranfälliger Prozess. Nicht selten müssen Segmentierungsmasken, obwohl
(semi-)automatisch erstellt, von geschultem Personal manuell nachbearbeitet werden, um ein
brauchbares Ergebnis zu erzielen. Daraus ergibt sich eine große Nachfrage nach interaktiven, und
möglichst intuitiven Techniken zum Bearbeiten von Segmentierungsmasken für medizinische
Daten.

In dieser Dissertation werden drei fortgeschrittene Techniken zum Bearbeiten von Segmentie-
rungsmasken vorgestellt. Besonderes Augenmerk wurde dabei auf die Wahl einfacher Interakti-
onsmöglichkeiten gelegt, mit Hilfe derer in relativ kurzer Zeit ein gutes Segmentierungsergebnis
erzielt werden kann. Alle drei Techniken haben gemein, dass sie auf einer Repräsentation aufbau-
en welche die Topologie der Segmentierungsmaske berücksichtigt. Diese erlaubt es, strukturelle
Merkmale in den Daten zu erkennen, die jeweils bestimmten Segmentierungsfehlern zugeordnet
werden können.

In einem ersten Schritt wurden die möglichen Segmentierungsfehler klassifiziert, und dann jeweils
Lösungswege zum Beheben dieser Fehler erarbeitet. Basierend auf der Klassifikation können
Benutzern passende Techniken zum Bearbeiten der Segmentierungsfehler vorgeschlagen werden;
allerdings müssen die Defekte zuvor von den Benutzern selbst detektiert werden.

Im Zuge dieser Arbeit konnte der Bearbeitungsprozess weiter verbessert werden, indem pro-
blematische Regionen automatisch detektiert und klassifiziert werden. Folglich ändern sich
die Interaktionstechniken insofern, dass Benutzer nun aus einer Auswahl von vorgeschlagenen
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Lösungswegen wählen können. Die Auswahl der möglichen Lösungswegse wird zuvor pas-
send zur Klassifikation des Segmentierungsfehlers automatisch erstellt. Die Klassifikation der
Segmentierungsfehler erfolgt aufgrund einer Analyse der zugrundeliegenden Unterschiede der
Segmentierungsmaske. Die möglichen Lösungswege werden in einer glyphbasierten Visualisie-
rung präsentiert, welche eine Analyse der Daten in unterschiedlichen Detaillierungsgraden erlaubt.
Die Benutzer müssen dadurch nicht mehr direkt mit den Maskendaten interagieren, sondern
können sich auf die vorgeschlagenen Lösungswege konzentrieren, was den Aufwand und die
Bearbeitungszeit drastisch reduziert.

Als weiterer und finaler Schritt dieser Arbeit wurden weitere Techniken entwickelt, um die Benut-
zer während des gesamten Bearbeitungsvorganges zu unterstützen. Die Lösungswege wurden mit
Hilfe statistischer Methoden bewertet, um sie danach den Benutzern in einer geordneten Form zu
präsentieren. Die Ordnung repräsentiert dabei sowohl die statistische Signifikanz, als auch den
passenden Detaillierungsgrad. Die Lösungswege werden in radialer Form hierarchisch visualisiert,
wodurch die Benutzer zu den Regionen geleitet werden, die jeweils die größte Aufmerksamkeit
erfordern. Während dem Betrachten einer bestimmten Region werden nur jene Lösungswege
angeboten, die sich auch als relevant erweisen, um die Benutzer in der Darstellung nicht mit nicht
benötigten Details zu überfordern.

Alle im Rahmen dieser Arbeit erarbeiteten Techniken wurden zusammen mit Radiologen evaluiert,
wobei die Bedienbarkeit der Interaktionsmöglichkeiten, der Zeitaufwand und die Genauigkeit
der Resultate bewertet wurden. Die Ergebnisse der Auswertung belegen einerseits die Vorteile
unserer Techniken, in wenigen Interaktionsschritten ein genaues Segmentierungsergebnis zu
erhalten, als auch deren Anwendbarkeit in verschiedenen Anwendungsszenarien.



Abstract

V
ARIOUS medical imaging techniques, such as Computed Tomography, Mag-
netic Resonance Imaging, Ultrasonic Imaging, are now gold standards in
the diagnosis of different diseases. The diagnostic process can be greatly

improved with the aid of automatic and interactive analysis tools, which, however, require certain
prerequisites in order to operate. Such analysis tools can, for example, be used for pathology
assessment, various standardized measurements, treatment and operation planning. One of the
major requirements of such tools is the segmentation mask of an object-of-interest. However,
the segmentation of medical data remains subject to errors and mistakes. Often, physicians have
to manually inspect and correct the segmentation results, as (semi-)automatic techniques do
not immediately satisfy the required quality. To this end, interactive segmentation editing is an
integral part of medical image processing and visualization.

In this thesis, we present three advanced segmentation-editing techniques. They are focused
on simple interaction operations that allow the user to edit segmentation masks quickly and
effectively. These operations are based on a topology-aware representation that captures structural
features of the segmentation mask of the object-of-interest.

Firstly, in order to streamline the correction process, we classify segmentation defects according
to underlying structural features and propose a correction procedure for each type of defect.
This alleviates users from manually applying the proper editing operations, but the segmentation
defects still have to be located by users.

Secondly, we extend the basic editing process by detecting regions that potentially contain defects.
With subsequently suggested correction scenarios, users are hereby immediately able to correct
a specific defect, instead of manually searching for defects beforehand. For each suggested
correction scenario, we automatically determine the corresponding region of the respective defect
in the segmentation mask and propose a suitable correction operation. In order to create the
correction scenarios, we detect dissimilarities within the data values of the mask and then classify
them according to the characteristics of a certain type of defect. Potential findings are presented
with a glyph-based visualization that facilitates users to interactively explore the suggested
correction scenarios on different levels-of-detail. As a consequence, our approach even offers
users the possibility to fine-tune the chosen correction scenario instead of directly manipulating
the segmentation mask, which is a time-consuming and cumbersome task.
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Third and finally, we guide users through the multitude of suggested correction scenarios of the
entire correction process. After statistically evaluating all suggested correction scenarios, we rank
them according to their significance of dissimilarities, offering fine-grained editing capabilities at
a user-specified level-of-detail. As we visually convey this ranking in a radial layout, users can
easily spot and select the most (or the least) dissimilar correction scenario, which improves the
segmentation mask mostly towards the desired result.

All techniques proposed within this thesis have been evaluated by collaborating radiologists. We
assessed the usability, interaction aspects, the accuracy of the results and the expenditure of time
of the entire correction process. The outcome of the assessment showed that our guided volume
editing not only leads to acceptable segmentation results with only a few interaction steps, but
also is applicable to various application scenarios.
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CHAPTER 1
Introduction

Challenges cannot possibly be good or bad. Challenges are simply challenges.

— Carlos Castaneda

A
VAST variety of medical imaging techniques is used in clinical medicine on
a daily basis. For example, Computed Tomography (CT) uses X-rays casted
from multiple directions. As the rays are attenuated and absorbed by the

patient’s body, an X-ray image is formed. Using the Radon transformation, X-ray images from
different scanning directions are combined into volume data. This acquisition modality captures
the radiological densities of samples from various tissues. In case of Magnetic Resonance Imaging
(MRI), a strong magnetic field combined with radio-frequency pulses allows the radiologist to
capture spin characteristics of different atoms inside the tissues. Ultrasonic images capture
echogenicity of tissues via sending an acoustic signal and analyzing the received echo. The
doctors read the acquired images in order to examine pathologies, verify diagnoses, propose
treatment plans, and evaluate their effectiveness. During their studies doctors extensively learn
how to read medical images. The reason for this is that the human body has a complex structure,
which should be reflected in the mental model of the doctors.

Many of the medical imaging techniques applied nowadays produce volumetric data, i.e., a set of
data values, sampled on a three-dimensional grid. In these images, various types of tissues are
represented with different data values. Natural variations and inhomogeneities in tissue properties
lead to local deviations of the measured data values. Combined with noise, which is inherent to
all acquisition modalities, the resulting images, which the doctors investigate, are often difficult to
comprehend. Given the possibility to visually inspect pathologies, the data values in the medical
images often exhibit a great intra-patient and inter-patient variability. Therefore, doctors have to
discriminate various types of tissues on their own, as automatic classification techniques often
operate only in very restricted use-cases, e.g., in exact phases of contrast agent enhancement and
in the absence of severe pathologies.
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Figure 1.1: Abdominal CT dataset, depicting a severe NAFLD condition in the liver. a) Conventional DVR image with a window
function of WL/WW=76/136 HU. b) Segmentation mask of the liver with a severe over-estimation at the heart, created by a fully
automatic segmentation technique. c) Corrected segmentation mask of the liver without the over-estimation defect.

2



Medical imaging has a wide variety of application scenarios. First, doctors can find pathological
regions and validate their diagnosis. For example, the Non-Alcoholic Fatty Liver Disease
(NAFLD) can be detected through a CT examination. The major feature, which corresponds
to a NAFLD diagnosis, is a build-up of fat deposits inside the liver. Thus, the density of the
organ starts to decrease in terms of HU, getting close to that of the heart. The degree of the
pathological process can be evaluated by an examination of the liver texture, performed on
CT images. However, most of the automatic segmentation algorithms fail to segment the liver
properly in this case, by for example including cardiac tissue into the segmentation mask. A
typical case of a segmentation-algorithm failure is depicted in Figure 1.1.

Another example is vascular-structure diagnostics in Computed Tomography Angiography (CTA)
and Magnetic Resonance Angiography (MRA) data. For these acquisition modalities, the doctors
add a contrast-enhancing agent to the blood flow, which allows them to trace the vessels, including
even small ones. Due to their complex structure, bones can be misclassified as contrast-enhanced
vessels by segmentation algorithms, which leads to severe segmentation defects. In order to later
proceed with analysis tools, the doctors have to edit the segmentation masks either manually or
semi-automatically. As an example, the AngioVis framework [1] contains manual tools for a
proper vessels/bones delineation. This application scenario is illustrated in Figure 1.2.

The segmentation masks of various organs can be used for planning an operational intervention.
As an example, the liver segmentation mask is usually split into eight Couinaud segments, which
rely on the major vascular structures in the liver. Then, a resection can be planned for each
segment with respect to the pathology location, the vascular-structures accessibility and other
factors. Volumes of the remaining liver parts are estimated in order to assess the viability of the
operation. Thus, it is crucial to have available a segmentation mask of high quality.

Medical imaging also allows the doctors the comparison of organs and their pathologies over
time. By examining medical images from several points in time, the doctors can judge the
treatment progress as well as assess the aggressiveness of pathologies. In order to be able to
employ (semi-)automatic comparative tools, though, medical images have to be co-registered
and possibly segmented. Ideally, after these two preprocessing steps, the doctors would get an
exact match of numerous features of the organ of interest and inspect in detail the changes that
occurred between the acquisition times.

Having available the segmentation masks of organs, the doctors may perform various kinds of
measurements. Often this involves the linear sizes of pathologies and their relative distance to
vascular structures. Such information can be used in the tumor-malignancy assessment, which
often determines the subsequent treatment.

The segmentation masks are often required by the doctors, who apply various data analysis
techniques on them for diagnostic purposes. In this thesis, we discuss semi-automatic and
manual segmentation techniques, as fully automatic solutions often operate only in very restricted
scenarios with well-defined conditions and protocols, which sometimes are not possible to
maintain during the data acquisition. Another class of segmentation techniques is represented by
interactive segmentation-editing methods, which allow the user to edit the existing mask in order
to rectify its deficiencies.
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Figure 1.2: CTA dataset of the lower extremities, depicting a failure of vessel segmentation. a) Conventional DVR image with
a window function of WL/WW=188/384 HU. b) Segmentation mask of the vessels, created by a fully automatic segmentation
technique, with a severe over-estimation at the bones. c) Corrected segmentation mask of the vessels without the over-estimation
defects.
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We start with the most basic segmentation editing tools, such as the manual selection of voxels
and the drawing of contours on 2D slices. These techniques provide the user with unlimited
editing possibilities, as each voxel can be classified on its own. However, the flexibility comes
at the price of a laborious, repetitive and error-prone process that requires an extensive domain
knowledge and a long processing time.

In order to speed up the editing process, Mortensen and Barrett [2] propose semi-automatic
intelligent scissors that operate on 2D slices. The user selects a “start node”, i.e., a pixel on the
image, where the boundary of the object starts. Then the user places a “free point” where the
detected boundary should end. As the user moves the free point, a “live wire” is automatically
placed, i.e., a curve that is automatically snapping to a boundary in the slice. To achieve such a
behavior discrete dynamic programming is used to trace the optimal boundary between the start
node and the free point. Finally, the user locks the free point, making it the “goal node”. Then
the next part of live wire is placed, assuming the last goal node to be the new start node. The
boundary, composed of all live-wire segments, runs through all the nodes. The processing time
strongly depends on the image resolution. The interactivity issue is addressed by Wong et al. [3].
They propose a “slimmed graph” in order to process large images interactively. Intelligent scissors
use the image gradient, so they are sensitive to noise. The enhanced intelligent scissors proposed
by Mishra et al. [4] use a phase-based image representation. They formulate and solve the
optimal boundary extraction problem as an active contour problem. Enhanced intelligent scissors,
as stated by the authors, are more tolerant to noise and require fewer nodes than conventional
intelligent scissors.

An extension of live wire for volume editing was proposed by Hastreiter and Ertl [5]. They focus
on brain segmentation from MRI and CT scans. The user defines contours in slices through the
live-wire tool. The difference to conventional intelligent scissors is that their live-wire placement-
procedure takes into account slabs, not individual slices. Then the contours are propagated to
adjacent slices automatically. Falcão and Udupa [6] generalize a live-wire segmentation technique
to 3D objects. The contours are placed in the slices that are either the original acquisition slices
(axial slices in case of the CT and MRI acquisition modalities) or slices orthogonal to them. The
control points in the orthogonal slices are taken from intersecting the corresponding contours
of the original acquisition slices. In order to construct the contours in the orthogonal slices,
the control points have to be properly ordered. If the ordering is incorrect, the corresponding
contour would not lie at the object surface. Instead, it would run either inside or outside the
object. Hamarneh et al. [7] and Poon et al. [8] extend this idea by automatically generating
new live-wire contours from the ones the user specified. The user specifies the contours in
planes π1, . . . ,πM. Planes κ1, . . . ,κN that contain the new contours are arbitrary. For each new
contour in a plane κi the control points are computed by intersecting the user-specified contours
in the planes π1, . . . ,πM with the plane κi. In fact, the authors first compute intersection of the
plane π j with the plane κi. There are three possible outcomes for the intersection. If the planes π j

and κi are parallel, there is no intersection between the planes. Therefore, the corresponding user-
specified contour does not contribute to the control points of the new contour. If the planes π j

and κi are coincident, the user-specified contour is used directly as the new contour. If the
planes π j and κi are concurrent, the intersection of π j and κi is a line. Along the intersection line,
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the algorithm determines line segments that lie inside the corresponding user-specified contour.
The control points are placed at end-points of the found line segments. For the plane κi, the
algorithm collects all the control points and the line segments from all the planes π1, . . . ,πM . The
control points are then ordered according to the “turtle” L-system that moves along the found
line segments and always turns left at their intersections. The latter work addresses the issue of
segmenting objects with arbitrary topology. In order to do so, it detects the contours that are
inscribed into another contour and marks them to correspond to topological features such as deep
concavities, protrusions, non-spherical topologies, branchings, etc. An analogy of live wire for
volume editing was presented by Armstrong et al. [9]. They propose a “live surface”, which is
defined by user interaction and refined by an optimization algorithm. The idea is the following:
the user brushes “object” and “background” seeds in a specific cross-section plane. Additionally,
mouse interaction on the live surface is taken into account to either get more object voxels, or
remove background voxels. As this method allows the experts sequential refinements, based on
their input, the user has to manually search for the defects and place seeds accordingly.

Beck and Aurich [10] approach the interactive segmentation problem as follows. The user first
specifies several seed points inside the object-of-interest. An automatic flood-fill algorithm
grows the selection until the built-in classification procedure finds significant differences in the
data-value distribution. The intermediate result often contains over-estimated regions that are
subsequently removed with a “virtual knife” interaction tool, which operates in the 3D view.
Under-estimation defects are fixed by specifying additional seed points.

For graph cuts a graph is constructed from voxels serving as its vertices, and connections between
adjacent voxels serving as its edges. A cost is assigned to an edge according to characteristics of
both voxels. A graph cut is a graph partitioning: voxels in the first part belong to the object, and
voxels in the second part belong to the background. The partitioning depends on user-classified
voxels (“object terminals” and “background terminals”). The optimal cut is found with respect
to the sum of the costs of the edges in the cut-set. Hard constraints (“seeds”) are applied to
correct the position of the graph cut locally. Both terminals and seeds are placed by sketching.
The method can be utilized for segmentation correction. A drawback is that terminals and seeds
have to be placed manually instead of supporting feature-based selection and editing. Liu et
al. [11] apply the graph-cut technique to separate pre-segmented bones in CT images. Each
initially specified seed point corresponds to an individual bone. As the user progressively adds
more seed points, the bones become separated and properly classified. Beichel et al. [12] utilize
graph cuts to get an initial segmentation mask. Later, the user interactively refines it with two
post-processing steps: chunk-based refinement (CBR) and mesh-based refinement (MBR). The
CBR stage allows the user to split the segmentation into connected components (“chunks”) and
interactively add or remove them from the mask. With the MBR stage, the user edits finer features
of the segmentation mask. Egger et al. [13] focus on restricting the graph cut by additional seed
points, which the user places in order to quickly rectify the segmentation defects. A survey on
graph cuts can be found in the works of Boykov et al. [14, 15].

Sketch-based methods employ simple and intuitive sketching operations on slices, which modify
the contours of the object. One of these methods is proposed by Heckel et al. [16], where radial
basis functions are used to construct an implicit smooth surface of the object out of several
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sketches. Sketching over existing contours, combined with some heuristics in order to determine
the required correction operation, is the basis of the approach by Heimann et al. [17]. The work
of Salz et al. [18] includes sketches over the object and the background, which are then used for a
geodesic segmentation of heart and lungs.

Approaches that employ deformable 3D meshes, like the ones proposed by Bornik et al. [19]
and Proksch et al. [20], provide easy to use and efficient interaction tools for volume editing.
Jackowski et al. [21] present arbitrary surfaces in 3D with Rational Gaussian surfaces, which
can be subsequently edited. As an application example, the authors present liver, spleen, kidney
and brain-tumor segmentations. Timinger et al. [22] propose to correct the segmentation mask,
represented as a mesh, via deformations by user-specified forces. Random walk methods [23,
24] classify the data based on seed points. From each voxel a random walk is performed and the
probability of reaching each seed point is evaluated. Then, each voxel is assigned to the class of
the seed point with the maximum probability. The watershed transformation can be the basis for
an interactive segmentation procedure as well. This was demonstrated by Hahn et al. [25], who
consider the case of removing bones from CTA images. Heckel and Braunewell [26] propose a
segmentation-editing concept, which is based on an interactive watershed transformation [27]
combined with an analysis of foreground and background markers provided by the user. Another
possibility to interactively segment 3D objects is to build a so-called Active Appearance Model,
fit it automatically to the data and then allow the user to locally modify it in order to refine the
results. Beichel et al. [28] apply this approach to medical data and segment the following objects:
thoracic cavity and diaphragm, liver, and various tumors. Neumann and Lorenz [29] review
several statistical shape models and analyze their performance for segmenting vertebra from CT
images.

Two recent methods [30, 31] direct the user to possible segmentation defects. Still, these methods
do not suggest how to correct them. Praßni et al. [30] employ a random walk method and present
ambiguous regions with high segmentation uncertainty in a 3D overview rendering and detailed
uncertainty iso-lines in slice views. Top et al. [31] determine ambiguous regions of a segmentation
and display them in a slice view where the user can perform corrections with live-wire editing.

Several approaches focus on improvement of the segmentation techniques from a different
perspective. Torsney-Weir et al. [32] build up a statistical model of an arbitrary fully-automatic
segmentation technique. While the model is created, the parameter space of the segmentation
technique is sampled and the segmentation output is analyzed. The method then allows the user
to visually explore the model with respect to the various parameters. It estimates the output
segmentation using the model and computes related uncertainty information. Finally, the user
arrives at “good” parameter settings that maximize the quality of the output segmentation masks.
Fröhler et al. [33] investigate ensembles of the segmentation masks in order to determine optimal
settings for an arbitrary segmentation technique. This method first performs sampling of the
parameter space. The hierarchical clustering algorithm processes the output segmentation masks.
The entire data is then represented by a hierarchy of the clusters that match segmentations
of various spatial regions with the parameter values. As a result, the user can easily find the
parameter settings that produce optimal segmentation results in certain regions of the data. For an
extensive overview on interactive segmentation and volume-editing techniques in medical image
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1. INTRODUCTION

processing, we refer the reader to the survey of Olabarriaga and Smeulders [34] and the works of
Heckel et al. [16, 35].

1.1 Segmentation Visualization

Another general topic with segmentation masks is their visualization. A segmentation mask
should be incorporated into existing medical visualizations in such a way that it is, first, readable
by the doctors and, second, does not introduce artifacts into the visualization. The most basic
visualizations often render the segmentation masks with various semi-transparent colors on top
of the gray-scale slice images serving as context. The boundaries of a segmentation mask are
often highlighted to ensure easier delineation of the segmented object and the background. Such
a visualization complies with both of the above requirements. However, with such approaches
the doctors see only a single slice of the data at a time, which might be suboptimal if complex
structures are segmented and visualized across numerous slices.

The segmentation mask can be rendered in 3D as well. The first option is to represent the
surface of the mask with a polygonal structure, e.g., triangles or quadrilaterals. The surface
is usually calculated with Marching Cubes or Marching Tetrahedra algorithms. Then it is
often post-processed, for example, to smooth unnatural shape edges or to remove staircase
artifacts. The simplest solution is to apply Laplacian smoothing. This algorithm iteratively moves
each mesh vertex by a vector, which is calculated from the positions of neighboring vertices.
However, multiple iterations cause the mesh to shrink. Taubin’s filtering rectifies this deficiency
by alternating the orientation of the displacement vectors, i.e., odd and even iterations grow
and shrink the mesh respectively. Mönch et al. [36] discusses modifications to the smoothing
algorithms, such as Laplacian or Taubin’s filtering, which would prevent staircase artifacts as well
as retain the resulting shape close to the original mask. Their modifications involve identification
of faces which are related to the artifacts, and reducing the weighting of all such faces. Based
on several metrics used to describe the differences in the shapes, the authors find that their
modifications can effectively reduce the artifacts and preserve the remaining parts of the form.

Another possibility is to incorporate the segmentation mask into Direct Volume Rendering
(DVR). Usually it is achieved by specifying different transfer functions for the mask and the
background. However, artifacts may appear due to ambiguities in the binary classification which
the segmentation mask provides. A typical solution is to use two-level volume rendering [37,
38]. This approach casts rays through the volume data. On a local level, each sample along
each casted ray is classified in terms of rendered objects and shaded accordingly with specific
rendering algorithm. Samples that belong to a single object are composited together with the same
rendering algorithm. Then, on a global level, the individual objects along the ray are combined
together with DVR compositing while respecting their depths and opacities. The classification
of the objects at each sample is possible due to the usage of an object ID volume. This volume
describes objects located at the corresponding positions of the original volume data. In order to
determine the boundaries of the objects, several texture lookups are required.

Lindholm and Bock [39] address the segmentation-rendering problem by using two texture
lookups and calculating class attenuation parameters. This allows the algorithm more efficient
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1.2. Segmentation Defects

texture access in terms of time; however, it may also result in certain artifacts. Such a scheme
is between the classification that uses only a local sample and the one that operates with all
neighbors around it. More advanced rendering techniques, e.g., with contours by Salah et al. [40],
may be more suitable in certain situations. In the general case, the two-level volume-rendering
algorithm provides results of high quality without noticeable artifacts.

In our works, we use both approaches for visualizing the segmentation masks. In Chapter 2,
the segmentation mask is rendered with its own distinct transfer function via DVR. In order
to enhance the perception of the shape, we additionally extract and shade a surface of the
segmentation mask. This surface is found by comparing the object ID’s of the current and
previous samples along the ray. Such a binary procedure is fast, however, it results in some
aliasing artifacts. Therefore, in Chapters 3 and 4 we utilize mesh-based rendering. First, we
extract the surface of the segmentation mask with a Marching Tetrahedra algorithm by Müller
and Wehle [41]. Then, we perform a moderate Taubin filtering [42] in order to ensure a general
smoothness of the resulting shape. Finally, we render the triangle mesh with a conventional
order-independent-transparency algorithm, based on the fragments lists. For details on the
order-independent-transparency rendering methods, we refer the readers to the work of Knowles
et al. [43]. We enhance the shape of the object by displaying its contours. The contours are
determined by analyzing depth differences in the ray profiles among neighboring screen pixels.
The ray profiles contain entry and exit points of the segmentation mask.

1.2 Segmentation Defects

Motivated by the fact that most of the automatic segmentation techniques produce segmentation
masks with defects in imperfect acquisition settings, we differentiate the defects by types depend-
ing on their solution procedures. The type of defect influences the interactive process of selecting
the defect as well. For each class we propose its own treatment strategy. First, we distinguish
between the following two types of defects of a segmentation (see Figure 1.3):

• Over-estimation defects (O) are regions of the volume that are incorrectly classified as
belonging to the object. For instance, they can be caused by pathological conditions such
as fibrosis or steatosis, which change the radiological density of the object itself. This
compromises boundary identification between the object and surrounding tissues, because
the classifier cannot distinguish them anymore. Another possibility for the over-estimation
defects to appear is the usage of a contrast enhancement agent. While increasing the
acquired data values of the blood, the agent may cause the data values to be as high as
for the bones. Then, the separation between touching bones and vessels requires user
intervention, as they are not separable by the data values alone. This problem requires
tools, which enable the quick removal of background regions from the object.

• Under-estimation defects (U) are parts of the object that are misclassified as being back-
ground. It is usually due to pathological conditions like cysts or tumors, which change the
radiological density of the affected regions. This forces a classifier of the segmentation
procedure to judge that the regions contain another type of tissue than the object itself. In
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1. INTRODUCTION

the case of completely occluded vessels, stents or bypasses, the blood with the contrast
agent will not flow through certain parts of the vessel tree. In this case, the segmentation
mask will not contain those parts, as their data values would be outside the data range
for most of the segmentation techniques. A way to treat such a problem is to provide
volume-editing tools, which allow users to easily add the misclassified regions to the object.

These two types of defects require us to operate either on the object (O) or on the background (U)
respectively.

We distinguish between defects that occur in the object’s boundary layer (layer defect L) and those
that affect whole parts of the object (part defect P). These two types of defects require different
solution operations, e.g., all voxels of P defects should be removed from the corresponding mask,
and only the surface layer of L defects should be reclassified. The L defects usually manifest
themselves as local artifacts in the boundary of the detected object, which occur due to noise in
the data or pathological conditions like inflammation. In certain cases, the detected boundary of
the object may be shifted by a constant number of voxels, which may be due to partial volume
effects and a complex structure of the boundary of the object. This may result in the boundary
artifacts as well. In total, we classify the defects into four different types (OP, OL, UP, UL), which
are illustrated in Tables 1.1, 1.2. Table 1.1 depicts the segmentation defects in abdominal CTA
datasets, and Table 1.2 gives examples for CTA of human lower extremities.

1.3 Skeletonization

As our solutions to a great extent rely on skeletonization, we discuss various skeletonization
approaches. We represent a segmentation mask by its skeleton. The main idea behind such a
representation is to capture structural features of the segmentation mask and allow the user to edit
the defects, which are associated with these distinct structural features.

We start with thinning-based skeletonization approaches. Such techniques [44–46] iteratively
remove surface voxels under geometrical and topological constraints, i.e., preservation of end-
points, desired skeleton width, connectedness and centered location of the skeleton [44]. These
approaches are based on the definition of a simple point, i.e., the voxel that can be removed
without changing the topology of the object and its connectivity. Various definitions of simple
points are proposed by different authors. Often, such definitions involve the Euler characteristic,
computed in the 26-neighborhood of each voxel, e.g., as in the work of Lee et al. [44]. End-points
of open curves are simple points by definition. As a result, such a naive criterion for point deletion
would reduce open curves to single voxels and misrepresent the original object. Therefore, end-
points are detected and preserved in the thinning-based skeletonization methods. The requirement
for each removed voxel to be at the surface of the object is checked using the 6-neighborhood.
The desired skeleton width of one voxel is achieved by continuing the thinning iterations until
no more voxels can be removed without changing the topology and connectedness of the object.
During the iterative process the order of voxels to be removed matters. Classical approaches tend
to address this issue by treating six principal thinning directions sequentially. Each direction
corresponds to a non-object voxel in the 6-neighborhood: in front of, behind, on the left of, on
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Figure 1.3: Two phantom datasets with the following segmentation defects: a) object #1 (dark
gray), b) segmentation (green) of the object #1 with OP, OL over-estimation defects, c) object
#2 (dark gray), d) segmentation (green) of the object #2 with UP, UL under-estimation defects.
The defects are exaggerated for illustration purposes.

11



1. INTRODUCTION

Table 1.1: Different classes of segmentation defects in abdominal CTA data. Objects of
interest are livers, segmented with a fully automatic technique. The segmentation masks are
displayed via meshes (green) atop the anatomical context (gray tones). The user interaction
is required in order to achieve the desired quality level of the segmentation masks. In the
first dataset, the OP and UP defects are fixed. The user rectifies the OL and UL defects in the
second dataset. The result row depicts the desired segmentations.

Dataset with part defects PPP Dataset with layer defects LLL

Over-
estimation
OOO

��

��

Under-
estimation
UUU

��

��

Result
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1.3. Skeletonization

Table 1.2: Different classes of segmentation defects in lower extremities CTA data. Vessels
are segmented with a fully automatic technique. The segmentation masks are displayed
via meshes (green) atop the anatomical context (gray tones). The user, interested only in
vessels, corrects the segmentation mask, achieving the desired quality level. In the dataset,
the following defects are sequentially fixed: OP, UP, OL, and UL. The edited mask is shown in
the result column.

Part defect PPP Layer defect LLL Result

Over-
estimation
OOO ��

��

Under-
estimation
UUU

��

��
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1. INTRODUCTION

the right of, below and above. Each thinning iteration treats six directions in six sub-iterations,
thinning the object equally from all sides. Pudney [47] suggests Distance-Ordered Homotopic
Thinning, which orders the voxels for removal by their Euclidean or chamfer distances to the
surface. As a result, the centered location of the skeleton with respect to the object is guaranteed.

Distance-field-based methods [48–53] treat ridges of a distance field as skeleton voxels. However,
discreteness of the volume data often causes misclassification of the ridges of the distance
field, thus, a post-processing step of reconnecting the skeleton voxels and pruning the spurious
skeleton branches is required. Different types of distance fields result in different skeleton
characteristics [54]. Most often the Euclidean distance is used for the skeletonization. However,
its discrete approximation – the chamfer distance (also known as 〈3,4,5〉 distance) – may be used
as well, e.g., as done in the work of Gagvani and Silver [49]. Zhou et al. [48] define their own
distance transformation, which propagates iteratively in the 6-neighborhoods of processed voxels.
Even though such a distance metric is less precise than the chamfer distance, the authors claim
that the achieved precision is sufficient to operate on medical CT and MRI volume data. As an
example, the authors show extracted centerlines in colon and brain datasets.

Some approaches search for a skeleton by constructing Voronoi diagrams [55–57]. By definition, a
Voronoi diagram for a given set of points consists of lines, which are equidistant to these points. If
the points are placed on the surface of the mask, the corresponding Voronoi diagram will contain a
skeleton of the mask. Practically, the mask is represented with polygons (polyhedra), e.g., squares
(cubes), and the points coincide with vertices of the polygons (polyhedra). However, the diagram
also contains many spurious skeleton branches that come from inaccuracies, introduced during
the polygonal (polyhedral) approximation of the mask. A regularization of the Voronoi diagram
is required in order to remove the spurious branches and retain the relevant skeleton branches
that represent the mask. Ogniewicz and Ilg [58] suggest four residual functions that control
the regularization process: potential residual, circularity residual, bi-circularity residual, and
chord residual. The skeleton, extracted from the corresponding Voronoi diagram with these four
residual functions, is guaranteed to be connected. The shortcoming of the Voronoi-diagram-based
skeletonization methods is a long computation time, as the number of the processed points often
exceeds a million.

The curve skeleton is a simplified one-dimensional representation of a three-dimensional object,
consisting only of curves that are equidistant to the object’s surface [59]. Such representation
is different from a conventional topological skeleton, introduced by Blum [60] and generated
by thinning-based, distance-field-based, and Voronoi-diagram-based approaches, because the
topological skeleton of a three-dimensional object may contain surface patches. Cornea et al. [61,
62] generate curve skeletons using the vector field of a repulsive force. The force is generated
by distributing electric charge over the object’s surface. Critical points of the vector field are
identified and classified into attracting points, repelling points, and saddle points. From each
critical point, a path-line is started, following the vector flow. The path-lines combined with the
critical points form the core skeleton, which is later improved by including low divergence points
and high curvature points, detected via thresholding. This method provides a classification of the
object’s voxels with respect to separate lines of the curve skeleton, split by the critical points. Such
a classification is achieved by following the vector field from each voxel towards the skeleton.
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1.3. Skeletonization

As a result, the object is decomposed into parts. The authors compare this component-wise
decomposition to a manual “skinning” process, applied in animations of mesh-based models. The
proposed decomposition scheme may be applied to the segmentation-editing task, where severe
over-estimation defects would be represented by their own skeleton lines. However, the editing
would be limited to the level of the object’s parts, provided by the decomposition procedure, and
without the possibility to fine-tune the selected defects. Cornea et al. [61] mention that there is
no optimum for the divergence and curvature thresholds. The presence of segmentation problems
may require tuning these thresholds during the interactive editing process.

In order to produce the curve skeletons, Reniers et al. [59, 63] propose a collapse measure, based
on an advection process. The setup for the skeletonization is the following: Masses are placed
at the surface of the object. During the skeletonization, they are moved towards the skeleton
and then follow the skeleton lines. The collapse measure represents the amount of mass that
was advected through the corresponding point in space. In order to handle objects of different
sizes appropriately, the collapse measure is normalized beforehand. The skeleton is computed
by thresholding the normalized collapse measure. As masses move from the surface towards
the skeleton, this skeletonization technique maps object voxels to the corresponding skeleton
voxels. This provides users the possibility to select parts of the object by interactively choosing
some of the skeleton voxels and propagating the selection by the given mapping towards the
surface. Such functionality can be employed in an interactive segmentation-editing framework.
However, the resulting skeleton depends on the threshold for the collapse measure. Tuning of this
threshold during the interactive editing process may be tedious, as the users first have to identify
the segmentation defects and then check whether the set threshold and the corresponding skeleton
are optimal for correcting the found defects.

For a discussion on skeletonization, we refer the reader to the works of Prohaska [64], Reniers [65],
and Saha et al. [66]. In our works we use thinning-based techniques for skeletonization. Having
the representation of open paths and the corresponding end-points in the skeleton, we can detect
and edit severe over-estimation defects. For under-estimation defects, we operate on the skeleton
of the complement of the object in a volume. While automatically detecting or manually tuning
selections of defects, we require the connectedness of the skeleton, such that we have a fine-
grained control over the selected parts of the object. Without additional post-processing, the
connectedness of the skeleton is not guaranteed in case of distance-field-based methods. As
our solutions are supposed to be interactive, we avoid time-consuming Voronoi-diagram-based
approaches. Still, one can generalize our concepts to operate on top of the distance-field-based
and Voronoi-diagram-based methods, if such techniques are of preference for specific objects or
data acquisition modalities.

We provide skeletonization examples for two different classes of medical objects in Figure 1.4.
First, we consider the skeleton of the liver segmentation mask that contains a severe over-
estimation defect. In Figure 1.4a,b parts of the skeleton that correspond to the defect are circled.
The segmentation masks of vessels and bones are skeletonized in Figure 1.4c,d. We start with
the mask that contains both vessels and bones. There, bones and vessels have separate skeleton
branches that meet at branching points of the skeleton, where vessels and bones touch. Still, it is
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Figure 1.4: Skeletons of segmentation masks of the following medical objects: a,b) liver, c) bones and vessels, d) vessels only.
Parts of the skeleton that correspond to the OP defect are circled in (a,b).
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possible to separate vessels from the bones, as demonstrated in Figure 1.4d. There, we display
the skeleton of the vessel mask only.

1.4 Contribution

While dealing with segmentation editing, we identified the following research questions:

• Q1: How to select the defects prior to the correction?

• Q2: How to correct the selected defects?

• Q3: How to detect certain types of defects?

• Q4: How to present detected defects to the user?

• Q5: How to design the interactive editing process?

Our works contribute to answering these questions, aiding the user in achieving better segmen-
tation quality in a shorter time, compared to existing segmentation-editing techniques. The
overview of our contributions is presented in Table 1.3. Questions Q1, Q2 and Q5 apply to all
segmentation-editing methods. The pro-active search for defects and the manual specification of
the corresponding correction operations require considerable interaction effort from the users.

Several segmentation-editing approaches automatically detect defects or ambiguities in the
segmentation mask and focus the user on rectifying them. Questions Q3 and Q4 are related
to such additional functionality. For example, we propose such a technique in Chapter 3. Our
method detects differences in data-value distributions, which are characteristic to segmentation
defects, and generates suggestions to fix the found defects. Praßni et al. [30] employ uncertainty-
visualization methods to guide the user towards ambiguously segmented regions of volume data.
The ambiguity is determined per voxel from a probability, available from an underlying random
walk algorithm. Top et al. [31] evaluate the stability of contours of the segmentation mask by
perturbing paths locally in a live-wire procedure. This technique then suggests the user to validate
the most unstable contours.

This thesis is organized as follows: In each chapter we describe in detail the approaches we
developed in order to aid the user during the segmentation-editing tasks. First, we introduce a
novel approach to correct the segmentation mask, which is represented by the skeleton. This way,
we allow the user to easily select the segmentation defects via rather easy interaction operations
on the skeleton. We adopt the classification of the segmentation defects from Section 1.2 in order
to provide all necessary correction operations. For correcting the selected defects the users have
to choose the operations manually.

Having the topological representation of the segmentation mask, we next aim at finding the
regions of the mask that potentially contain segmentation defects. These are detectable by
differences in data-value distributions. The idea here is to automatically detect all such regions
and present them to the user, who will judge if defects are present and edit the mask if necessary.

17



1. INTRODUCTION

Table 1.3: Overview of our contributions per chapter of this thesis.

Question Chapter 2 Chapter 3 Chapter 4

Q1:
selection of
defects

Direct interaction
on the skeleton

From the suggested
correction regions and the
corresponding operations

From the suggested regions
with required dissimilarity
characteristics

Q2: editing
operation

User-specified
operation

Suggested correction
operation

Suggested correction
operation

Q3:
detection of
defects

Not available
Via histogram dissimilarity
metric

Via statistical significance of
dissimilarities in data values

Q4:
visualization
of defects

Not available Via glyphs
Via radial tree view and
paths in it

Q5:
interaction
process

Manual selection
of the defect and
its treatment

Find necessary correction
among large number of
suggestions

Find necessary correction
along the suggested path of
exploration

Using our defects classification, we define for each type of defect the proper correction operation.
To improve the interaction, we also focus on the visual encoding of the found defective regions
and the corresponding correction operations. We assess the interactive editing pipeline we built
with domain experts in order to verify the benefits of using our approach.

Finally, we present a statistical method for comparing various regions of the data according to
the similarity of the underlying data values. With this approach we allow the user to correct
segmentation masks of rather complex objects, such as entire vessel structures in the human
lower extremities. We statistically evaluate the segmentation defects and offer the corresponding
solution procedures at different levels of detail. We streamline the exploration of the solution
procedures by the user with paths, which denote the most severe defects and their solutions. The
evaluation conducted with domain experts demonstrates that our approach delivers results with a
level of quality, that is comparable to a domain-specific clinically employed technique, with less
interaction efforts and in a shorter time.
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CHAPTER 2
Skeleton-based Volume Editing

Intelligence is not to make no mistakes, but quickly to see how to make them good.

— Bertolt Brecht

This chapter is based on the following publication:
Alexey Karimov, Gabriel Mistelbauer, Johanna Schmidt, Peter Mindek, Elisabeth Schmidt,
Timur Sharipov, Stefan Bruckner and Eduard Gröller. ViviSection: Skeleton-based Vol-
ume Editing. Computer Graphics Forum 32(3), pages 461–470, 2013 [67].

Volume segmentation is important in many applications, particularly in the medical
domain. Most segmentation techniques, however, work fully automatically only in very
restricted scenarios and cumbersome manual editing of the results is a common task.
In this chapter, we introduce a novel approach for the editing of segmentation results.
Our method uses structural features of the segmented object to enable intuitive and
robust correction and verification.
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Figure 2.1: Example of the correction for a phantom dataset (top row) and a medical dataset (bottom row) using our new approach:
a) features for the correction are circled, b) iso-surfaces of the skeleton distance field are shown, c) each color band represents a
certain influence zone, d) user interaction is shown together with the correction results.
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2.1. Method

C
URRENT volume editing approaches suffer from several issues. The main
problem is an accurate selection of the features the user wants to correct. In
the two-dimensional case, the user can work on a pixel level, achieving a high

segmentation quality. In 3D, however, the additional dimension makes volume editing on a
voxel level laborious, time-consuming, and error prone. The selection should require as little
interaction as possible. Thus, it is essential to provide smart tools, which ease the selection of
features. Furthermore, if the selection or the correction of an isolated feature affects other features
of the object as well, then the editing process is not consistent. This happens if the method
cannot distinguish different features of the object. These concerns lead to the conclusion that
segmentation correction requires an interactive, predictable and robust volume editing method.
The selection of the features should be precise and fast. The method has to detect the individual
features and to process them separately.

We propose ViviSection, a volume editing method, which uses the skeleton of the object in
order to detect structural features. These structural features represent the characteristic parts
interesting to the user during correction. The method is based on novel skeleton-distance-field
and influence-zone concepts. The components of the technique are illustrated in Figure 2.1.
While our approach is applicable to other scenarios, we specifically focus on liver segmentation
in Computed Tomography (CT) data, which is of high clinical importance. Due to a substantial
degree of variation across scanners and patients, particularly in the presence of pathologies,
current liver segmentation algorithms frequently require manual corrections [68].

2.1 Method

Our proposed method enables volume editing based on structural features. The pipeline of the
method is illustrated in Figure 2.1 for two datasets: a phantom dataset with branchings and
a liver segmentation dataset. First, skeletonization of the segmentation mask of the object is
performed. We use a thinning-based skeletonization [44]. During the skeletonization, we also
compute a skeleton distance field, which orders the object voxels with respect to the skeleton.
Then we build influence zones. Each influence zone is defined by a certain skeleton voxel and
contains a set of the object voxels that are linked to this skeleton voxel. The influence zones are
determined using the skeleton distance field. They represent low-level structures of the object.
A structural feature is defined as follows. First, a set of the skeleton voxels is chosen. The set
should contain only one connected component of the skeleton voxels. Then, we add object voxels,
which are in the influence zone of any of the chosen skeleton voxels. An incorrect segmentation
differs from a correct segmentation by over-estimated and under-estimated regions. The regions
can be represented as structural features and the artifacts can be selected on the surface of the
structural features. Operations on the skeleton and the structural features can resolve segmentation
problems, as illustrated in Figure 2.2.

We present several simple selection tools and operations on the skeleton and the structural features.
The purpose of these tools is to select part of the skeleton based on the user input. The structural
features, defined by the selected skeleton voxels, are then corrected according to the selected
operation. The correction is previewed, so the user may refine it by additional input.
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Figure 2.2: Manipulation on the skeleton and the structural features for the correction: a) a region with over-estimation OP, b)
manipulation on (a), c) correction of (a) by result of (b), d) a region with under-estimation UP, e) manipulation on (d), f) correction of
(d) by result of (e), g) a region with layer defect UL, h) manipulation on (g), i) correction of (g) by result of (h). (a-c, g-i) depict the
skeletons of the objects, (d-f) depict the skeletons of the complements of the objects in the volumes.
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Figure 2.3: Comparison of (a) the Euclidean and (b) the skeleton distance fields for the
influence zones calculation. The features are selected by the same set of skeleton voxels in
both cases. Note the “leak” of the selection if the Euclidean distance is used.

2.1.1 Influence Zones

The influence zones can be determined in various ways. The criterion is that each object voxel
should either be a skeleton voxel or belong to one and only one influence zone, i.e., be linked to
just one skeleton voxel. To determine influence zones we may use the Euclidean distance DE .
An object voxel o is linked to the skeleton voxel p only if the distance DE(p,o) is less than
the distance to any other skeleton voxel. This link definition does not take the structures of the
object into account, as it simply uses the shortest path between the two voxels. Thus, such a
definition may lead to wrong influence zones in regions, where two or more object structures are
presented. If some voxels of the first structural feature are incorrectly linked to the second feature
due to wrong influence zones, the selection may “leak” leading to undesired result as illustrated in
Figure 2.3a. As the selection should not interfere with other features, unless explicitly specified
to do so by the user input, we use a skeleton distance field to include the delineation, based on
the skeleton lines, into the definition of influence zones. Calculation of the influence zones from
the skeleton distance field allows us to select part of the object without the undesired “leak”, as
shown in Figure 2.3b.

2.1.2 Skeleton Distance Field

The skeleton distance field can be computed during any thinning-based skeletonization. The main
idea is that thinning iterations order the object voxels. By assigning the iteration number to each
currently removed voxel, we receive a scalar field defined on the volume grid. We assume that
the field is zero for voxels outside of the object. As skeleton voxels are never removed by the
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2. SKELETON-BASED VOLUME EDITING

Algorithm 2.1: Calculation of the skeleton distance field using the iteration numbers.

1 forall voxel v ∈Volume do
2 if It(v)> 0 then // inside mask
3 DS(v)← Itmax− It(v) // DS(v) is the skeleton distance of voxel v
4 else // outside mask
5 DS(v)←−1

skeletonization, we assign them the value Itmax, which equals to the number of thinning iterations
plus one. In order to construct the skeleton distance field, we perform arithmetic operations on
the stored iteration numbers It(·), as explained in Algorithm 2.1. We denote as Dmax

S = Itmax−1
the maximal skeleton distance, which is assigned to the surface voxels. The skeleton distance of
each voxel v is denoted as DS(v).

The influence zone for a voxel o is determined by inspecting its neighborhood. If o has a neighbor
s, which is a skeleton voxel, then the voxel o is in the influence zone of s. If o with a skeleton
distance DS(o) = a has a neighbor r with a skeleton distance DS(r) = b and b < a, then the voxel
o is in the same influence zone as the voxel r. With these two rules the influence zones grow from
the skeleton voxels into the object voxels. The farther away the voxels are from the skeleton,
the earlier they are removed during thinning and the higher their respective skeleton distances
are. The influence zones grow from voxels with lower skeleton distances to voxels with higher
skeleton distances. This is the reason why the b < a condition is sufficient to determine the
influence zone in the absence of skeleton voxels in the neighborhood.

Algorithm 2.2 provides details about the influence zones calculation using the skeleton distance
field. Each voxel v has the following attributes. State(v) stores a state of the voxel: None if
the voxel is initialized, Ready if the voxel is enqueued for processing, Processed if the voxel is
processed. IZ(v) stores a link to the skeleton voxel, to whose influence zone voxel v belongs to.
SN(v) returns a set of neighboring voxels of voxel v. Sets F and Fnew (“fronts”) store the voxels,
whose influence zones still propagate. Sets Q and Qnew (“queues”) store the voxels for processing.
List L stores the influence zones in the neighborhood of voxel v and returns the most frequent one
by MostFrequentElement(L). Voxel v is assigned to this influence zone.

The difference between the skeleton distance field and the Euclidean distance field is caused
mainly by the delineation based on the skeleton lines. The Euclidean distance is propagated from
a voxel to its neighbors. The skeleton distance depends on the skeleton lines, which represent
object structures. If only one object structure is located in the region, then the skeleton distance is
propagated in the same way as the Euclidean distance. This case is illustrated in the left close-up
views of Figure 2.4. There the Euclidean and the skeleton distances change between layers,
parallel to the surface of the object.

If two or more object structures are located in the region, then their delineation comes from the
skeleton lines. This case is illustrated in the right close-up views of Figure 2.4. The Euclidean
distance field does not consider the skeleton lines, so the Euclidean distance propagates between
voxels of different object structures. Then the delineation of the resulting structural features fails
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Algorithm 2.2: Calculation of the influence zones using the skeleton distance field.

1 forall voxel v ∈Volume do // initialization of
2 if DS(v) = 0 then // skeleton voxels
3 State(v)← Processed; IZ(v)← v; F ← F ∪{v}
4 else // and non-skeleton voxels
5 State(v)← None

6 d← 1 // begin at the skeleton of the object
7 while d ≤ Dmax

S do // end at the surface of the object
8 Q← /0; Fnew← /0
9 forall voxel v ∈ F do // fill the queue Q

10 forall voxel w ∈ SN(v) do
11 if State(w) = None then // if unprocessed neighbor w found
12 if DS(w) = d then
13 State(w)← Ready; Q← Q∪{w} // then enqueue w for processing
14 else
15 if DS(w) 6=−1 then Fnew← Fnew∪{v} // or keep v

16 repeat // process all voxels with skeleton distance equal to d
17 Qnew← /0
18 forall voxel v ∈ Q do // process the queue Q
19 L← /0
20 forall voxel w ∈ SN(v) do
21 if State(w) = Processed then L← L∪ IZ(w) // store IZ of processed neighbor w
22 if State(w) = None then // if unprocessed neighbor w found
23 if DS(w) = d then
24 State(w)← Ready; Qnew← Qnew∪{w} // then enqueue w for processing
25 else
26 if DS(w) 6=−1 then Fnew← Fnew∪{v} // or keep v

27 IZ(v)←MostFrequentElement(L) // assign IZ to v

28 forall voxel v ∈ Q do State(v)← Processed
29 Swap(Q,Qnew) // swap the queues
30 until Q = /0
31 Swap(F,Fnew); d← d +1 // swap the fronts, increase the distance counter

as illustrated in Figure 2.3a. The skeleton distance field uses information on the skeleton lines,
thus the skeleton distance does not propagate between voxels of different object structures. Due
to this, the skeleton distance field allows the correct delineation of the resulting structural features
as illustrated in Figure 2.3b. Here the selection of one feature does not “leak” into other features.
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Figure 2.4: Comparison of (a) the Euclidean and (b) the skeleton distance fields. Iso-surfaces
of the same values are shown in both cases. The left close-up views show a region with only
one object structure. No strong differences appear. The right close-up views show a region
with two object structures. Their delineation, based on the skeleton lines in the skeleton
distance field, causes strong differences.

2.1.3 User Interaction

Selection tools and operations are the two main components of our user interface. The selection
tools provide an interface for the selection of features to be corrected. Each selection tool defines
a set of graphic objects, which are manually placed by the user on the projection of the volume.
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The operations implement common volume editing tasks. If the user selects a different operation
or selection tool or interacts with the selection tool, the selected feature for the correction is
computed and displayed interactively. Additionally, the user can inspect the feature and results
of the operation in slice views. The selection tools are illustrated in the part “selection tools” of
Figure 2.5.

The needle is the simplest tool. The user specifies a point at the surface of the object in 3D space.
Then, the skeleton voxel of the influence zone the point belongs to is located. The skeleton voxel
splits the skeleton into two or more parts. The smallest part of the skeleton (according to the
number of voxels) defines the structural feature selected for correction.

The scalpel tool operates on the structural features of the object or the background during the
selection instead of defining a simple geometrical delineation as it is done in similar tools of
other editing methods. This allows accurate feature selection from the detected structures in two
mouse clicks instead of a cumbersome allocation and refinement of a separation plane or surface
in slices. The user specifies two points in screen space, which define a line in screen space and
a plane in 3D space. The skeleton voxels are split into two parts according to the negative and
positive half-spaces of this plane. The smallest part of the skeleton (according to the number of
voxels) defines the structural features selected for correction.

The lasso is the most powerful tool, but requires more interaction than the needle and the scalpel.
The user specifies a selection point and a selection polygon in screen space. The polygon may
consist of an arbitrary number of points and can be either convex or concave. It defines a prism
in 3D space. The skeleton voxels inside the prism define the candidate structural features. The
selection point defines a ray in 3D space to discriminate the features. If the ray crosses one of the
candidate features, that feature is exclusively selected. Otherwise all the candidate features are
selected.

The choice of the smallest part of the skeleton for the subsequent correction in the needle and
scalpel selection tools is motivated as follows. With these tools, the skeleton is split into several
parts. In order to proceed with the correction, we need to choose one part. We assume that most
voxels of the object and the background are correctly classified. Therefore, most skeleton voxels
and their corresponding influence zones do not require correction. Consequently, the smallest
part of the skeleton (according to the number of voxels) is chosen, as the remaining parts contain
most of the skeleton voxels.

The operations “add part” and “remove part” are designed for the correction of large-scale
structural features. Small-scale structural features can be considered as local artifacts of the
boundary of the object. To correct these artifacts “remove layer”, “add layer”, and “smooth”
operations can be used. These three operations modify the boundary of the selected structural
feature. To connect or disconnect parts of the object after the operations post-processing is used.
The operations are illustrated in the part “operations” of Figure 2.5:

• The add part operation resolves under-estimation problems by adding to the object the
selected feature from the complement of the object in the volume. Morphological closing
with a kernel size of six voxels is applied as a post-processing step.
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Figure 2.5: The selection tools and the operations available during user interaction. Previews of changes are shown.
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• The remove part operation treats over-estimation problems by removing the selected
feature from the object. Morphological opening with a kernel size of six voxels is applied
as a post-processing step.

• The add layer operation grows a new layer, which has a thickness of
√

3 voxels, on top of
the surface of the selected feature. Morphological closing with a kernel size of three voxels
is applied as a post-processing step.

• The remove layer operation peels away the surface layer of
√

3 voxels thickness from the
selected feature. Morphological opening with a kernel size of three voxels is applied as a
post-processing step.

• The smooth operation replaces the selected feature with its smooth version. We use
Gaussian blurring with a kernel size of 11 voxels and a threshold of 0.5 in order to compute
a binary representation of the smooth version of the feature.

2.2 Performance and Scalability

Influence zones are pre-calculated to provide an interactive selection of the structural features
during individual operations. For the performance evaluation we measured the following: pre-
calculation time (generation of the skeleton, the skeleton distance field, and the influence zones),
preview generation time (transformation of the user input into the selected structural features)
and post-processing time (morphological operations).

We investigated twenty datasets in a quantitative evaluation. Pre-calculation times range from 2.8
to 16.7 seconds (average 8.2 seconds) depending on the volume size and the object’s complexity.
We use the skeletonization algorithm by Homann [69] that is based on the work of Lee et al. [44].
Parallelization is done via OpenMP on the CPU for up to eight parallel threads. The skeleton and
the skeleton distance field are calculated simultaneously. The generation of the influence zones
can take up to 25% of the pre-calculation time. Preview generation times are in range from 0.1
to 0.25 seconds depending on the skeleton complexity. Post-processing takes from two to five
seconds depending on the volume size. Post-processing is executed via OpenCL on the GPU. All
reported timings were measured on an Intel Core i7-2600K 3.4 GHz CPU equipped with 16 GB
of RAM and an NVidia GeForce GTX 680 GPU with 4 GB of video memory.

Scalability is evaluated with respect to the skeleton complexity, measured as the number of
individual skeleton lines. Magnetic Resonance Angiography (MRA) datasets with a resolution
of 512×512×512 voxels and containing brain-vasculature segmentation are used. Time mea-
surements are given in Table 2.1. As the skeleton complexity decreases, both pre-calculation
and preview generation times decrease. The morphological operations, which are the part of the
post-processing time, are independent of skeleton complexity.

Every time the segmentation mask changes during interaction, the skeleton, the skeleton distance
field, and the influence zones need to be updated. As this information is global, local partial
updates in the region of changes are not feasible.
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Table 2.1: Measurements for the scalability analysis. As previews of changes are generated
during the user interaction, we require that the preview generation stage is interactive. The
pre-calculation and post-processing stages only take place when the correction process
begins or the segmentation mask is changed. These two stages are not required to be
interactive.

Dataset 01 02 03 04 05

# of skeleton lines 13094 6099 2354 371 291
Pre-calculation time, sec. 10.6 6.4 5.5 5.1 4.8
Preview generation time, sec. 0.9 0.8 0.7 0.4 0.3
Post-processing time, sec. 6.8 5.5 5.1 5.1 4.9

2.3 Evaluation and Results

During the evaluation an automatic liver segmentation technique was used for initial segmen-
tation. It is a region-growing procedure that operates on the segments from a 3D watershed
segmentation. The initial seed point for the growing process is found automatically using the
following assumption from general anatomy: liver is located below right lung lobe. The seed
point is located by stepping a fixed distance down from the automatically segmented right lung
lobe. Then radiological density distributions are used to grow the segmented region and stop at
the boundary of the liver. The technique is targeted for Computed Tomography Angiography
(CTA), and not standard CT.

2.3.1 Severe Pathological Cases

To demonstrate the quality of our approach in difficult clinical scenarios we conducted an
evaluation using liver segmentations for patients affected by Non-Alcoholic Fatty Liver Disease
(NAFLD) [70]. The liver is hardly differentiable from other organs on CT scans. To differentiate
it better contrast-enhancing agents are used in CTA. The patient was scanned with a standard CT
protocol after the diagnosis confirmation. Due to the NAFLD the liver parenchyma accumulated
fat, causing radiological density to drop down to 10−30 HU from the typical 50−70 HU [71].
Usage of the standard CT protocol in this severe pathological case causes a failure of the applied
segmentation technique. The problem here is that the boundaries between the liver and other
organs (like kidneys, stomach, heart and bowels) are too weak, so that even a trained operator
cannot clearly distinguish them. In this case, the segmentation technique produced severe over-
estimation, mainly towards the heart. Severe segmentation problems may change the skeleton of
the object drastically, as it happens in this case. The correction of such a segmentation provides a
robustness test for our method. The domain expert at the hospital used eight operations. He spent
approximately seven minutes for the corrections. The calculations required 93 seconds in total.
Ultimately, the expert achieved the desired segmentation, as given in Figure 2.6.
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Figure 2.6: Comparison of (a) the initial segmentation and (b) the corrected segmentation
of the object. The object is a liver, affected by NAFLD. The initial segmentation has severe
over-estimation towards the heart. The blue dotted line shows the desired delineation of the
organs.

2.3.2 Quantitative Evaluation

We compare our method with existing approaches in terms of segmentation quality and interaction
time. The goal of the SLiver 2007 contest [68] was to find a liver segmentation technique that
performs best and minimizes user interaction. At the contest, twenty datasets were provided
together with ground truth segmentations done by domain experts. Each dataset is a CTA scan
with a slice resolution of 512×512 pixels.

First, the applied segmentation technique provided an initial segmentation for each dataset.
Various kinds of pathologies caused over-estimation and under-estimation. Then the segmentation
was corrected by the author in ViviSection. We evaluated the quality of the segmentation before
and after the correction and measured the time spent on the segmentation and the correction. The
quality metric is defined as the Jaccard coefficient J:

J(L,LT ) =
|L∩LT |
|L∪LT |

, (2.1)

where L is the set of liver voxels in the segmentation, and LT is the set of liver voxels in
the ground truth. J equals to one if the segmentation completely matches the ground truth.
As the segmentation differs more from the ground truth, J decreases. J equals to zero if the
segmentation does not contain any voxel from the ground truth. Evaluation results are given in
Table 2.2. Figure 2.2 partially illustrates the correction of over-estimation in dataset #13 (a-c),
under-estimation in dataset #16 (d-f), and layer defect in dataset #03 (g-i).

Several contest entries used interactive segmentation techniques. Beichel et al. [12] proposed
a method built upon a graph-cut segmentation and chunk-based and mesh-based refinements.
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Table 2.2: Measurements for the quantitative evaluation. For each dataset we state: the
number of slices, the quality of the initial segmentation Jsegm, the time of the automatic
segmentation Tsegm, the average calculation time per operation tcalc, the number of operations,
the quality after the correction Jcorr, and the correction time Tcorr. The calculation times are
included in the corresponding correction times.

Dataset Slices Jsegm Tsegm, sec. tcalc, sec. Operations Jcorr Tcorr, sec.

01 183 0.9 106 8.5 3 0.92 81
02 64 0.89 45 4.4 2 0.9 37
03 79 0.82 47 3.8 6 0.9 52
04 212 0.79 118 9.8 4 0.92 106
05 319 0.89 161 13.7 2 0.93 56
06 111 0.88 61 4.7 5 0.92 44
07 251 0.89 154 9.9 4 0.92 108
08 228 0.91 158 15.9 5 0.92 148
09 210 0.9 140 9.3 3 0.92 56
10 191 0.87 126 12.2 1 0.9 38
11 388 0.76 208 19.7 11 0.94 576
12 220 0.89 150 10.7 5 0.95 134
13 145 0.88 96 6.3 6 0.92 115
14 129 0.87 73 3.8 9 0.92 103
15 394 0.91 239 14.4 3 0.95 113
16 151 0.79 118 10.9 4 0.95 89
17 121 0.86 81 5.3 3 0.91 47
18 245 0.8 160 11.8 3 0.95 70
19 335 0.88 215 19.7 2 0.93 58
20 183 0.81 107 5.6 2 0.9 22

Segmentation: avg(Jsegm) = 0.86 Correction: avg(Jcorr) = 0.93
sum(Tsegm) = 2563 sec. sum(Tcorr) = 2053 sec.

sum(Tcalc) = 837 sec.

The initial segmentation takes thirty minutes on average. For the correction the user spends on
average of six minutes to achieve a segmentation quality of 0.95. Beck and Aurich [10] proposed
a region-growing-based semi-automatic segmentation method with a “virtual knife” for correcting
over-estimation. Under-estimation correction requires new seed points in the region growing
procedure. The segmentation and correction time for this method is seven minutes on average for
a segmentation quality of 0.93. With our method the average segmentation quality rises from
0.86 to 0.93. The technique only requires a modest amount of time for the correction, i.e., 103
seconds on average, including 42 seconds on average for calculations. For comparison, the fully
automatic initial segmentation took 129 seconds on average. For all datasets the segmentation
quality is equal or above 0.9. Before the correction the lower bound was 0.76. We conclude that
ViviSection allows the user to correct the segmentation for any dataset until a certain quality is
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reached (about 0.9). A further increase of the quality is possible only with voxel-level editing,
which takes a significant amount of time. Manual segmentations of the entire volumes on a voxel
level takes from 25 minutes to 40 minutes per dataset [72]. The time of manual editing on a voxel
level strongly depends on the quality of the initial segmentation. The voxel-level editing increases
the quality to 0.95-0.99.

2.3.3 Domain Experts Feedback

Three domain experts provided feedback on our method. They corrected liver segmentations
from the applied segmentation technique. Both CT and CTA datasets were used.

The first domain expert, a senior clinical radiologist, was familiar with live-wire-based editing
to manually obtain liver contours, which takes about seven minutes per dataset for usual cases.
He commented that context information available during the editing in 3D is useful for decision
making in cases of severe pathologies. He proposed to add a new selection tool like a “brush”
operating on the object’s surface to speed up interaction in special scenarios. He preferred
live-wire-based editing to our scalpel and lasso tools because of better response times and having
full control over the correction. However, in his opinion, the case of the severe pathology was
easier corrected with our system than with his current software.

The second domain expert, an intern, used in her routine a slice-based editing technique with a
manual drawing of liver contours, which takes about twenty minutes per dataset for usual cases.
She stated that the selection based on the structural features is sufficiently precise to correct major
segmentation defects. To correct small-scale features she suggested a “zoom-in” mechanism.
She found the scalpel selection tool very intuitive and easy to use. She also commented that the
needle and the lasso tools require more initial training. She also found that a better understanding
of the data can be achieved through interactive 3D rendering. The link between 3D rendering and
slice views allowed her to select occluded features, although, in her opinion, this also requires
additional training. Finally, she stated that response times during the individual operations are
appropriate, but response times between operations are too long due to the re-computations.

The third domain expert, a clinical radiologist, used live-surface-based and slice-based techniques
for the editing. He commented that a link between the slice views and the 3D rendering is useful
for the editing of partially occluded features. The main concern from his point of view are the
response times. He liked the interactive preview of changes in both the 3D rendering and the
slice views, as it provided him with the ability to fine-tune operations. He preferred our system
over live-surface-based editing, because he can easily and efficiently correct major segmentation
defects with our method.

2.4 Discussion and Future Work

An issue of our method is the dependency on the underlying skeletonization. If the feature of
interest is not represented in the skeleton, our approach cannot correct this as no information
about the feature is available. For example, small-scale features of the object cannot be properly
detected with thinning-based skeletonization techniques. Experimentally we found that features
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smaller than 5× 5× 5 voxels in size are missing in the skeleton. They are not editable using
“remove part” and “add part” operations. Treating them as layer defects the user can apply
“remove layer”, “add layer”, and “smooth” operations.

In order to solve the issue of missing small-scale features multi-resolution skeletonization could
be utilized. The idea is to merge multiple skeletons with details of different scales across different
regions of the volume. As the user concentrates on some region of interest, one can create a
high-resolution sub-volume of that region and do a skeletonization on it. With a higher resolution
the missing features become larger, so they are detected by the skeletonization. The new skeleton
substitutes part of the old one, so the skeletons are merged. Then the user has the possibility to
edit the features, which were previously unavailable.

Another issue of our method is that self-obstruction and cluttering in the case of complex skeletons
make the selection of structural features more difficult. They might be occluded by other features
or located inside the object. However, partial occlusion can be effectively dealt with using our
lasso selection tool. This is sufficient, for example, for a vessel-segmentation correction as
illustrated in Figure 2.7. For future work we propose to select and temporarily hide occluding
structural features. Such a solution could reveal completely occluded structural features, like
vasculature, tumors, and cysts in the liver.

Cluttering of the skeleton due to noise or a large number of details could result in many small
skeleton parts. To alleviate this in our method the user does not work with the skeleton directly,
but rather selects a region for editing. The scalpel and the lasso tools treat all underlying structural
features in the selected region at once.

Skeleton smoothing and pruning methods can simplify complex skeletons generated from noisy
data. Our method can utilize them if the influence zone of each modified skeleton voxel is
re-assigned to the appropriate skeleton voxel, which remains after the skeleton simplification.
We propose to use the number of voxels in influence zones of each individual skeleton line as a
criterion for skeleton pruning.

Our concepts of the skeleton distance field and the influence zones can be adapted to different
skeletonization approaches. For the various thinning-based skeletonization approaches, the
adaption is trivial, as all thinning-based methods contain thinning iterations in one way or another.
Thus, the skeleton distance field can be constructed and, then, the influence zones are computed.
In case of the distance-field-based techniques, the underlying distance field can be used as the
skeleton distance field. The influence zones can be computed by our Algorithm 2.2 from the
resulting skeleton, which is possibly post-processed. If the skeleton is constructed using a Voronoi
diagram, the influence zones correspond to individual Voronoi cells. The skeleton distance field
is then based on a distance metric that was used for the Voronoi diagram construction. As there
is no general definition of a curve skeleton, the adaption of the skeleton distance and influence
zones concepts for each curve-skeletonization approach is custom. For the definition by Cornea
et al. [61, 62], one may trace the influence zones by following the underlying vector field from
each skeleton voxel towards object voxels. The skeleton distance field can use the numbers of
tracing steps, required to reach each object voxel. With the methods by Reniers et al. [59, 63],
the skeleton distance field and the influence zones can possibly be generated during the mass
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advection process. With such adaptations, the skeleton distance field and influence zones can be
computed by a wide variety of the skeletonization techniques.

2.5 Summary

In this chapter, we proposed ViviSection, a novel approach for editing segmentation results
based on structural features. For this purpose we introduced the notion of a skeleton distance
field, which allows us to detect structural features of the object and to operate on them during a
correction step. To support the accurate selection of the features our technique employs influence
zones. They clearly delineate the structural features. Our approach uses a set of intuitive selection
tools and operations, which allow the user rapid correction of major segmentation defects. We
tested the robustness of our method under severe pathological conditions. Our results show that
the presented approach can increase the precision and stability of segmentations with little user
interaction.

Next, we develop a method for automatically detecting the following types of segmentation
defects: OP, OL, UP, and UL. Our classification in Chapter 1 describes each of these types. The
detection method utilizes the introduced skeleton distance field and influence zones in order to
enable the analysis of data values at different parts of the object. This way, we provide the user
with suggestions on where and how to correct the detected defects.
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Figure 2.7: Selection of a partially occluded structural feature (vessel aneurysm in MRA): a)
skeleton cluttering and self-occlusion, b) direct interaction with the lasso tool fails to select the
feature without the occluder, c) a point is selected in the slice views in order to discriminate
the feature from the occluder, d) the lasso tool with a link to the point in the slice views (the
green circle) allows the user to select the feature.
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CHAPTER 3
Guided Volume Editing based on

Histogram Dissimilarity
I do not seek. I find.

— Pablo Picasso

This chapter is based on the following publication:
Alexey Karimov, Gabriel Mistelbauer, Thomas Auzinger and Stefan Bruckner. Guided
Volume Editing based on Histogram Dissimilarity. Computer Graphics Forum 34(3),
pages 91–100, 2015 [73].

Segmentation of volumetric data is an important part of many analysis pipelines, but
frequently requires manual inspection and correction. While plenty of volume editing
techniques exist, it remains cumbersome and error-prone for the user to find and select
appropriate regions for editing. We propose an approach to improve volume editing by
detecting potential segmentation defects while considering the underlying structure of
the object-of-interest. Our method is based on a novel histogram dissimilarity measure
between individual regions, derived from the topological representation introduced in
Chapter 2. Based on this information, our interactive system guides the user towards
potential defects, provides integrated tools for their inspection, and automatically gener-
ates suggestions for their solution.
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Figure 3.1: Our novel guided volume-editing approach for improving the quality of segmented medical data (Jaccard coefficient J
from Equation 2.1). a) Two suggestions to rectify over-estimation defects; initial quality of 0.88, b) after applying the suggestions,
segmentation quality of 0.91, c) after applying four more suggestions, segmentation quality of 0.92. d) Two suggestions to fix
under-estimation defects; initial quality of 0.8, e) after applying the suggestions, segmentation quality of 0.85, f) after applying six
more suggestions, segmentation quality of 0.94.
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3.1. Related Work

M
ANY analysis tasks require the segmentation of volumetric data. Common
examples include medical diagnosis and treatment planning, where individual
organs or pathologies are labeled in order to compute quantitative information

such as diameter or volume, or the segmentation of cell bodies in microscopy data. While there
is a plethora of automatic and semi-automatic segmentation algorithms, they are frequently
restricted to very specific scenarios and often require manual verification and adjustment. An
example of typical segmentation defects in medical imaging is depicted in Figure 3.1. Most
commonly, the user coordinates segmentation correction, actively searching for defects and
editing them. We propose a novel approach for simplifying and accelerating correction. Our
method extracts structural information from any initial segmentation and identifies potential
defects automatically. These potential defects can be inspected by the user in 3D using integrated
views and corrected by automatically provided suggestions. Our method enables:

• guidance towards an overall better quality of the result by suggestions, based on a novel
histogram dissimilarity analysis,

• simple, yet effective volume editing by reducing and unifying user interaction,

• structure-awareness by accounting for the object’s shape by means of the skeleton.

3.1 Related Work

Data collection (e.g., into histograms) and aggregation are common ways of describing data values
in spatial regions of volume data. The idea is to obtain a discriminative entity that characterizes
each such region. Cubes and spheres centered at a voxel are commonly used as regions of
aggregation. Generic aggregation functions, which represent the whole region by a single data
value, e.g., minimum, maximum and average, are used, for example, on vessel data by Mistelbauer
et al. [74]. A more general approach is to fit the collected data values to a known model such as a
normal distribution. First, the fitting procedure checks whether the collected values correspond
to the model by statistical tests and then determines the parameters of the model. A potential
problem of such an approach is that the distribution model may be insufficient to describe parts
of the object where segmentation defects are present. Haidacher et al. [75] propose to collect the
data within a growing sphere around each voxel and fit it to a normal distribution. The statistical
test they used can distinguish between a region with a single material and a region with multiple
materials and stop the growing process accordingly. The statistics, however, become biased at the
boundary of the object.

3.2 Method

Motivated by the fact that volume editing is a laborious task with the last percentages of quality
consuming most of the time, we propose a technique that unifies the interaction and guides the
user through the editing process. The workflow of our technique is depicted in Figure 3.2. We
automatically generate suggestions (correction scenarios) about where (correction region) and
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visual mapping into the workflow of volume editing.
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how (correction operation) to correct potential segmentation defects. With these suggestions we
guide the user towards the desired improved segmentation. An application-tailored segmentation
technique, applied prior to the editing process, provides an approximate object segmentation as
an input for our technique. We require this segmentation to roughly resemble the correct object
in terms of major features. Hence, the basic assumption of our method is that defects in the
segmentation are localized (e.g., an over-estimation defect into another organ) and we utilize the
fact that the skeleton of the initial segmentation partially corresponds to the shape of the correct
object. To simplify the explanation, we restrict our discussion to a binary segmentation, which
labels the voxels of a volume as either object or background. Despite this, our approach also
supports scenarios where multiple objects are labeled.

Our approach aims to detect inhomogeneities by analyzing data value distributions and incorpo-
rates the shape information provided by the initial segmentation. Hence, the method assumes that
detectable differences of data values could be the cause of a misclassification. The misclassifica-
tion can be resolved by incorporating the domain knowledge of the user.

In order to identify them and provide automatic suggestions for their resolution, we analyze
changes in the data value distribution along the structure of the initial segmentation using a
histogram dissimilarity measure. Based on the nature of these changes, we identify the most
likely type of defect and its corresponding correction scenario at multiple levels of detail. Overall,
we provide an interactive visual interface that guides the user through the correction process. We
now introduce the concepts of our method in detail.

3.2.1 Editing Region

The global editing region defines the domain of every subsequent editing operation. For O defects
it is the set of all object voxels. To deal with U defects one could be tempted to just choose
the whole background as the editing region. However, from a usability perspective this is
problematic, as the multitude of structures in the background would generate a large number of
possible correction scenarios. Thus, we restrict the editing region to the vicinity of the object
by constructing its convex hull and growing the hull away from the object barycenter by a fixed
amount of voxels. Removing the object voxels from this set yields the editing region for U defects,
which we refer to as the complement of the object. Note that very large defects could go beyond
this region and would have to be corrected in several editing iterations. We found that a growth by
10% of the maximal dimension of the volume provides a good compromise. It is important that
the correction of U defects of the object is conceptually identical to the correction of O defects in
its complement; a fact that significantly simplifies the subsequent description of our method. The
user chooses the editing region to correct either the object or its complement.

3.2.2 Structural Information

We assume that the object has a certain stereotypical shape (e.g., because the object is a particular
organ with known characteristics), so variations in its skeleton can provide valuable information
about potential defects. Hence, our approach for determining correction scenarios operates on the
skeleton of the editing region. We do not perform any skeleton post-processing, e.g., pruning,
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as it may destroy details of the shape, caused by segmentation defects. We adopt the concept of
the skeleton distance field and influence zones, introduced in Chapter 2. The skeleton distance
field provides distances from all non-skeleton voxels to the closest skeleton voxels. For a given
skeleton voxel, its associated influence zone can be thought of as the set of all non-skeleton voxels
that lie closest to this skeleton voxel, similar to a Voronoi region. The editing region is partitioned
into influence zones, which emanate orthogonally from the region’s skeleton. A phantom dataset
is illustrated in Figure 3.3. We denote the influence zone of a skeleton voxel q as IZ(q), the
distance of a voxel p from the skeleton as DS(p), and the largest occurring distance as Dmax

S .

In our previous technique, described in Chapter 2, the user manipulates the skeleton in order to
select defects. The manipulations are converted into selected parts of the object using the influence
zones. The correction scenarios alleviate the user from this task, providing a consistent editing
experience throughout different objects. Internally, each scenario uses the skeleton distance field
and influence zones.

3.2.3 Data Collection

The data values in the collection regions are collected into histograms. We implement the
collection regions as the influence zones and iso-surfaces of the skeleton distance field (see
Chapter 2). This way, the collection regions reflect the structure of the editing region. We make
no assumption regarding the underlying distribution of data values and directly compare the
histograms to find dissimilarities among them, since they reveal segmentation defects. For all
histograms, we choose the same fixed bin size b. As illustrated in Figure 3.3, O defects result in
additional structures along the skeleton (OP) and “orthogonal” to it (OL). To detect OP defects, we
collect the data values of the influence zone IZ(pi) of each skeleton voxel pi into a corresponding
histogram H1(pi). Additionally, we generate histograms H2(pi,d) for each iso-surface with
skeleton distance d in IZ(pi). As shown in Figure 3.3, we expect the H1 histograms to vary
considerably along the skeleton in the presence of OP defects, while OL defects would cause
an abrupt change of the H2 histograms at the skeleton distance of the defect. At this point, the
histograms are not normalized, as later we apply the summation kernel on them.

3.2.4 Dissimilarity Measure

Using the collected histograms, we now compare data values from different parts of the editing
region in order to detect segmentation defects. The comparison is performed by computing
dissimilarity measure over histograms. As we are interested in two types of defects OP and OL,
there are two dissimilarity values that we assign to each skeleton voxel p. In order to detect OP

defects we compute a dissimilarity δ1(p) between H1 histograms. OL defects are detected by a
dissimilarity value δ2(p) for H2 histograms. Each value is given by a dissimilarity measure ∆(SH),
evaluated on a subset SH of the corresponding histograms. Different types of defects require
different subsets SH in order to be detected. Therefore, we introduce the dissimilarity detection
kernels for OP and OL defects. For OP defects, the kernel determines influence zones that are
compared by their respective H1 histograms. The kernel for OL defects defines iso-surfaces of the
skeleton distance field for H2 histogram comparison. Number of compared histograms in each
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kernel is controlled by the corresponding kernel size. Generation of the subsets SH by the kernels
will be explained in detail later.

We use the histogram intersection metric, a common bin-by-bin histogram comparison metric,
equivalent to the L1 distance. As it requires the histograms to be normalized, we perform this
operation on the fly. We denote value of l-th bin of normalized histogram h as h [l]. The histogram
intersection metric D∩ between two histograms H1 and H2 is defined as follows [76]:

D∩(H1,H2) = 1−∑
l

min(H1 [l] ,H2 [l]). (3.1)

Spatial regions that we analyze for dissimilarity of data values usually span several influence
zones or iso-surfaces of the skeleton distance field. Each zone and each iso-surface has its own
histogram. Therefore, we need to compare more than two histograms at once. In order to do so,
we generalize the metric by intersecting all histograms in SH bin-wise using function f (SH , l):

f (SH , l) = min
h∈SH

h[l], (3.2)

and computing the total intersection area:

g(SH) = ∑
l

f (SH , l). (3.3)

The dissimilarity measure is defined as follows:

∆(SH) = 1−g(SH). (3.4)

It is normalized, i.e., it yields 0 for a set of identical histograms and 1 for no match between any
two compared histograms. Other histogram metrics, such as the Jensen-Shannon divergence, the
earth-mover’s distance, the Chi-Squared statistic or the Kolmogorov-Smirnov statistic, could
be explored. However, we require their generalized versions that can compare more than two
histograms at once. A statistical metric, which is adapted to our scenario, requires significant
theoretical work and is an interesting direction for future research. Such a metric can be used for
the statistical testing of the histogram dissimilarity. Consequently, we could introduce uncertainty
information into our pipeline, which is not possible with the current metric ∆.

Sometimes, a single histogram may contain too few values to be representative; hence, larger
collection regions are required. For this purpose, we employ an iterative growing process during
which we sum up nearby histograms bin-wise, i.e., we apply the summation kernel Γ(Hin):

Hout [l]← ∑
h∈Hin

h[l], (3.5)

where Hin is the set of input histograms and Hout is the resulting histogram. The summation
kernel operates with non-normalized histograms only. This does not pose a problem, though, as
we perform the normalization on the fly during the dissimilarity computation.

We have the following input parameters for the dissimilarity detection algorithm: the dissimilarity
detection kernels sizes and the number of the growth iterations. Different input data quality, ob-
jects, scanning resolutions and modalities complicate the manual specification of these parameters.
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Figure 3.3: Structure-aligned data collection using the skeleton and the influence zones. The histogram H1(pi) collects data values
in a whole influence zone IZ(pi) (to identify OP defects). The histogram H2(pi, j) collects data values at a skeleton distance DS = j
in an influence zone IZ(pi) (to identify OL defects). The histograms are normalized for illustration purposes. In this figure, the
bin size b is set to 4 HU. Two ten-colors schemes from ColorBrewer [77] differentiate the influence zones IZ(p1), . . . , IZ(p10) and
iso-surfaces of the skeleton distance field in IZ(p11).
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Hence, we propose an automatic tuning procedure. For this, we look at the average avg(δ ) over
all dissimilarity values δ over the whole skeleton, where δ is either δ1 or δ2. Serving as a global
characterization of the dissimilarities, a value of avg(δ ) close to 0 indicates a low dissimilarity.
Hence, the editing region either has only subtle inhomogeneities and, probably, is free from
defects (case 1) or the parameter selection suppresses the defect detection (case 2). If avg(δ )
is close to 1, most of the skeleton voxels have a high dissimilarity. This means that either the
editing region is very inhomogeneous, inevitably causing false positives (case 3), or contribution
of noise to the defect detection is too high with the current parameters (case 4). The goal of
the parameter tuning is to achieve avg(δ ) ' 0.5, which discriminates between homogeneous
(low dissimilarity, δ → 0) and inhomogeneous (high dissimilarity, δ → 1) regions with respect
to the actual data. We found that a two-phase approach is sufficient for our purposes: in the
first phase, the detection kernel size is increased, which increases the number of histograms
that are intersected when computing the dissimilarity measures ∆(SH). In the second phase, we
sum neighboring histograms, enlarging the collection regions. Note that avg(δ ) monotonically
increases in the first phase, whereas it monotonically decreases in the second phase.

For the dissimilarity δ1(p) (for OP defect detection), we form the set SH by taking histograms H1.
These histograms collect data values in the influence zones of the skeleton voxels. We analyze
the influence zones of nearby skeleton voxels with a maximum distance of R1 to p:

δ1(p) = ∆(SH ←{H1(q) |D(p,q)≤ R1}) . (3.6)

In the first phase, we grow R1 from its starting value 1 in steps of 1 until we hit the limit (10 in
our case) or the kernel covers more than 3% of the skeleton voxels or avg(δ1)' 0.75, i.e., the
midpoint between the target value 0.5 and the maximum 1. The second condition stops the first
phase if the kernel becomes too large with respect to the editing region. A threshold of 3% was
found during the segmentation editing of phantom and real-world datasets (see Figures 1.1, 1.3).
The third condition terminates the first phase if the intermediate value of 0.75 is reached. The
reason why the intermediate value is higher than the target value 0.5 lies in the fact that during
the second phase the dissimilarity values monotonically decrease. In the second phase, we grow
the collection regions using histogram summation between the influence zones:

H1(p)← Γ(Hin←{H1(q) |D(p,q)≤ 1}) , (3.7)

until avg(δ1)' 0.5, or the number of growth iterations NG equals to R1. This limit is due to the
fact that the dissimilarity detection kernel with size R1 should be larger than the grown collection
regions of size NG. From the signal-processing domain perspective, feature detection kernel
should be larger than filtering kernel.

The dissimilarity δ2(p) is calculated by putting H2 histograms into the set SH . These histograms
contain data values from iso-surfaces of the skeleton distance field in the influence zone IZ(p).
Therefore, the parameter tuning for the dissimilarity δ2(p) is slightly different from the case
of δ1(p). First, the histograms H2(·,0), H2(·,1), H2(·,2) are removed from SH due to their
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insufficient information content (too few collected data values). The first phase is a single step in
which the maximal kernel size is chosen by computing δ2(p) over all skeleton distances:

δ2(p) = ∆(SH ←{H2(p, i) |3≤ i≤ Dmax
S }) . (3.8)

By summing histograms from neighboring iso-surfaces:

H2(p, j)← Γ(Hin←{H2(p, i) | | j− i| ≤ 1}) , (3.9)

the second phase is continued until avg(δ2) ' 0.5 or the iteration limit (again 10) is reached.
Finally, Laplacian sharpening of δ2 is performed along the skeleton to locate the borders of
OL defects between the influence zones.

Choosing a limit of 10 iterations, i.e., a maximal kernel size of 11 for δ1 and up to 10 growth
iterations proved sufficient for all real-world datasets presented in our results, although the actual
tuning process typically uses fewer iterations. Note that these limits guarantee termination of the
tuning procedure for cases 1 and 3, whereas the correct behavior in cases 2 and 4 is ensured by
the monotonicity of the two phases with respect to the increase and decrease of avg(δ ).

3.2.5 Correction Scenarios

Having calculated the dissimilarity values δ1(p) and δ2(p) for each skeleton voxel p, we finally
generate the correction regions. Each such region constitutes a set of voxels on which a correction
operation will be applied. One could be tempted to just use thresholding on the dissimilarity values,
but this would lead to a binary decision. We employ a hierarchical watershed transformation,
following the work of Hahn and Peitgen [27]. The transformation is applied on the dissimilarity
values δ1 and δ2. This way, we represent the editing region at hands as a hierarchy of spatial
regions with the varying level of detail. As a result, we support users with a variety of suggestions
and smooth transitions between the levels of detail, thus offering more possibilities to fine-tune the
results. Our approach has similarities to the work of Schultz et al. [78], which uses the watershed
transformation over an anisotropy measure to delineate object features in Diffusion Tensor
Magnetic Resonance Imaging (MRI) data. However, we apply the watershed transformation on
the dissimilarity values, derived from scalar spatial data.

The watershed transformation splits the spatial data with watersheds, placed at the ridges of the
data values. Connected components of the data that lie between the watersheds are called basins.
Applied on the skeleton voxels with δ1 dissimilarities, the transformation places the watersheds at
the ridges of δ1 values and splits the skeleton into the basins. The basins are connected sets of the
skeleton voxels. The correction regions are created by propagating the basins towards the editing
region by means of the influence zones, i.e., a basin B is expanded into a correction region R as
follows:

R =
⋃
p∈B

IZ(p), (3.10)

where IZ(p) denotes the influence zone of the skeleton voxel p. These correction regions are the
OP and UP defects and the correctly classified parts of the editing region. The basins are illustrated
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in Figure 3.4b. The watershed transformation applied on the skeleton voxels with δ2 values yields
the basins that expand to the correction regions for the OL and UL defects. Figure 3.4d shows the
corresponding basins.

Having generated a usually large number of correction regions for various defects, we proceed
with the construction of a hierarchy. The main idea is that adjacent correction regions, which
exhibit the same dissimilarities and correct the same type of defects, can be grouped together.
This is the case in the presence of severe defects, which span several influence zones and lead
to a multitude of correction scenarios. The resulting hierarchy of correction regions represents
the editing region at hands with different levels of detail. As the most detailed level we use the
correction regions that are computed from the initial basins before the hierarchy construction.

To simplify the adjacency check of correction regions, we add each watershed to every basin it
delineates. Successively two basins are merged in each iteration, so that a new basin becomes a
new correction region, which replaces two parental regions from the previous level of detail. To
find the merged basins we use the following distance metric DW :

DW (B1,B2) = LW (B1,B2)−min(LB(B1),LB(B2)), (3.11)

LW (B1,B2) = min
r∈B1∩B2

δ (r), (3.12)

LB(Bi) = min
p∈Bi

δ (p), (3.13)

δ (p) =

{
δ1(p), for OP and UP defects,
δ2(p), for OL and UL defects,

(3.14)

where B1,B2 are two basins, LW (B1,B2) is the watershed level between them, and LB(Bi) is the
bottom level of Bi. Non-adjacent basins (B1∩B2 = /0) cannot be merged. We always merge the
pair of basins with minimal distance DW . The merging stops if there are no more adjacent basins.
The metric DW guarantees that we merge basins with the smallest relative watershed level first,
i.e., dissimilarity increment between merged basins is the smallest among all pairs. This leads to
merging basins with similar ranges of dissimilarity first. The hierarchy of the correction scenarios
is illustrated in the central and the right skeleton views of Figures 3.4b,d.

For each correction region we select a suitable operation to correct the potential defect at this
region. For OP defects, it is sufficient to simply remove the correction region from the editing
region, as shown in Figure 3.4c. For OL defects, the surface layer of the correction region is
peeled away from the editing region, as illustrated in Figure 3.4e. The thickness of the peeled
layer is fixed at two voxels. We obtained this thickness value empirically.

Each level of the hierarchy represents the editing region at a certain level of detail, determined
as the ratio of the number of the correction scenarios at this level to the number of the initially
created correction scenarios. This level of detail approach provides the user with a quality control
of the correction scenarios. Low levels provide coarse corrections, affecting a large number of
voxels, but leaving certain defects. High levels offer detailed correction scenarios, which affect
only small local defects, but provide the required fine-tuning to reach an acceptable quality. Two
different levels of detail are illustrated in Figure 3.5. Basins that compose these two levels are
shown in Figures 3.5b,c. Corresponding correction scenarios are demonstrated in Figures 3.5d,f.
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Figure 3.4: Smart volume editing for the phantom datasets of Figure 1.3: a) the initial segmentation of the phantom object #1 with
two defects, b) skeleton view: the dissimilarity values δ1 (green to red transition for [0;1]), the correction scenarios at the finest
level of detail and at a level of detail, used in (c), c) the correction scenario for the OP defect, d) skeleton view: the dissimilarity
values δ2, the correction scenarios at the finest level of detail and at a level of detail, used in (e), e-g) the correction scenarios for
the OL defect, h) the correct segmentation of the object #1, i) the initial segmentation of the phantom object #2 with two defects,
j) the correction scenario for the UP defect, k) the correction scenario for the UL defect, l) the correct segmentation of the object #2.
In skeleton views the correction scenarios are encoded with eight-colors scheme from ColorBrewer [77].
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3.2.6 Visual Mapping and Interaction

We guide the user through the correction process by visually conveying the correction scenarios
with glyphs (Figure 3.4). The segmentation mask of the object-of-interest is displayed as a surface
in 3D space, together with silhouettes to enhance shape perception. The surface is generated
by the Marching Tetrahedrons algorithm [41]. The context around the object is visualized by
Direct Volume Rendering (DVR). We desaturate the colors of the context in order to draw more
attention to the object and the correction scenarios.

We only display glyphs for the correction scenarios at the current level of detail. Each glyph
connects the projection of the correction region’s barycenter (the anchor point) with a miniature
that shows a Maximum Intensity Projection (MIP) rendering of the suggested changes. The
background, the object, and the changes that the corresponding correction scenario suggests
are mapped to data values of 0, 0.5, and 1 respectively. A color map is then applied. In the
MIP rendering, the background and the object do not occlude the suggested changes. Similar
to Ropinski et al. [79], we use a boundary layout to arrange the miniatures around the viewing
area, so that the object and the suggested correction region remain unoccluded. We modulate
the opacities of the glyphs with the relative depth of their anchor points. We use color-coding
to differentiate between editing the object (red) and its complement (blue). To quickly visually
convey our two types of defects (P, L), we encode them into the shape of the glyph (Figure 3.4).

We propose the following correction workflow, illustrated in Figures 3.5d-g. First, the user
operates on the 3D rendering, finding the appropriate correction scenario. Initially, a coarse
level of detail is set. If the user hovers over the editing region, only glyphs representing the
corresponding correction scenarios show up. If only a single correction scenario is suggested, it
can be selected with a single mouse click. If the user hovers over a glyph, the boundary surface
of the respective correction region is highlighted in order to provide a visual feedback. The
correction scenario can also be selected by clicking on its glyph. Whenever a correction scenario
is selected, a preview is shown to the user. Additionally, an integrated oblique slice view is
provided at the anchor point of the selected scenario. The user can quickly analyze the results
and, in case of doubt, refine the selection by scrolling with the mouse wheel in order to adjust
the level of detail. The glyphs of the requested level of detail are displayed instantly. If the user
selects a correction scenario and then adjusts the level of detail, we display only descendants (at
finer levels of detail) or ancestors (at coarser levels of detail) of the selected scenario. This offers
the user the possibility to find the desired correction at a suitable level of detail. At any time, the
user only gets a small number of suggestions (up to 15) to avoid cluttering. To continue, the user
applies the selected correction scenario, and the pipeline is repeated until the user is satisfied with
quality of the segmentation mask.

While the correction scenarios enable the efficient resolution of defects at multiple levels of
detail, some segmentations may still require fine-grained control at the voxel level. This is the
case for defects that partially occupy influence zones. Hence, our system provides an integrated
oblique slice view as the highest level of detail, which allows users to inspect and edit minor
local deficiencies of the selected scenario (Figure 3.6). Even if a suggested correction is not
perfect in terms of segmentation quality, the user still has the ability to fine-tune the resulting
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Figure 3.5: a) The dissimilarity values δ1 (green to red transition for [0;1]), b) Correction scenarios at a coarse level of detail, c) A
finer level of detail with the correction scenario, which fixes the defect. The user interaction with our proposed technique: d) the
initial coarse level of detail, e) the user selects a correction scenario in the coarse level of detail, f) the user explores the finer
level of detail and selects the correction scenario, which fixes the defect, g) after applying the selected correction scenario. Each
correction scenario is depicted by a single glyph.

50



3.3. Implementation

segmentation while benefiting from the guidance provided by our approach. To aid the user
during the interaction, we allow panning, rotating, and scaling in the 3D view. Miniature 3D
renderings are instantly updated in case of rotations. Panning and scaling have no effect on the
miniatures, as they are automatically centered and scaled.

3.3 Implementation

Our system is implemented in C#, using Intel TBB (C++, CPU) and DirectX 11 Compute Shaders
(HLSL, GPU) for parallelization. For calculating the complement of the object we apply the
QuickHull algorithm by Barber et al. [80] to construct the convex hull. The implementation is
based on the work of Sehnal [81] and runs on the CPU in a single thread. For the skeletonization
we employ the algorithm by Lee et al. [44]. The skeleton distance field and the influence zones
are calculated using the Algorithms 2.1, 2.2. Between individual correction operations all data is
recomputed, as all steps of the pipeline depend on the skeleton, which is a global characteristic
of the corresponding editing region. The performance was estimated on 20 CTA datasets with a
slice resolution of 512×512 pixels and the number of slices ranged from 64 to 512. We used an
Intel Core i7-2600K 3.4 GHz CPU with 16 GB of RAM and an NVidia GeForce 680 GPU. The
pre-calculation time ranged from 1.8 seconds to 9.1 seconds with an average of 4.8 seconds for
correcting the object and from 2.8 seconds to 10.4 seconds with an average of 5.5 seconds for
correcting its complement. The dissimilarity analysis took most of the time. Even though we
parallelize it on the CPU, a GPU implementation would further improve the performance of our
system.

3.4 Results and Discussion

The only free parameter of our pipeline is the bin size b of the histograms. We conducted our
experiments on an Intel Core i7-2600K 3.4 GHz CPU with 16 GB of RAM and an NVidia
GeForce 680 GPU in order to analyze the correction results with different bin sizes. The bin
size, which we use for the histograms, was determined during the correction of four abdominal
CTA datasets. The objects had data values from -50 HU to 250 HU. The slice resolution was
512×512 pixels, and the number of slices ranged from 128 to 384. With different bin sizes we
search for a certain correction scenario in each dataset. The bin sizes tried are 1, 2, 4, 8, 16 HU.
We checked corrections of all four types of defects, each on a specific dataset. Our technique
detected the defects properly for every bin size and provided appropriate correction scenarios.
We suggest b = 4 HU to balance computation time, memory usage and a small number of level
of detail adjustments (see Figure 3.7).

3.4.1 Robustness against Low Contrast between Object and Defects

To demonstrate the robustness of our technique with respect to the low contrast between object
and defects, we conducted the following two tests on dissimilarity δ1:
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Figure 3.6: Our method correctly detects vascular occlusion in Computed Tomography
Angiography (CTA) data.
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1. two objects with the same data value distribution are split by a one-voxel thick wall between
them, which has a different data value distribution

2. two objects with two different data value distributions are located next to each other

The idea behind the tests is to measure the dissimilarity along the skeleton with respect to the
varying data value distributions. In the first test, we vary the difference between the means of
the objects’ distributions and the wall’s distribution. In the second test, we vary the difference
between the means of two objects’ distributions. Each distribution is a Gaussian distribution with

standard deviation σ =
32
3

HU. We require that the data value distributions differ, as otherwise
the delineation of the objects cannot be achieved by data values alone.

Test 1. The test objects are depicted in Figure 3.8. The parameters are µ1 = 70 HU, µ2 = µ1+∆d1.
The parameter ∆d1 is varied as follows: 1, 2, 4, 8, 16, and 32 HU. With ∆d1≥ 2 HU, our technique
can clearly separate the two objects, as demonstrated in Figure 3.8. For ∆d1 = 1 HU, the peak
dissimilarity value is not large enough to provide a correct delineation, as demonstrated in
Figure 3.9.

Test 2. The test objects are depicted in Figure 3.10. The parameters are µ4 = 70 HU, µ3 = µ4 +
∆d2. The parameter ∆d2 is varied as follows:: 1, 2, 4, 8, 16, and 32 HU. With ∆d2 ≥ 2 HU, our
technique can clearly separate the two objects, as demonstrated in Figure 3.10. For ∆d2 = 1 HU,
the peak dissimilarity value is not large enough to provide a correct delineation, as demonstrated
in Figure 3.11.

3.4.2 Robustness again Noise

Robustness against noise is investigated with the following test. One CTA dataset of abdominal
region is segmented by region-growing algorithm with watershed transformation by intensity and
gradient criteria. The dataset has 145 slices; each slice has resolution of 512×512 pixels. The
segmentation mask contains liver with over-estimation defect at vascular structures. Artificial
noise with a Gaussian distribution that has a mean µ = 0 HU and varying standard deviation
σ from Table 3.1 is added to the original volume data. Although the model of the statistical
error in the detected photons count is Poisson noise, there are more random processes involved
in the scanning process [82]. Moreover, the noise occurs in the projected data, which is then
back-projected to the actual volume space. Therefore, an accurate noise simulation would require
a significant effort, which is out of the scope of this chapter, and a Gaussian distribution is a
reasonable approximation for Computed Tomography (CT) data [83].

The segmentation mask is generated anew for each σ . The test aims at correcting the particular
over-estimation defect at the vascular structures. The defect is depicted in Figure 3.12. Our
technique should detect the defect and provide the possibility to correct it. The Peak Signal-to-
Noise Ratio (PSNR) was used to evaluate the degree of artificial noise. We used 2048 HU as a
maximal value (upper range for 12-bit integer values). For the slice views, we use the following
windowing function: WL/WW=100/300 HU. The segmentation method failed to operate for
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Figure 3.8: Test 1: structure of the test objects and the editing result for the case of ∆d1 = 2 HU.
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Figure 3.9: Test 1: dissimilarity values δ1 along the skeleton with respect to varying ∆d1 = |µ1−µ2|.
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Figure 3.10: Test 2: structure of the test objects and the editing result for the case of ∆d2 = 2 HU.
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Figure 3.11: Test 2: dissimilarity values δ1 along the skeleton with respect to varying ∆d2 = |µ3−µ4|.
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3.4. Results and Discussion

Table 3.1: Noise characteristics for different test passes.

Pass #1 #2 #3 #4 #5 #6 #7 #8 #9

Standard deviation σσσ (HU) 0 20 40 60 80 100 150 200 300
Estimated PSNR (dB) ∞ 41 35 32 29 27 24 22 19

PSNRs ≤ 24 dB. In order to check our method at passes #7, #8, and #9, the segmentation mask
from pass #6 (the last available mask) was used as an input to our technique.

Based on our experiments, we draw the following conclusions:

• The correction scenario for the defect was detected at all tested noise levels (Figures 3.13-
3.22)

• The correction of the defect was possible in all cases

• Our technique for segmentation defect detection and correction operates even at noise
levels where the segmentation method fails (Figures 3.20-3.22)

3.4.3 Robustness with Respect to Different Initial Segmentations

The following experiment shows that our technique offers a consistent editing process even in
case of different initial segmentations. The goal of this experiment is to assess the robustness
of our approach with respect to the initial segmentation mask. We generated nine different initial
segmentation masks of a certain object (liver in a CTA dataset) by adding noise to the data values
and running the segmentation technique anew. The procedure of the noise generation is the
same as described previously, and consists of nine passes as well. The quality is measured using
the Jaccard coefficient J of the analyzed segmentation mask with respect to the ground truth
segmentation mask, provided by domain experts. The segmentation masks differ by the number
and the severity of defects. We define the severity of a defect as the number of wrongly classified
voxels.

Some defects are shared by two or more masks. In this test we analyze whether the user (the
author) can correct such defects in the same way in different masks. One possibility to perform
such an analysis is to cluster the correction steps by location of the underlying defects. In
total, we have four clusters of the defects. We show the entire correction process for pass #4 in
Figure 3.23. The user starts with the initial segmentation mask in Figure 3.23a. First, the user
corrects cluster #1 in Figure 3.23b. Then, cluster #2 is corrected in Figure 3.23c. Cluster #3
requires two correction steps (Figures 3.23d,e). Finally, cluster #4 is corrected in Figures 3.23f,g.
The user achieves the result – the corrected segmentation mask in Figure 3.23h. All six correction
steps were found in a rather straightforward manner: the user hovered over regions of interest and
adjusted levels of detail accordingly. Another user would probably perform the same procedure.
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Figure 3.12: The dataset for the robustness test against noise. The object-of-interest is liver. The OP segmentation defect is marked
with an arrow. Coronal, sagittal, and transverse slices as well as DVR image are shown.
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a: Volume data b: Segmentation mask

c: Correction scenario for the defect d: Results of the correction

Figure 3.13: Pass #1, PSNR= ∞ dB.
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a: Volume data b: Segmentation mask

c: Correction scenario for the defect d: Results of the correction

Figure 3.14: Pass #2, PSNR= 41 dB.
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a: Volume data b: Segmentation mask

c: Correction scenario for the defect d: Results of the correction

Figure 3.15: Pass #3, PSNR= 35 dB.
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a: Volume data b: Segmentation mask

c: Correction scenario for the defect d: Results of the correction

Figure 3.16: Pass #4, PSNR= 32 dB.
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a: Volume data b: Segmentation mask

c: Correction scenario for the defect d: Correction scenario for the defect

Figure 3.17: Pass #5, PSNR= 29 dB. The correction process continues in Figure 3.18.
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Figure 3.18: Pass #5, PSNR= 29 dB. In this pass, the target OP defect was merged with another defect, which the segmentation
method produced. Therefore, three correction scenarios were used to remove the incorrectly segmented structures. Two correction
scenarios are shown in Figure 3.17. The last correction scenario is shown here.
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a: Volume data b: Segmentation mask

c: Correction scenario for the defect d: Results of the correction

Figure 3.19: Pass #6, PSNR= 27 dB.
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a: Volume data b: Segmentation mask

c: Correction scenario for the defect d: Results of the correction

Figure 3.20: Pass #7, PSNR= 24 dB.
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a: Volume data b: Segmentation mask

c: Correction scenario for the defect d: Results of the correction

Figure 3.21: Pass #8, PSNR= 22 dB.
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a: Volume data b: Segmentation mask

c: Correction scenario for the defect d: Results of the correction

Figure 3.22: Pass #9, PSNR= 19 dB.
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a: Input b: Correcting cluster #1 c: Correcting cluster #2 d: Correcting cluster #3 e: Correcting cluster #3

f: Correcting cluster #4 g: Correcting cluster #4 h: Result

Figure 3.23: Six correction steps, applied to the clusters of the defects in initial segmentation mask #4.
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Table 3.2: Comparison of the quality before and after the correction for different initial
segmentation masks. The quality is measured by the Jaccard coefficient J (Equation 2.1)
of the analyzed segmentation mask with respect to the ground truth segmentation mask,
provided by domain experts.

Segmentation mask Quality J before
correction

Correction steps Quality J after
correction

#1 0.9 1 0.92
#2 0.84 3 0.91
#3 0.64 10 0.87
#4 0.61 6 0.87
#5 0.65 7 0.88
#6 0.85 8 0.88
#7 0.85 8 0.88
#8 0.85 4 0.88
#9 0.85 2 0.87

However, the clusters can be corrected in a different order. The chosen levels of detail may slightly
vary. The correction processes for passes #3 and #5 are illustrated in Figures 3.24 and 3.25
respectively. By comparing the correction processes for passes #3, #4 and #5, we conclude that
the user corrected similar defects in the similar way in different masks.

The correction of the four clusters of the defects is depicted in Figures 3.26, 3.27, 3.28. Apart
from variations in the numbers of the correction steps, our technique allows the user to edit the
object until a sufficient quality is reached independently of the initial segmentation mask. Even
though the defects differ significantly by their severity, the user had edited them in a consistent
manner in all nine passes. As our technique abstracts from a direct manipulation of the skeleton,
the severity of the defects only affected the number of the correction steps. The user did not
have to adjust the individual correction steps in order to accommodate for varying severity. The
progress of the quality improvement during the correction is illustrated in Figure 3.29 for each
initial segmentation mask.

The quantitative test results are given in Table 3.2. As it is impossible to achieve the ground-truth
segmentation having significant amount of noise added, the user stops the editing process after
correcting the four clusters of the defects. Minor variations in the resulting quality (from 0.87
until 0.92) are caused by significant differences in the quality of the initial segmentation masks
(from 0.61 until 0.90) and the presence of added noise. For each initial segmentation mask, the
user achieved approximately the same results, which suggests the stability of our technique with
respect to the initial segmentation mask. Due to added noise, the segmentation masks varied
abruptly and significantly. As each segmentation mask was corrected in a single try, we can claim
that the results were achieved without prior knowledge of the data.
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a: Input b: Correcting cluster #2 c: Correcting cluster #2 d: Correcting cluster #3 e: Correcting cluster #3

f: Correcting cluster #3 g: Correcting cluster #3 h: Correcting cluster #4 i: Correcting cluster #4 j: Correcting cluster #4

k: Correcting cluster #4 l: Result

Figure 3.24: Ten correction steps, applied to the clusters of the defects in initial segmentation mask #3.
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a: Input b: Correcting cluster #1 c: Correcting cluster #2 d: Correcting cluster #2 e: Correcting cluster #2

f: Correcting cluster #2 g: Correcting cluster #2 h: Correcting cluster #3 i: Result

Figure 3.25: Seven correction steps, applied to the clusters of the defects in initial segmentation mask #5.
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Figure 3.26: Correction steps for the clusters of the defects in initial segmentation masks #1, #2, and #3. The integers above arrows
indicate a number of steps, required to correct a certain cluster.
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Figure 3.27: Correction steps for the clusters of the defects in initial segmentation masks #4, #5, and #6. The integers above arrows
indicate a number of steps, required to correct a certain cluster.
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Figure 3.28: Correction steps for the clusters of the defects in initial segmentation masks #7, #8, and #9. The integers above arrows
indicate a number of steps, required to correct a certain cluster.
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Figure 3.29: Improvement of quality with respect to correction steps for different input segmentation masks. The Jaccard coefficient J
(Equation 2.1) is used as the quality measure.
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3.4.4 Application Scenarios

We demonstrate the generality of our technique by editing objects in medical, biological, and in-
dustrial data. In the medical scenario, we applied our technique to liver segmentation (Figure 3.1)
and vessel segmentation (Figures 3.6 and 3.30). Both cases, acquired with CTA, are clinically
relevant and benefit from our tool. One common task in the latter case is the separation of
vessels from bone if they are touching each other and automatic segmentations regularly fail. The
usual procedure involves manually specifying separation objects – a tedious and time-consuming
process. With our technique, this scenario was corrected with only twelve simple editing opera-
tions (Figure 3.30f) in about two minutes. The second example shows a vascular occlusion and,
surprisingly to us, our technique provides the insight that the occlusion is even extending inside
the stent, which hints to its potential usefulness even in segmentation-unrelated applications
(Figure 3.6). The industrial scenario is represented by X-Ray Computed Tomography (XCT)
data (Figures 3.31 and 3.32), featuring significant metal artifacts, rendering the results of common
segmentation techniques impractical. Our method allows us to easily correct the segmentations
of the metal rods (about 100 seconds, Figure 3.31) and the plastic box (about four minutes,
Figure 3.32) – the latter being significantly more challenging. As for the biological scenario, we
apply our technique to Electron Microscopy (EM) data of a mouse cortex, provided by the ISBI
2013 challenge “SNEMI3D: 3D Segmentation of Neurites in EM images” (Figure 3.33). The
automatic technique described by Kaynig et al. [84] provided the segmentation of the neurons,
which then requires proofreading (i.e., manual inspection and correction), as explained by Haehn
et al. [85]. The data suffers from high noise levels and the slicing nature of the acquisition
technique, leading to difficulties in identifying cell boundaries. Correcting the segmentation
of a particular neuron, our technique allows the user to isolate over-estimated regions as well
as to recover under-estimated ones in only three simple operations in about 84 seconds – an
otherwise cumbersome and time-consuming manual segmentation editing task. We show the
result (Figure 3.33e) before the supported slice-based refinement.

3.4.5 Evaluation

We evaluate our method with respect to usability, guidance, interaction, and quality of the results.
We conducted an evaluation with three radiologists, who have experience in segmenting various
organs and correcting their segmentation masks, since the results of their currently employed
methods do not meet the required quality standards. Two experts analyze data for surgical
intervention planning, whereas the third assesses treatment results comparing data before and
after treatment. The task was to correct the segmentation of the liver in abdominal CTA data. We
used 26 datasets, including the material of the SLiver 2007 contest [68] and datasets from the
routine practice of our domain experts. For the initial segmentation, we employed a technique
based on the work of Šrámek and Dimitrov [86]. This technique merges watershed segments
using data values and gradients. Before the evaluation, we introduced the experts to our system
with eight datasets. The author presented all types of correction scenarios to provide a basic
understanding and overview. Then, the experts were introduced to the workflow of the system, as
well as to the method for suggestion generation. Interaction examples were presented. Finally,
the experts used the system themselves on the training datasets.
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aa bb

cc dd
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Figure 3.30: Guided volume editing for CTA data: a) the automatic vessel segmentation
exhibiting defects (vessels and bones are touching), b-e) the first four correction operations
(removal of red parts), f) the corrected vessel segmentation after only twelve operations.
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Figure 3.31: Guided volume editing in industrial XCT data: a) the dataset, b) the initial segmentation of the two metal rods, c-f) the
first four of seven correction operations, g) the corrected segmentation of the metal rods.
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aa

bb

Figure 3.32: Guided volume editing in industrial XCT data: a) the initial segmentation of the
plastic box, b) the corrected segmentation of the box, after only nine operations.
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Figure 3.33: Guided volume editing in EM data: a) the neuron, segmented automatically, b-d) three correction steps, e) the
segmentation of the neuron, corrected without slice editing, f) the segmentation of the neuron, created manually by the domain
expert.
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Afterwards, each expert corrected datasets with our technique (T1) and compared it to our
previous technique (T2) from Chapter 2, and base-line segmentation techniques of their choice:
interactive editing with the Philips Brilliance software (T3) and the Toshiba Vitrea software (T4),
manual editing with the General Electric LightSpeed software (T5). As T3, T4, and T5 do not
allow importing custom segmentation masks, the experts had to re-create masks beforehand. We
excluded the timings and efforts of such operations to conduct a fair comparison. Each domain
expert was assigned 18 unique pairs, consisting of one dataset (each assigned only once) and
one technique (each used 6 times). After the experts finished their corrections, they answered
our questionnaire (see Appendix A). Even after only a short accommodation period of a few
hours, the domain experts rated our system favorably against well-established clinical tools of
their workflow.

Technique Evaluation

We evaluated the usability and the guidance provided by our technique, as well as the following
features: the adjustable levels of detail for the correction, the suggestions, and the miniatures
(Figure 3.34a). Our system’s average score on the System Usability Scale by Brooke [87] was 78
out of 100, which corresponds to the 82nd percentile of the perceived usability. Considering the
relatively short accommodation period, this constitutes an overall good result and demonstrates
the potential of our approach. The domain experts considered the overall user guidance through
the correction process as useful. The experts specifically asked whether such guidance could
be implemented in other editing methods as well. Since our system describes a fairly general
concept of segmentation editing, it can be adapted to other methods, such as random walk
segmentation algorithms. In this case, the hierarchy of the correction regions can be constructed
using the hierarchical watershed transformation on probability values, computed by random walk
algorithm. The outcome shows that there is room for improving the overview provided by our
technique. The domain experts mentioned that it could be interesting to display the suggestions
for an object together with the complement at the same time. A hierarchy visualization of the
correction scenario space would be a useful extension, which may help the user in finding the
required correction scenarios faster. The domain experts rated the possibility to adjust the level
of detail for the correction as very useful. With this feature and its immediate visual feedback
in the system’s interface, the experts were able to quickly select the correction scenario at the
desired level of detail. The experts specifically mentioned that the suggestions of our system
allow them to focus more on the fine-tuning, analysis, and verification of the corrections. The
miniatures were well accepted by the participants, as they provide an overview and simplify
the exploration of the correction scenarios. The experts confirmed that our technique, combined
with the automatically shown slice views, provides sufficient information to make decisions in
segmentation correction.

Comparative Evaluation

We compared the volume editing techniques in terms of interaction, time spent, ease of use,
tolerance to imprecise user input, and user satisfaction (Figure 3.34b). Our technique T1 requires
the least interaction, as it suggests suitable correction scenarios, resulting in a reduction of data
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Figure 3.34: a) Evaluation of our technique. b) Comparative evaluation. Grades for (a) and (b) range from 1 (worst) to 5 (best).
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exploration time and a reduced need for manual correction. The necessary interaction time is
shortest with our T1 method, since the user explores the correction scenarios, then fine-tunes
and verifies the corrections instead of manually specifying the correction regions. The experts
noted, that slice-based editing, like in T5, is always easier to use, than 3D-space-based editing.
Nevertheless, our technique is rated second, being just slightly more complex than T5. As we
present correction scenarios to the user, voxel-based interactions are avoided, leading to an
increased tolerance to imprecise user input in comparison to the other evaluated techniques.
Since the domain experts still favor the possibility to edit on the voxel level (even if only in rare
cases), they have rated our technique T1 and their clinical methods T3, T4, and T5 as completely
satisfying regarding the achievable quality of the results. With no voxel-level editing available,
the experts achieved less satisfying results with technique T2.

Quantitative Evaluation

We analyzed the defect detection and correction rates to quantify the accuracy of our technique.
The first domain expert had no problems with correcting O defects (12 OP and 8 OL), but left
1 out of 5 UP and 1 out of 2 UL defects uncorrected. The second expert successfully corrected
O defects (1 OP and 9 OL), but did not correct 1 out of 11 UP and 3 out of 5 UL defects. While
correcting two of these UL defects, the expert had an issue with the lowest level of detail. The
third domain expert corrected all but one UP defect out of 8 OP, 6 OL, 5 UP and 3 UL defects. As
each expert left one UP defect uncorrected, we investigated the issue. We observed that these
three uncorrected defects are large under-estimation defects which are caused by tumors. Also,
these defects were not surrounded by the corresponding segmentation masks. As a result, they
were only partially captured by the complements of the segmentation masks. Correction of these
defects requires multiple steps, which were not straightforward to our experts. An example of
such a defect is the large tumor in the liver in Figure 3.35. This issue is not specific to our
method, since highly competent domain experts had difficulties in correcting these defects with
other techniques too. One way to resolve the issue is to modulate the growth of the complement
locally by the dissimilarities between parts of the background and the object. In case of low
dissimilarity, one can increase the growth value, capturing large under-estimation defects entirely.
If the dissimilarities are high, one can use the default growth value, providing the user a possibility
to correct defects if necessary. As we support manual local editing, all remaining defects could be
fixed for complete satisfaction. Nevertheless, the results, presented in this chapter, were obtained
without such low-level editing. To evaluate the efficiency of the techniques, we recorded the
interaction times. As for the accuracy, we evaluated the quality with the Jaccard coefficient J
(Equation 2.1) of the resulting segmentation with respect to the ground truth, created manually
by domain experts. A perfect match yields one. The coefficient decreases, as differences appear.
Before the correction, the average quality was at 0.83. With our T1 technique, the experts
achieved an average quality of 0.92 in 40 seconds on average. The same average quality was
reached with T2, but it took one minute on average. The quality and the interaction time is
comparable to results of the interactive method by Beichel et al. [12] (before the MBR stage).
Beichel et al. [12] state that their interactive segmentation technique is not limited to the liver, but
this was not evaluated in their work. Our T1 approach, however, was applied on different types
of data: the liver CTA, CTA of the human lower extremities, industrial XCT and biological EM
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data. With T3 and T4 the experts achieved an average quality of 0.91 in 100 seconds and of 0.88
in 150 seconds respectively. The technique T5 achieved the best average quality (0.94), but it
took much longer (13 minutes on average). We can conclude that the quality of the suggestions
is comparable to the quality of manual corrections, fine-tuned by the domain experts with T2.
Figure 3.1 depicts the correction of each of the four defect types.

3.5 Summary

In this chapter, we proposed a novel approach for guided volume editing of segmentation results
based on the analysis of histogram dissimilarities. Considering the shape of the object by means
of the skeleton, we allow users to correct parts of the object that contain segmentation defects.
Our system makes suggestions, which guide users through the entire correction process. The
presented results show that our system provides an efficient segmentation correction, while
offering the possibility to reach the desired quality with a small number of simple interactions in
a short amount of time.

In order to improve the exploration of the suggested correction scenarios, we next develop a
method of statistically analyzing different corrections for dissimilarity against reference parts of
the object. We statistically quantify the dissimilarities and order the suggestions accordingly, so
that users can easily find the required corrections without exploring all of them. For displaying
the suggestions, we use the radial-tree view with links, which offers the necessary functionality
for exploring vast hierarchies of elements.
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Figure 3.35: Example of a UP defect, which is not properly captured by the skeleton of the complement. a) The segmentation mask
with the UP defect. b) Slab of the segmentation mask and the skeleton of the object’s complement. c) The same slab as in (b)
after applying the suggested correction operations; severe over-estimation defects appear as a result. d) The result of editing the
UP defect is unsatisfactory: the UP defect is solved, new defects are introduced though.
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CHAPTER 4
Statistics-Driven Localization of

Dissimilarities in Data
Do not put your faith in what statistics say until you
have carefully considered what they do not say.

— William W. Watt

This chapter is based on the following technical report:
Alexey Karimov, Gabriel Mistelbauer, Thomas Auzinger and Eduard Gröller. Statistics-
Driven Localization of Dissimilarities in Data. Technical Report TR-186-2-16-1. Institute
of Computer Graphics and Algorithms, Technische Universität Wien. April 2016 [88].

The identification of dissimilar regions in spatial and temporal data is a fundamen-
tal part of data exploration. This process takes place in applications, such as biomedical
image processing as well as climatic data analysis. We propose a general solution
for this task by employing well-founded statistical tools. From a large set of candidate
regions, we derive an empirical distribution of the data and perform statistical hypothesis
testing to obtain p-values as measures of dissimilarity. Having p-values, we quantify
differences and rank regions on a global scale according to their dissimilarity to user-
specified exemplar regions. We demonstrate our approach and its generality with two
application scenarios, namely interactive exploration of climatic data and segmentation
editing in the medical domain. In both cases our data exploration protocol unifies the
interactive data analysis, guiding the user towards regions with the most relevant dissim-
ilarity characteristics. The dissimilarity analysis results are conveyed with a radial tree,
which prevents the user from searching exhaustively through all the data.
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4. STATISTICS-DRIVEN LOCALIZATION OF DISSIMILARITIES IN DATA

A
FUNDAMENTAL task in data analysis is the evaluation of internal data con-
sistency by identifying similar and dissimilar subregions inside spatial and
temporal data. Manual inspection is generally time-consuming or infeasible

due to the amount of data usually encountered in application scenarios such as biomedical image
processing, climate studies, etc. Thus, the user requires (semi-)automatic search tools. A vast
array of domain-specific data analysis tools is available from a large body of research.

In this work we propose a general framework for this task based on sound statistical methods.
Thus, our focus lies in the proper and efficient use of statistics in data analysis while still providing
sufficient generality of the method with respect to application domains. Having constructed
empirical data-value distributions from various regions in the input data, we perform a statistical
hypotheses testing to compute a p-value per region that is used as a dissimilarity measure. We
discuss related statistical aspects and provide a practical approach for region aggregation to arrive
at a hierarchical ordering of the relative dissimilarities in the data.

We present visualization means to assist the user in an interactive exploration of the dissimi-
larities in the input data. We formulate a data exploration protocol which takes advantage of
available statistical information on the dissimilarities. A radial tree of the hierarchical statistical
data guides the user towards potential regions of interest. In case of data change, the global data
consistency is tracked via a suitable timeline plot.

We apply our framework to two qualitatively different scenarios: temporal data exploration and
segmentation editing of volumetric data. We provide the realizations of our abstract concepts in
the specific domains. An evaluation of our method’s efficacy is given.

4.1 Related Work

Several works in the visualization and image processing domains involve statistical comparison
of regions in volume data in order to detect features or highlight irregularities. In particular, the
task of classifying samples of volume data into certain features or materials usually involves
such a comparison. Kniss et al. [89] discuss a statistical classification procedure that they
later apply to rendering. Using a classifier, the method assigns to each sample a probabilistic
likelihood that it exhibits certain features of the data. The classifier may have parameters which
are evaluated on a training set. The probabilistic likelihoods are then transformed to the posterior
probabilities with the Bayes Rule. Based on the probabilities, each sample is fuzzily classified.
Each class exhibits various attributes, e.g., transfer functions. This technique provides an efficient
classification of the features, but requires classifiers, parameter estimation, feature models, and
prior class probabilities beforehand. Our approach requires only the definition of regions in order
to statistically compare them with a set of references.

Tasdizen et al. [90] improve tissue classification in Magnetic Resonance Imaging (MRI) by
using the data-value distribution in a certain neighborhood around a voxel. They compute the
probabilities of observing particular data values in the neighborhood if the voxel belongs to a
certain class. The entropy is calculated over the probabilities of the voxel to belong to each
possible class. It is iteratively minimized while the classification of voxels changes. This method
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requires an initial classification that the authors obtain by co-registering the data with a digital
atlas. In our approach we do not need this potentially complex step, as we get the references for
the statistical comparison directly from the input data.

Lundström et al. [91] use partial range histograms to introduce a classification certainty as the
second dimension in 2D transfer functions. These histograms collect data values of a certain range
in a cubic neighborhood. The ranges of values are determined by fitting Gaussian distributions to
the global histogram of the data. The partial range histograms are successively subtracted from
the global histogram. While this method improves the classification in regions where ranges of
different materials or tissues overlap, it does not explicitly test statistical hypotheses, i.e., whether
certain materials or tissues are present in the region of interest. With our statistical approach
one can test such hypotheses and make decisions on test results. Heinzl et al. [92] extend this
work by calculating probabilities of different materials at each data sample. However, a Gaussian
distribution of the data values is still assumed.

Johnson and Huang [93] detect features with distribution queries. The data used for forming a
query is sampled in the neighborhood of each voxel. Then, the user specifies intervals of data
values that are of interest. The filtered data is organized into a histogram that represents the
target distribution. The user composes a query with clauses on histogram bins. It is fuzzily
matched with the actual volume data. The queries may involve statistics on the histograms, such
as standard deviation, skewness, covariance, etc. The user assigns to the queries various attributes,
e.g., transfer functions. With the rendered image, the user may check hypotheses on the volume
data, formulated in terms of the queries. However, this work does not include any statistical tests,
which, in certain scenarios, are required to make decisions based on the volume data.

Saad et al. [94] investigate the uncertainty of a segmentation compared to expert segmentations
in medical image processing. They first construct an atlas that involves two kinds of histograms:
likelihood versus shape and likelihood versus appearance. The atlas is constructed with training
data from experts. A multivariate Gaussian distribution then models the appearance of the features
in the volume data. Prior to the uncertainty analysis, the input-volume data is registered to the
atlas. Using the Bayes theorem, voxels are classified with the first-best-guess logic. Finally, the
discrepancies between actual segmentation and atlas data are conveyed to the user. This reveals
regions of misclassification and abnormalities in the volume data. We propose to capture shape
information via a special definition of regions that will be explained in Section 4.4.2. We collect
the data this way instead of using prior shape information stored in an atlas and which is only
applicable after co-registration.

Haidacher et al. [75] assume that the data values have Gaussian distributions, whose parameters
they iteratively evaluate while growing a sphere around each voxel. They use the Jarque-Bera
test for normality [95]. Welch’s T-test [96] checks, whether the neighborhood sphere and its hull
have the same Gaussian distribution. The resulting mean µ and standard deviation σ are used to
modulate the opacity of samples and their shading, so the impact of noise is reduced. The user
defines 2D transfer functions in the µ versus σ space. This improves the classification of materials
or tissues during volume rendering. The drawback here lies in the fixed distribution model that is
fitted to the data. In our approach we do not assume any distribution model, relying instead on
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4. STATISTICS-DRIVEN LOCALIZATION OF DISSIMILARITIES IN DATA

empirical distribution functions and statistical tests on them. These functions approximate the
underlying data-value distribution.

Praßni et al. [30] investigate the usage of shape information in the classification. They represent
an object-of-interest in the data with a curve skeleton. The object is split into skeleton regions by
corresponding skeleton segments. Tubiness, surfaceness, and blobbiness are used as additional
dimensions for the classification of regions. In contrast to computing such spatial properties, we
propose to collect and statistically compare data values in regions that are similar to the skeleton
regions.

Comparison of regions is also utilized in segmentation(-editing) techniques, which delineate the
object-of-interest from the rest of the data. For example, results of the comparison may identify
segmentation defects. Our technique from Chapter 3 detects segmentation defects by analyzing
dissimilarities in data values. The object, defined with the segmentation mask, is represented as a
set of regions aligned with the skeleton of the object. Inside each such region a histogram collects
the data values. The histogram is compared to those from adjacent regions in order to reveal data
dissimilarities, associated with segmentation defects. However, this approach cannot tell whether
a certain region is actually part of the object. It just delineates the object from the defects, having
detected certain dissimilarities. We provide this missing functionality with our framework and
guide the user towards regions that are relevant for editing. This application scenario will be
discussed in Section 4.4.2.

Some methods are designed for temporal data exploration. Among them is the technique of
Hochheiser and Shneiderman [97] that enables the user to filter temporal data, composed of
numerous time series, with search constraints. The time series are displayed in a two-dimensional
plot. Each constraint is defined by a user-drawn rectangle – a timebox. It only matches time series
which have data values inside the corresponding rectangle. Having specified several timeboxes,
the user gets an uncluttered view of time series of interest. With our approach we may formulate
such a filter as a statistical test of similarity to the data in the timebox. However, we leave such
extended functionality for future work.

Buono et al. [98] proposes a pattern search for temporal data analysis. It is based on the Euclidean
distance between corresponding values of two compared time series. To improve the pattern
matching, the distance metric includes four additional transformations, which normalize the
compared data. The user gets an overview of all regions matched with the specified pattern.
Our method performs a statistical test of similarity of data values in sub-regions of a time series
and reports the resulting p-values. As we aggregate regions with similar statistical significance
properties, the user can explore the data at different levels of detail.

Buono et al. [99] focus on the prediction of a time series using patterns found in the temporal data
to make extrapolations into the future. Having constructed the empirical distribution functions of
the underlying data, one may simulate future data values with our approach. An implementation,
however, would require domain-specific knowledge. We leave such extension for future work.

The work of Bögl et al. [100] discusses a Visual Analytics approach to the selection of appropriate
models for time series data. The user specifies the model by interactively adjusting parameters
and selecting characteristic values in a timeline plot. During this specification, the remaining
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model parameters are estimated. Then, the method provides the user with an in-depth analysis
of the selected model’s fitness to the data. Various models are compared by their information
content. The user selects the most informative one that later can be used for prediction.

Applied to temporal data, our approach solves a different task. It detects the most similar or the
most dissimilar occurrences, compared to the exemplar events. Even though the results of our
technique are not directly applicable for prediction, they may be useful for finding causes which
lead to certain occurrences with respect to the background information.

4.2 Method

In this section we provide an in-depth description of our approach. We start with atomic
regions, which are the basis of our method. Inside each atomic region we construct an empirical
distribution function of data values. We statistically test dissimilarity between data in the atomic
regions and values in a set of markers, i.e., user-specified exemplars of regions of interest. P-
values of the dissimilarity significance are computed. Unions of atomic regions form composite
regions, which exhibit either significant or non-significant dissimilarities to the markers. The
composite regions form a hierarchy, varying in size and representing the data with different
levels of detail. To support the data exploration task, we provide the user with a radial tree
view depicting the hierarchy of the composite regions and the derived p-values. Having linked
visualizations of the data and the radial tree view, the user follows our data-exploration protocol.
To support the user in scenarios with dynamically changing data, we display global statistics on
the p-values. An overview of our method is given in Figure 4.1.

4.2.1 Requirements for Statistical Testing

The major requirement of our approach involves the definition of the atomic regions. These
regions should reflect domain-specific features of the data. The atomicity of the region means that
it should contain samples of only one single feature. In other words, each atomic region belongs
to a single feature only, i.e., the data-value distribution is assumed to be identical over the region.
The atomicity is usually achieved by making the regions small enough. Yet, each region should
contain enough samples to properly reconstruct the underlying data-value distribution. In order
to provide exact p-values, we restrict the atomic regions to be non-overlapping. To preserve the
adjacency of the data at the level of atomic regions, each region should be connected. An atomic
region realization that satisfies all the aforementioned requirements will provide meaningful
results in terms of statistics. The composite regions then represent the domain-specific features of
the data on different levels of detail. The computed p-values differentiate the features of interest
from the rest of the data.

Our work concentrates on the statistical framework that operates on top of the realized atomic
regions. We provide the realization of atomic regions for the general case as well as the specialized
realization of atomic regions for three-dimensional spatial data. Moreover, we validate these
realizations in two application scenarios.
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User Input Data Application-
Specific Data

Markers
(Section 4.2.5)

Atomic Regions
(Section 4.2.1)

Composite Regions
(Section 4.2.6)

Distribution Recovery:
Empirical Distribution Functions

(Section 4.2.2)

Dissimilarity Testing (P-values of Atomic Regions):
Kolmogorov-Smirnov Test

(Section 4.2.3)

P-values of Compos-
ite Regions: Stouffer’s

Z-score Method
(Section 4.2.6)

Dissimilarity P-values
and Significances

(Sections 4.2.8, 4.2.9)

Global Statis-
tics on P-values

(Sections 4.2.8, 4.2.9)

Data Exploration
using Dissimilarity

Significances
(Section 4.2.10)

Figure 4.1: Overview of our statistical method. The information from the data sources is
transformed into our internal entities (markers, atomic regions, and composite regions). We
recover the underlying data-value distributions in the atomic regions and the markers with
empirical distribution functions. Then we perform a statistical test on the significance of
dissimilarities between the empirical distribution functions of the regions. We present this
information as well as global statistics on p-values to the user. Moreover, we propose a data
exploration protocol based on the dissimilarity significance information.
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The fundamental property of our framework is its ability to handle stochastic data. Our input data
can stem from a spatially and temporally varying probability distribution. For real-world data
sources this is generally the case. Natural local variations and inhomogeneities in the data values,
acquisition noise, discrete and finite measurement domain and time introduce random fluctuations
in the data. We do not assume any knowledge of the underlying distribution and operate on
samples from it (e.g., image of a Computed Tomography (CT) scan or temperature measurements
in climatic data). Even if the data does not exhibit a stochastic nature, our approach is valid, as
we operate on data-value distributions that characterize the various data regions and which are
tested for dissimilarity.

In this work we focus on scalar data values. An extension to multi-dimensional data is possible,
but we consider the corresponding implementation of the statistical concepts to be future work.
The dimensionality of the data domain can be arbitrary though. The density values from medical
imaging (CT, MRI) are given on a three-dimensional grid. Abstract time series data consists of
samples with one temporal dimension. In the following section we reconstruct the underlying
data-value distribution from the samples.

4.2.2 Distribution Recovery

Given a one-dimensional random variable V and an associated probability function F(s) that
varies over an underlying space s ∈ S, we take as input data a single outcome o(d) of V on
a discrete subset d ⊆ D of S. We do not impose any structural constraints on D. In most
applications it is isomorph to a structured grid in an m-dimensional space S . Imaging processes,
for example, yield two-dimensional and three-dimensional regular grids of data, whereas temporal
data is usually taken at equidistant points in time.

The key idea of our approach is to recover the unknown probability function F by collecting
outcome data on certain subsets of D – the atomic regions. We are interested in atomic regions
that are similar or dissimilar to the user-specified markers. The similarity is determined by
comparing the Empirical Distribution Functions (EDFs) that are the distribution functions of the
outcome values of V in the regions. We choose the EDFs as we do not assume that the outcome
values were drawn from a certain probability distribution (even with unspecified parameters).
Instead, we could have selected a distribution model in advance and fitted it to the data. However,
this would limit the generality of our method, as the choice of the appropriate distribution model
depends on the data modality. Having estimated the parameters of the distribution model from
the data, we could not directly apply classical statistical tests [101]. We could have used kernel
density estimation (KDE) methods to model the unknown probability density function. This
would require a suitable kernel function. Also, the classical statistical tests would need adaptation
(e.g., the two-sample shape test on the KDE by Duong et al. [102]). With the EDFs we perform
the tests directly.
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For an atomic regionR⊂D we build the corresponding EDF F̂R from the outcomes inR by

F̂R(t) =
1
|R|

|R|

∑
i=1

1{o(di)≤ t}, di ∈R, (4.1)

1{E}=

{
1, if condition E is true
0, otherwise

, (4.2)

where |R| is the cardinality of R. Figure 4.2 illustrates this concept. In order to construct
the EDF, Equation 4.1 requires that the values o(di) are sampled from identical and mutually
independent random variables that correspond to the sampling locations d ⊆ D. The atomic
region definition already guarantees that the random variables have the identical distribution
function FR (Section 4.2.1). A set of random variables Ω is mutually independent if the probability
of any certain outcome of one variable does not depend on outcomes of the remaining variables.
Formally, this means that ∀{A1, . . . ,AM} ⊆Ω and ∀{a1, . . . ,aM} ∈ RM the following statement
holds true:

Pr

(
M⋂

i=1

{Ai ≤ ai}

)
=

M

∏
i=1

Pr ({Ai ≤ ai}) . (4.3)

This condition is satisfied in the majority of data acquisition settings. For example, in medical
imaging data certain physical properties of tissues are measured, such as density or echogenicity.
These properties are measured locally at each sampling location independent of the data values
from neighboring sampling locations. The independence could be violated due to correlation in
the acquisition noise. However, we found this effect to be negligible for our use-cases. As a result,
the required EDF is available at each atomic region and can be used for dissimilarity detection.

4.2.3 Dissimilarity Testing

To quantify the data dissimilarities in two non-overlapping regions R1 and R2, we formulate
the problem as a statistical hypothesis on the similarity of their respective EDFs. The null
hypothesis H0 is that both EDFs F̂R1 and F̂R2 follow the same unspecified distribution. In order
to detect a possible violation of H0 (distribution shape), we employ the two-sample Kolmogorov-
Smirnov test (KS) with statistic Dn [103, 104]:

Dn = sup
t∈R
|F̂R1(t)− F̂R2(t)|, (4.4)

n =
|R1||R2|
|R1|+ |R2|

, (4.5)

which is a random variable. We test the null hypothesis H0 by computing the p-value pv as the
conditional probability:

pv = Pr (Dn ≥ d |H0) , (4.6)

where d is a value of the statistic Dn, computed with the EDFs F̂R1 and F̂R2 of the outcome
values o(di). This statistical test is illustrated in Figure 4.2.
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Empirical Distribution Functions
෠𝐹ℳ1

𝑡 ෠𝐹ℛ1
𝑡 ෠𝐹ℛ2

𝑡 ෠𝐹ℛ3
𝑡

Data
~𝒩 𝜇 = 70, 𝜎 = 32

~𝒩 𝜇 = 140, 𝜎 = 32

𝑅𝑂𝐼 Markers

ℳ1

𝑑ℳ1,ℛ1
= 0.73 𝑑ℳ1,ℛ2

= 0.04 𝑑ℳ1,ℛ3
= 0.26

Kolmogorov-Smirnov Two-Sample Test    pv = 𝑃𝑟 𝐷𝑛 ≥ 𝑑|𝐻0

Atomic Regions

ℛ1

ℛ2

ℛ3

Figure 4.2: Our method applied to a three-dimensional phantom dataset. The data includes
an actual object (red) in the region of interest (green), where the user would like to evaluate
the dissimilarities. The region of interest is split into the atomic regions R1,R2,R3, . . . ,
according to the realization that will be explained in Section 4.4.2. Once the user has
specified a single markerM1, our method builds empirical distribution functions of the data
values in the marker and the atomic regions. Our method employs the Kolmogorov-Smirnov
test to compute the p-values of the dissimilarity significance between the atomic regions and
the marker.
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In common scientific practice, a significance level α is chosen a-priori. The null hypothesis H0 is
rejected if pv≤ α . Here, α determines the probability of falsely rejecting H0. It is usually set
to 0.05, however, it may be different in various scientific domains. In our approach we do not
employ a single global significance level, but directly report the p-values to the user. This allows
an inspection of the dissimilarity significance of all tested region pairs.

Generally, computing the Kolmogorov distribution Dn is complicated due to a lack of closed-form
solutions. Existing approaches often operate with only a one-sample test, where the EDF F̂R1 is
matched against a fully specified distribution. However, we require the more general two-sample
test which checks whether two samples were drawn from the same unspecified distribution.

The KS test requires that the hypothetical distribution is continuous, and, therefore, there are no
ties in the sampled data (no same values). As we do not assume any restriction on the hypothetical
distribution, it can be either continuous or discrete. If the hypothetical distribution is discrete,
p-values reported by the KS test are inaccurate [105]. Also, if ties exist in the sampled data, the
test yields inaccurate p-values. For generality, we allow the ties.

As stated by Arnold and Emerson [105], in case of a two-sample test with a discrete hypothetical
distribution, the distribution of the test statistic depends on this unspecified distribution. In such a
situation, a resampling can relax the requirements of continuity and no ties in the data, so the
statistical tests can be performed. This was demonstrated by Dufour and Farhat [106] for the KS
test.

The resampling of the outcome values o = {o1, . . . ,oM} is achieved via bootstrap, permutation,
or randomized (Monte Carlo) tests. Let us assume the following E new samples of the outcome
values are drawn: r1, . . . ,rE . Each new sample contains the same number of the outcome values
as the original sample o. The permutation test generates all possible samples without replacement
out of o. The bootstrap test iterates over all possible samples with replacement from o. The
randomized tests simulate E samples (with or without replacement) from o. Then the test statistic
is computed on the original sample (do) and the new samples (dr1 , . . . , drE ). Assuming that Dn is
a random variable of the test statistic value, the p-value of the test is calculated as follows:

pv = Pr (Dn ≥ do |H0) =
1+∑

E
i=1 1{dri ≥ do}

1+E
. (4.7)

The permutation and bootstrap tests have the same asymptomatic power for the KS test, according
to Praestgaard [107], and report true p-values. However, taking into account all possible samples
requires enormous computational efforts. To alleviate this issue, the randomized tests probe only
some randomly drawn samples, and converge to true p-values given enough samples. According
to Manly [108], the smallest recommended number of samples is 1000 for the significance level
α = 0.05, however, Jackson and Somers [109] propose a minimum of E = 10000. We choose the
randomized permutation KS test with at least 1000 samples. Next, we discuss alternative tests.
Then, we continue with the comparison of data from the atomic regions with the reference values
in the markers.
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4.2.4 Alternative Statistical Tests for Dissimilarity

Alternative two-sample distribution shape tests include the Chi-Squared test, Cramér-von Mises
test (CvM), and Anderson-Darling test (AD). The Chi-Squared test uses binned data. We
assume that the data values from the tested regionsR1 andR2 are binned into the following NB

bins H [1] , . . . ,H [NB]. The l-th bin counts we denote as HR1 [l] and HR2 [l] respectively. The
binning is usually done in such a way that each bin contains enough samples (more than five).
The optimal binning depends on the unspecified hypothetical distribution. The test uses the
statistic X [110][pp. 616–617] that follows a Chi-Squared distribution with NB degrees of
freedom under the null hypothesis:

X =
NB

∑
l=1

(K1 ∗HR1 [l]−K2 ∗HR2 [l])
2

HR1 [l]+HR2 [l]
, (4.8)

K1 =

√
|R2|
|R1|

, (4.9)

K2 =

√
|R1|
|R2|

. (4.10)

The test reports the p-value for the null hypothesis H0. However, the Chi-Squared test does not
suit our purpose well due to the necessity of data binning.

The KS, the CvM and the AD tests assume a continuous hypothetical distribution. The CvM test
uses the statistic W 2 [111]:

W 2 =
|R1||R2|
|R1|+ |R2|

∫
∞

−∞

[F̂R1(t)− F̂R2(t)]
2 d F̂R1+R2(t), (4.11)

F̂R1+R2(t) =
|R1|F̂R1(t)+ |R2|F̂R2(t)

|R1|+ |R2|
. (4.12)

The AD test computes the statistic A2 [112]:

A2 =
|R1||R2|
|R1|+ |R2|

∫
∞

−∞

ω(t)[F̂R1(t)− F̂R2(t)]
2 d F̂R1+R2(t), (4.13)

ω(t) =
1

F̂R1+R2(t)[1− F̂R1+R2(t)]
. (4.14)

All three statistics Dn,W 2,A2 can be used in the permutation, bootstrap, and randomized tests in
case of a discrete hypothetical distribution or ties in the sampled data. The comparison of the
randomized versions of the KS and the CvM tests, conducted by Dufour and Farhat [106], shows
little difference in the power of these tests. The authors state that the KS test is more conservative
in rejecting the null hypothesis H0 than the CvM test. In case of a discrete hypothetical distribution,
the latter rejects the null hypothesis H0 more often than the specified significance level. The
AD test exhibits a better sensitivity to differences in the tails of the distributions than the KS
test, as it is using a weighting factor ω(t). Feigelson and Babu [113] mention the following
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commonly overlooked restrictions of the KS test: the independence of the two tested samples and
applicability to one dimension only. The same restrictions also apply to the CvM and the AD
tests. To keep computational efforts low, we favor the KS test.

4.2.5 Markers

In most applications, the user is interested in the comparison of the regions with certain reference
regions, rather than in the comparison of all possible region pairs. This enables data exploration
tasks where reference regions are selected and the most dissimilar (objective O1) or the most
similar (objective O2) regions are identified.

As a direct specification of the reference EDF is not possible, we have to estimate it from
several reference regions, which we subsequently call markers. A markerM is a connected
subset of the sampling space D of the input data. The EDFs of all the markers approximate the
unknown reference distribution function. Given l disjoint markersM1, . . . ,Ml , we compute the
dissimilarity significance for each region Ri and each markerM j by evaluating Equation 4.4.
This gives us a p-value pvi, j for each such pairing and assigns l p-values to each region. Note that
due to their independence requirement, the statistical tests are only valid on disjoint regions. Thus,
for each of the aforementioned regions, its intersection with the marker support has to be removed
prior to the tests. If the number of samples in the regionRi is too low for calculating statistics,
the corresponding p-values cannot be computed exactly. Denoting the region Ri without the
marker support withR′i, we check the following criteria:

|R′i|< S0, (4.15)

|R′i|
|Ri|

< S1, (4.16)

where S0 is the absolute minimal count and S1 is the minimal percentage. If any of the criteria is
satisfied, we leave the p-values pvi,1, . . . ,pvi,l undefined.

Since we are interested in a single p-value pvi for each region Ri from all the markers, we
combine the p-values pvi,1, . . . ,pvi,l of the KS tests. We formulate the task as follows: combine
p-values pv1, . . . ,pvl into a compound p-value pv. Nichols et al. [114] suggest to combine
the individual null hypotheses H0(1), . . . ,H0(l) with a logical conjunction. The compound null
hypothesis H0 = H0(1) ∧ . . .∧H0(l) is then tested. The corresponding compound p-value pv
is computed as follows: pv = max(pv1, . . . ,pvl). This is based on the following logic: the
compound p-value is significant only if each individual p-value is significant. The region has
significant dissimilarity only if it is significantly dissimilar to all the markers. For each regionRi

we compute its p-value pvi as

pvi = max(pvi,1, . . . ,pvi,l). (4.17)

If the regionRi has insufficient cardinality, then none of the p-values pvi,1, . . . ,pvi,l is defined. In
this case, we do not define the compound p-value pvi as well. In the following exposition, we
introduce the concept of composite regions for the data representation.
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𝑍𝑠

pv = 𝑃𝑟 𝒩 0,1 ≤ 𝑍𝑠

Composite Regions

𝒞2

𝒞1

𝒞3

Stouffer’s Z-score method

pv𝒞1 < 10−70 (significant)

pv𝒞2 = 0.98 (non-significant)

pv𝒞3 < 10−70 (significant)

…

𝑍𝒞1 = −18, 𝑍𝒞2 = 2,

𝑍𝒞3 = −19, …

Compute 𝑍𝑆 from p-values

…

Atomic Regions

Figure 4.3: Computation of the p-values for the composite regions of the phantom data
from Figure 4.2. The realization of the composite regions will be discussed in Section 4.4.2.
The composite regions span several atomic regions. We show only three composite re-
gions C1,C2,C3, but there are more. For these three composite regions we present histograms
of the p-values from the underlying atomic regions. For each composite region, we com-
bine these p-values with Stouffer’s Z-score method into a single p-value. The resulting
p-value refers to the compound null hypothesis H0 being true for all atomic regions within the
composite region.

4.2.6 Composite Regions

In practice, the number of locations di at which the outcome values o(di) are sampled is usually
large. Common medical or biological imaging output, for example, is given on regular grids with
millions of cells with data values. This results in a large number of regions where we compute
dissimilarity significances. Without additional means, the user would have to investigate all of
them during the data exploration, which hinders the analysis task.

To alleviate this issue, we combine the p-values of certain regions into a compound p-value
of the regions’ union. Figure 4.3 illustrates such a combination. Given a set of k disjoint
regions R1, . . . ,Rk, we state the following compound null hypothesis: the respective EDFs
F̂R1 , . . . , F̂Rk follow the same distribution as the EDF of the markersM1, . . . ,Ml . For each atomic
region Ri we have computed the p-value pvi (Equation 4.17). We now combine pv1, . . . ,pvk
into the p-value for the compound null hypothesis. For combining the p-values in case of the
multiple markers, we use the logical conjunction scheme. However, it cannot be applied here,
because the compound region is supposed to have significant dissimilarity if any of its subregions
is significantly dissimilar to the markers. Therefore, we use Stouffer’s Z-score method [115] with
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the statistic ZS:

ZS =
∑

k
i=1 Zi√

k
, (4.18)

Zi = inf{t | pvi ≤ Pr (N (0,1)≤ t)} , (4.19)

which follows a normal distribution N (µ = 0,σ = 1). Each combined p-value is assumed
to be drawn from a normally distributed random variable Zi ∼ N (0,1) (Equation 4.19). The
combination method requires these random variables to be independent. Therefore, the p-values
should come from independent tests, otherwise the resulting p-value is inaccurate. We ensure this
requirement by testing only disjoint regions in the KS test.

As the sum of independent normal distributions is a normal distribution itself, a p-value of ZS can
be computed, which represents the p-value for the compound null hypothesis:

pv = Pr (N (0,1)≤ ZS) . (4.20)

Later, Liptak, Mosteller and Bush introduced weights ω1, . . . ,ωk for the combined p-values [116,
117]:

ZW =
∑

k
i=1 ωiZi√

ω2
1 + . . .+ω2

k

. (4.21)

The test statistic ZW also follows a normal distribution N (0,1), so we obtain a p-value for the
compound null hypothesis. The choice of the weights ωi is an open question, e.g., Whitlock
suggests to use the degrees of freedom from preceding statistical tests [118]. In our case, the
KS test and the Nichols et al. [114] combination formula do not have any degrees of freedom,
therefore, we cannot assign the weights (ω1 = . . . = ωk = 1). One minor modification we
introduce relates to atomic regions with undefined p-values. If the p-value pvi is not defined, then
we omit it during the test. If all p-values pv1, . . . ,pvk are not defined, then we do not define the
p-value for the compound region as well.

By partitioning the sample locations D into a set of disjoint atomic regionsRi, the p-values of
arbitrary regions in D can be computed as long as such regions are represented as unions of
atomic regions. In this sense, the p-values of the atomic regions form a basis from which the
p-values of all possible unions can be computed with Stouffer’s method. We refer to such unions
as composite regions C1, . . . ,Ch. The p-value of the composite region C j, spanning over the atomic
regionsR j1 , . . . ,R jk , is computed with Equations 4.19, 4.20. To facilitate the data exploration,
we suggest that the composite regions vary in cardinality and represent the data with different
levels of detail. Together the composite regions form a hierarchy. Next, we discuss alternative
combination methods. Then, we continue with ranking the composite regions.

4.2.7 Alternative Combination Methods

There are alternative methods to combine p-values pv1, . . . ,pvk into a p-value pv for the compound
null hypothesis. Winkler et al. [119] mention the approach of Nichols et al. [114], Stouffer’s
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Rank

Figure 4.4: The p-values and the ranks of the composite regions of the phantom data from
Figure 4.2. Each composite region out of 196 is shown with a disk. The area of a disk
reflects the cardinality of the corresponding region. The p-values non-uniformly cover the
range of [0,1]. The ranks are color-coded. They correspond to the p-values and can be
used to compare the regions with respect to the dissimilarity significance. All the ranks are
equalized by the sum of the regions’ cardinalities (area of the disks) instead of the number of
the regions.

Z-score method [115] and some other approaches. Edgington [120] suggests the following
combination formula: pv = pv1+ . . .+pvk. Fisher’s combined probability test [121] computes
the statistic X = −2∑

k
i=1 logpvi that follows a Chi-Squared distribution with 2k degrees of

freedom. Friston et al. [122] propose to calculate the p-value as pv = (max(pv1, . . . ,pvk))
k.

Tippett [123] suggests pv = min(pv1, . . . ,pvk) for the p-values combination. A retrospective
discussion by Cousins [124] shows that there is no definite opinion on which test is the best.
Different authors recommend Stouffer’s Z-score method, Fisher’s combined probability test and
Tippett’s approach. We choose Stouffer’s Z-score method.

4.2.8 Global Ranking by Dissimilarity Significance

In our visualizations we encode the p-values of regions with certain visual attributes. Since the
p-values generally span a large range of orders of magnitudes, we cannot directly map them to
these attributes. Instead, we rank the regions by their p-values and map the ranks to the visual
attributes. Our approach assigns ranks to all the regions, taking into account their cardinalities and
preserving their relative differences in p-values. Using the ranks, the user can compare regions
with respect to their p-values (Figure 4.4).

First, we sort all regions by their p-values in ascending order. Next, we put the regions into
NR bins B1, . . . ,BNR . Since the regions vary greatly in cardinality, we equalize the bins by the
sum of the cardinalities of the regions, instead of the number of the regions. During the binning
process, we keep the order, defined by the p-values. Each bin has its own range of p-values that
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are determined by its initially assigned regions. However, the p-value ranges can overlap at the
end-points. In this case, we resolve ambiguities in bin assignments as follows. If a region has
a p-value falling into the ranges of several bins Bk1 , . . . ,Bks (k1 < .. . < ks), we put this region
into the bin Bk1 . The rank of a region is the ordinal number i of the bin Bi it belongs to. Regions
with lower ranks have smaller p-values and are more dissimilar to the markers than regions with
higher ranks. Depending on the task, the user explores either low ranks (objective O1) or high
ranks (objective O2).

Since the composite regions cover several atomic regions, they may have different range of
p-values compared to the atomic regions. As we do not compare the atomic and composite
regions, they are ranked separately. While the user specifies the markers, we display the ranks
of the atomic regions. By looking at the ranks of regions that contain data values similar to the
reference ones, the user can quickly validate the employed markers. If these ranks are rather low,
then the reference data-value distribution is not adequately approximated by distributions from the
markers. The user can refine the employed markers by adjusting their sizes and locations as well
as adding new markers. During the data exploration we display the ranks of the composite regions,
aiding the user in efficient localization of the regions with a desired dissimilarity significance.
At this point we have established all our abstract concepts. Next, we present the associated
visualizations.

4.2.9 Dissimilarity Significance Visualization

Having collected all necessary statistical information, we now visually encode it to facilitate the
data exploration. The composite regions form the hierarchy that represents the data with different
levels of detail. We visualize the hierarchy with a radial tree, conveying p-values of the regions
via color (Figures 4.5c, 4.6). We define the level of detail in the hierarchy as the ordinal number
of the corresponding level of the radial tree. The levels of detail start from one at the root of the
tree and increase. With increasing levels of detail, this visualization occupies successively more
screen space. The angular size of a region in the tree is determined by its cardinality. In order
to aid the user in reading statistical information, we order the displayed regions with increasing
dissimilarity significance in a counterclockwise fashion. Because of this layout, users easily spot
relevant regions.

As all the data is represented with different levels of detail, at each such level i there is a region with
the most significant dissimilarity Cmax,i and a region with the least significant dissimilarity Cmin,i.
Such regions are of particular interest to the user, as they fit the selected objective (either O1 or
O2) the most. In order to convey the relationships between these regions throughout different
levels of detail, we display a path of exploration in the radial tree (Figure 4.5c2). In case of the
objective O1, this path connects regions Cmax,i at each level of detail i. For the objective O2, we
connect with the path regions Cmin,i. This path connects a composite region to its subregion with
the desired dissimilarity significance, i.e., Cmax,i+1 ⊂ Cmax,i, Cmin,i+1 ⊂ Cmin,i. This way, the user
can investigate the data, by adjusting the level of detail interactively. To simplify the exploration
of the finer (higher) levels of details, the j-th level parent of the currently selected region becomes
a new root of the displayed radial tree. We set the value of j to half of the number of visible
levels in the radial tree. Sometimes, the automatically suggested path would lead the user to a
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Figure 4.5: The visualization components of our proposed approach: a) the (median) p-values
timeline plot, b) the data view, c) the radial tree view, d) a slice view for marker specification.
The timeline plot (a) shows the median p-values after the user specified four markers and
applied four operations. The data view (b) shows the entire data (b1, green) and the region
of data, which is currently selected in the radial tree view (b2, red). Each composite region is
displayed as a node of the radial tree (c). The p-values in the tree are color-coded according
to the legend (c1). The user explores the data in the radial tree view by following the paths
(c2, c3). The automatically-generated path (c2) links the composite regions with the most
significant dissimilarities at each level of detail in the tree. Here, the user chose to explore an
alternative path (c3) by selecting composite region (c4). The rank of the selected region is
communicated at the annulus (c5). In this application scenario the markers are specified via
the slice view (d). The p-values in this view are color-coded according to the legend (d1) The
user specified four markers in a vascular structure (d2). The vessels are shown in blue tones
(relatively low dissimilarity significance, d3), and the bones are highlighted with red tones
(relatively high dissimilarity significance, d4).

region that is sub-optimal in terms of the chosen objective. We denote the level of detail that
contains this region as k. In order to proceed, the user employs the radial tree. At the level k the
user checks regions, alternative to Cmin,k and Cmax,k, and alters the path. In the following sections
we explain in detail the data exploration with the radial tree and the paths.
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Figure 4.6: a) The radial tree and some of its nodes. b) The corresponding composite
regions (shown in red) of the data from Figure 4.2. The dissimilarity against the markerM1
is evaluated. Its significance is color-coded in (a): blue tones depict large p-values (low
significance), red tones highlight small p-values (high significance), and white tones are in
the middle.

We employ the diverging color map blue-white-red by Kenneth [125] for displaying derived
statistical information of the regions, as shown in Figures 4.5c1,d1. The higher ranks are displayed
with blue color tones. This tells the user that these ranks do not carry significant dissimilarities to
the markers. White tones indicate an uncertainty related to the middle ranks: their p-values are
not small enough to judge if these ranks have a significant dissimilarity. The lower ranks get the
user’s attention, being highlighted with red tones. The corresponding regions exhibit significant
dissimilarities to the markers. The legend is displayed as an annulus around the radial tree,
conveying both the diverging color map and the direction of increasing dissimilarity significance.
As the data may consist of multiple connected components, at the coarsest level of detail the user
can select the preferred component for further exploration. An additional annulus around the
tree is divided into sectors that correspond to the connected components, which are given in the
data. This annulus is shown only if there are two or more connected components, thus, it is not
displayed in Figure 4.5. We link the data view (Figure 4.5b) and the radial tree view. This way,
they complement each other. The data view displays the data and its regions in two-dimensional
screen space. The radial tree view conveys statistical characteristics of the regions and their
hierarchy.

The specification of markers requires a certain precision of the user input and involves the
selection of samples from the data. Minor variations in the marker’s position are allowed as long
as it only contains reference data values. If markers belong to two or more features of the data,
all such features would be matched. For data with one or two dimensions only the markers can
be specified directly in the corresponding data views. In case of three or more dimensions the
occlusion problem hinders the exact specification of the region and, thus, we recommend to show
such data using the two-dimensional slice view (Figure 4.5d). We encode the ranks of the atomic
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regions with the same blue-white-red color scheme, as used in the radial tree. This way we convey
the dissimilarity significance of the atomic regions with respect to the currently specified markers.
While the user specifies the markers, we compute the p-values and ranks interactively to facilitate
an immediate check whether the current set of markers adequately approximates the reference
data-value distribution.

We support dynamical situations, when the data, the markers, the atomic, or the composite regions
change. Such changes can occur even if the analyzed data is spatial. We give as an example an
interactive segmentation-editing task, where the segmentation mask is a part of the data. We
record in time the consistency that indicates an agreement of data-value distributions between
the markers and the rest of the data. As a measure of the consistency, we use the median p-value
across all regions. The consistency is communicated to the user via the p-values timeline plot
(Figure 4.5a). In this plot we use a logarithmic scale for the vertical axis. Each time a change
occurs, we add to the plot a new time step. In order to better depict the trend of the p-values, we
connect the median p-values from the individual time steps with lines. We do not use the largest
and the smallest p-values, because in real-world data there can always be outlier regions with
significant and non-significant dissimilarities to the markers. We do not average the p-values, as
they may differ by orders of magnitude. Although the user might be interested in the p-value
distribution, the median p-value is sufficient to judge consistency changes in our use-cases.

The p-values timeline plot is useful in three cases. If too few markers are specified, approximation
of the reference distribution by their EDFs is inadequate. This situation is indicated by low
median p-values. The user should add more markers to improve the low consistency in this case.
After each change the user gets a hint whether the consistency actually improves. Such a hint may
be useful in several applications, including tuning of filtering as well as reconstruction algorithm
parameters, detection of acquisition artifacts, and abnormalities in the data, segmentation editing.
The latter application we will investigate in Section 4.4.2. Having stored the p-value range of
each rank for each time step, we can re-rank all current regions according to the p-value ranges of
the selected time step. This enables a rank-based comparison that is often required in the data
exploration tasks.

4.2.10 Data Exploration using Dissimilarity Significance

We propose the following protocol for data exploration, aided by the dissimilarity significance
(Figure 4.7). The user starts the exploration in the radial tree view at the coarsest level of
detail. Depending on the task, the user chooses the composite region with the most dissimilarity
significance (objective O1) or with the least dissimilarity significance (objective O2). Then, the
user follows the automatically suggested path in the radial tree, reaching the finer levels of detail.
With the linked data view, the user finds the necessary level of detail along the path.

If the current path (Figure 4.5c2) leads to a result, that is sub-optimal in terms of the chosen
objective, a new path should be selected. To do so, the user finds along the current path a coarse
region, which is optimal in terms of the chosen objective, and selects it by clicking. Then, the
radial tree view is locked on the selected region. In the radial tree view, the user explores a few
subregions of the selected region and selects one that fits the chosen objective the best. The new
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Figure 4.7: The data exploration protocol, using dissimilarity significance information. The
radial tree view shows the data with varying levels of detail. At each level of detail, the region
with the most significant dissimilarities is marked with a circle. Such regions across different
levels of detail are linked with a path. The first six levels of detail are explored, and the
corresponding regions are highlighted in red in the linked data view. The rest of the data is
shown in green.
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path, which goes through the selected subregion (Figure 4.5c4), is automatically generated and
displayed (Figure 4.5c3). Finally, the user continues the data exploration, along the new path.

During the exploration, the user gets immediate visual feedback in both the data view and the
radial tree view. This way, the user arrives at the desired region of the data, which has a proper
level of detail and fits the chosen objective the best, without inspecting a possibly vast number of
composite regions.

4.3 Implementation

Our implementation uses C# with Intel TBB (C++, on the CPU) and DirectX 11 Compute Shaders
(HLSL, on the GPU) for parallelization. We implemented the two-sample randomized permutation
KS test on the GPU. The number of permutations has to be in the interval [1024,1024 ·16]. The
KS test reports p-values with single-precision floating-point numbers. We run Stouffer’s Z-score
method on the CPU in parallel threads. The computation of the normal distribution function is
based on works of Cody [126] and Wichura [127]. In order to improve the numerical stability
of our statistical framework against overflows and underflows, we compare pv′ = log(pv) rather
than the p-values pv themselves. The logarithm preserves the p-value comparison logic.

We store the samples from the continuous distributions in sorted lists. As for the discrete
distributions, the data is organized into histograms, where each bin counts only a single discrete
data value.

The value of the parameter S0 = 15 in Equation 4.15 was determined in the application scenario
with small objects (vessels in the human lower extremities), which will be described in Sec-
tion 4.4.2. Smaller values of S0 allow statistical tests on fewer data samples. However, if the data
samples are too small, a statistical approach is not appropriate. With S1 = 0.5 in Equation 4.16,
the related criterion is only satisfied in regions that have large overlaps with markers. As data
values in the overlaps are excluded from the statistical tests, the remaining parts of such regions
are insufficient to perform the statistical tests. However, the users already explored these re-
gions during marker specification, so we can safely exclude them from the further analysis. We
use NR = 256 as the number of ranks for implementation convenience, mapping the ranks to the
blue-white-red color scheme.

4.4 Results

Our statistical framework supports a general scenario of comparing regions of the data with the
user-specified markers. In this section we provide the following components: the basic test for
a pair of an atomic region and a marker, the mechanism for combining p-values from multiple
markers, and the combination method for composite regions. For each concrete application, one
first adapts our framework to the application domain. The adaptation requires a realization of the
following abstract concepts: the atomic regionsR1, . . . ,Rk, the composite regions C1, . . . ,Ch, the
markersM1, . . . ,Ml . Moreover, our null hypothesis H0 should have a proper interpretation in
the application domain.
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Atomic regions. We suggest a general atomic-region realization that should be used in case
of a lack of a domain-specific realization. All atomic regions have the same cardinality, do
not overlap, and each of them represents an m-dimensional hyper-cube in D. The cardinality
is application-dependent. It may use natural time intervals of temporal data, e.g., hours, days,
months, etc. For spatial data it may reflect the expected feature size or units of the volume.

Markers. The user specifies the placements and sizes of the markers. To keep the markers easy
to localize, we realize them as m-dimensional hyper-cubes or m-spheres. The markers are usually
specified in the analyzed data. However, they can also come from preselected reference data
values in external data sources.

Composite regions. The composite regions can be realized according to the domain-specific
logic. If such a realization is missing, we suggest the following general realization. First, we
compare the p-values of the atomic regions to the user-specified significance level α . This will
effectively remove many atomic regions that are not important for the users. Depending on
the objective, we remove the regions with either non-significant (objective O1) or significant
(objective O2) dissimilarities. From the remaining atomic regions we construct the composite
regions by means of a watershed transformation. For the objective O1 we use the p-value of
each atomic region as the height, whereas for the objective O2 we take one minus the p-value.
The watershed transformation creates basins and watersheds. The watersheds are the ridges of
the height field. They correspond to atomic regions that maximally disagree with the chosen
objective compared to their neighborhood excluding the ridges. Each basin contains a local
minimum of the height field. Each such minimum corresponds to an atomic region that fits the
chosen objective best compared to its neighborhood. The remaining basin elements are separated
from other basins by the watersheds. These elements correspond to atomic regions, which fit the
chosen objective better than the watersheds. Finally, each basin represents a composite region of
the data that fits the chosen objective better than its surrounding. We preserve connectedness of
the data between the basins by adding the watersheds to each basin that they separate.

The number of composite regions may be too large for the user to inspect directly. We recommend
constructing a hierarchy of the composite regions, if it is not accomplished by the composite
region realization. We continue with the hierarchical watershed approach by Hahn et al. [27].
For combining the basins, we use the original metric, suggested by the authors. It is equal to the
watershed height. Using the metric, we choose two adjacent basins with the lowest watershed
between them among all available basin pairs. With the objective O1, we select two basins with
the most significant dissimilarities. Under the objective O2, two basins with the least significant
dissimilarities are found. We merge these two basins together, creating a new basin (a new
composite region). The merging is repeated iteratively until there are no more adjacent basins.
The constructed hierarchy represents the data with adjustable levels of detail. Alternatively, one
may cluster the composite regions. However, clustering algorithms often require additional input
in order to produce sensible results. We favor the hierarchical watershed transformation, as it
does not introduce any additional parameters and respects the connectedness of the data. We
demonstrate the generality of our proposed method by applying it to two different types of data.
In the following section we show a temporal-data analysis scenario. After that, our method assists
the user during segmentation editing on three-dimensional spatial data from the medical domain.
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4.4.1 Time Series Analysis

In the following we analyze a single time series. We use the general realizations of our abstract
concepts in order to investigate it. As a concrete example, we take the maximal daily temperature
in Melbourne, Australia in the period 1981–1990 (Figure 4.8a). The task is to find similar weather
conditions (objective O2). The atomic regions span entire months. The user specifies a single
marker from 1981-Jun-03 till 1981-Jun-25 (Figure 4.8b). The hierarchy of composite regions is
then constructed and displayed in the radial tree view. The user gets an overview of all found
time intervals with possibly similar temperature distributions. In this case, ten intervals are
found (Figure 4.8c): July-August 1981, June-August 1989, June-July 1986, June-July 1982,
June-August 1983, June-August 1984, June-August 1990, June-August 1987, June-September
1985, and June-July 1988. They are ordered by decreasing p-values. The user checks each interval
(Figure 4.8f). The first seven time periods have the following p-values: pv1 = 0.388, pv2 = 0.387,
pv3 = 0.276, pv4 = 0.198, pv5 = 0.146, pv6 = 0.076, pv7 = 0.057. These p-values are higher
than the set significance level (α = 0.05). The user concludes that there is no significant difference
so far in the weather conditions between these time intervals and June 1981. The last three time
periods have the p-values below the significance level: pv8 = 0.025, pv9 = 0.023, pv10 = 0.014.
The user decides, that the weather conditions exhibit significant differences during these time
intervals, compared to June 1981. Time intervals that were discarded during the comparison with
the significance level, e.g., September 1983-May 1984, have weather conditions with significant
differences compared to June 1981.

4.4.2 Segmentation Editing

Various applications may benefit from domain-specific realizations of atomic and composite
regions. The main idea behind using the specialized realizations is to transfer additional infor-
mation to the statistical analysis. As an example, we present an adaptation of our method for
segmentation editing, where we include spatial features that are captured by skeletonization.
Geometric operations on the input segmentation mask define the atomic and composite regions.

Let us assume that we have a three-dimensional data and a mask L of an object, which is defined
as a set of voxels. The mask L, generated (semi-)automatically, often contains regions which, in
fact, do not belong to the object. Also, there are actual parts of the object that are not included in
the mask L. Both kinds of regions stem from data irregularities/abnormalities and their processing
by the segmentation algorithms. The user searches for such regions and either removes or adds
them to the mask.

Our statistical approach assists the user during the data exploration process. First, the user
specifies the markers that definitely belong to the object. According to our null hypothesis H0, we
identify the first kind of regions as having significant dissimilarities to the markers (objective O1).
The second kind of regions, though, exhibits non-significant dissimilarities to the markers
(objective O2). Having the dissimilarity-significance information, we suggest the user regions
that are relevant for subsequent editing.
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Figure 4.8: A time-series analysis using our dissimilarity-significance method. The task is to find similar (objective O2) weather
conditions, considering maximal daily temperature in Melbourne, Australia: a) the measurements throughout the entire observation
period (years 1981-1990), b) the user specifies the marker (green) being interested in the temperature distribution from 1981-Jun-03
till 1981-Jun-25, c) the user gets an overview of all found time intervals with possibly similar weather conditions (highlighted with
red-white-blue colors), d,e) the p-values legend for the atomic and the composite regions, f) the user investigates ten found time
intervals in detail via the radial tree. The first seven time intervals have p-values higher than the set significance level (α = 0.05)
and indicating no significant difference so far to the weather in June, 1981. The last three time periods have p-values that are lower
than the level α and show significant differences in the weather conditions, compared to June, 1981.
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The spatial features, captured by the skeletonization, are vital for this scenario, as demonstrated
in the previous chapter. Therefore, we provide the specialized realizations of the atomic and
composite regions.

Atomic regions. The concept of the influence zones, introduced in Chapter 2, perfectly matches
the atomic regions. The influence zones are constructed as follows. We apply the thinning-based
skeletonization by Lee et al. [44] on the mask L. During the skeletonization iterations we assign
to each peeled voxel the current iteration number. With minor arithmetic operations, these
numbers are converted into skeleton distances. We link each voxel in L to the closest skeleton
voxel, building the influence zones. The influence zones cover the mask L entirely and do not
overlap with each other. Each zone can be thought of as a section of the object “orthogonal” to the
skeleton. We assume that each influence zone belongs to a single spatial feature of the object if the
segmentation mask is correct. Influence zones at segmentation defects, however, may belong to
two or more spatial features and exhibit mixed data-value distributions. Such mixed distributions
have significant dissimilarities compared to markers, indicating the underlying defects. If the
object consists of several tissues or materials, data-value distributions of influence zones should
be partially matched with the markers that represent individual tissues or materials. Currently, the
partial match is only possible by placing additional markers at interfaces between different tissues
or materials. The partial match with reference data-value distributions, generated from groups of
weighted markers, is a promising future work. We realize the atomic regionsR1, . . . ,Rk as the
influence zones, constructed by Algorithms 2.1 and 2.2.

Composite regions. This time we adopt the concepts of the correction regions and the correction
operations, introduced in Chapter 3. The entire mask L is split into the correction regions
according to the histogram dissimilarity metric. The metric analyzes differences between the
influence zones and inside individual influence zones in order to find discrepancies, specific to
the aforementioned two kinds of regions. To the user this technique suggests a vast variety of
correction operations with the corresponding correction regions. The user manually inspects them
and selects the ones which actually have to be removed or added to the mask L. The correction
regions consist of the influence zones and form a hierarchical representation of the entire mask L.
We realize the composite regions C1, . . . ,Ch as the correction regions.

Instead of manually inspecting all correction regions, the user follows the paths in the radial tree
view. This way we guide the user to the correction regions that are relevant for the editing task.
Each time the user edits the mask L, the p-values timeline plot provides an indication whether
the mask L is improving during the correction process. Non-significant p-values in this plot can
be used as a termination criterion of the editing process.

As a concrete example, we perform the segmentation editing of Computed Tomography Angiogra-
phy (CTA) datasets of the human lower extremities. The goal is to obtain the masks of the vessels,
separated from the bones. The given medical datasets exhibit severe pathological conditions
as well as major anatomical variability between the patients (missing vessel branches, different
branching points). The fact that vascular structures are touching bones causes severe segmentation
defects due to the administered contrast agent (Figure 4.9a). In Figure 4.9 we present an editing
process of one of these datasets. The user starts with the segmentation that contains severe
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defects, e.g., bones and table fragments (Figure 4.9a). Four markers are specified inside of the
vessels (Figure 4.9b). In the slice view the user notices, that the vessels are colored with blue
tones (relatively low dissimilarity significance), and the bones are mostly shown in red tones
(relatively high dissimilarity significance). The user removes the table by removing connected
components without markers. The user finds the first three correction operations, following the
automatically suggested paths in the radial tree view (Figure 4.9c-e). This removes major bone
structures, but fragments of the vertebrae, the tibia, and the fibula are still present. Along the
alternative path the user finds the fourth correction operation that removes the vertebrae fragments
(Figure 4.9f). The remaining bone fragments are removed by the fifth correction operation, found
at the automatically suggested path (Figure 4.9g). With this the user finishes the editing process,
reaching a satisfying result (Figure 4.9h). For validation purposes, the resulting segmentation
is checked against the initial one. The user selects the last step in the timeline plot, where the
segmentation is not modified. As expected, all the regions get higher ranks, indicating their
relatively low dissimilarity significance (Figure 4.9j). After editing, the vessel mask has a quality
level comparable to the results of a technique used in the daily clinical routine (Figure 4.9i). All
major vessels are preserved, while bones and table fragments have been correctly removed.

Domain Experts Feedback

In order to validate our statistical method with domain experts, we choose the segmentation-
editing scenario in the medical image processing domain. Two domain experts evaluated our
approach with respect to general usability, benefits of having statistical information available,
and interaction aspects. They are radiologists, experienced in segmenting vascular structures
from various locations of the human body. They are experienced in correcting segmentation
masks, since the results of their currently employed methods do not meet the required quality
standards. The resulting vessel mask is used for rendering of vessel reformation images for
diagnostic purposes.

During the evaluation session, the domain experts corrected the vessel segmentation masks
with our proposed technique T1. Our domain experts also performed the same tasks with
the technique T2, described in Chapter 3, as well as with the technique T3 in the AngioVis
framework [1] that they use in the clinical routine. The techniques T1 and T2 do not use any
domain-specific knowledge, in contrast to the technique T3.

We used ten CTA datasets from the daily routine of our domain experts. First, we showed to the
experts the correction of one dataset with our proposed technique T1. The author presented the
marker specification and the data exploration protocol to provide a basic understanding. The
experts were introduced to the workflow of T1 as well as to the method for a statistical assessment
of suggested correction operations. Interaction examples were presented. Then, the experts
tried our proposed technique T1 themselves on four other datasets in order to train, as they were
completely unfamiliar with it. The same introduction to the technique T2 was made.

Each expert corrected five test datasets with techniques T1, T2, and T3. For the initial seg-
mentation, we employed thresholding with a manually set constant threshold, followed by a
few morphological operations and a connected components analysis. The technique T3 used
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Figure 4.9: The segmentation editing scenario using our dissimilarity significance method.
The task is to edit a segmentation mask of vascular structures in CTA data of human lower
extremities. The composite regions represent the mask with different levels of detail. In
order to correct the mask, the user selects regions for removal. The user is interested in
the regions exhibiting significant differences (objective O1) to the object-of-interest (vessels):
a) the automatic vessel segmentation (green) exhibiting defects (fragments of the scanning
table and bones are included), b) the user specifies four markers inside of vessels (indicated
with arrows), c-e) following the automatically suggested paths, the user finds the first three
correction operations (removal of red parts), f) the user follows the alternative path and finds
the fourth correction operation (removal of red part), g) the user finds the fifth correction
operation, following the automatically suggested path (removal of red part), h) the user
achieves a satisfying result after only five operations, i) comparison of our method’s result
with a result obtained by employing a technique from clinical routine: the results are of the
comparable quality, few small vessels are not properly segmented as they are out of interest
for the radiologists, j) the user validates the segmentation-quality improvement by comparing
the result (h) to the original state (a) (selected in the timeline plot) – the composite regions
are finally more in the blue color range and achieve higher ranks, indicating higher p-values
than those of the original segmentation mask.
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the masks generated by an advanced vessel segmentation technique that distinguishes bones
and vessels via an intensity criterion. Thus, the quality of the initial segmentation was superior
for the technique T3 than for the techniques T1 and T2. However, the technique T3 and its
preceding segmentation method are parts of the well-established clinical workflow, so we did not
compensate for this difference in our results. Each domain expert first corrected the test datasets
with T1, then processed them with T2, and after three days processed them with T3. After the
experts finished their tasks, they answered our questionnaire (see Appendix B). We measured the
time that was required to correct the vessel masks. On average, with our technique T1 the experts
spent five minutes fifty seconds on each dataset. The users never finished their tasks with the
technique T2, as even one single dataset was not completely corrected after twenty minutes. With
the base-line technique T3 the experts achieved the desired vessel segmentation in six minutes
twenty seconds per dataset on average.

The domain experts assessed the usability of our method with the System Usability Score by
Brooke [87]. The average score was 86 points out of 100, which approximately corresponds to
the 90th percentile of the perceived usability.

The experts felt confident while performing their tasks, having the statistical information from
our proposed method. They consider this information as useful. According to our domain experts,
the radial tree view significantly improved the overview of suggested correction operations
compared to the technique T2. Also, the experts liked the exploration of the suggested correction
operations with the paths, which indicate the statistically most significant dissimilarities. The
markers’ specification via the slice view was rather easy and straightforward to our experts.
With the markers the experts were able to precisely indicate the regions of interest, i.e., the
vascular structures. Our chosen color-coding scheme proved to be good for both the overview
and exploration purposes, judging by responses of the experts and the achieved segmentation
results. Finally, with the help of the timeline plot as an overview, the experts were able to see a
progressive improvement of segmentation quality during the correction. Details on the scores are
available in Figure 4.10a.

Even after a very short adaption period of ninety minutes, the experienced radiologists liked
the radial tree view of our technique T1. It enabled the experts to efficiently navigate between
different correction operations. The paths, displayed in the radial tree view, were beneficial for
the experts, who used this feature at each editing step. These paths, being generated from the
statistical information, indicate the usefulness of our proposed statistical dissimilarity evaluation
method. The results of the technique T2 strengthen this fact further. Although the correction
operation suggestions were completely the same for the techniques T1 and T2, the experts were
unable to finish the editing with the technique T2 in a reasonable amount of time (twenty minutes
per dataset) due to the data complexity. The main reason was a lack of overview of the correction-
operation suggestions, as pointed out by the mediocre score in the evaluation in Chapter 3. In our
technique T1, the radial tree view and the paths, carefully investigated by the radiologists, rectify
this deficiency and reduce necessary interaction. We may conclude that our technique T1 enables
the exploration of data with complex structures, such as vessels.

Compared to the base-line technique T3, our technique T1 required less interaction. The task
completion time was slightly shorter as well. Both techniques were considered easy to use by
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Figure 4.10: a) Evaluation of our technique. b) Comparison of our method (T1) to the clinical method (T3). Grades range from 1
(worst) to 5 (best).
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the experts. The tolerance against imprecise input was rated slightly higher for our technique T1.
Both techniques T1 and T3 allowed the experts to reach completely satisfying results. As for
support of the users during the interactive editing with relevant information, our technique T1
was ranked slightly better than the base-line technique T3. Detailed information on a comparative
evaluation can be found in Figure 4.10b. In total, our technique T1 got a better score than
the base-line technique T3. This was achieved by extending the existing technique T2 with
our dissimilarity significance computation and novel visualization components. Without these
extensions, according to one of our domain experts, the technique T2 “was unable to process
complex datasets such as peripheral arteries”. Still, the technique T2 properly handles less
complex objects, such as single organs or specimens.

Robustness Tests

In order to verify the robustness of our statistical method, we conducted several tests. For these
tests we used three-dimensional spatial data and the specialized realizations based on the influence
zones and correction regions. We chose it because such kind of data is usually harder to analyze
than a time series due to the higher dimensionality.

Robustness of the Statistical Tests

In order to evaluate the robustness of the employed statistical tests (the KS test and Stouffer’s
Z-score method), we conducted checks with a phantom 3D object composed of two parts, each
exhibiting different data value distributions (six cases). The object is depicted in Figure 4.11.
A single marker was placed in one of two positions: the middle point of the upper part and the
middle point of the lower part of the object. The marker radius was 16 voxels. The differences
between the distributions of two object parts were varied with delta ∆d ∈ {0,1,2,4,8,16,32,64}.
As a sanity check, we included the situation where there is no difference between the distributions
(i.e., ∆d = 0). The original parameters were µ1 = 30,σ1 = 10. The cases were:

• case C1 - the lower part has the Gaussian distribution N (µ1,σ1), and the upper part has
the Gaussian distribution N (µ1 +∆d,σ1)

• case C2 - the lower part has the Gaussian distribution N (µ1,σ1), and the upper part has
the Gaussian distribution N (µ1,σ1 +∆d)

• case C3 - the lower part has the Gaussian distribution N (µ1,σ1), and the upper part has
the Poisson distribution P(µ1 +∆d)

• case C4 - the lower part has the Gaussian distribution N (µ1,σ1), and the upper part has
the distribution A1 ∼ P((σ1 +∆d)2)+ µ1− (σ1 +∆d)2 with E[A1] = µ1 and Var(A1) =
(σ1 +∆d)2

• case C5 - the lower part has the Poisson distribution P(µ1), and the upper part has the
Poisson distribution P(µ1 +∆d)

• case C6 - the lower part has the Poisson distribution P(µ1), and the upper part has the
distribution A2 ∼P(µ1 +3∆d)−3∆d with E[A2] = µ1 and Var(A2) = µ1 +3∆d
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Figure 4.11: The phantom object, its two parts and its skeleton.
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Following the common representation of three-dimensional spatial data, the generated sample
values were rounded to integral numbers. The data values generated were numbers from −32768
to 32767 (signed 16-bit integers).

The detailed information on the p-values along the skeleton is shown in Figures 4.12-4.17. The
significance level was α = 0.01. We note that the differences are statistically significant starting
from ∆d = 1 in the case C1, ∆d = 2 in the case C2, ∆d = 0 in the case C3, ∆d = 1 in the case C4,
∆d = 1 in the case C5, and ∆d = 2 in the case C6. We conclude that our statistical pipeline detects
significant dissimilarities in all tested cases, even if the differences are rather small (∆d ≥ 2).
If ∆d ≥ 1, the p-values of the object part without a marker indicate significant dissimilarities
(pv≤ 0.01), as illustrated in Figure 4.18. The p-values of the object part with a marker, however,
convey no significant dissimilarities. In case of no differences (∆d = 0), the reported p-values
show no significant dissimilarity as well (only applicable for cases C1, C2, C5, C6).

Robustness against Noise

To verify the robustness to noise, two kinds of artificial noise were added to the medical dataset
depicted in Figure 4.7. The first kind of noise was normally distributed with a mean µ = 0 and
varying standard deviation σ according to Table 4.1. The second kind of noise had a Poisson
distribution with a varying mean µ as shown in Table 4.1. The Peak Signal-to-Noise Ratio (PSNR)
was used to evaluate the degree of artificial noise. We used 2048 as the maximal value (upper
range for integer values used in CTA data). The segmentation mask was generated anew for
each µ and σ . Our statistical method was aiding an interactive segmentation-editing framework.
With a thresholding algorithm, masks of bones and vessels were generated. The author then
edited them to keep only the vessels. For each dataset, only four markers were specified. In
each corrected segmentation mask, the markers were placed at exactly the same positions. The
markers’ positions were determined in the original dataset without noise. In the test we used one
medical CTA dataset of the human lower extremities. The dataset had 800 slices; each slice had
resolution of 512 × 512 pixels.

At each tried noise level, the user achieved the desired result. As a quality measure, we employed
the Jaccard coefficient J (Equation 2.1) between the output mask and the reference solution,
obtained from the data without the artificial noise and manually refined by one of our domain
experts. The Jaccard coefficient is a normalized similarity measure, which reaches one in case of
a complete match between two tested sets. The reference solution required three editing steps as
well as some voxel level editing, accomplished in 90 seconds. The input masks had a Jaccard
coefficient lower than 0.05, indicating a large deviation from the reference solution. With all
tried noise models, the editing was successful, as shown by a significant improvement of the
quality measure. Moreover, our statistical method was discriminating bones from vessels, as
demonstrated by the resulting segmentation masks of the vessels. Detailed information on editing
time, number of steps and the output quality can be found in Table 4.1. For comparison purposes,
the resulting masks are shown in Figure 4.19. The quality of the result, measured with the Jaccard
coefficient between the output mask and the reference solution, was above 0.88.

120



4.4. Results

50 100 150
Skeleton

10-3

10-2

0.1

1
p-value

α=0.01

Δd=0 Δd=1 Δd=2 Δd=4 Δd=8

Δd=16 Δd=32 Δd=64

50 100 150
Skeleton

10-3

10-2

0.1

1
p-value

α=0.01

Δd=0 Δd=1 Δd=2 Δd=4 Δd=8

Δd=16 Δd=32 Δd=64

Figure 4.12: Case C1: p-values along the skeleton with respect to different ∆d. The top
image shows the p-values if the marker is placed in the upper object part. The bottom image
reports the p-values if the marker is located in the lower object part.
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Figure 4.13: Case C2: p-values along the skeleton with respect to different ∆d. The top
image shows the p-values if the marker is placed in the upper object part. The bottom image
reports the p-values if the marker is located in the lower object part.
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Figure 4.14: Case C3: p-values along the skeleton with respect to different ∆d. The top image
shows the p-values if the marker is placed in the upper object part. The bottom image reports
the p-values if the marker is located in the lower object part. The significant differences in the
case of ∆d = 0 are caused by two different distributions (Gaussian, Poisson), used for the
upper and the lower parts of the object respectively.
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Figure 4.15: Case C4: p-values along the skeleton with respect to different ∆d. The top image
shows the p-values if the marker is placed in the upper object part. The bottom image reports
the p-values if the marker is located in the lower object part. The significant differences in the
case of ∆d = 0 are caused by two different distributions (Gaussian, Poisson), used for the
upper and the lower parts of the object respectively.
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Figure 4.16: Case C5: p-values along the skeleton with respect to different ∆d. The top
image shows the p-values if the marker is placed in the upper object part. The bottom image
reports the p-values if the marker is located in the lower object part.
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Figure 4.17: Case C6: p-values along the skeleton with respect to different ∆d. The top
image shows the p-values if the marker is placed in the upper object part. The bottom image
reports the p-values if the marker is located in the lower object part.
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Figure 4.18: P-values for the upper (top image) and the lower (bottom image) parts of the
object with respect to different cases and ∆d. The single marker is placed either in the upper
part (bottom image) or in the lower part (top image) of the object. At ∆d = 0, the reported
p-values are higher than the significance level α in the cases C1, C2, C5, C6, indicating no
significant differences. In the cases C3 and C4, however, the p-values are below α . This
corresponds to significant differences between two different distributions. With ∆d ≥ 1, the
reported p-values are also below α . This implies significant differences between distributions.
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Figure 4.19: Comparison of the results with respect to different noise models.
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4.4. Results

Table 4.1: Detailed information on the volume editing experiment with artificial noise

Gaussian noise

Pass 1 Pass 2 Pass 3 Pass 4 Pass 5 Pass 6
Standard deviation σσσ 1 2 4 8 16 32
Estimated PSNR (dB) 65.1 59.9 54.3 48.4 42.6 36.9

Editing time (sec.) 103 79 116 150 86 101
Number of steps 8 3 7 6 5 5
Quality of result 0.972 0.949 0.971 0.943 0.935 0.884

Poisson noise

Pass 1 Pass 2 Pass 3 Pass 4 Pass 5 Pass 6

Mean µµµ 1 2 4 8 16 32
Estimated PSNR (dB) 66.3 63.3 60.4 57.3 54.3 51.4

Editing time (sec.) 91 81 116 122 192 102
Number of steps 4 3 7 10 9 5
Quality of result 0.979 0.980 0.971 0.974 0.969 0.948

Robustness of the Marker-based Reconstruction of the EDFs

We evaluated how different numbers of markers can reconstruct the complex distribution function
of a real-world dataset with the following test. For this purpose, we used the median p-value
across all atomic regions as a measure of consistency between the empirical distribution functions
of the markers and the underlying data value distribution.

We randomly placed 50 markers inside the vessels of the human lower extremities in a rather
challenging medical dataset (Figure 4.7). To estimate the stability of marker placement, we
repeated the procedure 50 times. We set the significance level α to 0.05. In the test we used one
CTA medical dataset. The dataset had 800 slices; each slice had resolution of 512×512 pixels.
We used the vessel segmentation mask, edited and manually refined by the domain expert.

Resulting median p-values for 50 sets of randomly placed markers are shown in Figure 4.20. As
expected, the more markers we allocate, the more stable is the reconstruction of the distribution
function. This is reflected in relatively large median p-values, which became non-significant after
five markers in all 50 trials. The more markers we use, the less is the median p-values variation.
We may conclude that EDFs from five or more markers reconstruct the data-value distribution of
the real-world object with sufficient precision.

4.4.3 Performance Tests

In order to test the performance of our statistical approach, we used an Intel Core i7-2600K 3.4
GHz CPU with 16 GB of RAM and an NVidia GeForce Titan X GPU. In the case of the temporal
data with 3650 samples, the calculation time is 0.004 seconds with one marker, 0.006 seconds
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Figure 4.20: Median p-values for different number of markers, placed randomly inside the vessels. Each polyline represents one
marker set. 50 marker sets were tried.
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4.5. Discussion and Limitations

with two markers, 0.01 seconds with four markers, and 0.017 seconds with eight markers. For the
spatial example we use ten CTA datasets of the human lower extremities with a slice resolution of
512×512 pixels and the number of slices ranging from 700 to 975. The datasets capture vessels
and bones. The average calculation time is 0.51 seconds with one marker, 0.72 seconds with two
markers, 1.16 seconds with four markers, and 2.05 seconds with eight markers.

4.5 Discussion and Limitations

We identified certain limitations of our statistical approach. Construction of the EDFs requires
a certain number of samples to achieve a sufficient precision. However, this requirement may
be violated in some atomic regions of the data. Therefore, the statistical tests obviously cannot
be used in these regions. We display such regions with an additional color that is not associated
with the ranking color scheme. The user has to evaluate dissimilarities in this kind of regions,
which is a conventional data-analysis task. For example, this happens with the few small vessels
of the human lower extremities in CTA data. One possibility to address this issue is to improve
the sampling of the data acquisition technique.

The proper atomic regions realization is crucial for our statistical approach. If the atomic regions
for some reason do not reflect important features of the data, then the results of our method,
namely the composite regions, their hierarchy, and the statistical information, may be sub-optimal
for the data exploration task. If this happens, the user is required to check the entire hierarchy
manually in order to find regions that satisfy the chosen objective. For example, in the case of
the three-dimensional spatial data it is important to capture spatial features. Our specialized
realization, described in Section 4.4.2, does this by representing the data with the influence zones.
In certain cases, such a representation is sub-optimal, e.g., if two different structures are connected
with each other by a large contact area. As a result, these two structures are not separated at
the level of the atomic regions, and, therefore, they are treated by our statistical approach as
belonging together. Particularly, this situation occurs in regions, where the small vessels touch
the bones in the human lower extremities (CTA data). Additional domain knowledge may rectify
this deficiency.

If there were a systematic difference between distributions of conceptually same regions of the
data, caused by the data acquisition modality, our statistical approach would over-estimate the
dissimilarity significance. In particular, data from Electron Microscopy (EM) imaging has a
significant variation between the slices, acquired from the specimen, which is physically cut into
thin slabs. One way to deal with such an over-estimation is to pre-process the data, reducing the
undesired variation in it.

In case of degenerate distributions, which have only a single outcome value, the statistical tests
may report extreme p-values – zeros and ones. However, this does not pose a limitation for
our statistical approach, as the comparison by the p-values is still valid. Our statistical method
does not work with data, where regions that are different according to the domain-specific logic
exhibit the same data-value distribution. However, in this case other general approaches of
comparison would probably fail as well, as domain-specific knowledge is required to differentiate
such regions, indistinguishable by the data values alone.
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4. STATISTICS-DRIVEN LOCALIZATION OF DISSIMILARITIES IN DATA

4.6 Summary

We proposed a novel abstract concept for statistically quantifying dissimilarities between arbitrary
regions of m-dimensional data. The dissimilarity significances are computed by hypothesis
testing, based on robust and sound statistical concepts. To facilitate data exploration, we represent
the data with different levels of detail. At each level, we localize the regions with the most and
the least significant dissimilarities, aiding the user during data exploration and analysis. We
evaluated the generality of our method with two concrete applications: temporal data exploration
and segmentation editing. Our proposed data exploration protocol streamlines the user interaction
in both scenarios, which is strengthened by an evaluation with domain experts.
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CHAPTER 5
Conclusion

The barriers are not erected which can say to aspiring talents and industry,
‘Thus far and no farther.’

— Ludwig van Beethoven

T
HIS thesis addresses the topic of guided interactive volume editing applied to
medical image segmentation. First, a classification of the segmentation defects
was introduced. Examples of each defect type were provided with respect to two

different application scenarios: segmentation of the liver from abdominal data, extraction of the
vessel tree from lower extremities data. Then, we investigated the related questions Q1-Q5 and
contributed to their solutions:

• Q1: How to interactively select the defects?

• Q2: How to choose the appropriate correction operations?

• Q3: How to automatically detect the introduced types of defects?

• Q4: How to visualize the detected defects?

• Q5: How to design the entire editing process?

We start with our basic volume-editing method, described in Chapter 2. This method uses the
object representation by the topological means of the skeleton. The skeleton distance field and
the influence zones allow us to transform interaction operations on the skeleton into the selection
of parts of the object for the subsequent editing (Q1). After manually specifying the correction
operations for the selected parts (Q2), the users can rectify deficiencies of the segmentation
masks, reaching satisfactory results even in the case of severe pathological conditions. However,
the precise selection of the defects is required.
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5. CONCLUSION

To address this issue, we develop a method that automatically detects the following types of
defects (Q3): OP, OL, UP, and UL. Combining the detected defects with pre-defined correction
operations (Q2), we form suggestions for the editing process (Q4). The user selects necessary
corrections from the suggested ones (Q5), instead of manually exploring the object and specifying
the defects and the correction operations. Our defect detection method is described in detail in
Chapter 3.

To streamline the exploration of the possibly vast space of the suggestions, we utilize the statistical
approach from Chapter 4 (Q3). Each defective region is compared against reference parts of the
object. The dissimilarities in data-value distributions are computed and conveyed to the user. All
the suggestions are then ordered according to their dissimilarities (Q4) and presented in such a
way, that the users can focus on correcting severe defects first (Q5). The time of the correction
process is shorter, compared to a technique utilized in clinical routine on a daily basis. In terms
of interaction efforts, our proposed method requires less interaction than the clinical technique.

Even though the methods, described in this thesis, bring improvements to the medical image
segmentation field, certain aspects still require further research attention. First, the influence
zones can be generalized to support membership functions, which would map the skeleton voxels
to object voxels with a certain probability. Such a representation may improve our proposed
techniques, as currently many issues come from the discrete nature of the influence zones. One
issue is the assignment of each voxel to the most common influence zone in the neighborhood.
Contribution of a voxel to other influence zones is discarded. In fact, such a heuristic introduces
deviations from the original topology of the object that might be sub-optimal for defects detection
and correction.

Correction of the under-estimation defects can be revisited, as currently it relies on the com-
plement of the object. As such, editing of the complement makes sense for individual organs,
where UP defects are rather compact. However, in case of objects with complex structure, e.g.,
the entire vessel trees, the complement is a sub-optimal choice. In order to capture UP defects in
vessel trees, the complement should take a large part of the background that contains numerous
structures. This leads to a high number of false positives at the defects detection. One option
could be to track the skeleton branches locally and extend them outside of the object. In this case,
a smaller part of the background is analyzed, therefore, the false positive rate can be acceptable.
This idea is also a heuristic for tubular objects, therefore, a general solution of this problem is an
open scientific question.

More elaborate evaluations of the proposed methods are required in order to assess their suitability
for the clinical environment. As demonstrated in Chapter 3, our techniques can be used for
different data modalities, such as industrial X-Ray Computed Tomography (XCT) or biological
Electron Microscopy (EM) acquisition techniques. To this end, a broad evaluation of our proposed
methods, possibly with new classes of objects, can lead to interesting findings as well as further
improvements to the volume-editing domain.

Currently, a lot of research in the domain is done in the area of uncertainty quantification and
visualization. The idea here is to provide to the user uncertainty information related to the
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segmentation task. This may help with the segmentation of datasets exhibiting severe pathologies.
This research direction is already outlined by the works of Praßni et al. [30] and Top et al. [31].

The major open question in the field, in our opinion, is how to compare numerous segmentation
methods together. Absence of the standardized quality metrics and benchmark datasets makes
it almost impossible to quantitatively assess the benefits of the newly developed techniques.
Certain steps in this direction are made by MICCAI Grand Challenges on biomedical image
analysis [128]. However, it is not yet clear how to compare interaction efforts required by different
techniques. Extended evaluation of the existing methods in terms of the interaction and usability,
therefore, is an interesting direction for future work.
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APPENDIX A
Questionnaire for Guided Volume

Editing based on Histogram
Dissimilarity

Focus on competition has always been a formula for mediocrity.

— Daniel Burrus

T
HIS questionnaire is designed for the evaluation of the Guided Volume Editing
technique, based on Histogram Dissimilarity. Each question is answered ac-
cording to the five-level Likert scale. The technique is described in Chapter 3.

The main contribution of this technique is an automatic detection of segmentation defects and
generation of suggestions for their correction. First, the System Usability Score [87] of the
proposed method is assessed. Then, the user gives detailed scores to individual components of
the technique. Finally, the comparison of our technique with two other approaches is performed.
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System usability study 
Strongly 
disagree 

… 
Strongly 

agree 

 

I think that I would like to use this system frequently ☐ ☐ ☐ ☐ ☐  

I found the system unnecessarily complex ☐ ☐ ☐ ☐ ☐  

I thought the system was easy to use ☐ ☐ ☐ ☐ ☐  

I think that I would need the support of a technical person to be able to use this system ☐ ☐ ☐ ☐ ☐  

I found the various functions in this system were well integrated ☐ ☐ ☐ ☐ ☐  

I thought there was too much inconsistency in this system ☐ ☐ ☐ ☐ ☐  

I would imagine that most people would learn to use this system very quickly ☐ ☐ ☐ ☐ ☐  

I found the system very cumbersome to use ☐ ☐ ☐ ☐ ☐  

I felt very confident using the system ☐ ☐ ☐ ☐ ☐  

I needed to learn a lot of things before I could get going with this system ☐ ☐ ☐ ☐ ☐  

 

System functionality study 
Strongly 
disagree 

… 
Strongly 

agree 

 

I felt very confident by being guided throughout the correction process ☐ ☐ ☐ ☐ ☐  

I got a good overview of the correction possibilities with the miniatures and correction 
previews 

☐ ☐ ☐ ☐ ☐ 
 

I could apply precise corrections using the level-of-detail feature ☐ ☐ ☐ ☐ ☐  

I found the suggested corrections, provided by this system, useful ☐ ☐ ☐ ☐ ☐  

I found the miniatures helpful for exploring the available correction possibilities ☐ ☐ ☐ ☐ ☐  

I found the preview of the correction operation together with the automatically shown 
slice views sufficiently informative for deciding to accept or reject the operation 

☐ ☐ ☐ ☐ ☐ 
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Comparative study 
 

T1 Structure-aware guided volume editing 

T2 Skeleton-based volume editing 

TX Other 

  

 

Evaluation of technique T1 
Strongly 
disagree 

… 
Strongly 

agree 
 

The correction with the technique T1 requires little amount of interaction ☐ ☐ ☐ ☐ ☐  

I achieved appropriate results with the technique T1 in reasonably short time ☐ ☐ ☐ ☐ ☐  

I found the technique T1 easy to interact with ☐ ☐ ☐ ☐ ☐  

I found that the technique T1 is tolerant regarding user input ☐ ☐ ☐ ☐ ☐  

I am satisfied with the results obtained with the technique T1 ☐ ☐ ☐ ☐ ☐  

 

Evaluation of technique T2 
Strongly 
disagree 

… 
Strongly 

agree 
 

The correction with the technique T2 requires little amount of interaction ☐ ☐ ☐ ☐ ☐  

I achieved appropriate results with the technique T2 in reasonably short time ☐ ☐ ☐ ☐ ☐  

I found the technique T2 easy to interact with ☐ ☐ ☐ ☐ ☐  

I found that the technique T2 is tolerant regarding user input ☐ ☐ ☐ ☐ ☐  

I am satisfied with the results obtained with the technique T2 ☐ ☐ ☐ ☐ ☐  
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Evaluation of technique of my choice (TX) 
 

Strongly 
disagree … 

Strongly 
agree 

 

Technique (please, state the name of the technique and provide the reference, if possible): 
 

 

The correction with the technique TX requires little amount of interaction ☐ ☐ ☐ ☐ ☐  

I achieved appropriate results with the technique TX in reasonably short time ☐ ☐ ☐ ☐ ☐  

I found the technique TX easy to interact with ☐ ☐ ☐ ☐ ☐  

I found that the technique TX is tolerant regarding user input ☐ ☐ ☐ ☐ ☐  

I am satisfied with the results obtained with the technique TX ☐ ☐ ☐ ☐ ☐  

 

Consent 
I voluntarily agreed to this user study and had option to terminate it at any time □ I disagree □ I agree 

I agree with usage of this user study data in publication (after mandatory 
anonymization) □ I disagree □ I agree 

 

Name of participant: Click here to enter text. 

Date: Click here to enter a date. 
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APPENDIX B
Questionnaire for Statistics-Driven

Localization of Dissimilarities in Data
Cherish the friend who tells you a harsh truth,
wanting ten times more to tell you a loving lie.

— Robert Brault

W
E used the following questionnaire during the evaluation of Statistics-Driven
Localization of Dissimilarities in Data, applied to the segmentation editing
topic. The questionnaire is based on a five-level Likert scale. The method

was implemented according to the description in Chapter 4. This technique contributes to the
correction process with a statistical assessment of the detected defective regions and their ordered
presentation to the user. In order to assess the usability of the technique, we use the System
Usability Score [87]. Individual components are then assessed by the users. We compare this
technique with the previous method from Chapter 3 as well as with the AngioVis framework [1],
used in clinical routine on a daily basis.
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System usability study 
Strongly 
disagree 

… 
Strongly 

agree 

 

I think that I would like to use this system frequently ☐ ☐ ☐ ☐ ☐  

I found the system unnecessarily complex ☐ ☐ ☐ ☐ ☐  

I thought the system was easy to use ☐ ☐ ☐ ☐ ☐  

I think that I would need the support of a technical person to be able to use this system ☐ ☐ ☐ ☐ ☐  

I found the various functions in this system were well integrated ☐ ☐ ☐ ☐ ☐  

I thought there was too much inconsistency in this system ☐ ☐ ☐ ☐ ☐  

I would imagine that most people would learn to use this system very quickly ☐ ☐ ☐ ☐ ☐  

I found the system very cumbersome to use ☐ ☐ ☐ ☐ ☐  

I felt very confident using the system ☐ ☐ ☐ ☐ ☐  

I needed to learn a lot of things before I could get going with this system ☐ ☐ ☐ ☐ ☐  

 

System functionality study 
Strongly 
disagree 

… 
Strongly 

agree 

 

I felt very confident by having statistical information available ☐ ☐ ☐ ☐ ☐  

I found the statistical significance, provided by this system, very useful ☐ ☐ ☐ ☐ ☐  

I got a good overview of the correction possibilities with the radial tree view ☐ ☐ ☐ ☐ ☐  

I could find precise corrections following the suggested paths in the radial tree view ☐ ☐ ☐ ☐ ☐  

I found the marker-based specification of the object of interest very easy ☐ ☐ ☐ ☐ ☐  

I located necessary corrections using color-based encoding of statistical information ☐ ☐ ☐ ☐ ☐  

I found the marker-based specification of the object of interest precise enough ☐ ☐ ☐ ☐ ☐  

I got a good overview of the correction process with the time line view ☐ ☐ ☐ ☐ ☐  
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Comparative study 
 

T1 Statistics-guided volume editing 

T2 Dissimilarity-guided volume editing 

T3 Base-line volume editing 

  
 

Evaluation of technique T1 
Strongly 
disagree 

… 
Strongly 

agree 
 

The correction with the technique T1 requires little amount of interaction ☐ ☐ ☐ ☐ ☐  

I achieved appropriate results with the technique T1 in reasonably short time ☐ ☐ ☐ ☐ ☐  

I found the technique T1 easy to interact with ☐ ☐ ☐ ☐ ☐  

I found that the technique T1 is tolerant regarding user input ☐ ☐ ☐ ☐ ☐  

I am satisfied with the results obtained with the technique T1 ☐ ☐ ☐ ☐ ☐  

I got sufficient information while performing the correction with the technique T1 ☐ ☐ ☐ ☐ ☐  

 

Evaluation of technique T2 
Strongly 
disagree 

… 
Strongly 

agree 
 

The correction with the technique T2 requires little amount of interaction ☐ ☐ ☐ ☐ ☐  

I achieved appropriate results with the technique T2 in reasonably short time ☐ ☐ ☐ ☐ ☐  

I found the technique T2 easy to interact with ☐ ☐ ☐ ☐ ☐  

I found that the technique T2 is tolerant regarding user input ☐ ☐ ☐ ☐ ☐  

I am satisfied with the results obtained with the technique T2 ☐ ☐ ☐ ☐ ☐  

I got sufficient information while performing the correction with the technique T2 ☐ ☐ ☐ ☐ ☐  
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Evaluation of technique T3 
Strongly 
disagree 

… 
Strongly 

agree 
 

The correction with the technique T3 requires little amount of interaction ☐ ☐ ☐ ☐ ☐  

I achieved appropriate results with the technique T3 in reasonably short time ☐ ☐ ☐ ☐ ☐  

I found the technique T3 easy to interact with ☐ ☐ ☐ ☐ ☐  

I found that the technique T3 is tolerant regarding user input ☐ ☐ ☐ ☐ ☐  

I am satisfied with the results obtained with the technique T3 ☐ ☐ ☐ ☐ ☐  

I got sufficient information while performing the correction with the technique T3 ☐ ☐ ☐ ☐ ☐  

 

Additional comments (if any) 
 
Click here to enter text. 
 

 

Consent 
I voluntarily agreed to this user study and had option to terminate it at any time ☐  I disagree ☐  I agree 

I agree with usage of this user study data in publication (after mandatory 
anonymization) 

☐  I disagree ☐ I agree 

 

Name of participant: Click here to enter text. 

Date: Click here to enter a date. 
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